1
|
Hudson HR, Sun X, Orr ME. Senescent brain cell types in Alzheimer's disease: Pathological mechanisms and therapeutic opportunities. Neurotherapeutics 2025; 22:e00519. [PMID: 39765417 DOI: 10.1016/j.neurot.2024.e00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 04/19/2025] Open
Abstract
Cellular senescence is a cell state triggered by programmed physiological processes or cellular stress responses. Stress-induced senescent cells often acquire pathogenic traits, including a toxic secretome and resistance to apoptosis. When pathogenic senescent cells form faster than they are cleared by the immune system, they accumulate in tissues throughout the body and contribute to age-related diseases, including neurodegeneration. This review highlights evidence of pathogenic senescent cells in the brain and their role in Alzheimer's disease (AD), the leading cause of dementia in older adults. We also discuss the progress and challenges of senotherapies, pharmacological strategies to clear senescent cells or mitigate their toxic effects, which hold promise as interventions for AD and related dementias (ADRD).
Collapse
Affiliation(s)
- Hannah R Hudson
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Neurology, Washington University School of Medicine in St Louis, MO, USA.
| | - Xuehan Sun
- Department of Neurology, Washington University School of Medicine in St Louis, MO, USA.
| | - Miranda E Orr
- Department of Neurology, Washington University School of Medicine in St Louis, MO, USA; St Louis VA Medical Center, St Louis, MO, USA.
| |
Collapse
|
2
|
Wang P, Han L, Wang L, Tao Q, Guo Z, Luo T, He Y, Xu Z, Yu J, Liu Y, Wu Z, Xu B, Jin B, Wei Y, Yang Y, Cheng M, Jiang Y, Tian C, Zheng H, Fan Z, Jiang P, Gao Y, Wu J, Wang S, Sun B, Fang Z, Lei J, Luo B, Wen H, Peng G, Tang Y, Yang T, Chen J, Zhuang Z, Su X, Pan C, Zhu K, Shen Y, Liu S, Bao A, Yao J, Wang J, Xu X, Li XM, Liu L, Duan S, Zhang J. Molecular pathways and diagnosis in spatially resolved Alzheimer's hippocampal atlas. Neuron 2025:S0896-6273(25)00174-6. [PMID: 40168986 DOI: 10.1016/j.neuron.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/19/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025]
Abstract
We employed Stereo-seq combined with single-nucleus RNA sequencing (snRNA-seq) to investigate the gene expression and cell composition changes in human hippocampus with or without Alzheimer's disease (AD). The transcriptomic map, with single-cell precision, unveiled AD-associated alterations with spatial specificity, which include the following: (1) elevated synapse pruning gene expression in the fimbria of AD, with disrupted microglia-astrocyte communication likely leading to disorganized synaptic structure; (2) a globally increased energy generation in the cornu ammonis (CA) region, with varying degrees across its subregions; (3) a significant reduction in the number of CA1 neurons in AD, while CA4 neurons remained largely unaffected, potentially due to gene alterations in CA4 conferring resilience to AD; and (4) aggravated amyloid-beta (Aβ) plaques in CA1 and stratum lucidum, radiatum, and moleculare (SLRM), and integration of Stereo-seq map with Aβ staining revealed a sequential enrichment of microglia and astrocytes around Aβ plaques. Finally, reduced brain-derived extracellular vesicles carrying cholecystokinin (CCK) and peripheral myelin protein 2 (PMP2) in AD plasma highlighted their diagnostic potential for clinical applications.
Collapse
Affiliation(s)
- Pan Wang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China; National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, Zhejiang 310002, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Lei Han
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Lifang Wang
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Quyuan Tao
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Guo
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Ting Luo
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Youzhe He
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Xu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Jiayi Yu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Yuyang Liu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihan Wu
- Tencent AI Lab, Shenzhen 518057, China
| | - Bin Xu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Bufan Jin
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanrong Wei
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Yang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Mengnan Cheng
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Chen Tian
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Huiwen Zheng
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongqin Fan
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Peiran Jiang
- National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Yue Gao
- BGI Research, Hangzhou 310030, China
| | - Juanli Wu
- National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | | | - Bing Sun
- National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Zheng Fang
- National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Junjie Lei
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Benyan Luo
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | | | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | | | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen 518120, China; Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen 518120, China
| | - Jing Chen
- China National GeneBank, BGI Research, Shenzhen 518120, China; Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen 518120, China
| | | | - Xinhui Su
- PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Catherine Pan
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Keqing Zhu
- National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, Zhejiang 310002, China; Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yi Shen
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310002, China
| | | | - Aimin Bao
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310002, China; Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | | | - Jian Wang
- BGI Research, Shenzhen 518083, China
| | - Xun Xu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Ming Li
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310002, China; Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shumin Duan
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310002, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310002, China.
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, China; National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, Zhejiang 310002, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China.
| |
Collapse
|
3
|
Bai D, Cao Z, Attada N, Song J, Zhu C. Single-cell parallel analysis of DNA damage and transcriptome reveals selective genome vulnerability. Nat Methods 2025:10.1038/s41592-025-02632-3. [PMID: 40128288 DOI: 10.1038/s41592-025-02632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/18/2025] [Indexed: 03/26/2025]
Abstract
Maintenance of genome integrity is paramount to molecular programs in multicellular organisms. Throughout the lifespan, various endogenous and environmental factors pose persistent threats to the genome, which can result in DNA damage. Understanding the functional consequences of DNA damage requires investigating their preferred genomic distributions and influences on gene regulatory programs. However, such analysis is hindered by both the complex cell-type compositions within organs and the high background levels due to the stochasticity of damage formation. To address these challenges, we developed Paired-Damage-seq for joint analysis of oxidative and single-stranded DNA damage with gene expression in single cells. We applied this approach to cultured HeLa cells and the mouse brain as a proof of concept. Our results indicated the associations between damage formation and epigenetic changes. The distribution of oxidative DNA damage hotspots exhibits cell-type-specific patterns; this selective genome vulnerability, in turn, can predict cell types and dysregulated molecular programs that contribute to disease risks.
Collapse
Affiliation(s)
| | - Zhenkun Cao
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Jinghui Song
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chenxu Zhu
- New York Genome Center, New York, NY, USA.
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Zhao J, Gu T, Gao C, Miao G, Palma-Gudiel H, Yu L, Yang J, Wang Y, Li Y, Lim J, Li R, Yao B, Wu H, Schneider JA, Seyfried N, Grodstein F, De Jager PL, Jin P, Bennett DA. Brain 5-hydroxymethylcytosine alterations are associated with Alzheimer's disease neuropathology. Nat Commun 2025; 16:2842. [PMID: 40121201 PMCID: PMC11929800 DOI: 10.1038/s41467-025-58159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
5-hydroxymethylcytosine, also known as the sixth DNA base of the genome, plays an important role in brain aging and neurological disorders such as Alzheimer's disease. However, little is known about its genome-wide distribution and its association with Alzheimer's disease pathology. Here, we report a genome-wide profiling of 5-hydroxymethylcytosine in 1079 autopsied brains (dorsolateral prefrontal cortex) of older individuals and assess its association with multiple measures of Alzheimer's disease pathologies, including pathological diagnosis of Alzheimer's disease, amyloid-β load, and PHFtau tangle density. Of 197,765 5-hydroxymethylcytosine regions detected, we identified 2821 differentially hydroxymethylated regions associated with Alzheimer's disease neuropathology after controlling for multiple testing and covariates. Many differentially hydroxymethylated regions are located within known Alzheimer's disease loci, such as RIN3, PLCG2, ITGA2B, and USP6NL. Integrative multi-omics analyses support a potential mechanistic role of 5-hydroxymethylcytosine alterations in Alzheimer's disease. Our study presents a large-scale genome-wide atlas of 5-hydroxymethylcytosine in Alzheimer's brain and offers insight into the mechanism underlying Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Jinying Zhao
- Health Informatics Institute, University of South Florida, Tampa, FL, USA.
| | - Tongjun Gu
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Cheng Gao
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | - Guanhong Miao
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | - Helena Palma-Gudiel
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Jingyun Yang
- Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Junghwa Lim
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ronghua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Nicholas Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Francine Grodstein
- Rush Alzheimer's Disease Center & Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| | - David A Bennett
- Rush Alzheimer's Disease Center & Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
5
|
Dubocanin D, Kalygina A, Franklin JM, Chittenden C, Vollger MR, Neph S, Stergachis AB, Altemose N. Integrating Single-Molecule Sequencing and Deep Learning to Predict Haplotype-Specific 3D Chromatin Organization in a Mendelian Condition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640261. [PMID: 40166185 PMCID: PMC11957061 DOI: 10.1101/2025.02.26.640261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The three-dimensional (3D) architecture of the genome plays a crucial role in gene regulation and various human diseases. Short-read sequencing methods for measuring 3D genome organization are powerful, but they lack the ability to resolve individual human haplotypes or structurally complex regions. To address this, we present FiberFold, a deep learning model that combines convolutional neural networks and transformer architectures to accurately predict cell-type-specific and haplotype-specific 3D genome organization using multi-omic data from a single, long-read sequencing assay, Fiber-seq. By applying FiberFold to a cell line with allelic X-inactivation, we show that Topologically Associated Domains (TADs) are attenuated on the inactive chrX. Furthermore, FiberFold predicts significant changes to TADs surrounding a 13;X balanced translocation in a patient with a rare Mendelian disease. FiberFold showcases the power of integrating long-read epigenomic sequencing with deep learning tools to investigate fundamental chromatin biology as well as the molecular basis of human disease.
Collapse
Affiliation(s)
- Danilo Dubocanin
- Department of Genetics, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Anna Kalygina
- Department of Biology, University of Oxford, Oxford, UK
| | - J. Matthew Franklin
- Department of Genetics, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Cy Chittenden
- Department of Genetics, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Mitchell R Vollger
- Division of Medical Genetics, Dept. of Medicine, University of Washington, Seattle, WA, USA
| | - Shane Neph
- Division of Medical Genetics, Dept. of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Dept. of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Nicolas Altemose
- Department of Genetics, School of Medicine, Stanford University, Palo Alto, CA, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Ihara D, Rasli NR, Katsuyama Y. How do neurons live long and healthy? The mechanism of neuronal genome integrity. Front Neurosci 2025; 19:1552790. [PMID: 40177377 PMCID: PMC11961891 DOI: 10.3389/fnins.2025.1552790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
Genome DNA of neurons in the brain is unstable, and mutations caused by inaccurate repair can lead to neurodevelopmental and neurodegenerative disorders. Damage to the neuronal genome is induced both exogenously and endogenously. Rapid cell proliferation of neural stem cells during embryonic brain development can lead to errors in genome duplication. Electrical excitations and drastic changes in gene expression in functional neurons cause risks of damaging genomic DNA. The precise repair of DNA damages caused by events making genomic DNA unstable maintains neuronal functions. The maintenance of the DNA sequence and structure of the genome is known as genomic integrity. Molecular mechanisms that maintain genomic integrity are critical for healthy neuronal function. In this review, we describe recent progress in understanding the genome integrity in functional neurons referring to their disruptions reported in neurological diseases.
Collapse
Affiliation(s)
| | | | - Yu Katsuyama
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
7
|
Ramadoss GN, Namaganda SJ, Hamilton JR, Sharma R, Chow KG, Macklin BL, Sun M, Liu JC, Fellmann C, Watry HL, Jin J, Perez BS, Espinoza CRS, Matia MP, Lu SH, Judge LM, Nussenzweig A, Adamson B, Murthy N, Doudna JA, Kampmann M, Conklin BR. Neuronal DNA repair reveals strategies to influence CRISPR editing outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.25.600517. [PMID: 38979269 PMCID: PMC11230251 DOI: 10.1101/2024.06.25.600517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Genome editing is poised to revolutionize treatment of genetic diseases, but poor understanding and control of DNA repair outcomes hinders its therapeutic potential. DNA repair is especially understudied in nondividing cells like neurons, which must withstand decades of DNA damage without replicating. This lack of knowledge limits the efficiency and precision of genome editing in clinically relevant cells. To address this, we used induced pluripotent stem cells (iPSCs) and iPSC-derived neurons to examine how postmitotic human neurons repair Cas9-induced DNA damage. We discovered that neurons can take weeks to fully resolve this damage, compared to just days in isogenic iPSCs. Furthermore, Cas9-treated neurons upregulated unexpected DNA repair genes, including factors canonically associated with replication. Manipulating this response with chemical or genetic perturbations allowed us to direct neuronal repair toward desired editing outcomes. By studying DNA repair in postmitotic human cells, we uncovered unforeseen challenges and opportunities for precise therapeutic editing.
Collapse
Affiliation(s)
- Gokul N Ramadoss
- Gladstone Institutes, San Francisco, CA, 94158, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | | | - Jennifer R Hamilton
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Rohit Sharma
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | | | | | - Mengyuan Sun
- Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Jia-Cheng Liu
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Christof Fellmann
- Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA
| | | | - Julianne Jin
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | - Barbara S Perez
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Cindy R Sandoval Espinoza
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
| | | | - Serena H Lu
- Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Luke M Judge
- Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA, 94158, USA
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Britt Adamson
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Niren Murthy
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Jennifer A Doudna
- Gladstone Institutes, San Francisco, CA, 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Bruce R Conklin
- Gladstone Institutes, San Francisco, CA, 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
8
|
Li B, Ming H, Qin S, Nice EC, Dong J, Du Z, Huang C. Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduct Target Ther 2025; 10:72. [PMID: 40050273 PMCID: PMC11885647 DOI: 10.1038/s41392-024-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 03/09/2025] Open
Abstract
Redox signaling acts as a critical mediator in the dynamic interactions between organisms and their external environment, profoundly influencing both the onset and progression of various diseases. Under physiological conditions, oxidative free radicals generated by the mitochondrial oxidative respiratory chain, endoplasmic reticulum, and NADPH oxidases can be effectively neutralized by NRF2-mediated antioxidant responses. These responses elevate the synthesis of superoxide dismutase (SOD), catalase, as well as key molecules like nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby maintaining cellular redox homeostasis. Disruption of this finely tuned equilibrium is closely linked to the pathogenesis of a wide range of diseases. Recent advances have broadened our understanding of the molecular mechanisms underpinning this dysregulation, highlighting the pivotal roles of genomic instability, epigenetic modifications, protein degradation, and metabolic reprogramming. These findings provide a foundation for exploring redox regulation as a mechanistic basis for improving therapeutic strategies. While antioxidant-based therapies have shown early promise in conditions where oxidative stress plays a primary pathological role, their efficacy in diseases characterized by complex, multifactorial etiologies remains controversial. A deeper, context-specific understanding of redox signaling, particularly the roles of redox-sensitive proteins, is critical for designing targeted therapies aimed at re-establishing redox balance. Emerging small molecule inhibitors that target specific cysteine residues in redox-sensitive proteins have demonstrated promising preclinical outcomes, setting the stage for forthcoming clinical trials. In this review, we summarize our current understanding of the intricate relationship between oxidative stress and disease pathogenesis and also discuss how these insights can be leveraged to optimize therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Siyuan Qin
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jingsi Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Canhua Huang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China.
| |
Collapse
|
9
|
Lu C, Huang XX, Huang M, Liu C, Xu J. Mendelian randomization of plasma proteomics identifies novel ALS-associated proteins and their GO enrichment and KEGG pathway analyses. BMC Neurol 2025; 25:82. [PMID: 40033250 DOI: 10.1186/s12883-025-04091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurological disorder with an increasing incidence rate. Despite advances in ALS research over the years, the precise etiology and pathogenic mechanisms remain largely elusive. OBJECTIVE To identify novel plasma proteins associated with ALS through Mendelian randomization methods in large-scale plasma proteomics and to provide potential biomarkers and therapeutic targets for ALS treatment. METHODS This study employed a large-scale plasma proteomic Mendelian randomization approach using genetic data from 80,610 individuals of European ancestry (including 20,806 ALS patients and 59,804 controls) derived from a genome-wide association study (GWAS). Protein quantitative trait loci (pQTLs) data were obtained from Ferkingstad et al. (2021), which measured 4,907 proteins in 35,559 Icelandic individuals. Multiple Mendelian randomization (MR) techniques were utilized, including weighted median, MR-Egger, Wald ratio, inverse-variance weighting (IVW), basic model, and weighted model. Heterogeneity was evaluated using Cochran's Q test. Horizontal pleiotropy was assessed through the MR-Egger intercept test and MR-PRESSO outlier detection. Sensitivity analysis was performed via leave-one-out analysis. RESULTS MR analysis revealed potential causal associations between 491 plasma proteins and ALS, identifying 19 novel plasma proteins significantly linked to the disease. Proteins such as C1QC, UMOD, SLITRK5, ASAP2, TREML2, DAPK2, ARHGEF10, POLM, SST, and SIGLEC1 showed positive correlations with ALS risk, whereas ADPGK, BTNL9, COLEC12, ADGRF5, FAIM, CRTAM, PRSS3, BAG5, and PSMD11 exhibited negative correlations. Reverse MR analyses confirmed that ALS negatively correlates with ADPGK and ADGRF5 expression. Enrichment analyses, including Gene Ontology (GO) functional analysis, indicated involvement in critical biological processes such as external encapsulating structure organization, extracellular matrix organization, chemotaxis, and taxis. KEGG pathway analysis highlighted significant enrichment in the PI3K-Akt signaling pathway, cytokine-cytokine receptor interactions, and axon guidance. CONCLUSION This study enhances the understanding of ALS pathophysiology and proposes potential biomarkers and mechanistic insights for therapeutic development. Future research should explore the clinical translation of these findings to improve ALS patient outcomes and quality of life.
Collapse
Affiliation(s)
- Chuan Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Xiao Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ming Huang
- School of Continuing Education, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chaoning Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jianwen Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
10
|
Giles KA, Taberlay PC, Cesare AJ, Jones MJK. Roles for the 3D genome in the cell cycle, DNA replication, and double strand break repair. Front Cell Dev Biol 2025; 13:1548946. [PMID: 40083661 PMCID: PMC11903485 DOI: 10.3389/fcell.2025.1548946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Large eukaryotic genomes are packaged into the restricted area of the nucleus to protect the genetic code and provide a dedicated environment to read, copy and repair DNA. The physical organisation of the genome into chromatin loops and self-interacting domains provides the basic structural units of genome architecture. These structural arrangements are complex, multi-layered, and highly dynamic and influence how different regions of the genome interact. The role of chromatin structures during transcription via enhancer-promoter interactions is well established. Less understood is how nuclear architecture influences the plethora of chromatin transactions during DNA replication and repair. In this review, we discuss how genome architecture is regulated during the cell cycle to influence the positioning of replication origins and the coordination of DNA double strand break repair. The role of genome architecture in these cellular processes highlights its critical involvement in preserving genome integrity and cancer prevention.
Collapse
Affiliation(s)
- Katherine A. Giles
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Phillippa C. Taberlay
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Anthony J. Cesare
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW, Australia
| | - Mathew J. K. Jones
- Faculty of Medicine, Frazer Institute, University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Drake SS, Mohammadnia A, Zaman A, Gianfelice C, Heale K, Groh AMR, Hua EML, Hintermayer MA, Lu YR, Gosselin D, Zandee S, Prat A, Stratton JA, Sinclair DA, Fournier AE. Cellular rejuvenation protects neurons from inflammation-mediated cell death. Cell Rep 2025; 44:115298. [PMID: 39937646 DOI: 10.1016/j.celrep.2025.115298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 10/31/2024] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
In multiple sclerosis (MS), inflammation of the central nervous system results in demyelination, neuroaxonal injury, and cell death. However, the molecular signals responsible for injury and cell death in neurons are not fully characterized. Here, we profile the transcriptome of retinal ganglion cells (RGCs) in experimental autoimmune encephalomyelitis (EAE) mice. Pathway analysis identifies a transcriptional signature reminiscent of aged RGCs with some senescent features, with a comparable signature present in neurons from patients with MS. This is supported by immunostaining demonstrating alterations to the nuclear envelope, modifications in chromatin marks, and accumulation of DNA damage. Transduction of RGCs with an Oct4-Sox2-Klf4 adeno-associated virus (AAV) to rejuvenate the transcriptome enhances RGC survival in EAE and improves visual acuity. Collectively, these data reveal an aging-like phenotype in neurons under pathological neuroinflammation and support the possibility that rejuvenation therapies or senotherapeutic agents could offer a direct avenue for neuroprotection in neuroimmune disorders.
Collapse
Affiliation(s)
- Sienna S Drake
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Abdulshakour Mohammadnia
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Aliyah Zaman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Christine Gianfelice
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Kali Heale
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Adam M R Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Elizabeth M-L Hua
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Matthew A Hintermayer
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - Yuancheng Ryan Lu
- Department of Genetics, Bavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - David Gosselin
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V4G2, Canada
| | - Stephanie Zandee
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X0A9, Canada
| | - Alexandre Prat
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X0A9, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada
| | - David A Sinclair
- Department of Genetics, Bavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Alyson E Fournier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A2B4, Canada.
| |
Collapse
|
12
|
Zheng Q, Wang X. Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025; 16:83-120. [PMID: 38733347 PMCID: PMC11786724 DOI: 10.1093/procel/pwae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle, and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Qiuyang Zheng
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xin Wang
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
MOON HAEUN, DU JINHONG, LEI JING, ROEDER KATHRYN. AUGMENTED DOUBLY ROBUST POST-IMPUTATION INFERENCE FOR PROTEOMIC DATA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.23.586387. [PMID: 39868108 PMCID: PMC11761724 DOI: 10.1101/2024.03.23.586387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Quantitative measurements produced by mass spectrometry proteomics experiments offer a direct way to explore the role of proteins in molecular mechanisms. However, analysis of such data is challenging due to the large proportion of missing values. A common strategy to address this issue is to utilize an imputed dataset, which often introduces systematic bias into downstream analyses if the imputation errors are ignored. In this paper, we propose a statistical framework inspired by doubly robust estimators that offers valid and efficient inference for proteomic data. Our framework combines powerful machine learning tools, such as variational autoencoders, to augment the imputation quality with high-dimensional peptide data, and a parametric model to estimate the propensity score for debiasing imputed outcomes. Our estimator is compatible with the double machine learning framework and has provable properties. Simulation studies verify its empirical superiority over other existing procedures. In application to both single-cell proteomic data and bulk-cell Alzheimer's Disease data our method utilizes the imputed data to gain additional, meaningful discoveries and yet maintains good control of false positives.
Collapse
Affiliation(s)
- HAEUN MOON
- Department of Statistics, Seoul National University
| | - JIN-HONG DU
- Department of Statistics and Data Science, Carnegie Mellon University
| | - JING LEI
- Department of Statistics and Data Science, Carnegie Mellon University
| | - KATHRYN ROEDER
- Department of Statistics and Data Science, Carnegie Mellon University
| |
Collapse
|
14
|
Xu B, Lei X, Yang Y, Yu J, Chen J, Xu Z, Ye K, Zhang J. Peripheral proteinopathy in neurodegenerative diseases. Transl Neurodegener 2025; 14:2. [PMID: 39819742 PMCID: PMC11737199 DOI: 10.1186/s40035-024-00461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025] Open
Abstract
Proteinopathies in neurology typically refer to pathological changes in proteins associated with neurological diseases, such as the aggregation of amyloid β and Tau in Alzheimer's disease, α-synuclein in Parkinson's disease and multiple system atrophy, and TAR DNA-binding protein 43 in amyotrophic lateral sclerosis and frontotemporal dementia. Interestingly, these proteins are also commonly found in peripheral tissues, raising important questions about their roles in neurological disorders. Multiple studies have shown that peripherally derived pathological proteins not only travel to the brain through various routes, aggravating brain pathology, but also contribute significantly to peripheral dysfunction, highlighting their crucial impact on neurological diseases. Investigating how these peripherally derived proteins influence the progression of neurological disorders could open new horizons for achieving early diagnosis and treatment. This review summarizes the distribution, transportation pathways, and pathogenic mechanisms of several neurodegenerative disease-related pathological proteins in the periphery, proposing that targeting these peripheral pathological proteins could be a promising strategy for preventing and managing neurological diseases.
Collapse
Affiliation(s)
- Bin Xu
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Xia Lei
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Ying Yang
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Jiayi Yu
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310002, China
| | - Jun Chen
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Zhi Xu
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310002, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen, 518055, China
| | - Jing Zhang
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China.
- National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
15
|
Delint-Ramirez I, Madabhushi R. DNA damage and its links to neuronal aging and degeneration. Neuron 2025; 113:7-28. [PMID: 39788088 PMCID: PMC11832075 DOI: 10.1016/j.neuron.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/07/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025]
Abstract
DNA damage is a major risk factor for the decline of neuronal functions with age and in neurodegenerative diseases. While how DNA damage causes neurodegeneration is still being investigated, innovations over the past decade have provided significant insights into this issue. Breakthroughs in next-generation sequencing methods have begun to reveal the characteristics of neuronal DNA damage hotspots and the causes of DNA damage. Chromosome conformation capture-based approaches have shown that, while DNA damage and the ensuing cellular response alter chromatin topology, chromatin organization at damage sites also affects DNA repair outcomes in neurons. Additionally, neuronal activity results in the formation of programmed DNA breaks, which could burden DNA repair mechanisms and promote neuronal dysfunction. Finally, emerging evidence implicates DNA damage-induced inflammation as an important contributor to the age-related decline in neuronal functions. Together, these discoveries have ushered in a new understanding of the significance of genome maintenance for neuronal function.
Collapse
Affiliation(s)
- Ilse Delint-Ramirez
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ram Madabhushi
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
16
|
Siano G, Varisco M, Terrigno M, Wang C, Scarlatti A, Iannone V, Groth M, Galas MC, Hoozemans JJM, Cellerino A, Cattaneo A, Di Primio C. Tau mediates the reshaping of the transcriptional landscape toward intermediate Alzheimer's disease stages. Front Cell Dev Biol 2025; 12:1459573. [PMID: 39830212 PMCID: PMC11739074 DOI: 10.3389/fcell.2024.1459573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/01/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Recent research revealed that Tau plays critical roles in various neuronal functions. We previously demonstrated that destabilization and nuclear delocalization of Tau alter the expression of glutamatergic genes, mediating early neuronal damage. Methods In this study, we discovered that changes in Tau availability are linked to global alterations in gene expression that affect multiple neuronal pathways. Comparison with the human temporal region showed that the Tau-dependent modulation of gene expression closely resembles the intermediate stages of Alzheimer's disease (AD) that precede the definitive pathological condition. Results Furthermore, we identified the chromatin remodeling pathway as being significantly affected by Tau in both our cellular model and AD brains, with reductions in heterochromatin markers. Our findings indicate that Tau is able to globally affect the neuronal transcriptome and that its subcellular unbalance changes gene expression in the intermediate stages of AD development. In addition, we found that the chromatin architecture is affected by Tau during the progression of AD. Discussion These results provide new insights into the molecular mechanisms underlying early stages of AD development and highlight the central role of Tau and the contribution of nuclear Tau in this process.
Collapse
Affiliation(s)
- Giacomo Siano
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Martina Varisco
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Marco Terrigno
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Congwei Wang
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Arianna Scarlatti
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Vincenzo Iannone
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Marco Groth
- CF Next-Generation Sequencing, Leibniz Institute on Ageing – Fritz Lipmann institute, Jena, Germany
| | - Marie-Christine Galas
- University of Lille, Institut national de la santé et de la recherche médicale, CHU-Lille, Centre national de la recherche scientifique, LilNCog-Lille Neuroscience & Cognition, Lille, France
| | - Jeroen J. M. Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Alessandro Cellerino
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
- Leibniz Institute on Ageing, Fritz Lipmann institute, Jena, Germany
| | - Antonino Cattaneo
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Cristina Di Primio
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Pisa, Italy
| |
Collapse
|
17
|
Corrigan RR, Mashburn-Warren LM, Yoon H, Bedrosian TA. Somatic Mosaicism in Brain Disorders. ANNUAL REVIEW OF PATHOLOGY 2025; 20:13-32. [PMID: 39227323 DOI: 10.1146/annurev-pathmechdis-111523-023528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Research efforts over the past decade have defined the genetic landscape of somatic variation in the brain. Neurons accumulate somatic mutations from development through aging with potentially profound functional consequences. Recent studies have revealed the contribution of somatic mosaicism to various brain disorders including focal epilepsy, neuropsychiatric disease, and neurodegeneration. One notable finding is that the effect of somatic mosaicism on clinical outcomes can vary depending on contextual factors, such as the developmental origin of a variant or the number and type of cells affected. In this review, we highlight current knowledge regarding the role of somatic mosaicism in brain disorders and how biological context can mediate phenotypes. First, we identify the origins of brain somatic variation throughout the lifespan of an individual. Second, we explore recent discoveries that suggest somatic mosaicism contributes to various brain disorders. Finally, we discuss neuropathological associations of brain mosaicism in different biological contexts and potential clinical utility.
Collapse
Affiliation(s)
- Rachel R Corrigan
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA;
| | | | - Hyojung Yoon
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA;
| | - Tracy A Bedrosian
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA;
| |
Collapse
|
18
|
Yan T, Heckman MG, Craver EC, Liu CC, Rawlinson BD, Wang X, Murray ME, Dickson DW, Ertekin-Taner N, Lou Z, Bu G, Springer W, Fiesel FC. The UFMylation pathway is impaired in Alzheimer's disease. Mol Neurodegener 2024; 19:97. [PMID: 39696466 DOI: 10.1186/s13024-024-00784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles made of hyperphosphorylated tau and senile plaques composed of beta-amyloid. These pathognomonic deposits have been implicated in the pathogenesis, although the molecular mechanisms and consequences remain undetermined. UFM1 is an important, but understudied ubiquitin-like protein that is covalently attached to substrates. UFMylation has recently been identified as major modifier of tau aggregation upon seeding in experimental models. However, potential alterations of the UFM1 pathway in human AD brain have not been investigated yet. METHODS Here we used frontal and temporal cortex samples from individuals with or without AD to measure the protein levels of the UFMylation pathway in human brain. We used multivariable regression analyses followed by Bonferroni correction for multiple testing to analyze associations of the UFMylation pathway with neuropathological characteristics, primary biochemical measurements of tau and additional biochemical markers from the same cases. We further studied associations of the UFMylation cascade with cellular stress pathways using Spearman correlations with bulk RNAseq expression data and functionally validated these interactions using gene-edited neurons that were generated by CRISPR-Cas9. RESULTS Compared to controls, human AD brain had increased protein levels of UFM1. Our data further indicates that this increase mainly reflects conjugated UFM1 indicating hyperUFMylation in AD. UFMylation was strongly correlated with pathological tau in both AD-affected brain regions. In addition, we found that the levels of conjugated UFM1 were negatively correlated with soluble levels of the deUFMylation enzyme UFSP2. Functional analysis of UFM1 and/or UFSP2 knockout neurons revealed that the DNA damage response as well as the unfolded protein response are perturbed by changes in neuronal UFM1 signaling. CONCLUSIONS There are marked changes in the UFMylation pathway in human AD brain. These changes are significantly associated with pathological tau, supporting the idea that the UFMylation cascade might indeed act as a modifier of tau pathology in human brain. Our study further nominates UFSP2 as an attractive target to reduce the hyperUFMylation observed in AD brain but also underscores the critical need to identify risks and benefits of manipulating the UFMylation pathway as potential therapeutic avenue for AD.
Collapse
Affiliation(s)
- Tingxiang Yan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Emily C Craver
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Xue Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Present Address: Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA.
| |
Collapse
|
19
|
Parra Bravo C, Naguib SA, Gan L. Cellular and pathological functions of tau. Nat Rev Mol Cell Biol 2024; 25:845-864. [PMID: 39014245 DOI: 10.1038/s41580-024-00753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Tau protein is involved in various cellular processes, including having a canonical role in binding and stabilization of microtubules in neurons. Tauopathies are neurodegenerative diseases marked by the abnormal accumulation of tau protein aggregates in neurons, as seen, for example, in conditions such as frontotemporal dementia and Alzheimer disease. Mutations in tau coding regions or that disrupt tau mRNA splicing, tau post-translational modifications and cellular stress factors (such as oxidative stress and inflammation) increase the tendency of tau to aggregate and interfere with its clearance. Pathological tau is strongly implicated in the progression of neurodegenerative diseases, and the propagation of tau aggregates is associated with disease severity. Recent technological advancements, including cryo-electron microscopy and disease models derived from human induced pluripotent stem cells, have increased our understanding of tau-related pathology in neurodegenerative conditions. Substantial progress has been made in deciphering tau aggregate structures and the molecular mechanisms that underlie protein aggregation and toxicity. In this Review, we discuss recent insights into the diverse cellular functions of tau and the pathology of tau inclusions and explore the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sarah A Naguib
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
20
|
Cohen S, Cheradame L, Pratt KJB, Collins S, Barillas A, Carlson A, Ramani V, Legube G, Villeda SA, Mullins RD, Schwer B. Endogenous neuronal DNA double-strand breaks are not sufficient to drive brain aging and neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619740. [PMID: 39484383 PMCID: PMC11526996 DOI: 10.1101/2024.10.22.619740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Loss of genomic information due to the accumulation of somatic DNA damage has been implicated in aging and neurodegeneration 1-3 . Somatic mutations in human neurons increase with age 4 , but it is unclear whether this is a cause or a consequence of brain aging. Here, we clarify the role of endogenous, neuronal DNA double-strand breaks (DSBs) in brain aging and neurodegeneration by generating mice with post-developmental inactivation of the classical non-homologous end-joining (C-NHEJ) core factor Xrcc4 in forebrain neurons. Xrcc4 is critical for the ligation step of C-NHEJ and has no known function outside of DSB repair 5,6 . We find that, unlike their wild-type counterparts, C-NHEJ-deficient neurons accumulate high levels of DSB foci with age, indicating that neurons undergo frequent DSBs that are typically efficiently repaired by C-NHEJ across their lifespan. Genome-wide mapping reveals that endogenous neuronal DSBs preferentially occur in promoter regions and other genic features. Analysis of 3-D genome organization shows intra-chromosomal clustering and loop extrusion of neuronal DSB regions. Strikingly, however, DSB accumulation caused by loss of C-NHEJ induces only minor epigenetic alterations and does not significantly affect gene expression, 3-D genome organization, or mutational outcomes at neuronal DSBs. Despite extensive aging-associated accumulation of neuronal DSBs, mice with neuronal Xrcc4 inactivation do not show neurodegeneration, neuroinflammation, reduced lifespan, or impaired memory and learning behavior. We conclude that the formation of spontaneous neuronal DSBs caused by normal cellular processes is insufficient to cause brain aging and neurodegeneration, even in the absence of C-NHEJ, the principal neuronal DSB repair pathway.
Collapse
|
21
|
Tiwari V, Buvarp E, Borbolis F, Puligilla C, Croteau D, Palikaras K, Bohr V. Loss of DNA glycosylases improves health and cognitive function in a C. elegans model of human tauopathy. Nucleic Acids Res 2024; 52:10965-10985. [PMID: 39149885 PMCID: PMC11472166 DOI: 10.1093/nar/gkae705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/20/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder representing a major burden on families and society. Some of the main pathological hallmarks of AD are the accumulation of amyloid plaques (Aβ) and tau neurofibrillary tangles. However, it is still unclear how Aβ and tau aggregates promote specific phenotypic outcomes and lead to excessive oxidative DNA damage, neuronal cell death and eventually to loss of memory. Here we utilized a Caenorhabditis elegans (C. elegans) model of human tauopathy to investigate the role of DNA glycosylases in disease development and progression. Transgenic nematodes expressing a pro-aggregate form of tau displayed altered mitochondrial content, decreased lifespan, and cognitive dysfunction. Genetic ablation of either of the two DNA glycosylases found in C. elegans, NTH-1 and UNG-1, improved mitochondrial function, lifespan, and memory impairment. NTH-1 depletion resulted in a dramatic increase of differentially expressed genes, which was not apparent in UNG-1 deficient nematodes. Our findings clearly show that in addition to its enzymatic activity, NTH-1 has non-canonical functions highlighting its modulation as a potential therapeutic intervention to tackle tau-mediated pathology.
Collapse
Affiliation(s)
- Vinod Tiwari
- Section on DNA Repair, National Institute on Aging, Baltimore, MD 21224, USA
| | - Elisabeth Buvarp
- Section on DNA Repair, National Institute on Aging, Baltimore, MD 21224, USA
| | - Fivos Borbolis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Chandrakala Puligilla
- Section for Telomere Maintenance, LGG, National Institute on Aging, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Section on DNA Repair, National Institute on Aging, Baltimore, MD 21224, USA
- Computational Biology & Genomics Core, LGG, NIA, Baltimore, MD 21224, USA
| | - Konstantinos Palikaras
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Vilhelm A Bohr
- Section on DNA Repair, National Institute on Aging, Baltimore, MD 21224, USA
- Center for Healthy Aging, University of Copenhagen, 2200 N, Denmark
| |
Collapse
|
22
|
Cunningham JL, Frankovich J, Dubin RA, Pedrosa E, Baykara RN, Schlenk NC, Maqbool SB, Dolstra H, Marino J, Edinger J, Shea JM, Laje G, Swagemakers SMA, Sinnadurai S, Zhang ZD, Lin JR, van der Spek PJ, Lachman HM. Ultrarare Variants in DNA Damage Repair Genes in Pediatric Acute-Onset Neuropsychiatric Syndrome or Acute Behavioral Regression in Neurodevelopmental Disorders. Dev Neurosci 2024:1-20. [PMID: 39396515 DOI: 10.1159/000541908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
INTRODUCTION Acute onset of severe psychiatric symptoms or regression may occur in children with premorbid neurodevelopmental disorders, although typically developing children can also be affected. Infections or other stressors are likely triggers. The underlying causes are unclear, but a current hypothesis suggests the convergence of genes that influence neuronal and immunological function. We previously identified 11 genes in pediatric acute-onset neuropsychiatric syndrome (PANS), in which two classes of genes related to either synaptic function or the immune system were found. Among the latter, three affect the DNA damage response (DDR): PPM1D, CHK2, and RAG1. We now report an additional 17 cases with mutations in PPM1D and other DDR genes in patients with acute onset of psychiatric symptoms and/or regression that their clinicians classified as PANS or another inflammatory brain condition. METHODS We analyzed genetic findings obtained from parents and carried out whole-exome sequencing on a total of 17 cases, which included 3 sibling pairs and a family with 4 affected children. RESULTS The DDR genes include clusters affecting p53 DNA repair (PPM1D, ATM, ATR, 53BP1, and RMRP), and the Fanconi Anemia Complex (FANCE, SLX4/FANCP, FANCA, FANCI, and FANCC). We hypothesize that defects in DNA repair genes, in the context of infection or other stressors, could contribute to decompensated states through an increase in genomic instability with a concomitant accumulation of cytosolic DNA in immune cells triggering DNA sensors, such as cGAS-STING and AIM2 inflammasomes, as well as central deficits on neuroplasticity. In addition, increased senescence and defective apoptosis affecting immunological responses could be playing a role. CONCLUSION These compelling preliminary findings motivate further genetic and functional characterization as the downstream impact of DDR deficits may point to novel treatment strategies.
Collapse
Affiliation(s)
- Janet L Cunningham
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Jennifer Frankovich
- Department of Pediatrics, Division of Pediatric Allergy, Immunology, Rheumatology and Immune Behavioral Health Program, Stanford Children's Health and Stanford University School of Medicine, Palo Alto, California, USA
| | - Robert A Dubin
- Center for Epigenomics, Computational Genomics Core, Albert Einstein College of Medicine, New York, New York, USA
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Refia Nur Baykara
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Noelle Cathleen Schlenk
- Stanford Children's Health, PANS Clinic and Research Program, Stanford University School of Medicine, Stanford, California, USA
| | - Shahina B Maqbool
- Department of Genetics Epigenetics Shared Facility, Albert Einstein College of Medicine, New York, New York, USA
| | - Hedwig Dolstra
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Jacqueline Marino
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Jacob Edinger
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Julia M Shea
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Gonzalo Laje
- Department of Psychiatry, Permian Basin, Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texas, USA
| | - Sigrid M A Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Siamala Sinnadurai
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology and Health Promotion at the School of Public Health Medical Center for Postgraduate Education, Warsaw, Poland
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Herbert M Lachman
- Department of Psychiatry and Behavioral Sciences, Department of Medicine, Department of Genetics, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
23
|
Leventhal MJ, Zanella CA, Kang B, Peng J, Gritsch D, Liao Z, Bukhari H, Wang T, Pao PC, Danquah S, Benetatos J, Nehme R, Farhi S, Tsai LH, Dong X, Scherzer CR, Feany MB, Fraenkel E. An integrative systems-biology approach defines mechanisms of Alzheimer's disease neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585262. [PMID: 38559190 PMCID: PMC10980014 DOI: 10.1101/2024.03.17.585262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Despite years of intense investigation, the mechanisms underlying neuronal death in Alzheimer's disease, the most common neurodegenerative disorder, remain incompletely understood. To define relevant pathways, we integrated the results of an unbiased, genome-scale forward genetic screen for age-associated neurodegeneration in Drosophila with human and Drosophila Alzheimer's disease-associated multi-omics. We measured proteomics, phosphoproteomics, and metabolomics in Drosophila models of Alzheimer's disease and identified Alzheimer's disease human genetic variants that modify expression in disease-vulnerable neurons. We used a network optimization approach to integrate these data with previously published Alzheimer's disease multi-omic data. We computationally predicted and experimentally demonstrated how HNRNPA2B1 and MEPCE enhance tau-mediated neurotoxicity. Furthermore, we demonstrated that the screen hits CSNK2A1 and NOTCH1 regulate DNA damage in Drosophila and human iPSC-derived neural progenitor cells. Our work identifies candidate pathways that could be targeted to ameliorate neurodegeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- Matthew J Leventhal
- MIT Ph.D. Program in Computational and Systems Biology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Camila A Zanella
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Byunguk Kang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Spatial Technology Platform, Broad Institute of Harvard and MIT, Cambridge, MA USA
| | - Jiajie Peng
- Precision Neurology Program, Brigham and Women's Hospital and Harvard Medical school, Boston, MA, USA
- APDA Center for Advanced Parkinson's Disease Research, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David Gritsch
- Precision Neurology Program, Brigham and Women's Hospital and Harvard Medical school, Boston, MA, USA
- APDA Center for Advanced Parkinson's Disease Research, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhixiang Liao
- Precision Neurology Program, Brigham and Women's Hospital and Harvard Medical school, Boston, MA, USA
- APDA Center for Advanced Parkinson's Disease Research, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hassan Bukhari
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tao Wang
- Precision Neurology Program, Brigham and Women's Hospital and Harvard Medical school, Boston, MA, USA
- APDA Center for Advanced Parkinson's Disease Research, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Present address: School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Serwah Danquah
- Spatial Technology Platform, Broad Institute of Harvard and MIT, Cambridge, MA USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Joseph Benetatos
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ralda Nehme
- Spatial Technology Platform, Broad Institute of Harvard and MIT, Cambridge, MA USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Samouil Farhi
- Spatial Technology Platform, Broad Institute of Harvard and MIT, Cambridge, MA USA
| | - Li-Huei Tsai
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Xianjun Dong
- Precision Neurology Program, Brigham and Women's Hospital and Harvard Medical school, Boston, MA, USA
- APDA Center for Advanced Parkinson's Disease Research, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens R Scherzer
- Precision Neurology Program, Brigham and Women's Hospital and Harvard Medical school, Boston, MA, USA
- APDA Center for Advanced Parkinson's Disease Research, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Present address: Stephen and Denise Adams Center of Yale School of Medicine, CT, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ernest Fraenkel
- MIT Ph.D. Program in Computational and Systems Biology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Lead contact
| |
Collapse
|
24
|
Wen J, Yang Z, Nasrallah IM, Cui Y, Erus G, Srinivasan D, Abdulkadir A, Mamourian E, Hwang G, Singh A, Bergman M, Bao J, Varol E, Zhou Z, Boquet-Pujadas A, Chen J, Toga AW, Saykin AJ, Hohman TJ, Thompson PM, Villeneuve S, Gollub R, Sotiras A, Wittfeld K, Grabe HJ, Tosun D, Bilgel M, An Y, Marcus DS, LaMontagne P, Benzinger TL, Heckbert SR, Austin TR, Launer LJ, Espeland M, Masters CL, Maruff P, Fripp J, Johnson SC, Morris JC, Albert MS, Bryan RN, Resnick SM, Ferrucci L, Fan Y, Habes M, Wolk D, Shen L, Shou H, Davatzikos C. Genetic and clinical correlates of two neuroanatomical AI dimensions in the Alzheimer's disease continuum. Transl Psychiatry 2024; 14:420. [PMID: 39368996 PMCID: PMC11455841 DOI: 10.1038/s41398-024-03121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
Alzheimer's disease (AD) is associated with heterogeneous atrophy patterns. We employed a semi-supervised representation learning technique known as Surreal-GAN, through which we identified two latent dimensional representations of brain atrophy in symptomatic mild cognitive impairment (MCI) and AD patients: the "diffuse-AD" (R1) dimension shows widespread brain atrophy, and the "MTL-AD" (R2) dimension displays focal medial temporal lobe (MTL) atrophy. Critically, only R2 was associated with widely known sporadic AD genetic risk factors (e.g., APOE ε4) in MCI and AD patients at baseline. We then independently detected the presence of the two dimensions in the early stages by deploying the trained model in the general population and two cognitively unimpaired cohorts of asymptomatic participants. In the general population, genome-wide association studies found 77 genes unrelated to APOE differentially associated with R1 and R2. Functional analyses revealed that these genes were overrepresented in differentially expressed gene sets in organs beyond the brain (R1 and R2), including the heart (R1) and the pituitary gland, muscle, and kidney (R2). These genes were enriched in biological pathways implicated in dendritic cells (R2), macrophage functions (R1), and cancer (R1 and R2). Several of them were "druggable genes" for cancer (R1), inflammation (R1), cardiovascular diseases (R1), and diseases of the nervous system (R2). The longitudinal progression showed that APOE ε4, amyloid, and tau were associated with R2 at early asymptomatic stages, but this longitudinal association occurs only at late symptomatic stages in R1. Our findings deepen our understanding of the multifaceted pathogenesis of AD beyond the brain. In early asymptomatic stages, the two dimensions are associated with diverse pathological mechanisms, including cardiovascular diseases, inflammation, and hormonal dysfunction-driven by genes different from APOE-which may collectively contribute to the early pathogenesis of AD. All results are publicly available at https://labs-laboratory.com/medicine/ .
Collapse
Affiliation(s)
- Junhao Wen
- Laboratory of AI and Biomedical Science (LABS), University of Southern California, Los Angeles, CA, USA.
| | - Zhijian Yang
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ilya M Nasrallah
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuhan Cui
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guray Erus
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dhivya Srinivasan
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdulkadir
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Research Lab in Neuroimaging of the Department of Clinical Neurosciences at Lausanne University Hospital, Lausanne, Switzerland
| | - Elizabeth Mamourian
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gyujoon Hwang
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashish Singh
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Bergman
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jingxuan Bao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Erdem Varol
- Department of Statistics, Center for Theoretical Neuroscience, Zuckerman Institute, Columbia University, New York, NY, USA
| | - Zhen Zhou
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aleix Boquet-Pujadas
- Laboratory of AI and Biomedical Science (LABS), University of Southern California, Los Angeles, CA, USA
| | - Jiong Chen
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arthur W Toga
- Laboratory of NeuroImaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Andrew J Saykin
- Radiology and Imaging Sciences, Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana Alzheimer's Disease Research Center and the Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt Genetics Institute, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | - Randy Gollub
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Aristeidis Sotiras
- Department of Radiology and Institute for Informatics, Washington University School of Medicine, St. Louis, MO, USA
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Daniel S Marcus
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pamela LaMontagne
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan R Heckbert
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Thomas R Austin
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Lenore J Launer
- Neuroepidemiology Section, Intramural Research Program, National Institute on Aging, Bethesda, MD, USA
| | - Mark Espeland
- Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Paul Maruff
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jurgen Fripp
- CSIRO Health and Biosecurity, Australian e-Health Research Centre CSIRO, Brisbane, QLD, Australia
| | - Sterling C Johnson
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - John C Morris
- Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R Nick Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital, 3001 S. Hanover Street, Baltimore, MD, 21225, USA
| | - Yong Fan
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohamad Habes
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David Wolk
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology and Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Haochang Shou
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
O'Neill N, Stein TD, Olayinka OA, Empawi JA, Hu J, Tong T, Zhang X, Farrer LA. Cognitive resilience to Alzheimer's disease characterized by cell-type abundance. Alzheimers Dement 2024; 20:6910-6921. [PMID: 39262221 DOI: 10.1002/alz.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION The molecular basis of cognitive resilience (CR) among pathologically confirmed Alzheimer's disease (AD) cases is not well understood. METHODS Abundance of 13 cell types and neuronal subtypes in brain bulk RNA-seq data from the anterior caudate, dorsolateral prefrontal cortex (DLPFC), and posterior cingulate cortex (PCC) obtained from 434 AD cases, 318 cognitively resilient AD cases, and 188 controls in the Religious Orders Study and Rush Memory and Aging Project was estimated by deconvolution. RESULTS PVALB+ neuron abundance was negatively associated with cognitive status and tau pathology in the DLPFC and PCC (Padj < 0.001) and the most reduced neuronal subtype in AD cases compared to controls in DLPFC (Padj = 8.4 × 10-7) and PCC (Padj = 0.0015). We identified genome-wide significant association of neuron abundance with TMEM106B single nucleotide polymorphism rs13237518 in PCC (p = 6.08 × 10-12). rs13237518 was also associated with amyloid beta (p = 0.0085) and tangles (p = 0.0073). DISCUSSION High abundance of PVALB+ neurons may be a marker of CR. TMEM106B variants may influence CR independent of AD pathology. HIGHLIGHTS Neuron retention and a lack of astrocytosis are highly predictive of Alzheimer's disease (AD) resilience. PVALB+ GABAergic and RORB+ glutamatergic neurons are associated with cognitive status. A TMEM106B single nucleotide polymorphism is related to lower AD risk, higher neuron count, and increased AD pathology.
Collapse
Affiliation(s)
- Nicholas O'Neill
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Department of Medicine (Section of Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
- VA Boston Healthcare Center, Boston, Massachusetts, USA
| | - Oluwatosin A Olayinka
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Department of Medicine (Section of Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Jenny A Empawi
- Department of Medicine (Section of Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Junming Hu
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Department of Medicine (Section of Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Tong Tong
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Department of Medicine (Section of Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Xiaoling Zhang
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Department of Medicine (Section of Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Lindsay A Farrer
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Department of Medicine (Section of Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Fan J, Du X, Chen M, Xu Y, Xu J, Lu L, Zhou S, Kong X, Xu K, Zhang H. Critical role of checkpoint kinase 1 in spinal cord injury-induced motor dysfunction in mice. Int Immunopharmacol 2024; 138:112521. [PMID: 38917519 DOI: 10.1016/j.intimp.2024.112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Spinal cord injury (SCI) is a devastating neurotraumatic condition characterized by severe motor dysfunction and paralysis. Accumulating evidence suggests that DNA damage is involved in SCI pathology. However, the underlying mechanisms remain elusive. Although checkpoint kinase 1 (Chk1)-regulated DNA damage is involved in critical cellular processes, its role in SCI regulation remains unclear. This study aimed to explore the role and potential mechanism of Chk1 in SCI-induced motor dysfunction. Adult female C57BL/6J mice subjected to T9-T10 spinal cord contusions were used as models of SCI. Western blotting, immunoprecipitation, histomorphology, and Chk1 knockdown or overexpression achieved by adeno-associated virus were performed to explore the underlying mechanisms. Levels of p-Chk1 and γ-H2AX (a cellular DNA damage marker) were upregulated, while ferroptosis-related protein levels, including glutathione peroxidase 4 (GPX4) and x-CT were downregulated, in the spinal cord and hippocampal tissues of SCI mice. Functional experiments revealed increased Basso Mouse Scale (BMS) scores, indicating that Chk1 downregulation promoted motor function recovery after SCI, whereas Chk1 overexpression aggravated SCI-induced motor dysfunction. In addition, Chk1 downregulation reversed the SCI-increased levels of GPX4 and x-CT expression in the spinal cord and hippocampus, while immunoprecipitation assays revealed strengthened interactions between p-Chk1 and GPX4 in the spinal cord after SCI. Finally, Chk1 downregulation promoted while Chk1 overexpression inhibited NeuN cellular immunoactivity in the spinal cord after SCI, respectively. Collectively, these preliminary results imply that Chk1 is a novel regulator of SCI-induced motor dysfunction, and that interventions targeting Chk1 may represent promising therapeutic targets for neurotraumatic diseases such as SCI.
Collapse
Affiliation(s)
- Junming Fan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Cixi People's Hospital, Institute of Cixi Biomedical Research, Wenzhou Medical University, Cixi, Ningbo, Zhejiang 315302, China
| | - Xiaotong Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengfan Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yun Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinyu Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Leilei Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Emergency, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shaoyan Zhou
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoxia Kong
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ke Xu
- Cixi People's Hospital, Institute of Cixi Biomedical Research, Wenzhou Medical University, Cixi, Ningbo, Zhejiang 315302, China.
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Cixi People's Hospital, Institute of Cixi Biomedical Research, Wenzhou Medical University, Cixi, Ningbo, Zhejiang 315302, China.
| |
Collapse
|
27
|
Sran S, Ringland A, Bedrosian TA. Building the brain mosaic: an expanded view. Trends Genet 2024; 40:747-756. [PMID: 38853120 PMCID: PMC11387136 DOI: 10.1016/j.tig.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
The complexity of the brain is closely tied to its nature as a genetic mosaic, wherein each cell is distinguished by a unique constellation of somatic variants that contribute to functional and phenotypic diversity. Postzygotic variation arising during neurogenesis is recognized as a key contributor to brain mosaicism; however, recent advances have broadened our understanding to include sources of neural genomic diversity that develop throughout the entire lifespan, from embryogenesis through aging. Moving beyond the traditional confines of neurodevelopment, in this review, we delve into the complex mechanisms that enable various origins of brain mosaicism.
Collapse
Affiliation(s)
- Sahibjot Sran
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amanda Ringland
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Tracy A Bedrosian
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
28
|
Chien JF, Liu H, Wang BA, Luo C, Bartlett A, Castanon R, Johnson ND, Nery JR, Osteen J, Li J, Altshul J, Kenworthy M, Valadon C, Liem M, Claffey N, O'Connor C, Seeker LA, Ecker JR, Behrens MM, Mukamel EA. Cell-type-specific effects of age and sex on human cortical neurons. Neuron 2024; 112:2524-2539.e5. [PMID: 38838671 DOI: 10.1016/j.neuron.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/29/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024]
Abstract
Altered transcriptional and epigenetic regulation of brain cell types may contribute to cognitive changes with advanced age. Using single-nucleus multi-omic DNA methylation and transcriptome sequencing (snmCT-seq) in frontal cortex from young adult and aged donors, we found widespread age- and sex-related variation in specific neuron types. The proportion of inhibitory SST- and VIP-expressing neurons was reduced in aged donors. Excitatory neurons had more profound age-related changes in their gene expression and DNA methylation than inhibitory cells. Hundreds of genes involved in synaptic activity, including EGR1, were less expressed in aged adults. Genes located in subtelomeric regions increased their expression with age and correlated with reduced telomere length. We further mapped cell-type-specific sex differences in gene expression and X-inactivation escape genes. Multi-omic single-nucleus epigenomes and transcriptomes provide new insight into the effects of age and sex on human neurons.
Collapse
Affiliation(s)
- Jo-Fan Chien
- Department of Physics, University of California, San Diego, La Jolla, CA 92037, USA
| | - Hanqing Liu
- Genomic Analysis Laboratory, Salk Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, Salk Institute, La Jolla, CA 92037, USA
| | - Bang-An Wang
- Genomic Analysis Laboratory, Salk Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, Salk Institute, La Jolla, CA 92037, USA
| | - Chongyuan Luo
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, Salk Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, Salk Institute, La Jolla, CA 92037, USA
| | - Rosa Castanon
- Genomic Analysis Laboratory, Salk Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, Salk Institute, La Jolla, CA 92037, USA
| | - Nicholas D Johnson
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92037, USA; Computational Neurobiology Laboratory, Salk Institute, La Jolla, CA 92037, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, Salk Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, Salk Institute, La Jolla, CA 92037, USA
| | - Julia Osteen
- Genomic Analysis Laboratory, Salk Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, Salk Institute, La Jolla, CA 92037, USA
| | - Junhao Li
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jordan Altshul
- Genomic Analysis Laboratory, Salk Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, Salk Institute, La Jolla, CA 92037, USA
| | - Mia Kenworthy
- Genomic Analysis Laboratory, Salk Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, Salk Institute, La Jolla, CA 92037, USA
| | - Cynthia Valadon
- Genomic Analysis Laboratory, Salk Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, Salk Institute, La Jolla, CA 92037, USA
| | - Michelle Liem
- Flow Cytometry Core Facility, Salk Institute, La Jolla, CA 92037, USA
| | - Naomi Claffey
- Flow Cytometry Core Facility, Salk Institute, La Jolla, CA 92037, USA
| | - Carolyn O'Connor
- Flow Cytometry Core Facility, Salk Institute, La Jolla, CA 92037, USA
| | - Luise A Seeker
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, Salk Institute, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, Salk Institute, La Jolla, CA 92037, USA.
| | - M Margarita Behrens
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92037, USA; Computational Neurobiology Laboratory, Salk Institute, La Jolla, CA 92037, USA.
| | - Eran A Mukamel
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
29
|
Sun Z, Kwon JS, Ren Y, Chen S, Walker CK, Lu X, Cates K, Karahan H, Sviben S, Fitzpatrick JAJ, Valdez C, Houlden H, Karch CM, Bateman RJ, Sato C, Mennerick SJ, Diamond MI, Kim J, Tanzi RE, Holtzman DM, Yoo AS. Modeling late-onset Alzheimer's disease neuropathology via direct neuronal reprogramming. Science 2024; 385:adl2992. [PMID: 39088624 PMCID: PMC11787906 DOI: 10.1126/science.adl2992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/31/2024] [Indexed: 08/03/2024]
Abstract
Late-onset Alzheimer's disease (LOAD) is the most common form of Alzheimer's disease (AD). However, modeling sporadic LOAD that endogenously captures hallmark neuronal pathologies such as amyloid-β (Aβ) deposition, tau tangles, and neuronal loss remains an unmet need. We demonstrate that neurons generated by microRNA (miRNA)-based direct reprogramming of fibroblasts from individuals affected by autosomal dominant AD (ADAD) and LOAD in a three-dimensional environment effectively recapitulate key neuropathological features of AD. Reprogrammed LOAD neurons exhibit Aβ-dependent neurodegeneration, and treatment with β- or γ-secretase inhibitors before (but not subsequent to) Aβ deposit formation mitigated neuronal death. Moreover inhibiting age-associated retrotransposable elements in LOAD neurons reduced both Aβ deposition and neurodegeneration. Our study underscores the efficacy of modeling late-onset neuropathology of LOAD through high-efficiency miRNA-based neuronal reprogramming.
Collapse
Affiliation(s)
- Zhao Sun
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Ji-Sun Kwon
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Program in Computational and Systems Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Yudong Ren
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Program in Developmental, Regenerative, and Stem Cell Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Shawei Chen
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Courtney K. Walker
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Xinguo Lu
- Department of Psychiatry, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Kitra Cates
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Program in Molecular Genetics and Genomics, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine; Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Indianapolis, IN, 46202, USA
| | - Sanja Sviben
- Washington University Center for Cellular Imaging, Washington University School of Medicine; St. Louis, MO, 63110, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine; St. Louis, MO, 63110, USA
| | - Clarissa Valdez
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center; Dallas, TX, 75390, USA
| | - Henry Houlden
- UCL Institute of Neurology; Queen Square, London, WC1N 3BG, UK
| | - Celeste M. Karch
- Department of Psychiatry, Washington University School of Medicine; St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine; St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Randall J. Bateman
- Tracy Family SILQ Center for Neurodegenerative Biology; St. Louis, MO, MO 63110, USA
- Department of Neurology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Chihiro Sato
- Tracy Family SILQ Center for Neurodegenerative Biology; St. Louis, MO, MO 63110, USA
- Department of Neurology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Steven J. Mennerick
- Department of Psychiatry, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Marc I. Diamond
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center; Dallas, TX, 75390, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine; Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Indianapolis, IN, 46202, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School; Charlestown, Massachusetts, 02129, USA
| | - David M. Holtzman
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine; St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Andrew S. Yoo
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| |
Collapse
|
30
|
Li LJ, Sun XY, Huang YR, Lu S, Xu YM, Yang J, Xie XX, Zhu J, Niu XY, Wang D, Liang SY, Du XY, Hou SJ, Yu XL, Liu RT. Neuronal double-stranded DNA accumulation induced by DNase II deficiency drives tau phosphorylation and neurodegeneration. Transl Neurodegener 2024; 13:39. [PMID: 39095921 PMCID: PMC11295666 DOI: 10.1186/s40035-024-00427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/19/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Deoxyribonuclease 2 (DNase II) plays a key role in clearing cytoplasmic double-stranded DNA (dsDNA). Deficiency of DNase II leads to DNA accumulation in the cytoplasm. Persistent dsDNA in neurons is an early pathological hallmark of senescence and neurodegenerative diseases including Alzheimer's disease (AD). However, it is not clear how DNase II and neuronal cytoplasmic dsDNA influence neuropathogenesis. Tau hyperphosphorylation is a key factor for the pathogenesis of AD. The effect of DNase II and neuronal cytoplasmic dsDNA on neuronal tau hyperphosphorylation remains unclarified. METHODS The levels of neuronal DNase II and dsDNA in WT and Tau-P301S mice of different ages were measured by immunohistochemistry and immunolabeling, and the levels of DNase II in the plasma of AD patients were measured by ELISA. To investigate the impact of DNase II on tauopathy, the levels of phosphorylated tau, phosphokinase, phosphatase, synaptic proteins, gliosis and proinflammatory cytokines in the brains of neuronal DNase II-deficient WT mice, neuronal DNase II-deficient Tau-P301S mice and neuronal DNase II-overexpressing Tau-P301S mice were evaluated by immunolabeling, immunoblotting or ELISA. Cognitive performance was determined using the Morris water maze test, Y-maze test, novel object recognition test and open field test. RESULTS The levels of DNase II were significantly decreased in the brains and the plasma of AD patients. DNase II also decreased age-dependently in the neurons of WT and Tau-P301S mice, along with increased dsDNA accumulation in the cytoplasm. The DNA accumulation induced by neuronal DNase II deficiency drove tau phosphorylation by upregulating cyclin-dependent-like kinase-5 (CDK5) and calcium/calmodulin activated protein kinase II (CaMKII) and downregulating phosphatase protein phosphatase 2A (PP2A). Moreover, DNase II knockdown induced and significantly exacerbated neuron loss, neuroinflammation and cognitive deficits in WT and Tau-P301S mice, respectively, while overexpression of neuronal DNase II exhibited therapeutic benefits. CONCLUSIONS DNase II deficiency and cytoplasmic dsDNA accumulation can initiate tau phosphorylation, suggesting DNase II as a potential therapeutic target for tau-associated disorders.
Collapse
Affiliation(s)
- Ling-Jie Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ying Sun
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ya-Ru Huang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuai Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu-Ming Xu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Yang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xi-Xiu Xie
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Yun Niu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Dan Wang
- Department of BigData, Beijing Medintell Bioinformatic Technology Co., LTD, Beijing, 100081, China
| | - Shi-Yu Liang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Yu Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng-Jie Hou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Lin Yu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Rui-Tian Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
31
|
Ghatak S, Diedrich JK, Talantova M, Bhadra N, Scott H, Sharma M, Albertolle M, Schork NJ, Yates JR, Lipton SA. Single-Cell Patch-Clamp/Proteomics of Human Alzheimer's Disease iPSC-Derived Excitatory Neurons Versus Isogenic Wild-Type Controls Suggests Novel Causation and Therapeutic Targets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400545. [PMID: 38773714 PMCID: PMC11304297 DOI: 10.1002/advs.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Indexed: 05/24/2024]
Abstract
Standard single-cell (sc) proteomics of disease states inferred from multicellular organs or organoids cannot currently be related to single-cell physiology. Here, a scPatch-Clamp/Proteomics platform is developed on single neurons generated from hiPSCs bearing an Alzheimer's disease (AD) genetic mutation and compares them to isogenic wild-type controls. This approach provides both current and voltage electrophysiological data plus detailed proteomics information on single-cells. With this new method, the authors are able to observe hyperelectrical activity in the AD hiPSC-neurons, similar to that observed in the human AD brain, and correlate it to ≈1400 proteins detected at the single neuron level. Using linear regression and mediation analyses to explore the relationship between the abundance of individual proteins and the neuron's mutational and electrophysiological status, this approach yields new information on therapeutic targets in excitatory neurons not attainable by traditional methods. This combined patch-proteomics technique creates a new proteogenetic-therapeutic strategy to correlate genotypic alterations to physiology with protein expression in single-cells.
Collapse
Affiliation(s)
- Swagata Ghatak
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Present address:
School of Biological SciencesNational Institute of Science Education and Research (NISER)‐Bhubaneswar, an OCC of Homi Bhabha National InstituteJataniOdisha752050India
| | - Jolene K. Diedrich
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Maria Talantova
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Nivedita Bhadra
- Quantitative Medicine and Systems BiologyThe Translational Genomics Research InstitutePhoenixAZ85004USA
| | - Henry Scott
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Meetal Sharma
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Matthew Albertolle
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Present address:
Drug Metabolism and Pharmacokinetics DepartmentTakeda Development Center AmericasSan DiegoCA92121USA
| | - Nicholas J. Schork
- Quantitative Medicine and Systems BiologyThe Translational Genomics Research InstitutePhoenixAZ85004USA
| | - John R. Yates
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Stuart A. Lipton
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Department of NeurosciencesSchool of MedicineUniversity of California, San DiegoLa JollaCA92093USA
| |
Collapse
|
32
|
Asada-Utsugi M, Urushitani M. Tau beyond Tangles: DNA Damage Response and Cytoskeletal Protein Crosstalk on Neurodegeneration. Int J Mol Sci 2024; 25:7906. [PMID: 39063148 PMCID: PMC11277103 DOI: 10.3390/ijms25147906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Neurons in the brain are continuously exposed to various sources of DNA damage. Although the mechanisms of DNA damage repair in mitotic cells have been extensively characterized, the repair pathways in post-mitotic neurons are still largely elusive. Moreover, inaccurate repair can result in deleterious mutations, including deletions, insertions, and chromosomal translocations, ultimately compromising genomic stability. Since neurons are terminally differentiated cells, they cannot employ homologous recombination (HR) for double-strand break (DSB) repair, suggesting the existence of neuron-specific repair mechanisms. Our research has centered on the microtubule-associated protein tau (MAPT), a crucial pathological protein implicated in neurodegenerative diseases, and its interplay with neurons' DNA damage response (DDR). This review aims to provide an updated synthesis of the current understanding of the complex interplay between DDR and cytoskeletal proteins in neurons, with a particular focus on the role of tau in neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Makoto Urushitani
- Department of Neurology, Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| |
Collapse
|
33
|
Roberts A, Swerdlow RH, Wang N. Adaptive and Maladaptive DNA Breaks in Neuronal Physiology and Alzheimer's Disease. Int J Mol Sci 2024; 25:7774. [PMID: 39063016 PMCID: PMC11277458 DOI: 10.3390/ijms25147774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
DNA strand breaks excessively accumulate in the brains of patients with Alzheimer's disease (AD). While traditionally considered random, deleterious events, neuron activity itself induces DNA breaks, and these "adaptive" breaks help mediate synaptic plasticity and memory formation. Recent studies mapping the brain DNA break landscape reveal that despite a net increase in DNA breaks in ectopic genomic hotspots, adaptive DNA breaks around synaptic genes are lost in AD brains, and this is associated with transcriptomic dysregulation. Additionally, relationships exist between mitochondrial dysfunction, a hallmark of AD, and DNA damage, such that mitochondrial dysfunction may perturb adaptive DNA break formation, while DNA breaks may conversely impair mitochondrial function. A failure of DNA break physiology could, therefore, potentially contribute to AD pathogenesis.
Collapse
Affiliation(s)
- Anysja Roberts
- University of Kansas Alzheimer’s Disease Research Center, Kansas City, KS 66205, USA (R.H.S.)
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Research Center, Kansas City, KS 66205, USA (R.H.S.)
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City 66160, KS, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ning Wang
- University of Kansas Alzheimer’s Disease Research Center, Kansas City, KS 66205, USA (R.H.S.)
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
34
|
Yan H, Cao G, Wang J, Zhu X, Dong S, Huang Y, Chao M, Li Y, Gao F, Hua L. An enzymatically activated AND-gate DNA logic circuit for tumor cells recognition via multi-microRNAs detection. Biosens Bioelectron 2024; 256:116278. [PMID: 38608497 DOI: 10.1016/j.bios.2024.116278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/26/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
The DNA-based logic circuit, constructed to mimic biochemical reaction networks, is highly significant in detecting biomarkers at the molecular level. The differences in the expression levels of microRNAs (miRNAs) within different types of cells provide hope for distinguishing cell subtypes. However, reliance on a single miRNA often leads to unreliable results. Herein, we constructed an enzyme-triggered cascade logic circuit based on the AND gate, which is capable of generating corresponding fluorescence signals in the presence of target miRNAs. The introduction of apurinic/apyrimidinic (AP) sites effectively reduces the likelihood of false signal generation. Amplification of the fluorescence signal relies on the catalytic hairpin assembly and the repetitive reuse of the multicomponent nucleic acid enzyme (MNAzyme). We demonstrated that the logic circuit can not only distinguish cancer cells from normal cells but also identify different types of cancer cells. The programmability of the logic circuits and the simplicity of the assay system allow us to modify the functional sequences to recognize different types of biomarkers, thus providing a reference for the identification of various cell subtypes.
Collapse
Affiliation(s)
- Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Guojun Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China; Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jin Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xu Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Shuqing Dong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yuqi Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Minghao Chao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yuting Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Lei Hua
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China; Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
35
|
Neven J, Issayama LK, Dewachter I, Wilson DM. Genomic stress and impaired DNA repair in Alzheimer disease. DNA Repair (Amst) 2024; 139:103678. [PMID: 38669748 DOI: 10.1016/j.dnarep.2024.103678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024]
Abstract
Alzheimer disease (AD) is the most prominent form of dementia and has received considerable attention due to its growing burden on economic, healthcare and basic societal infrastructures. The two major neuropathological hallmarks of AD, i.e., extracellular amyloid beta (Aβ) peptide plaques and intracellular hyperphosphorylated Tau neurofibrillary tangles, have been the focus of much research, with an eye on understanding underlying disease mechanisms and identifying novel therapeutic avenues. One often overlooked aspect of AD is how Aβ and Tau may, through indirect and direct mechanisms, affect genome integrity. Herein, we review evidence that Aβ and Tau abnormalities induce excessive genomic stress and impair genome maintenance mechanisms, events that can promote DNA damage-induced neuronal cell loss and associated brain atrophy.
Collapse
Affiliation(s)
- Jolien Neven
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium
| | - Luidy Kazuo Issayama
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium
| | - Ilse Dewachter
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium
| | - David M Wilson
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium.
| |
Collapse
|
36
|
Kisby GE, Wilson DM, Spencer PS. Introducing the Role of Genotoxicity in Neurodegenerative Diseases and Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:7221. [PMID: 39000326 PMCID: PMC11241460 DOI: 10.3390/ijms25137221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Decades of research have identified genetic and environmental factors involved in age-related neurodegenerative diseases and, to a lesser extent, neuropsychiatric disorders. Genomic instability, i.e., the loss of genome integrity, is a common feature among both neurodegenerative (mayo-trophic lateral sclerosis, Parkinson's disease, Alzheimer's disease) and psychiatric (schizophrenia, autism, bipolar depression) disorders. Genomic instability is associated with the accumulation of persistent DNA damage and the activation of DNA damage response (DDR) pathways, as well as pathologic neuronal cell loss or senescence. Typically, DDR signaling ensures that genomic and proteomic homeostasis are maintained in both dividing cells, including neural progenitors, and post-mitotic neurons. However, dysregulation of these protective responses, in part due to aging or environmental insults, contributes to the progressive development of neurodegenerative and/or psychiatric disorders. In this Special Issue, we introduce and highlight the overlap between neurodegenerative diseases and neuropsychiatric disorders, as well as the emerging clinical, genomic, and molecular evidence for the contributions of DNA damage and aberrant DNA repair. Our goal is to illuminate the importance of this subject to uncover possible treatment and prevention strategies for relevant devastating brain diseases.
Collapse
Affiliation(s)
- Glen E. Kisby
- Department of Biomedical Sciences, College of Osteopathic Medicine of Pacific Northwest, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - David M. Wilson
- Biomedical Research Institute, BIOMED, Hasselt University, 3500 Hasselt, Belgium;
| | - Peter S. Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University (OHSU), Portland, OR 97239, USA
| |
Collapse
|
37
|
Sampson MM, Morgan RK, Sloan SA, Bakulski KM. Single-cell investigation of lead toxicity from neurodevelopment to neurodegeneration: Current review and future opportunities. CURRENT OPINION IN TOXICOLOGY 2024; 38:100464. [PMID: 39086983 PMCID: PMC11290315 DOI: 10.1016/j.cotox.2024.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Human exposure to the metal lead (Pb) is prevalent and associated with adverse neurodevelopmental and neurodegenerative outcomes. Pb disrupts normal brain function by inducing oxidative stress and neuroinflammation, altering cellular metabolism, and displacing essential metals. Prior studies on the molecular impacts of Pb have examined bulk tissues, which collapse information across all cell types, or in targeted cells, which are limited to cell autonomous effects. These approaches are unable to represent the complete biological implications of Pb exposure because the brain is a cooperative network of highly heterogeneous cells, with cellular diversity and proportions shifting throughout development, by brain region, and with disease. New technologies are necessary to investigate whether Pb and other environmental exposures alter cell composition in the brain and whether they cause molecular changes in a cell-type-specific manner. Cutting-edge, single-cell approaches now enable research resolving cell-type-specific effects from bulk tissues. This article reviews existing Pb neurotoxicology studies with genome-wide molecular signatures and provides a path forward for the field to implement single-cell approaches with practical recommendations.
Collapse
Affiliation(s)
- Maureen M Sampson
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Rachel K Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Steven A Sloan
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
38
|
Yan T, Heckman MG, Craver EC, Liu CC, Rawlinson BD, Wang X, Murray ME, Dickson DW, Ertekin-Taner N, Lou Z, Bu G, Springer W, Fiesel FC. The UFMylation pathway is impaired in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595755. [PMID: 38903110 PMCID: PMC11188091 DOI: 10.1101/2024.05.24.595755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Background Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles made of hyperphosphorylated tau and senile plaques composed of beta-amyloid. These pathognomonic deposits have been implicated in the pathogenesis, although the molecular mechanisms and consequences remain undetermined. UFM1 is an important, but understudied ubiquitin-like protein that is covalently attached to substrates. This UFMylation has recently been identified as major modifier of tau aggregation upon seeding in experimental models. However, potential alterations of the UFM1 pathway in human AD brain have not been investigated yet. Methods Here we used frontal and temporal cortex samples from individuals with or without AD to measure the protein levels of the UFMylation pathway in human brain. We used multivariable regression analyses followed by Bonferroni correction for multiple testing to analyze associations of the UFMylation pathway with neuropathological characteristics, primary biochemical measurements of tau and additional biochemical markers from the same cases. We further studied associations of the UFMylation cascade with cellular stress pathways using Spearman correlations with bulk RNAseq expression data and functionally validated these interactions using gene-edited neurons that were generated by CRISPR-Cas9. Results Compared to controls, human AD brain had increased protein levels of UFM1. Our data further indicates that this increase mainly reflects conjugated UFM1 indicating hyperUFMylation in AD. UFMylation was strongly correlated with pathological tau in both AD-affected brain regions. In addition, we found that the levels of conjugated UFM1 were negatively correlated with soluble levels of the deUFMylation enzyme UFSP2. Functional analysis of UFM1 and/or UFSP2 knockout neurons revealed that the DNA damage response as well as the unfolded protein response are perturbed by changes in neuronal UFM1 signaling. Conclusions There are marked changes in the UFMylation pathway in human AD brain. These changes are significantly associated with pathological tau, supporting the idea that the UFMylation cascade might indeed act as a modifier of tau pathology in human brain. Our study further nominates UFSP2 as an attractive target to reduce the hyperUFMylation observed in AD brain but also underscores the critical need to identify risks and benefits of manipulating the UFMylation pathway as potential therapeutic avenue for AD.
Collapse
Affiliation(s)
- Tingxiang Yan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Michael G. Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, USA
| | - Emily C. Craver
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Xue Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Melissa E. Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| |
Collapse
|
39
|
Kozlova A, Zhang S, Sudwarts A, Zhang H, Smirnou S, Sun X, Stephenson K, Zhao X, Jamison B, Ponnusamy M, He X, Pang ZP, Sanders AR, Bellen HJ, Thinakaran G, Duan J. Alzheimer's disease risk allele of PICALM causes detrimental lipid droplets in microglia. RESEARCH SQUARE 2024:rs.3.rs-4407146. [PMID: 38826437 PMCID: PMC11142308 DOI: 10.21203/rs.3.rs-4407146/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Despite genome-wide association studies of late-onset Alzheimer's disease (LOAD) having identified many genetic risk loci1-6, the underlying disease mechanisms remain largely unknown. Determining causal disease variants and their LOAD-relevant cellular phenotypes has been a challenge. Leveraging our approach for identifying functional GWAS risk variants showing allele-specific open chromatin (ASoC)7, we systematically identified putative causal LOAD risk variants in human induced pluripotent stem cells (iPSC)-derived neurons, astrocytes, and microglia (MG) and linked PICALM risk allele to a previously unappreciated MG-specific role of PICALM in lipid droplet (LD) accumulation. ASoC mapping uncovered functional risk variants for 26 LOAD risk loci, mostly MG-specific. At the MG-specific PICALM locus, the LOAD risk allele of rs10792832 reduced transcription factor (PU.1) binding and PICALM expression, impairing the uptake of amyloid beta (Aβ) and myelin debris. Interestingly, MG with PICALM risk allele showed transcriptional enrichment of pathways for cholesterol synthesis and LD formation. Genetic and pharmacological perturbations of MG further established a causal link between the reduced PICALM expression, LD accumulation, and phagocytosis deficits. Our work elucidates the selective LOAD vulnerability in microglia for the PICALM locus through detrimental LD accumulation, providing a neurobiological basis that can be exploited for developing novel clinical interventions.
Collapse
Affiliation(s)
- Alena Kozlova
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
| | - Ari Sudwarts
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Stanislau Smirnou
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Xiaotong Sun
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Kimberly Stephenson
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Xiaojie Zhao
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Brendan Jamison
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Moorthi Ponnusamy
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Xin He
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Zhiping P. Pang
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Alan R. Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gopal Thinakaran
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
40
|
Gouveia Roque C, Phatnani H, Hengst U. The broken Alzheimer's disease genome. CELL GENOMICS 2024; 4:100555. [PMID: 38697121 PMCID: PMC11099344 DOI: 10.1016/j.xgen.2024.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/25/2024] [Accepted: 04/07/2024] [Indexed: 05/04/2024]
Abstract
The complex pathobiology of late-onset Alzheimer's disease (AD) poses significant challenges to therapeutic and preventative interventions. Despite these difficulties, genomics and related disciplines are allowing fundamental mechanistic insights to emerge with clarity, particularly with the introduction of high-resolution sequencing technologies. After all, the disrupted processes at the interface between DNA and gene expression, which we call the broken AD genome, offer detailed quantitative evidence unrestrained by preconceived notions about the disease. In addition to highlighting biological pathways beyond the classical pathology hallmarks, these advances have revitalized drug discovery efforts and are driving improvements in clinical tools. We review genetic, epigenomic, and gene expression findings related to AD pathogenesis and explore how their integration enables a better understanding of the multicellular imbalances contributing to this heterogeneous condition. The frontiers opening on the back of these research milestones promise a future of AD care that is both more personalized and predictive.
Collapse
Affiliation(s)
- Cláudio Gouveia Roque
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA; Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY 10032, USA
| | - Ulrich Hengst
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology & Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
41
|
Fancy NN, Smith AM, Caramello A, Tsartsalis S, Davey K, Muirhead RCJ, McGarry A, Jenkyns MH, Schneegans E, Chau V, Thomas M, Boulger S, Cheung TKD, Adair E, Papageorgopoulou M, Willumsen N, Khozoie C, Gomez-Nicola D, Jackson JS, Matthews PM. Characterisation of premature cell senescence in Alzheimer's disease using single nuclear transcriptomics. Acta Neuropathol 2024; 147:78. [PMID: 38695952 PMCID: PMC11065703 DOI: 10.1007/s00401-024-02727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 05/05/2024]
Abstract
Aging is associated with cell senescence and is the major risk factor for AD. We characterized premature cell senescence in postmortem brains from non-diseased controls (NDC) and donors with Alzheimer's disease (AD) using imaging mass cytometry (IMC) and single nuclear RNA (snRNA) sequencing (> 200,000 nuclei). We found increases in numbers of glia immunostaining for galactosidase beta (> fourfold) and p16INK4A (up to twofold) with AD relative to NDC. Increased glial expression of genes related to senescence was associated with greater β-amyloid load. Prematurely senescent microglia downregulated phagocytic pathways suggesting reduced capacity for β-amyloid clearance. Gene set enrichment and pseudo-time trajectories described extensive DNA double-strand breaks (DSBs), mitochondrial dysfunction and ER stress associated with increased β-amyloid leading to premature senescence in microglia. We replicated these observations with independent AD snRNA-seq datasets. Our results describe a burden of senescent glia with AD that is sufficiently high to contribute to disease progression. These findings support the hypothesis that microglia are a primary target for senolytic treatments in AD.
Collapse
Affiliation(s)
- Nurun N Fancy
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Amy M Smith
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Centre for Brain Research and Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Alessia Caramello
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Stergios Tsartsalis
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Karen Davey
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
- UK Dementia Research Institute Centre, King's College London, London, UK
| | - Robert C J Muirhead
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
- UK Dementia Research Institute Centre, King's College London, London, UK
| | - Aisling McGarry
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marion H Jenkyns
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Eleonore Schneegans
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Vicky Chau
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Michael Thomas
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Sam Boulger
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - To Ka Dorcas Cheung
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Emily Adair
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Marianna Papageorgopoulou
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Nanet Willumsen
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Combiz Khozoie
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Johanna S Jackson
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
- UK Dementia Research Institute Centre, Imperial College London, London, UK.
| |
Collapse
|
42
|
Rahimzadeh N, Srinivasan SS, Zhang J, Swarup V. Gene networks and systems biology in Alzheimer's disease: Insights from multi-omics approaches. Alzheimers Dement 2024; 20:3587-3605. [PMID: 38534018 PMCID: PMC11095483 DOI: 10.1002/alz.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024]
Abstract
Despite numerous studies in the field of dementia and Alzheimer's disease (AD), a comprehensive understanding of this devastating disease remains elusive. Bulk transcriptomics have provided insights into the underlying genetic factors at a high level. Subsequent technological advancements have focused on single-cell omics, encompassing techniques such as single-cell RNA sequencing and epigenomics, enabling the capture of RNA transcripts and chromatin states at a single cell or nucleus resolution. Furthermore, the emergence of spatial omics has allowed the study of gene responses in the vicinity of amyloid beta plaques or across various brain regions. With the vast amount of data generated, utilizing gene regulatory networks to comprehensively study this disease has become essential. This review delves into some techniques employed in the field of AD, explores the discoveries made using these techniques, and provides insights into the future of the field.
Collapse
Affiliation(s)
- Negin Rahimzadeh
- Mathematical, Computational, and Systems Biology (MCSB) ProgramUniversity of California IrvineIrvineCaliforniaUSA
| | - Shushrruth Sai Srinivasan
- Mathematical, Computational, and Systems Biology (MCSB) ProgramUniversity of California IrvineIrvineCaliforniaUSA
| | - Jing Zhang
- Department of Computer ScienceUniversity of CaliforniaIrvineCaliforniaUSA
| | - Vivek Swarup
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological Disorders (MIND)University of California IrvineIrvineCaliforniaUSA
| |
Collapse
|
43
|
Guo X, Li J, Qi Y, Chen J, Jiang M, Zhu L, Liu Z, Wang H, Wang G, Wang X. Telomere length and micronuclei trajectories in APP/PS1 mouse model of Alzheimer's disease: Correlating with cognitive impairment and brain amyloidosis in a sexually dimorphic manner. Aging Cell 2024; 23:e14121. [PMID: 38450924 PMCID: PMC11113262 DOI: 10.1111/acel.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/31/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Although studies have demonstrated that genome instability is accumulated in patients with Alzheimer's disease (AD), the specific types of genome instability linked to AD pathogenesis remain poorly understood. Here, we report the first characterization of the age- and sex-related trajectories of telomere length (TL) and micronuclei in APP/PS1 mice model and wild-type (WT) controls (C57BL/6). TL was measured in brain (prefrontal cortex, cerebellum, pituitary gland, and hippocampus), colon and skin, and MN was measured in bone marrow in 6- to 14-month-old mice. Variation in TL was attributable to tissue type, age, genotype and, to a lesser extent, sex. Compared to WT, APP/PS1 had a significantly shorter baseline TL across all examined tissues. TL was inversely associated with age in both genotypes and TL shortening was accelerated in brain of APP/PS1. Age-related increase of micronuclei was observed in both genotypes but was accelerated in APP/PS1. We integrated TL and micronuclei data with data on cognition performance and brain amyloidosis. TL and micronuclei were linearly correlated with cognition performance or Aβ40 and Aβ42 levels in both genotypes but to a greater extent in APP/PS1. These associations in APP/PS1 mice were dominantly driven by females. Together, our findings provide foundational knowledge to infer the TL and micronuclei trajectories in APP/PS1 mice during disease progression, and strongly support that TL attrition and micronucleation are tightly associated with AD pathogenesis in a female-biased manner.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Jianfei Li
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Yanmei Qi
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Juanlin Chen
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Minyan Jiang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Lina Zhu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Zetong Liu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Han Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Gongwu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
- Yeda Institute of Gene and Cell TherapyTaizhouZhejiangChina
| |
Collapse
|
44
|
van Heyningen V. Stochasticity in genetics and gene regulation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230476. [PMID: 38432316 PMCID: PMC10909507 DOI: 10.1098/rstb.2023.0476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/20/2023] [Indexed: 03/05/2024] Open
Abstract
Development from fertilized egg to functioning multi-cellular organism requires precision. There is no precision, and often no survival, without plasticity. Plasticity is conferred partly by stochastic variation, present inherently in all biological systems. Gene expression levels fluctuate ubiquitously through transcription, alternative splicing, translation and turnover. Small differences in gene expression are exploited to trigger early differentiation, conferring distinct function on selected individual cells and setting in motion regulatory interactions. Non-selected cells then acquire new functions along the spatio-temporal developmental trajectory. The differentiation process has many stochastic components. Meiotic segregation, mitochondrial partitioning, X-inactivation and the dynamic DNA binding of transcription factor assemblies-all exhibit randomness. Non-random X-inactivation generally signals deleterious X-linked mutations. Correct neural wiring, such as retina to brain, arises through repeated confirmatory activity of connections made randomly. In immune system development, both B-cell antibody generation and the emergence of balanced T-cell categories begin through stochastic trial and error followed by functional selection. Aberrant selection processes lead to immune dysfunction. DNA sequence variants also arise through stochastic events: some involving environmental fluctuation (radiation or presence of pollutants), or genetic repair system malfunction. The phenotypic outcome of mutations is also fluid. Mutations may be advantageous in some circumstances, deleterious in others. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Veronica van Heyningen
- UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
45
|
Soheili-Nezhad S, Ibáñez-Solé O, Izeta A, Hoeijmakers JHJ, Stoeger T. Time is ticking faster for long genes in aging. Trends Genet 2024; 40:299-312. [PMID: 38519330 PMCID: PMC11003850 DOI: 10.1016/j.tig.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/24/2024]
Abstract
Recent studies of aging organisms have identified a systematic phenomenon, characterized by a negative correlation between gene length and their expression in various cell types, species, and diseases. We term this phenomenon gene-length-dependent transcription decline (GLTD) and suggest that it may represent a bottleneck in the transcription machinery and thereby significantly contribute to aging as an etiological factor. We review potential links between GLTD and key aging processes such as DNA damage and explore their potential in identifying disease modification targets. Notably, in Alzheimer's disease, GLTD spotlights extremely long synaptic genes at chromosomal fragile sites (CFSs) and their vulnerability to postmitotic DNA damage. We suggest that GLTD is an integral element of biological aging.
Collapse
Affiliation(s)
- Sourena Soheili-Nezhad
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Olga Ibáñez-Solé
- Stem Cells & Aging Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Ander Izeta
- Stem Cells & Aging Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Tecnun-University of Navarra, 20018 Donostia-San Sebastian, Spain.
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; University of Cologne, Faculty of Medicine, Cluster of Excellence for Aging Research, Institute for Genome Stability in Ageing and Disease, Cologne, Germany; Princess Maxima Center for Pediatric Oncology, Oncode Institute, Utrecht, The Netherlands.
| | - Thomas Stoeger
- Feinberg School of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA; Potocsnak Longevity Institute, Northwestern University, Chicago, IL, USA; Simpson Querrey Lung Institute for Translational Science, Chicago, IL, USA.
| |
Collapse
|
46
|
Chen Z, Finnell RH, Lei Y, Wang H. Progress and clinical prospect of genomic structural variants investigation. Sci Bull (Beijing) 2024; 69:705-708. [PMID: 38310047 DOI: 10.1016/j.scib.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Affiliation(s)
- Zhongzhong Chen
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Richard H Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston 77030, USA; Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, One Baylor Plaza, Houston 77030, USA
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston 77030, USA.
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Metabolic Remodelling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China; Children's Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|
47
|
Khemka S, Sehar U, Manna PR, Kshirsagar S, Reddy PH. Cell-Free DNA As Peripheral Biomarker of Alzheimer's Disease. Aging Dis 2024; 16:787-803. [PMID: 38607732 PMCID: PMC11964419 DOI: 10.14336/ad.2024.0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease (AD) and Alzheimer's disease-related disorders (ADRD) are progressive neurodegenerative diseases without cure. Alzheimer's disease occurs in 2 forms, early-onset familial AD and late-onset sporadic AD. Early-onset AD is a rare (~1%), autosomal dominant, caused by mutations in presenilin-1, presenilin-2, and amyloid precursor protein genes and the other is a late-onset, prevalent and is evolved due to age-associated complex interactions between environmental and genetic factors, in addition to apolipoprotein E4 polymorphism. Cellular senescence, promoting the impairment of physical and mental functions is constituted to be the main cause of aging, the primary risk factor for AD, which results in progressive loss of cognitive function, memory, and visual-spatial skills for an individual to live or act independently. Despite significant progress in the understanding of the biology and pathophysiology of AD, we continue to lack definitive early detectable biomarkers and/or drug targets that can be used to delay the development of AD and ADRD in elderly populations. However, recent developments in the studies of DNA double-strand breaks result in the release of fragmented DNA into the bloodstream and contribute to higher levels of cell-free DNA (cf-DNA). This fragmented cf-DNA can be released into the bloodstream from various cell types, including normal cells and cells undergoing apoptosis or necrosis and elevated levels of cf-DNA in the blood have the potential to serve as blood blood-based biomarker for early detection of AD and ADRD. The overall goal of our study is to discuss the latest developments in circulating cell-free DNA into the blood in the progression of AD and ADRD. Our article summarized the status of research on double-strand breaks and circulating cell-free DNA in both healthy and disease states and how these recent developments can be used to develop early detectable biomarkers for AD and ADRD. Our article also discussed the impact of lifestyle and epigenetic factors that are involved in DNA double-strand breaks and circulating cell-free DNA in AD and ADRD.
Collapse
Affiliation(s)
- Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Pulak R Manna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Public Health Department, School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| |
Collapse
|
48
|
Braden AA, Xiao J, Hori R, Brown C, Khan MM. An Overview of UBTF Neuroregression Syndrome. Brain Sci 2024; 14:179. [PMID: 38391753 PMCID: PMC10886456 DOI: 10.3390/brainsci14020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Recently, a recurrent de novo dominant mutation in UBTF (c.628G>A, p.Glu210Lys; UBTF E210K) was identified as the cause of a neurological disorder which has been named UBTF Neuroregression Syndrome (UNS), or Childhood-Onset Neurodegeneration with Brain Atrophy (CONDBA). To date, only 17 cases have been reported worldwide. The molecular etiology is a pathogenic variant, E210K, within the HMG-box 2 of Upstream Binding Transcription Factor (UBTF). UBTF, a nucleolar protein, plays an important role in ribosomal RNA (rRNA) synthesis, nucleolar integrity, and cell survival. This variant causes unstable preinitiation complexes to form, resulting in altered rDNA chromatin structures, rRNA dysregulation, DNA damage, and ultimately, neurodegeneration. Defining clinical characteristics of the disorder include but are not limited to developmental regression beginning at approximately three years of age, progressive motor dysfunction, declining cognition, ambulatory loss, and behavioral problems. Histological and neuroimaging abnormalities include cortical atrophy, white matter deficits, and enlarged ventricles. Herein, we present a detailed overview of all published cases as well as the functional roles of UBTF to better understand the pathophysiology. Bringing undiagnosed cases to the attention of clinicians and researchers by making them aware of the clinical features will improve research and support the development of therapeutic interventions.
Collapse
Affiliation(s)
- Anneliesse A Braden
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38104, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianfeng Xiao
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38104, USA
| | - Roderick Hori
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Chester Brown
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38104, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Division of Regenerative and Rehabilitation Sciences, Department of Physical Therapy, Center for Muscle, Metabolism and Neuropathology, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
49
|
Phan BN, Ray MH, Xue X, Fu C, Fenster RJ, Kohut SJ, Bergman J, Haber SN, McCullough KM, Fish MK, Glausier JR, Su Q, Tipton AE, Lewis DA, Freyberg Z, Tseng GC, Russek SJ, Alekseyev Y, Ressler KJ, Seney ML, Pfenning AR, Logan RW. Single nuclei transcriptomics in human and non-human primate striatum in opioid use disorder. Nat Commun 2024; 15:878. [PMID: 38296993 PMCID: PMC10831093 DOI: 10.1038/s41467-024-45165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
In brain, the striatum is a heterogenous region involved in reward and goal-directed behaviors. Striatal dysfunction is linked to psychiatric disorders, including opioid use disorder (OUD). Striatal subregions are divided based on neuroanatomy, each with unique roles in OUD. In OUD, the dorsal striatum is involved in altered reward processing, formation of habits, and development of negative affect during withdrawal. Using single nuclei RNA-sequencing, we identified both canonical (e.g., dopamine receptor subtype) and less abundant cell populations (e.g., interneurons) in human dorsal striatum. Pathways related to neurodegeneration, interferon response, and DNA damage were significantly enriched in striatal neurons of individuals with OUD. DNA damage markers were also elevated in striatal neurons of opioid-exposed rhesus macaques. Sex-specific molecular differences in glial cell subtypes associated with chronic stress were found in OUD, particularly female individuals. Together, we describe different cell types in human dorsal striatum and identify cell type-specific alterations in OUD.
Collapse
Affiliation(s)
- BaDoi N Phan
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Madelyn H Ray
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Chen Fu
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Robert J Fenster
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Division of Depression and Anxiety, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Stephen J Kohut
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Jack Bergman
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Suzanne N Haber
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine, Rochester, NY, 14642, USA
| | - Kenneth M McCullough
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Madeline K Fish
- Center for Systems Neuroscience, Boston University, Boston, MA, 02118, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02118, USA
| | - Jill R Glausier
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Qiao Su
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Allison E Tipton
- Center for Systems Neuroscience, Boston University, Boston, MA, 02118, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02118, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Shelley J Russek
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02118, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02118, USA
| | - Yuriy Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Division of Depression and Anxiety, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Andreas R Pfenning
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| | - Ryan W Logan
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA.
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
50
|
Zhang X, Haeri M, Swerdlow RH, Wang N. Loss of Adaptive DNA Breaks in Alzheimer's Disease Brains. J Alzheimers Dis 2024; 97:1861-1875. [PMID: 38306051 PMCID: PMC10894583 DOI: 10.3233/jad-231303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 02/03/2024]
Abstract
Background DNA breaks accumulate in Alzheimer's disease (AD) brains. While their role as true genomic lesions is recognized, DNA breaks also support cognitive function by facilitating the expression of activity-dependent immediate early genes. This process involves TOP2B, a DNA topoisomerase that catalyzes the formation of DNA double-strand breaks. Objective To characterize how AD impacts adaptive DNA breaks at nervous system genes. Methods We leveraged the ability of DNA single- and double-strand breaks to activate poly(ADP-ribose) polymerases (PARPs) that conjugate poly(ADP-ribose) (PAR) to adjacent proteins. To characterize the genomic sites harboring DNA breaks in AD brains, nuclei extracted from 3 AD and 3 non-demented autopsy brains (frontal cortex, all male donors, age 78 to 91 years of age) were analyzed through CUT&RUN in which we targeted PAR with subsequent DNA sequencing. Results Although the AD brains contained 19.9 times more PAR peaks than the non-demented brains, PAR peaks at nervous system genes were profoundly lost in AD brains, and the expression of these genes was downregulated. This result is consistent with our previous CUT&RUN targeting γH2AX, which marks DNA double-strand breaks. In addition, TOP2B expression was significantly decreased in the AD brains. Conclusions Although AD brains contain a net increase in DNA breaks, adaptive DNA breaks at nervous system genes are lost in AD brains. This could potentially reflect diminished TOP2B expression and contribute to impaired neuron function and cognition in AD patients.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
- Institute of Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mohammad Haeri
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ning Wang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
- Institute of Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|