1
|
Liao W, Zai X, Zhang J, Xu J. Hematopoietic stem cell state and fate in trained immunity. Cell Commun Signal 2025; 23:182. [PMID: 40229653 PMCID: PMC11995595 DOI: 10.1186/s12964-025-02192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/06/2025] [Indexed: 04/16/2025] Open
Abstract
Trained immunity serves as a de facto memory for innate immune responses, resulting in long-term functional reprogramming of innate immune cells. It enhances resistance to pathogens and augments immunosurveillance under physiological conditions. Given that innate immune cells typically have a short lifespan and do not divide, persistent innate immune memory may be mediated by epigenetic and metabolic changes in long-lived hematopoietic stem cells (HSCs) in the bone marrow. HSCs fine-tune their state and fate in various training conditions, thereby generating functionally adapted progeny cells that orchestrate innate immune plasticity. Notably, both beneficial and maladaptive trained immunity processes can comprehensively influence HSC state and fate, leading to divergent hematopoiesis and immune outcomes. However, the underlying mechanisms are still not fully understood. In this review, we summarize recent advances regarding HSC state and fate in the context of trained immunity. By elucidating the stem cell-intrinsic and extrinsic regulatory network, we aim to refine current models of innate immune memory and provide actionable insights for developing targeted therapies against infectious diseases and chronic inflammation. Furthermore, we propose a conceptual framework for engineering precision-trained immunity through HSC-targeted interventions.
Collapse
Affiliation(s)
- Weinian Liao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaodong Zai
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jun Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Junjie Xu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
2
|
Snoeck HW. Direct megakaryopoiesis. Curr Opin Hematol 2025:00062752-990000000-00109. [PMID: 40197720 DOI: 10.1097/moh.0000000000000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
PURPOSE OF REVIEW Megakaryocytes are large, polyploid cells that produce platelets and originate from hematopoietic stem cells (HSCs) in the bone marrow. While in the classical paradigm, megakaryocytes are generated in a stepwise fashion through increasingly committed progenitor stages, studies using in-vivo barcoding, transplantation, and in-vitro culture have suggested that, in addition, a more direct pathway existed. The relevance of this direct pathway and its functional and phenotypic characteristics were unclear, however. RECENT FINDINGS Recent publications using fate-mapping and single-cell transplantation now unequivocally demonstrate the existence of a direct megakaryocyte differentiation pathway, provide molecular characterization, and indicate distinct roles and regulation of both pathways. The direct pathway originates from a separate subset of 'top' HSCs, is enhanced by hematopoietic stress, inflammation and aging, bypasses multipotential progenitors, may be more active in myeloproliferative neoplasms, and generates phenotypically distinct megakaryocyte progenitors and more reactive platelets. SUMMARY Novel insights into the direct megakaryocyte differentiation pathway provide a deeper understanding of HSC biology, hematological recovery after myeloablation, and aging of the hematopoietic system, and suggest that this pathway may contribute to the increase in thrombotic incidents with age and in myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Hans-Willem Snoeck
- Columbia Center for Stem Cell Therapies/Columbia Center for Human Development, Department of Medicine
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons
- Division of Pulmonary Medicine, Allergy and Critical Care, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
3
|
Singh I, Fernandez-Perez D, Sanchez PS, Rodriguez-Fraticelli AE. Pre-existing stem cell heterogeneity dictates clonal responses to the acquisition of leukemic driver mutations. Cell Stem Cell 2025; 32:564-580.e6. [PMID: 40010350 DOI: 10.1016/j.stem.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 12/02/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025]
Abstract
Cancer cells display wide phenotypic variation even across patients with the same mutations. Differences in the cell of origin provide a potential explanation, but traditional assays lack the resolution to distinguish clonally heterogeneous subsets of stem and progenitor cells. To address this challenge, we developed simultaneous tracking of recombinase activation and clonal kinetics (STRACK), a method to trace clonal dynamics and gene expression before and after the acquisition of cancer mutations. Using mouse models, we studied two leukemic mutations, Dnmt3a-R878H and Npm1c, and found that their effect was highly variable across different stem cell states. Specifically, a subset of differentiation-primed stem cells, which normally becomes outcompeted with time, expands with both mutations. Intriguingly, Npm1c mutations reversed the intrinsic bias of the clone of origin, with differentiation-primed stem cells giving rise to more primitive malignant states. Thus, we highlight the relevance of single-cell lineage tracing to unravel early events in cancer evolution and posit that different cellular histories carry distinct cancer phenotypic potential.
Collapse
Affiliation(s)
- Indranil Singh
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain; Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Daniel Fernandez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Pedro Sanchez Sanchez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Alejo E Rodriguez-Fraticelli
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain; ICREA, Catalan Institution for Research and Advanced Studies Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
4
|
Hormoz S, Sankaran VG, Mullally A. Evolution of myeloproliferative neoplasms from normal blood stem cells. Haematologica 2025; 110:840-849. [PMID: 39633553 PMCID: PMC11959262 DOI: 10.3324/haematol.2023.283951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Over the course of the last decade, genomic studies in the context of normal human hematopoiesis have provided new insights into the early pathogenesis of myeloproliferative neoplasms (MPN). A preclinical phase of MPN, termed clonal hematopoiesis was identified and subsequent lineage tracing studies revealed a multi-decade long time interval from acquisition of an MPN phenotypic driver mutation in a hematopoietic stem cell to the development of overt MPN. Multiple germline variants associated with MPN risk have been identified through genome-wide association studies and in some cases functional interrogation of the impact of the variant has uncovered new insights into hematopoietic stem cell biology and MPN development. Increasingly sophisticated methods to study clonal contributions to human hematopoiesis and measure hematopoietic stem cell fitness have helped to discern the biology underlying the tremendous clinical heterogeneity observed in MPN. Despite these advances, significant knowledge gaps remain, particularly with respect to germline genetic contributors to both MPN pathogenesis and phenotypic diversity, as well as limitations in the ability to prospectively quantify rates of clonal expansion in individual MPN patients. Ultimately, we envisage a personalized approach to MPN care in the future, in which an individualized genetic assessment can predict MPN trajectory and this information will be used to inform and guide therapy. MPN is particularly amenable to precision medicine strategies and our increased understanding of the evolution of MPN from normal blood stem cells provides a unique opportunity for early therapeutic intervention approaches and potentially MPN prevention strategies.
Collapse
Affiliation(s)
- Sahand Hormoz
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA.
| | - Vijay G Sankaran
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Hematology Division, VA Palo Alto Health Care System, Palo Alto, CA.
| |
Collapse
|
5
|
Haniffa M, Maartens A, Winheim E, Jardine L. Decoding the human prenatal immune system with single-cell multi-omics. Nat Rev Immunol 2025; 25:285-297. [PMID: 39482372 DOI: 10.1038/s41577-024-01099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
The human immune system is made up of a huge variety of cell types each with unique functions. Local networks of resident immune cells are poised to sense and protect against pathogen entry, whereas more widespread innate and adaptive immune networks provide first rapid, then long-lasting and targeted responses. However, how we develop such a diverse and complex system remains unknown. Studying human development directly has been challenging in the past, but recent advances in single-cell and spatial genomics, together with the co-ordinated efforts of the Human Cell Atlas and other initiatives, have led to new studies that map the development of the human immune system in unprecedented detail. In this Review, we consider the timings, transitions, cell types and tissue microenvironments that are crucial for building the human immune system. We also compare and contrast the human system with model species and in vitro systems, and discuss how an understanding of prenatal immune system development will improve our knowledge of human disease.
Collapse
Affiliation(s)
- Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- National Institute for Health Research (NIHR) Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
- Department of Dermatology, Newcastle upon Tyne Hospitals Foundation Trust, Newcastle upon Tyne, UK.
| | - Aidan Maartens
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Elena Winheim
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
6
|
Hochstadt J, Martínez Pacheco S, Casanova-Acebes M. Embracing diversity: macrophage complexity in cancer. Trends Cancer 2025; 11:351-364. [PMID: 39753470 DOI: 10.1016/j.trecan.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 04/11/2025]
Abstract
Macrophages are myeloid cells that receive, integrate, and respond to tumoral cues. Tumors evolve and are shaped by macrophages, with tumor-associated macrophage (TAM)-tumor sculpting capacities going beyond an increase in their cellular mass. Longitudinal and local heterogeneity of TAM states is now possible with the use of single-cell and spatial transcriptomics. However, understanding TAM biology and its fundamental functional programs is still challenging, probably because of the lack of models that fully integrate TAM complexity. Here, we aim to review TAM diversity not only at the level of single-cell phenotypes but also by integrating complex physiological signals that determine their complexity and plasticity in tumors.
Collapse
Affiliation(s)
- Jan Hochstadt
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sarai Martínez Pacheco
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - María Casanova-Acebes
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
7
|
Wang X, Wang K, Zhang W, Tang Z, Zhang H, Cheng Y, Zhou D, Zhang C, Zhong WZ, Ma Q, Xu J, Hu Z. Clonal expansion dictates the efficacy of mitochondrial lineage tracing in single cells. Genome Biol 2025; 26:70. [PMID: 40134031 PMCID: PMC11938731 DOI: 10.1186/s13059-025-03540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) variants hold promise as endogenous barcodes for tracking human cell lineages, but their efficacy as reliable lineage markers are hindered by the complex dynamics of mtDNA in somatic tissues. RESULTS Here, we use computational modeling and single-cell genomics to thoroughly interrogate the origin and clonal dynamics of mtDNA variants across various biological settings. Our findings reveal that the majority of mtDNA variants which are specifically present in a cell subpopulation, termed subpopulation-specific variants, are pre-existing heteroplasmies in the first cell instead of de novo somatic mutations during divisions. Moreover, subpopulation-specific variants demonstrate limited discriminatory power among different genuine lineages under weak clonal expansion; however, certain subpopulation-specific variants with consistently high frequencies among a subpopulation are capable of faithfully labeling cell lineages in scenarios of stringent clonal expansion, such as strongly expanded T cell populations in diseased conditions and clonal hematopoiesis in aged individuals. Inspired by our simulations, we introduce a lineage informative score, facilitating the identification of reliable mitochondrial lineage tracing markers across different modalities of single-cell genomic data. CONCLUSIONS Combining computational modeling and single-cell sequencing, our study reveals that the performance of mitochondrial lineage tracing is highly dependent on the extent of clonal expansion, which thus should be considered when applying mitochondrial lineage tracing.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kun Wang
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Weixing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhongjie Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hao Zhang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuying Cheng
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Life Sciences, Henan University, Kaifeng, China
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qing Ma
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| | - Zheng Hu
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
8
|
Li L, Bowling S, Lin H, Chen D, Wang SW, Camargo FD. DARLIN mouse for in vivo lineage tracing at high efficiency and clonal diversity. Nat Protoc 2025:10.1038/s41596-025-01141-z. [PMID: 40119004 DOI: 10.1038/s41596-025-01141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/07/2025] [Indexed: 03/24/2025]
Abstract
Lineage tracing is a powerful tool to study cell history and cell dynamics during tissue development and homeostasis. An increasingly popular approach for lineage tracing is to generate high-frequent mutations at given genomic loci, which can serve as genetic barcodes to label different cell lineages. However, current lineage tracing mouse models suffer from low barcode diversity and limited single-cell lineage coverage. We recently developed the DARLIN mouse model by incorporating three barcoding arrays within defined genomic loci and combining Cas9 and terminal deoxynucleotidyl transferase (TdT) to improve editing diversity in each barcode array. We estimated that DARLIN generates 1018 distinct lineage barcodes in theory, and enables the recovery of lineage barcodes in over 70% of cells in single-cell assays. In addition, DARLIN can be induced with doxycycline to generate stable lineage barcodes across different tissues at a defined stage. Here we provide a step-by-step protocol on applying the DARLIN system for in vivo lineage tracing, including barcode induction, estimation of induction efficiency, barcode analysis with bulk and single-cell sequencing, and computational analysis. The execution time of this protocol is ~1 week for experimental data collection and ~1 d for running the computational analysis pipeline. To execute this protocol, one should be familiar with sequencing library generation and Linux operation. DARLIN opens the door to study the lineage relationships and the underlying molecular regulations across various tissues at physiological context.
Collapse
Affiliation(s)
- Li Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Sarah Bowling
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hongying Lin
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Daolong Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Shou-Wen Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- School of Life Sciences, Westlake University, Hangzhou, China.
- School of Science, Westlake University, Hangzhou, China.
| | - Fernando D Camargo
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
9
|
Deng LH, Li MZ, Huang XJ, Zhao XY. Single-cell lineage tracing techniques in hematology: unraveling the cellular narrative. J Transl Med 2025; 23:270. [PMID: 40038725 DOI: 10.1186/s12967-025-06318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025] Open
Abstract
Lineage tracing is a valuable technique that has greatly facilitated the exploration of cell origins and behavior. With the continuous development of single-cell sequencing technology, lineage tracing technology based on the single-cell level has become an important method to study biological development. Single-cell Lineage tracing technology plays an important role in the hematological system. It can help to answer many important questions, such as the heterogeneity of hematopoietic stem cell function and structure, and the heterogeneity of malignant tumor cells in the hematological system. Many studies have been conducted to explore the field of hematology by applying this technology. This review focuses on the superiority of the emerging single-cell lineage tracing technologies of Integration barcodes, CRISPR barcoding, and base editors, and summarizes their applications in the hematology system. These studies have suggested the vast potential in unraveling complex cellular behaviors and lineage dynamics in both normal and pathological contexts.
Collapse
Affiliation(s)
- Lu-Han Deng
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Mu-Zi Li
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Beijing, 100044, China.
| |
Collapse
|
10
|
Sturgeon CM, Wagenblast E, Izzo F, Papapetrou EP. The Crossroads of Clonal Evolution, Differentiation Hierarchy, and Ontogeny in Leukemia Development. Blood Cancer Discov 2025; 6:94-109. [PMID: 39652739 PMCID: PMC11876951 DOI: 10.1158/2643-3230.bcd-24-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/19/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
SIGNIFICANCE In recent years, remarkable technological advances have illuminated aspects of the pathogenesis of myeloid malignancies-yet outcomes for patients with these devastating diseases have not significantly improved. We posit that a synthesized view of the three dimensions through which hematopoietic cells transit during their healthy and diseased life-clonal evolution, stem cell hierarchy, and ontogeny-promises high yields in new insights into disease pathogenesis and new therapeutic avenues.
Collapse
Affiliation(s)
- Christopher M. Sturgeon
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elvin Wagenblast
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Pediatrics, Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Franco Izzo
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eirini P. Papapetrou
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, New York, New York
- Black Family Stem Cell Institute, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
11
|
Saxe R, Stuart H, Marshall A, Abdullahi F, Chen Z, Emiliani F, McKenna A. Hierarchical Lineage Tracing Reveals Diverse Pathways of AML Treatment Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640600. [PMID: 40093111 PMCID: PMC11908168 DOI: 10.1101/2025.02.27.640600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Cancer cells adapt to treatment, leading to the emergence of clones that are more aggressive and resistant to anti-cancer therapies. We have a limited understanding of the development of treatment resistance as we lack technologies to map the evolution of cancer under the selective pressure of treatment. To address this, we developed a hierarchical, dynamic lineage tracing method called FLARE (Following Lineage Adaptation and Resistance Evolution). We use this technique to track the progression of acute myeloid leukemia (AML) cell lines through exposure to Cytarabine (AraC), a front-line treatment in AML, in vitro and in vivo. We map distinct cellular lineages in murine and human AML cell lines predisposed to AraC persistence and/or resistance via the upregulation of cell adhesion and motility pathways. Additionally, we highlight the heritable expression of immunoproteasome 11S regulatory cap subunits as a potential mechanism aiding AML cell survival, proliferation, and immune escape in vivo. Finally, we validate the clinical relevance of these signatures in the TARGET-AML cohort, with a bisected response in blood and bone marrow. Our findings reveal a broad spectrum of resistance signatures attributed to significant cell transcriptional changes. To our knowledge, this is the first application of dynamic lineage tracing to unravel treatment response and resistance in cancer, and we expect FLARE to be a valuable tool in dissecting the evolution of resistance in a wide range of tumor types.
Collapse
Affiliation(s)
- Rachel Saxe
- Molecular and Systems Biology, Dartmouth College, Hanover, NH
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH
| | - Hannah Stuart
- Molecular and Systems Biology, Dartmouth College, Hanover, NH
- Quantitative Biomedical Science Program, Dartmouth College, Lebanon, NH
| | - Abigail Marshall
- Molecular and Systems Biology, Dartmouth College, Hanover, NH
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH
| | - Fahiima Abdullahi
- The Dartmouth MD-PhD Undergraduate Summer Fellowship Program, Lebanon, NH
| | - Zoë Chen
- Dartmouth Cancer Center, Dartmouth College, Lebanon, NH
| | - Francesco Emiliani
- Molecular and Systems Biology, Dartmouth College, Hanover, NH
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH
| | - Aaron McKenna
- Molecular and Systems Biology, Dartmouth College, Hanover, NH
- Dartmouth Cancer Center, Dartmouth College, Lebanon, NH
| |
Collapse
|
12
|
Chen M, Fu R, Chen Y, Li L, Wang SW. High-resolution, noninvasive single-cell lineage tracing in mice and humans based on DNA methylation epimutations. Nat Methods 2025; 22:488-498. [PMID: 39820752 DOI: 10.1038/s41592-024-02567-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/19/2024] [Indexed: 01/19/2025]
Abstract
In vivo lineage tracing holds great potential to reveal fundamental principles of tissue development and homeostasis. However, current lineage tracing in humans relies on extremely rare somatic mutations, which has limited temporal resolution and lineage accuracy. Here, we developed a generic lineage-tracing tool based on frequent epimutations on DNA methylation, enabled by our computational method MethylTree. Using single-cell genome-wide DNA methylation datasets with known lineage and phenotypic labels, MethylTree reconstructed lineage histories at nearly 100% accuracy across different cell types, developmental stages, and species. We demonstrated the epimutation-based single-cell multi-omic lineage tracing in mouse and human blood, where MethylTree recapitulated the differentiation hierarchy in hematopoiesis. Applying MethylTree to human embryos, we revealed early fate commitment at the four-cell stage. In native mouse blood, we identified ~250 clones of hematopoietic stem cells. MethylTree opens the door for high-resolution, noninvasive and multi-omic lineage tracing in humans and beyond.
Collapse
Affiliation(s)
- Mengyang Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Ruijiang Fu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
- School of Science, Westlake University, Hangzhou, China
| | - Yiqian Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Li Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- School of Life Sciences, Westlake University, Hangzhou, China.
| | - Shou-Wen Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- School of Life Sciences, Westlake University, Hangzhou, China.
- School of Science, Westlake University, Hangzhou, China.
| |
Collapse
|
13
|
Askary A, Chen W, Choi J, Du LY, Elowitz MB, Gagnon JA, Schier AF, Seidel S, Shendure J, Stadler T, Tran M. The lives of cells, recorded. Nat Rev Genet 2025; 26:203-222. [PMID: 39587306 DOI: 10.1038/s41576-024-00788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/27/2024]
Abstract
A paradigm for biology is emerging in which cells can be genetically programmed to write their histories into their own genomes. These records can subsequently be read, and the cellular histories reconstructed, which for each cell could include a record of its lineage relationships, extrinsic influences, internal states and physical locations, over time. DNA recording has the potential to transform the way that we study developmental and disease processes. Recent advances in genome engineering are driving the development of systems for DNA recording, and meanwhile single-cell and spatial omics technologies increasingly enable the recovery of the recorded information. Combined with advances in computational and phylogenetic inference algorithms, the DNA recording paradigm is beginning to bear fruit. In this Perspective, we explore the rationale and technical basis of DNA recording, what aspects of cellular biology might be recorded and how, and the types of discovery that we anticipate this paradigm will enable.
Collapse
Affiliation(s)
- Amjad Askary
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Wei Chen
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Junhong Choi
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucia Y Du
- Biozentrum, University of Basel, Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Michael B Elowitz
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.
| | - James A Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Alexander F Schier
- Biozentrum, University of Basel, Basel, Switzerland.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| | - Sophie Seidel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Martin Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
14
|
MethylTree: exploring epimutations for accurate and non-invasive lineage tracing. Nat Methods 2025; 22:463-464. [PMID: 39820754 DOI: 10.1038/s41592-024-02568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
|
15
|
Feng Y, Liu G, Li H, Cheng L. The landscape of cell lineage tracing. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2751-6. [PMID: 40035969 DOI: 10.1007/s11427-024-2751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/30/2024] [Indexed: 03/06/2025]
Abstract
Cell fate changes play a crucial role in the processes of natural development, disease progression, and the efficacy of therapeutic interventions. The definition of the various types of cell fate changes, including cell expansion, differentiation, transdifferentiation, dedifferentiation, reprogramming, and state transitions, represents a complex and evolving field of research known as cell lineage tracing. This review will systematically introduce the research history and progress in this field, which can be broadly divided into two parts: prospective tracing and retrospective tracing. The initial section encompasses an array of methodologies pertaining to isotope labeling, transient fluorescent tracers, non-fluorescent transient tracers, non-fluorescent genetic markers, fluorescent protein, genetic marker delivery, genetic recombination, exogenous DNA barcodes, CRISPR-Cas9 mediated DNA barcodes, and base editor-mediated DNA barcodes. The second part of the review covers genetic mosaicism, genomic DNA alteration, TCR/BCR, DNA methylation, and mitochondrial DNA mutation. In the final section, we will address the principal challenges and prospective avenues of enquiry in the field of cell lineage tracing, with a particular focus on the sequencing techniques and mathematical models pertinent to single-cell genetic lineage tracing, and the value of pursuing a more comprehensive investigation at both the spatial and temporal levels in the study of cell lineage tracing.
Collapse
Affiliation(s)
- Ye Feng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China.
| | - Guang Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China.
| | - Haiqing Li
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
16
|
Fukushima T, Kristiansen TA, Wong LP, Keyes S, Tanaka Y, Mazzola M, Zhao T, He L, Yagi M, Hochedlinger K, Yamazaki S, Sadreyev RI, Scadden DT. Hematopoietic stem cells undergo bidirectional fate transitions in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639689. [PMID: 40027782 PMCID: PMC11870621 DOI: 10.1101/2025.02.23.639689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Transitions between subsets of differentiating hematopoietic cells are widely regarded as unidirectional in vivo. Here, we introduce clonal phylogenetic tracer (CP-tracer) that sequentially introduces genetic barcodes, enabling high-resolution analysis of ~100,000 subclones derived from ~500 individual hematopoietic stem cells (HSC). This revealed previously uncharacterized HSC functional subsets and identified bidirectional fate transitions between myeloid-biased and lineage-balanced HSC. Contrary to the prevailing view that the more self-renewing My-HSCs unidirectionally transition to balanced-HSCs, phylogenetic tracing revealed durable lineage bidirectionality with the transition favoring My-HSC accumulation over time1,2. Further, balanced-HSCs mature through distinct intermediates My-HSCs and lymphoid-biased-HSCs with lymphoid competence here shown by CRISPR/Cas9 screening to be dependent on the homeobox gene, Hhex. Hhex enables Ly-HSC differentiation, but its expression declines with age. These findings establish HSC plasticity and Hhex as a determinant of myeloid-lymphoid balance with each changing over time to favor the age-related myeloid bias of the elderly.
Collapse
Affiliation(s)
- Tsuyoshi Fukushima
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Division of Cell Regulation, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Trine Ahn Kristiansen
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lai Ping Wong
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Samuel Keyes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yosuke Tanaka
- Division of Cell Regulation, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Michael Mazzola
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ting Zhao
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lingli He
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Masaki Yagi
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Konrad Hochedlinger
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Satoshi Yamazaki
- Division of Cell Regulation, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
17
|
Raposo CJ, Yan PK, Chen AY, Majidi S, Hiam-Galvez KJ, Satpathy AT. Functional memory T cells are derived from exhausted clones and expanded by checkpoint blockade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637523. [PMID: 39990338 PMCID: PMC11844384 DOI: 10.1101/2025.02.10.637523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Immune checkpoint blockade can facilitate tumor clearance by T cells, resulting in long term patient survival. However, the capacity of exhausted CD8+ T cells (Tex), present during chronic antigen exposure, to form memory after antigen clearance remains unclear. Here, we performed longitudinal single cell RNA/T cell receptor sequencing and ATAC-sequencing on antigen-specific T cells after the clearance of chronic lymphocytic choriomeningitis virus (LCMV) infection. These data revealed the formation of a robust population of memory CD8+ T cells that transcriptionally, epigenetically, and functionally resemble central memory T cells (Tcm) that form after clearance of acute infection. To lineage trace the origin and memory recall response of Tex-derived memory clones, we utilized T cell receptor sequencing over the course of primary infection and rechallenge. We show that chronic Tcm are a clonally distinct lineage of Tex derived from progenitor exhausted cells, persist long-term in the absence of antigen, and undergo rapid clonal expansion during rechallenge. Finally, we demonstrate that αPD-L1 immune checkpoint blockade after chronic LCMV infection preferentially expands clones which form Tcm after clearance. Together, these data support the concept that chronically stimulated T cells form bona fide functional memory T cells through an analogous differentiation pathway to acutely stimulated T cells, which may have significant implications for enhancing immune memory to cancer through checkpoint blockade and vaccination.
Collapse
Affiliation(s)
- Colin J. Raposo
- Department of Pathology, Stanford University, Stanford, CA, USA
- Program in Immunology, Stanford University, Stanford, CA, USA
| | - Patrick K. Yan
- Department of Pathology, Stanford University, Stanford, CA, USA
- Program in Immunology, Stanford University, Stanford, CA, USA
| | - Andy Y. Chen
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Saba Majidi
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Ansuman T. Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
18
|
Wen Y, He H, Ma Y, Bao D, Cai LC, Wang H, Li Y, Zhao B, Cai Z. Computing hematopoiesis plasticity in response to genetic mutations and environmental stimulations. Life Sci Alliance 2025; 8:e202402971. [PMID: 39537342 PMCID: PMC11561260 DOI: 10.26508/lsa.202402971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Cell plasticity (CP), describing a dynamic cell state, plays a crucial role in maintaining homeostasis during organ morphogenesis, regeneration, and trauma-to-repair biological process. Single-cell-omics datasets provide an unprecedented resource to empower CP analysis. Hematopoiesis offers fertile opportunities to develop quantitative methods for understanding CP. In this study, we generated high-quality lineage-negative single-cell RNA-sequencing datasets under various conditions and introduced a working pipeline named scPlasticity to interrogate naïve and disturbed plasticity of hematopoietic stem and progenitor cells with mutational or environmental challenges. Using embedding methods UMAP or FA, a continuum of hematopoietic development is visually observed in wild type where the pipeline confirms a low proportion of hybrid cells ( P hc , with bias range: 0.4∼0.6) on a transition trajectory. Upon Tet2 mutation, a driver of leukemia, or treatment of DSS, an inducer of colitis, P hc is increased and plasticity of hematopoietic stem and progenitor cells was enhanced. We prioritized several transcription factors and signaling pathways, which are responsible for P hc alterations. In silico perturbation suggests knocking out EGR regulons or pathways of IL-1R1 and β-adrenoreceptor partially reverses P hc promoted by Tet2 mutation and inflammation.
Collapse
Affiliation(s)
- Yuchen Wen
- National Key Laboratory of Experimental Hematology, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Hang He
- National Key Laboratory of Experimental Hematology, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yunxi Ma
- National Key Laboratory of Experimental Hematology, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Dengyi Bao
- National Key Laboratory of Experimental Hematology, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Lorie Chen Cai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Huaquan Wang
- Department of Hematology, Tianjin Medical University Tianjin General Hospital, Tianjin, China
| | - Yanmei Li
- Department of Rheumatology and Immunology, Tianjin Medical University Tianjin General Hospital, Tianjin, China
| | - Baobing Zhao
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhigang Cai
- National Key Laboratory of Experimental Hematology, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Department of Hematology, Tianjin Medical University Tianjin General Hospital, Tianjin, China
- Department of Rheumatology and Immunology, Tianjin Medical University Tianjin General Hospital, Tianjin, China
| |
Collapse
|
19
|
Chen C, Liao Y, Zhu M, Wang L, Yu X, Li M, Peng G. Dual-nuclease single-cell lineage tracing by Cas9 and Cas12a. Cell Rep 2025; 44:115105. [PMID: 39721023 DOI: 10.1016/j.celrep.2024.115105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/30/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Single-cell lineage tracing based on CRISPR-Cas9 gene editing enables the simultaneous linkage of cell states and lineage history at a high resolution. Despite its immense potential in resolving the cell fate determination and genealogy within an organism, existing implementations of this technology suffer from limitations in recording capabilities and considerable barcode dropout. Here, we introduce DuTracer, a versatile tool that utilizes two orthogonal gene editing systems to record cell lineage history at single-cell resolution in an inducible manner. DuTracer shows the ability to enhance lineage recording with minimized target dropouts and potentially deeper tree depths. Applying DuTracer in mouse embryoid bodies and neuromesodermal organoids illustrates the lineage relationship of different cell types and proposes potential lineage-biased molecular drivers, showcased by identifying transcription factor Foxb1 as a modulator in the cell fate determination of neuromesodermal progenitors. Collectively, DuTracer facilitates the precise and regulatory interrogation of cellular lineages of complex biological processes.
Collapse
Affiliation(s)
- Cheng Chen
- Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yuanxin Liao
- Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing, China
| | - Miao Zhu
- Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Wang
- Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinran Yu
- Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Meishi Li
- Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Guangdun Peng
- Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
20
|
Lu X, Zhang Q, Wang Z, Cheng X, Yan H, Cai S, Zhang H, Liu Q. Development of an inducible DNA barcoding system to understand lineage changes in Arabidopsis regeneration. Dev Cell 2025; 60:305-319.e5. [PMID: 39591964 DOI: 10.1016/j.devcel.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/27/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024]
Abstract
Plants demonstrate a high degree of developmental plasticity, capable of regenerating entire individuals from detached somatic tissues-a regenerative phenomenon rarely observed in metazoa. Consequently, elucidating the lineage relationship between somatic founder cells and descendant cells in regenerated plant organs has long been a pursuit. In this study, we developed and optimized both DNA barcode- and multi-fluorescence-based cell-lineage tracing toolsets, employing an inducible method to mark individual cells in Arabidopsis donor somatic tissues at the onset of regeneration. Utilizing these complementary methods, we scrutinized cell identities at the single-cell level and presented compelling evidence that all cells in the regenerated Arabidopsis plants, irrespective of their organ types, originated from a single progenitor cell in the donor somatic tissue. Our discovery suggests a single-cell passage directing the transition from multicellular donor tissue to regenerated plants, thereby creating opportunities for cell-cell competition during plant regeneration-a strategy for maximizing survival.
Collapse
Affiliation(s)
- Xinyue Lu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Qiyan Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Zejia Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Xuanzhi Cheng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Huiru Yan
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
| | - Shuyi Cai
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Huawei Zhang
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
21
|
Watt SM, Roubelakis MG. Deciphering the Complexities of Adult Human Steady State and Stress-Induced Hematopoiesis: Progress and Challenges. Int J Mol Sci 2025; 26:671. [PMID: 39859383 PMCID: PMC11766050 DOI: 10.3390/ijms26020671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Human hematopoietic stem cells (HSCs) have traditionally been viewed as self-renewing, multipotent cells with enormous potential in sustaining essential steady state blood and immune cell production throughout life. Indeed, around 86% (1011-1012) of new cells generated daily in a healthy young human adult are of hematopoietic origin. Therapeutically, human HSCs have contributed to over 1.5 million hematopoietic cell transplants (HCTs) globally, making this the most successful regenerative therapy to date. We will commence this review by briefly highlighting selected key achievements (from 1868 to the end of the 20th century) that have contributed to this accomplishment. Much of our knowledge of hematopoiesis is based on small animal models that, despite their enormous importance, do not always recapitulate human hematopoiesis. Given this, we will critically review the progress and challenges faced in identifying adult human HSCs and tracing their lineage differentiation trajectories, referring to murine studies as needed. Moving forward and given that human hematopoiesis is dynamic and can readily adjust to a variety of stressors, we will then discuss recent research advances contributing to understanding (i) which HSPCs maintain daily steady state human hematopoiesis, (ii) where these are located, and (iii) which mechanisms come into play when homeostatic hematopoiesis switches to stress-induced or emergency hematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9BQ, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5005, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5001, Australia
| | - Maria G. Roubelakis
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece;
- Cell and Gene Therapy Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| |
Collapse
|
22
|
Jiang J, Ye X, Kong Y, Guo C, Zhang M, Cao F, Zhang Y, Pei W. scLTdb: a comprehensive single-cell lineage tracing database. Nucleic Acids Res 2025; 53:D1173-D1185. [PMID: 39470724 PMCID: PMC11701529 DOI: 10.1093/nar/gkae913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 10/30/2024] Open
Abstract
Single-cell lineage tracing (scLT) is a powerful technique that integrates cellular barcoding with single-cell sequencing technologies. This new approach enables the simultaneous measurement of cell fate and molecular profiles at single-cell resolution, uncovering the gene regulatory program of cell fate determination. However, a comprehensive scLT database is not yet available. Here, we present the single-cell lineage tracing database (scLTdb, https://scltdb.com) containing 109 datasets that are manually curated and analyzed through a standard pipeline. The scLTdb provides interactive analysis modules for visualizing and re-analyzing scLT datasets, especially the comprehensive cell fate analysis and lineage relationship analysis. Importantly, scLTdb also allows users to identify fate-related gene signatures. In conclusion, scLTdb provides an interactive interface of scLT data exploration and analysis, and will facilitate the understanding of cell fate decision and lineage commitment in development and diseases.
Collapse
Affiliation(s)
- Junyao Jiang
- Westlake Laboratory of Life Sciences and Biomedicine, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- School of Life Sciences, Westlake University, No. 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Westlake Institute for Advanced Study, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Xing Ye
- Westlake Laboratory of Life Sciences and Biomedicine, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- School of Life Sciences, Westlake University, No. 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230027, Anhui, China
| | - Yunhui Kong
- Institute of Modern Biology, Nanjing University, No. 163 Xianlin Road, Nanjing 210008, Jiangsu, China
| | - Chenyu Guo
- Westlake Laboratory of Life Sciences and Biomedicine, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- School of Life Sciences, Westlake University, No. 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Westlake Institute for Advanced Study, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- School of Life Sciences, Fudan University, No. 2005 Songhu Road, Shanghai 200438, China
| | - Mingyuan Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- School of Life Sciences, Westlake University, No. 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Westlake Institute for Advanced Study, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Fang Cao
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou 570100, Hainan, China
| | - Yanxiao Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- School of Life Sciences, Westlake University, No. 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Westlake Institute for Advanced Study, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, No. 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
| | - Weike Pei
- Westlake Laboratory of Life Sciences and Biomedicine, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- School of Life Sciences, Westlake University, No. 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
- Westlake Institute for Advanced Study, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, No. 600 Dunyu Road, Hangzhou 310030, Zhejiang, China
| |
Collapse
|
23
|
Shaban D, Najm N, Droin L, Nijnik A. Hematopoietic Stem Cell Fates and the Cellular Hierarchy of Mammalian Hematopoiesis: from Transplantation Models to New Insights from in Situ Analyses. Stem Cell Rev Rep 2025; 21:28-44. [PMID: 39222178 DOI: 10.1007/s12015-024-10782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Hematopoiesis is the process that generates the cells of the blood and immune system from hematopoietic stem and progenitor cells (HSPCs) and represents the system with the most rapid cell turnover in a mammalian organism. HSPC differentiation trajectories, their underlying molecular mechanisms, and their dysfunctions in hematologic disorders are the focal research questions of experimental hematology. While HSPC transplantations in murine models are the traditional tool in this research field, recent advances in genome editing and next generation sequencing resulted in the development of many fundamentally new approaches for the analyses of mammalian hematopoiesis in situ and at single cell resolution. The current review will cover many recent developments in this field in murine models, from the bulk lineage tracing studies of HSPC differentiation to the barcoding of individual HSPCs with Cre-recombinase, Sleeping Beauty transposase, or CRISPR/Cas9 tools, to map hematopoietic cell fates, together with their transcriptional and epigenetic states. We also address studies of the clonal dynamics of human hematopoiesis, from the tracing of HSPC clonal behaviours based on viral integration sites in gene therapy patients to the recent analyses of unperturbed human hematopoiesis based on naturally accrued mutations in either nuclear or mitochondrial genomes. Such studies are revolutionizing our understanding of HSPC biology and hematopoiesis both under homeostatic conditions and in the response to various forms of physiological stress, reveal the mechanisms responsible for the decline of hematopoietic function with age, and in the future may advance the understanding and management of the diverse disorders of hematopoiesis.
Collapse
Affiliation(s)
- Dania Shaban
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Nay Najm
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Lucie Droin
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada.
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada.
| |
Collapse
|
24
|
Zhang X, Huang Y, Yang Y, Wang QE, Li L. Advancements in prospective single-cell lineage barcoding and their applications in research. Genome Res 2024; 34:2147-2162. [PMID: 39572229 PMCID: PMC11694748 DOI: 10.1101/gr.278944.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/03/2024] [Indexed: 12/25/2024]
Abstract
Single-cell lineage tracing (scLT) has emerged as a powerful tool, providing unparalleled resolution to investigate cellular dynamics, fate determination, and the underlying molecular mechanisms. This review thoroughly examines the latest prospective lineage DNA barcode tracing technologies. It further highlights pivotal studies that leverage single-cell lentiviral integration barcoding technology to unravel the dynamic nature of cell lineages in both developmental biology and cancer research. Additionally, the review navigates through critical considerations for successful experimental design in lineage tracing and addresses challenges inherent in this field, including technical limitations, complexities in data analysis, and the imperative for standardization. It also outlines current gaps in knowledge and suggests future research directions, contributing to the ongoing advancement of scLT studies.
Collapse
Affiliation(s)
- Xiaoli Zhang
- College of Nursing, University of South Florida, Tampa, Florida 33620, USA;
| | - Yirui Huang
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yajing Yang
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Qi-En Wang
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
25
|
Siniscalco AM, Perera RP, Greenslade JE, Veeravenkatasubramanian H, Masters A, Doll HM, Raj B. Barcoding Notch signaling in the developing brain. Development 2024; 151:dev203102. [PMID: 39575683 DOI: 10.1242/dev.203102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
Developmental signaling inputs are fundamental for shaping cell fates and behavior. However, traditional fluorescent-based signaling reporters have limitations in scalability and molecular resolution of cell types. We present SABER-seq, a CRISPR-Cas molecular recorder that stores transient developmental signaling cues as permanent mutations in cellular genomes for deconstruction at later stages via single-cell transcriptomics. We applied SABER-seq to record Notch signaling in developing zebrafish brains. SABER-seq has two components: a signaling sensor and a barcode recorder. The sensor activates Cas9 in a Notch-dependent manner with inducible control, while the recorder obtains mutations in ancestral cells where Notch is active. We combine SABER-seq with an expanded juvenile brain atlas to identify cell types derived from Notch-active founders. Our data reveal rare examples where differential Notch activities in ancestral progenitors are detected in terminally differentiated neuronal subtypes. SABER-seq is a novel platform for rapid, scalable and high-resolution mapping of signaling activity during development.
Collapse
Affiliation(s)
- Abigail M Siniscalco
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Roshan Priyarangana Perera
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jessie E Greenslade
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Aiden Masters
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hannah M Doll
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bushra Raj
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Li X, Dong X, Zhang W, Shi Z, Liu Z, Sa Y, Li L, Ni N, Mei Y. Multi-omics in exploring the pathophysiology of diabetic retinopathy. Front Cell Dev Biol 2024; 12:1500474. [PMID: 39723239 PMCID: PMC11668801 DOI: 10.3389/fcell.2024.1500474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Diabetic retinopathy (DR) is a leading global cause of vision impairment, with its prevalence increasing alongside the rising rates of diabetes mellitus (DM). Despite the retina's complex structure, the underlying pathology of DR remains incompletely understood. Single-cell RNA sequencing (scRNA-seq) and recent advancements in multi-omics analyses have revolutionized molecular profiling, enabling high-throughput analysis and comprehensive characterization of complex biological systems. This review highlights the significant contributions of scRNA-seq, in conjunction with other multi-omics technologies, to DR research. Integrated scRNA-seq and transcriptomic analyses have revealed novel insights into DR pathogenesis, including alternative transcription start site events, fluctuations in cell populations, altered gene expression profiles, and critical signaling pathways within retinal cells. Furthermore, by integrating scRNA-seq with genetic association studies and multi-omics analyses, researchers have identified novel biomarkers, susceptibility genes, and potential therapeutic targets for DR, emphasizing the importance of specific retinal cell types in disease progression. The integration of scRNA-seq with metabolomics has also been instrumental in identifying specific metabolites and dysregulated pathways associated with DR. It is highly conceivable that the continued synergy between scRNA-seq and other multi-omics approaches will accelerate the discovery of underlying mechanisms and the development of novel therapeutic interventions for DR.
Collapse
Affiliation(s)
- Xinlu Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - XiaoJing Dong
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Wen Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhizhou Shi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zhongjian Liu
- Institute of Basic and Clinical Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Yalian Sa
- Institute of Basic and Clinical Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Li Li
- Institute of Basic and Clinical Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Ninghua Ni
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yan Mei
- Department of Ophthalmology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Ophthalmology, The First People’s Hospital of Yunnan Province, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
27
|
Liu S, Adams SE, Zheng H, Ehnot J, Jung SK, Jeffrey G, Menna T, Purton L, Lee H, Kurre P. Dynamic tracking of native precursors in adult mice. eLife 2024; 13:RP97504. [PMID: 39636670 PMCID: PMC11620740 DOI: 10.7554/elife.97504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Hematopoietic dysfunction has been associated with a reduction in the number of active precursors. However, precursor quantification at homeostasis and under diseased conditions is constrained by the scarcity of available methods. To address this issue, we optimized a method for quantifying a wide range of hematopoietic precursors. Assuming the random induction of a stable label in precursors following a binomial distribution, estimates depend on the inverse correlation between precursor numbers and the variance of precursor labeling among independent samples. Experimentally validated to cover the full dynamic range of hematopoietic precursors in mice (1-105), we utilized this approach to demonstrate that thousands of precursors, which emerge after modest expansion during fetal-to-adult transition, contribute to native and perturbed hematopoiesis. We further estimated the number of precursors in a mouse model of Fanconi Anemia, showcasing how repopulation deficits can be classified as autologous (cell proliferation) and non-autologous (lack of precursor). Our results support an accessible and reliable approach for precursor quantification, emphasizing the contemporary perspective that native hematopoiesis is highly polyclonal.
Collapse
Affiliation(s)
- Suying Liu
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Sarah E Adams
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Haotian Zheng
- Department of Biostatistics, Epidemiology and Informatics, University of PennsylvaniaPhiladelphiaUnited States
| | - Juliana Ehnot
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Seul K Jung
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Greer Jeffrey
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Theresa Menna
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Louise Purton
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical ResearchFitzroyAustralia
- Department of Medicine, The University of MelbourneParkvilleAustralia
| | - Hongzhe Lee
- Department of Biostatistics, Epidemiology and Informatics, University of PennsylvaniaPhiladelphiaUnited States
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
28
|
Chen X, Yuan Y, Zhou F, Li L, Pu J, Jiang X. RNA modification in normal hematopoiesis and hematologic malignancies. MedComm (Beijing) 2024; 5:e787. [PMID: 39445003 PMCID: PMC11496571 DOI: 10.1002/mco2.787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotic cells. Previous studies have shown that m6A plays a critical role under both normal physiological and pathological conditions. Hematopoiesis and differentiation are highly regulated processes, and recent studies on m6A mRNA methylation have revealed how this modification controls cell fate in both normal and malignant hematopoietic states. However, despite these insights, a comprehensive understanding of its complex roles between normal hematopoietic development and malignant hematopoietic diseases remains elusive. This review first provides an overview of the components and biological functions of m6A modification regulators. Additionally, it highlights the origin, differentiation process, biological characteristics, and regulatory mechanisms of hematopoietic stem cells, as well as the features, immune properties, and self-renewal pathways of leukemia stem cells. Last, the article systematically reviews the latest research advancements on the roles and mechanisms of m6A regulatory factors in normal hematopoiesis and related malignant diseases. More importantly, this review explores how targeting m6A regulators and various signaling pathways could effectively intervene in the development of leukemia, providing new insights and potential therapeutic targets. Targeting m6A modification may hold promise for achieving more precise and effective leukemia treatments.
Collapse
Affiliation(s)
- Xi Chen
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Yixiao Yuan
- Department of MedicineUF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
- Department of Medicine and Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Fan Zhou
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Jun Pu
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Xiulin Jiang
- Department of MedicineUF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
- Department of Medicine and Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
29
|
Jones MG, Sun D, Min KH(J, Colgan WN, Tian L, Weir JA, Chen VZ, Koblan LW, Yost KE, Mathey-Andrews N, Russell AJ, Stickels RR, Balderrama KS, Rideout WM, Chang HY, Jacks T, Chen F, Weissman JS, Yosef N, Yang D. Spatiotemporal lineage tracing reveals the dynamic spatial architecture of tumor growth and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619529. [PMID: 39484491 PMCID: PMC11526908 DOI: 10.1101/2024.10.21.619529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Tumor progression is driven by dynamic interactions between cancer cells and their surrounding microenvironment. Investigating the spatiotemporal evolution of tumors can provide crucial insights into how intrinsic changes within cancer cells and extrinsic alterations in the microenvironment cooperate to drive different stages of tumor progression. Here, we integrate high-resolution spatial transcriptomics and evolving lineage tracing technologies to elucidate how tumor expansion, plasticity, and metastasis co-evolve with microenvironmental remodeling in a Kras;p53-driven mouse model of lung adenocarcinoma. We find that rapid tumor expansion contributes to a hypoxic, immunosuppressive, and fibrotic microenvironment that is associated with the emergence of pro-metastatic cancer cell states. Furthermore, metastases arise from spatially-confined subclones of primary tumors and remodel the distant metastatic niche into a fibrotic, collagen-rich microenvironment. Together, we present a comprehensive dataset integrating spatial assays and lineage tracing to elucidate how sequential changes in cancer cell state and microenvironmental structures cooperate to promote tumor progression.
Collapse
Affiliation(s)
- Matthew G. Jones
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- These authors contributed equally
| | - Dawei Sun
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- These authors contributed equally
| | - Kyung Hoi (Joseph) Min
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William N. Colgan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luyi Tian
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jackson A. Weir
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Biological and Biomedical Sciences Program, Harvard University, Cambridge, MA, USA
| | - Victor Z. Chen
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York City, NY, USA
- Department of Systems Biology, Columbia University, New York City, NY, USA
| | - Luke W. Koblan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kathryn E. Yost
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolas Mathey-Andrews
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Andrew J.C. Russell
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | | | | | - William M. Rideout
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Tyler Jacks
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fei Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jonathan S. Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nir Yosef
- Department of Systems Immunology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Dian Yang
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York City, NY, USA
- Department of Systems Biology, Columbia University, New York City, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, USA
- Lead Contact
| |
Collapse
|
30
|
Lange M, Piran Z, Klein M, Spanjaard B, Klein D, Junker JP, Theis FJ, Nitzan M. Mapping lineage-traced cells across time points with moslin. Genome Biol 2024; 25:277. [PMID: 39434128 PMCID: PMC11492637 DOI: 10.1186/s13059-024-03422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
Simultaneous profiling of single-cell gene expression and lineage history holds enormous potential for studying cellular decision-making. Recent computational approaches combine both modalities into cellular trajectories; however, they cannot make use of all available lineage information in destructive time-series experiments. Here, we present moslin, a Gromov-Wasserstein-based model to couple cellular profiles across time points based on lineage and gene expression information. We validate our approach in simulations and demonstrate on Caenorhabditis elegans embryonic development how moslin predicts fate probabilities and putative decision driver genes. Finally, we use moslin to delineate lineage relationships among transiently activated fibroblast states during zebrafish heart regeneration.
Collapse
Affiliation(s)
- Marius Lange
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Department of Mathematics, Technical University of Munich, Munich, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Zoe Piran
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Bastiaan Spanjaard
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Paediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik Klein
- Department of Mathematics, Technical University of Munich, Munich, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Jan Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Fabian J Theis
- Department of Mathematics, Technical University of Munich, Munich, Germany.
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
| | - Mor Nitzan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
31
|
Carlson CK, Loveless TB, Milisavljevic M, Kelly PI, Mills JH, Tyo KEJ, Liu CC. A Massively Parallel In Vivo Assay of TdT Mutants Yields Variants with Altered Nucleotide Insertion Biases. ACS Synth Biol 2024; 13:3326-3343. [PMID: 39302688 PMCID: PMC11747941 DOI: 10.1021/acssynbio.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Terminal deoxynucleotidyl transferase (TdT) is a unique DNA polymerase capable of template-independent extension of DNA. TdT's de novo DNA synthesis ability has found utility in DNA recording, DNA data storage, oligonucleotide synthesis, and nucleic acid labeling, but TdT's intrinsic nucleotide biases limit its versatility in such applications. Here, we describe a multiplexed assay for profiling and engineering the bias and overall activity of TdT variants with high throughput. In our assay, a library of TdTs is encoded next to a CRISPR-Cas9 target site in HEK293T cells. Upon transfection of Cas9 and sgRNA, the target site is cut, allowing TdT to intercept the double-strand break and add nucleotides. Each resulting insertion is sequenced alongside the identity of the TdT variant that generated it. Using this assay, 25,623 unique TdT variants, constructed by site-saturation mutagenesis at strategic positions, were profiled. This resulted in the isolation of several altered-bias TdTs that expanded the capabilities of our TdT-based DNA recording system, Cell HistorY Recording by Ordered InsertioN (CHYRON), by increasing the information density of recording through an unbiased TdT and achieving dual-channel recording of two distinct inducers (hypoxia and Wnt) through two differently biased TdTs. Select TdT variants were also tested in vitro, revealing concordance between each variant's in vitro bias and the in vivo bias determined from the multiplexed high throughput assay. Overall, our work and the multiplex assay it features should support the continued development of TdT-based DNA recorders, in vitro applications of TdT, and further study of the biology of TdT.
Collapse
Affiliation(s)
- Courtney K. Carlson
- Department of Biomedical Engineering, University of California, Irvine, CA 92697
- Center for Synthetic Biology, University of California, Irvine, CA 92697
| | - Theresa B. Loveless
- Department of Biomedical Engineering, University of California, Irvine, CA 92697
- Center for Synthetic Biology, University of California, Irvine, CA 92697
- Department of BioSciences, Rice University, Houston, TX 77005
| | - Marija Milisavljevic
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Patrick I. Kelly
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 82587
- School of Molecular Sciences, Arizona State University, Tempe, AZ 82587
| | - Jeremy H. Mills
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 82587
- School of Molecular Sciences, Arizona State University, Tempe, AZ 82587
| | - Keith E. J. Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Chang C. Liu
- Department of Biomedical Engineering, University of California, Irvine, CA 92697
- Center for Synthetic Biology, University of California, Irvine, CA 92697
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697
- Department of Chemistry, University of California, Irvine, CA 92697
| |
Collapse
|
32
|
Du C, Liu C, Yu K, Zhang S, Fu Z, Chen X, Liao W, Chen J, Zhang Y, Wang X, Chen M, Chen F, Shen M, Wang C, Chen S, Wang S, Wang J. Mitochondrial serine catabolism safeguards maintenance of the hematopoietic stem cell pool in homeostasis and injury. Cell Stem Cell 2024; 31:1484-1500.e9. [PMID: 39181130 DOI: 10.1016/j.stem.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/14/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Hematopoietic stem cells (HSCs) employ a very unique metabolic pattern to maintain themselves, while the spectrum of their metabolic adaptations remains incompletely understood. Here, we uncover a distinct and heterogeneous serine metabolism within HSCs and identify mouse HSCs as a serine auxotroph whose maintenance relies on exogenous serine and the ensuing mitochondrial serine catabolism driven by the hydroxymethyltransferase 2 (SHMT2)-methylene-tetrahydrofolate dehydrogenase 2 (MTHFD2) axis. Mitochondrial serine catabolism primarily feeds NAD(P)H generation to maintain redox balance and thereby diminishes ferroptosis susceptibility of HSCs. Dietary serine deficiency, or genetic or pharmacological inhibition of the SHMT2-MTHFD2 axis, increases ferroptosis susceptibility of HSCs, leading to impaired maintenance of the HSC pool. Moreover, exogenous serine protects HSCs from irradiation-induced myelosuppressive injury by fueling mitochondrial serine catabolism to mitigate ferroptosis. These findings reframe the canonical view of serine from a nonessential amino acid to an essential niche metabolite for HSC pool maintenance.
Collapse
Affiliation(s)
- Changhong Du
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Chaonan Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; Frontier Medical Training Brigade, Army Medical University (Third Military Medical University), Xinjiang 831200, China
| | - Kuan Yu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shuzhen Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zeyu Fu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xinliang Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Weinian Liao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jun Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yimin Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xinmiao Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; Department of Hematology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610008, China
| | - Mo Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fang Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mingqiang Shen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Cheng Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shilei Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Song Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
33
|
Jin X, Zhang R, Fu Y, Zhu Q, Hong L, Wu A, Wang H. Unveiling aging dynamics in the hematopoietic system insights from single-cell technologies. Brief Funct Genomics 2024; 23:639-650. [PMID: 38688725 DOI: 10.1093/bfgp/elae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
As the demographic structure shifts towards an aging society, strategies aimed at slowing down or reversing the aging process become increasingly essential. Aging is a major predisposing factor for many chronic diseases in humans. The hematopoietic system, comprising blood cells and their associated bone marrow microenvironment, intricately participates in hematopoiesis, coagulation, immune regulation and other physiological phenomena. The aging process triggers various alterations within the hematopoietic system, serving as a spectrum of risk factors for hematopoietic disorders, including clonal hematopoiesis, immune senescence, myeloproliferative neoplasms and leukemia. The emerging single-cell technologies provide novel insights into age-related changes in the hematopoietic system. In this review, we summarize recent studies dissecting hematopoietic system aging using single-cell technologies. We discuss cellular changes occurring during aging in the hematopoietic system at the levels of the genomics, transcriptomics, epigenomics, proteomics, metabolomics and spatial multi-omics. Finally, we contemplate the future prospects of single-cell technologies, emphasizing the impact they may bring to the field of hematopoietic system aging research.
Collapse
Affiliation(s)
- Xinrong Jin
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruohan Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Yunqi Fu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiunan Zhu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Liquan Hong
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Aiwei Wu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Hu Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
34
|
Wu X, Yang X, Dai Y, Zhao Z, Zhu J, Guo H, Yang R. Single-cell sequencing to multi-omics: technologies and applications. Biomark Res 2024; 12:110. [PMID: 39334490 PMCID: PMC11438019 DOI: 10.1186/s40364-024-00643-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
Cells, as the fundamental units of life, contain multidimensional spatiotemporal information. Single-cell RNA sequencing (scRNA-seq) is revolutionizing biomedical science by analyzing cellular state and intercellular heterogeneity. Undoubtedly, single-cell transcriptomics has emerged as one of the most vibrant research fields today. With the optimization and innovation of single-cell sequencing technologies, the intricate multidimensional details concealed within cells are gradually unveiled. The combination of scRNA-seq and other multi-omics is at the forefront of the single-cell field. This involves simultaneously measuring various omics data within individual cells, expanding our understanding across a broader spectrum of dimensions. Single-cell multi-omics precisely captures the multidimensional aspects of single-cell transcriptomes, immune repertoire, spatial information, temporal information, epitopes, and other omics in diverse spatiotemporal contexts. In addition to depicting the cell atlas of normal or diseased tissues, it also provides a cornerstone for studying cell differentiation and development patterns, disease heterogeneity, drug resistance mechanisms, and treatment strategies. Herein, we review traditional single-cell sequencing technologies and outline the latest advancements in single-cell multi-omics. We summarize the current status and challenges of applying single-cell multi-omics technologies to biological research and clinical applications. Finally, we discuss the limitations and challenges of single-cell multi-omics and potential strategies to address them.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xin Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yunhan Dai
- Medical School, Nanjing University, Nanjing, China
| | - Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Junmeng Zhu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
35
|
Sashittal P, Zhang RY, Law BK, Strzalkowski A, Schmidt H, Bolondi A, Chan MM, Raphael BJ. Inferring cell differentiation maps from lineage tracing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611835. [PMID: 39314473 PMCID: PMC11419031 DOI: 10.1101/2024.09.09.611835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
During development, mulitpotent cells differentiate through a hierarchy of increasingly restricted progenitor cell types until they realize specialized cell types. A cell differentiation map describes this hierarchy, and inferring these maps is an active area of research spanning traditional single marker lineage studies to data-driven trajectory inference methods on single-cell RNA-seq data. Recent high-throughput lineage tracing technologies profile lineages and cell types at scale, but current methods to infer cell differentiation maps from these data rely on simple models with restrictive assumptions about the developmental process. We introduce a mathematical framework for cell differentiation maps based on the concept of potency, and develop an algorithm, Carta, that infers an optimal cell differentiation map from single-cell lineage tracing data. The key insight in Carta is to balance the trade-off between the complexity of the cell differentiation map and the number of unobserved cell type transitions on the lineage tree. We show that Carta more accurately infers cell differentiation maps on both simulated and real data compared to existing methods. In models of mammalian trunk development and mouse hematopoiesis, Carta identifies important features of development that are not revealed by other methods including convergent differentiation of specialized cell types, progenitor differentiation dynamics, and the refinement of routes of differentiation via new intermediate progenitors.
Collapse
Affiliation(s)
- Palash Sashittal
- Dept. of Computer Science, Princeton University, Princeton; 08544 NJ, USA
| | - Richard Y. Zhang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton; 08544 NJ, USA
| | - Benjamin K. Law
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton; 08544 NJ, USA
- Dept. of Molecular Biology, Princeton University, Princeton; 08544 NJ, USA
| | | | - Henri Schmidt
- Dept. of Computer Science, Princeton University, Princeton; 08544 NJ, USA
| | - Adriano Bolondi
- Dept. of Genome Regulation, Max Planck Institute for Molecular Genetics; 14195 Berlin, Germany
| | - Michelle M. Chan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton; 08544 NJ, USA
- Dept. of Molecular Biology, Princeton University, Princeton; 08544 NJ, USA
| | | |
Collapse
|
36
|
Liu S, Adams SE, Zheng H, Ehnot J, Jung SK, Jeffrey G, Menna T, Purton LE, Lee H, Kurre P. Dynamic Tracking of Native Precursors in Adult Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587737. [PMID: 38617223 PMCID: PMC11014561 DOI: 10.1101/2024.04.02.587737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Hematopoietic dysfunction has been associated with a reduction in the number of active precursors. However, precursor quantification at homeostasis and under diseased conditions is constrained by the scarcity of available methods. To address this issue, we optimized a method for quantifying a wide range of hematopoietic precursors. Assuming the random induction of a stable label in precursors following a binomial distribution, estimates depend on the inverse correlation between precursor numbers and the variance of precursor labeling among independent samples. Experimentally validated to cover the full dynamic range of hematopoietic precursors in mice (1 to 105), we utilized this approach to demonstrate that thousands of precursors, which emerge after modest expansion during fetal-to-adult transition, contribute to native and perturbed hematopoiesis. We further estimated the number of precursors in a mouse model of Fanconi Anemia, showcasing how repopulation deficits can be classified as autologous (cell proliferation) and non-autologous (lack of precursor). Our results support an accessible and reliable approach for precursor quantification, emphasizing the contemporary perspective that native hematopoiesis is highly polyclonal.
Collapse
Affiliation(s)
- Suying Liu
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah E. Adams
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Haotian Zheng
- Department of Biostatistics, Epidemiology and informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juliana Ehnot
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seul K. Jung
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greer Jeffrey
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Theresa Menna
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Louise E. Purton
- Stem Cell Regulation Unit, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Hongzhe Lee
- Department of Biostatistics, Epidemiology and informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
37
|
Safina K, van Galen P. New frameworks for hematopoiesis derived from single-cell genomics. Blood 2024; 144:1039-1047. [PMID: 38985829 PMCID: PMC11561540 DOI: 10.1182/blood.2024024006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/12/2024] Open
Abstract
ABSTRACT Recent advancements in single-cell genomics have enriched our understanding of hematopoiesis, providing intricate details about hematopoietic stem cell biology, differentiation, and lineage commitment. Technological advancements have highlighted extensive heterogeneity of cell populations and continuity of differentiation routes. Nevertheless, intermediate "attractor" states signify structure in stem and progenitor populations that link state transition dynamics to fate potential. We discuss how innovative model systems quantify lineage bias and how stress accelerates differentiation, thereby reducing fate plasticity compared with native hematopoiesis. We conclude by offering our perspective on the current model of hematopoiesis and discuss how a more precise understanding can translate to strategies that extend healthy hematopoiesis and prevent disease.
Collapse
Affiliation(s)
- Ksenia Safina
- Division of Hematology, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Ludwig Center at Harvard, Boston, MA
| | - Peter van Galen
- Division of Hematology, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Ludwig Center at Harvard, Boston, MA
| |
Collapse
|
38
|
Trapnell C. Revealing gene function with statistical inference at single-cell resolution. Nat Rev Genet 2024; 25:623-638. [PMID: 38951690 DOI: 10.1038/s41576-024-00750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 07/03/2024]
Abstract
Single-cell and spatial molecular profiling assays have shown large gains in sensitivity, resolution and throughput. Applying these technologies to specimens from human and model organisms promises to comprehensively catalogue cell types, reveal their lineage origins in development and discern their contributions to disease pathogenesis. Moreover, rapidly dropping costs have made well-controlled perturbation experiments and cohort studies widely accessible, illuminating mechanisms that give rise to phenotypes at the scale of the cell, the tissue and the whole organism. Interpreting the coming flood of single-cell data, much of which will be spatially resolved, will place a tremendous burden on existing computational pipelines. However, statistical concepts, models, tools and algorithms can be repurposed to solve problems now arising in genetic and molecular biology studies of development and disease. Here, I review how the questions that recent technological innovations promise to answer can be addressed by the major classes of statistical tools.
Collapse
Affiliation(s)
- Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
| |
Collapse
|
39
|
Liu Z, Zeng H, Xiang H, Deng S, He X. Achieving single-cell-resolution lineage tracing in zebrafish by continuous barcoding mutations during embryogenesis. J Genet Genomics 2024; 51:947-956. [PMID: 38621643 DOI: 10.1016/j.jgg.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/17/2024]
Abstract
Unraveling the lineage relationships of all descendants from a zygote is fundamental to advancing our understanding of developmental and stem cell biology. However, existing cell barcoding technologies in zebrafish lack the resolution to capture the majority of cell divisions during embryogenesis. A recently developed method, a substitution mutation-aided lineage-tracing system (SMALT), successfully reconstructed high-resolution cell phylogenetic trees for Drosophila melanogaster. Here, we implement the SMALT system in zebrafish, recording a median of 14 substitution mutations on a one-kilobase-pair barcoding sequence for one-day post-fertilization embryos. Leveraging this system, we reconstruct four cell lineage trees for zebrafish fin cells, encompassing both original and regenerated fin. Each tree consists of hundreds of internal nodes with a median bootstrap support of 99%. Analysis of the obtained cell lineage trees reveals that regenerated fin cells mainly originate from cells in the same part of the fins. Through multiple times sampling germ cells from the same individual, we show the stability of the germ cell pool and the early separation of germ cell and somatic cell progenitors. Our system offers the potential for reconstructing high-quality cell phylogenies across diverse tissues, providing valuable insights into development and disease in zebrafish.
Collapse
Affiliation(s)
- Zhan Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Hui Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Huimin Xiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Shanjun Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Xionglei He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
40
|
Liu F, Zhang X, Yang Y. Simulation of CRISPR-Cas9 editing on evolving barcode and accuracy of lineage tracing. Sci Rep 2024; 14:19213. [PMID: 39160220 PMCID: PMC11333585 DOI: 10.1038/s41598-024-70154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
We designed a simulation program that mimics the CRISPR-Cas9 editing on evolving barcode and double strand break repair procedure along with cell divisions. Emerging barcode mutations tend to build upon previously existing mutations, occurring sequentially with each generation. This process results in a unique mutation profile in each cell. We sample the barcodes in leaf cells and reconstruct the lineage, comparing it to the original lineage tree to test algorithm accuracy under different parameter settings. Our computational simulations validate the reasonable assumptions deduced from experimental observations, emphasizing that factors such as sampling size, barcode length, multiple barcodes, indel probabilities, and Cas9 activity are critical for accurate and successful lineage tracing. Among the many factors we found that sampling size and indel probabilities are two major ones that affect lineage tracing accuracy. Large segment deletions in early generations could greatly impact lineage accuracy. These simulation results offer insightful recommendations for enhancing the design and analysis of Cas9-mediated molecular barcodes in actual experiments.
Collapse
Affiliation(s)
- Fengshuo Liu
- Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Xiang Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yipeng Yang
- Department of Mathematics and Statistics, University of Houston - Clear Lake, 2700 Bay Area Blvd, Houston, TX, 77058, USA.
| |
Collapse
|
41
|
Fujisaki K, Okazaki S, Ogawa S, Takeda M, Sugihara E, Imai K, Mizuno S, Takahashi S, Goitsuka R. B Cells of Early-life Origin Defined by RAG2-based Lymphoid Cell Tracking under Native Hematopoietic Conditions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:296-305. [PMID: 38874543 DOI: 10.4049/jimmunol.2400072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
During the perinatal period, the immune system sets the threshold to select either response or tolerance to environmental Ags, which leads to the potential to provide a lifetime of protection and health. B-1a B cells have been demonstrated to develop during this perinatal time window, showing a unique and restricted BCR repertoire, and these cells play a major role in natural Ab secretion and immune regulation. In the current study, we developed a highly efficient temporally controllable RAG2-based lymphoid lineage cell labeling and tracking system and applied this system to understand the biological properties and contribution of B-1a cells generated at distinct developmental periods to the adult B-1a compartments. This approach revealed that B-1a cells with a history of RAG2 expression during the embryonic and neonatal periods dominate the adult B-1a compartment, including those in the bone marrow (BM), peritoneal cavity, and spleen. Moreover, the BCR repertoire of B-1a cells with a history of RAG2 expression during the embryonic period was restricted, becoming gradually more diverse during the neonatal period, and then heterogeneous at the adult stage. Furthermore, more than half of plasmablasts/plasma cells in the adult BM had embryonic and neonatal RAG2 expression histories. Moreover, BCR analysis revealed a high relatedness between BM plasmablasts/plasma cells and B-1a cells derived from embryonic and neonatal periods, suggesting that these cell types have a common origin. Taken together, these findings define, under native hematopoietic conditions, the importance in adulthood of B-1a cells generated during the perinatal period.
Collapse
Affiliation(s)
- Keiko Fujisaki
- Division of Cell Fate Regulation, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shogo Okazaki
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan
| | - Shuhei Ogawa
- Division of Integrated Research, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Miyama Takeda
- Division of Cell Fate Regulation, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Eiji Sugihara
- Open Facility Center and Cancer Center, Fujita Health University, Aichi, Japan
| | - Kenichi Imai
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ryo Goitsuka
- Division of Cell Fate Regulation, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
42
|
Garyn CM, Bover O, Murray JW, Ma J, Salas-Briceno K, Ross SR, Snoeck HW. G2 arrest primes hematopoietic stem cells for megakaryopoiesis. Cell Rep 2024; 43:114388. [PMID: 38935497 PMCID: PMC11330628 DOI: 10.1016/j.celrep.2024.114388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
In contrast to most hematopoietic lineages, megakaryocytes (MKs) can derive rapidly and directly from hematopoietic stem cells (HSCs). The underlying mechanism is unclear, however. Here, we show that DNA damage induces MK markers in HSCs and that G2 arrest, an integral part of the DNA damage response, suffices for MK priming followed by irreversible MK differentiation in HSCs, but not in progenitors. We also show that replication stress causes DNA damage in HSCs and is at least in part due to uracil misincorporation in vitro and in vivo. Consistent with this notion, thymidine attenuated DNA damage, improved HSC maintenance, and reduced the generation of CD41+ MK-committed HSCs. Replication stress and concomitant MK differentiation is therefore one of the barriers to HSC maintenance. DNA damage-induced MK priming may allow rapid generation of a lineage essential to immediate organismal survival, while also removing damaged cells from the HSC pool.
Collapse
Affiliation(s)
- Corey M Garyn
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Oriol Bover
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - John W Murray
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jing Ma
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Karen Salas-Briceno
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Susan R Ross
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Hans-Willem Snoeck
- Columbia Center for Human Development/Center for Stem Cell Therapies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
43
|
Viragova S, Li D, Klein OD. Activation of fetal-like molecular programs during regeneration in the intestine and beyond. Cell Stem Cell 2024; 31:949-960. [PMID: 38971147 PMCID: PMC11235077 DOI: 10.1016/j.stem.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 07/08/2024]
Abstract
Tissue regeneration after damage is generally thought to involve the mobilization of adult stem cells that divide and differentiate into progressively specialized progeny. However, recent studies indicate that tissue regeneration can be accompanied by reversion to a fetal-like state. During this process, cells at the injury site reactivate programs that operate during fetal development but are typically absent in adult homeostasis. Here, we summarize our current understanding of the molecular signals and epigenetic mediators that orchestrate "fetal-like reversion" during intestinal regeneration. We also explore evidence for this phenomenon in other organs and species and highlight open questions that merit future examination.
Collapse
Affiliation(s)
- Sara Viragova
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Dong Li
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA.
| |
Collapse
|
44
|
Nitsch L, Lareau CA, Ludwig LS. Mitochondrial genetics through the lens of single-cell multi-omics. Nat Genet 2024; 56:1355-1365. [PMID: 38951641 PMCID: PMC11260401 DOI: 10.1038/s41588-024-01794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/09/2024] [Indexed: 07/03/2024]
Abstract
Mitochondria carry their own genetic information encoding for a subset of protein-coding genes and translational machinery essential for cellular respiration and metabolism. Despite its small size, the mitochondrial genome, its natural genetic variation and molecular phenotypes have been challenging to study using bulk sequencing approaches, due to its variation in cellular copy number, non-Mendelian modes of inheritance and propensity for mutations. Here we highlight emerging strategies designed to capture mitochondrial genetic variation across individual cells for lineage tracing and studying mitochondrial genetics in primary human cells and clinical specimens. We review recent advances surrounding single-cell mitochondrial genome sequencing and its integration with functional genomic readouts, including leveraging somatic mitochondrial DNA mutations as clonal markers that can resolve cellular population dynamics in complex human tissues. Finally, we discuss how single-cell whole mitochondrial genome sequencing approaches can be utilized to investigate mitochondrial genetics and its contribution to cellular heterogeneity and disease.
Collapse
Affiliation(s)
- Lena Nitsch
- Berlin Institute of Health at Charité Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Caleb A Lareau
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Leif S Ludwig
- Berlin Institute of Health at Charité Universitätsmedizin Berlin, Berlin, Germany.
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany.
| |
Collapse
|
45
|
Liao X, Scheidereit E, Kuppe C. New tools to study renal fibrogenesis. Curr Opin Nephrol Hypertens 2024; 33:420-426. [PMID: 38587103 PMCID: PMC11139246 DOI: 10.1097/mnh.0000000000000988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
PURPOSE OF REVIEW Kidney fibrosis is a key pathological aspect and outcome of chronic kidney disease (CKD). The advent of multiomic analyses using human kidney tissue, enabled by technological advances, marks a new chapter of discovery in fibrosis research of the kidney. This review highlights the rapid advancements of single-cell and spatial multiomic techniques that offer new avenues for exploring research questions related to human kidney fibrosis development. RECENT FINDINGS We recently focused on understanding the origin and transition of myofibroblasts in kidney fibrosis using single-cell RNA sequencing (scRNA-seq) [1] . We analysed cells from healthy human kidneys and compared them to patient samples with CKD. We identified PDGFRα+/PDGFRβ+ mesenchymal cells as the primary cellular source of extracellular matrix (ECM) in human kidney fibrosis. We found several commonly shared cell states of fibroblasts and myofibroblasts and provided insights into molecular regulators. Novel single-cell and spatial multiomics tools are now available to shed light on cell lineages, the plasticity of kidney cells and cell-cell communication in fibrosis. SUMMARY As further single-cell and spatial multiomic approaches are being developed, opportunities to apply these methods to human kidney tissues expand similarly. Careful design and optimisation of the multiomic experiments are needed to answer questions related to cell lineages, plasticity and cell-cell communication in kidney fibrosis.
Collapse
Affiliation(s)
- Xian Liao
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | | | | |
Collapse
|
46
|
Carlson CK, Loveless TB, Milisavljevic M, Kelly PI, Mills JH, Tyo KEJ, Liu CC. A massively parallel in vivo assay of TdT mutants yields variants with altered nucleotide insertion biases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598561. [PMID: 38915690 PMCID: PMC11195295 DOI: 10.1101/2024.06.11.598561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Terminal deoxynucleotidyl transferase (TdT) is a unique DNA polymerase capable of template-independent extension of DNA with random nucleotides. TdT's de novo DNA synthesis ability has found utility in DNA recording, DNA data storage, oligonucleotide synthesis, and nucleic acid labeling, but TdT's intrinsic nucleotide biases limit its versatility in such applications. Here, we describe a multiplexed assay for profiling and engineering the bias and overall activity of TdT variants in high throughput. In our assay, a library of TdTs is encoded next to a CRISPR-Cas9 target site in HEK293T cells. Upon transfection of Cas9 and sgRNA, the target site is cut, allowing TdT to intercept the double strand break and add nucleotides. Each resulting insertion is sequenced alongside the identity of the TdT variant that generated it. Using this assay, 25,623 unique TdT variants, constructed by site-saturation mutagenesis at strategic positions, were profiled. This resulted in the isolation of several altered-bias TdTs that expanded the capabilities of our TdT-based DNA recording system, Cell History Recording by Ordered Insertion (CHYRON), by increasing the information density of recording through an unbiased TdT and achieving dual-channel recording of two distinct inducers (hypoxia and Wnt) through two differently biased TdTs. Select TdT variants were also tested in vitro , revealing concordance between each variant's in vitro bias and the in vivo bias determined from the multiplexed high throughput assay. Overall, our work, and the multiplex assay it features, should support the continued development of TdT-based DNA recorders, in vitro applications of TdT, and further study of the biology of TdT.
Collapse
|
47
|
McGinnis CS, Miao Z, Superville D, Yao W, Goga A, Reticker-Flynn NE, Winkler J, Satpathy AT. The temporal progression of lung immune remodeling during breast cancer metastasis. Cancer Cell 2024; 42:1018-1031.e6. [PMID: 38821060 PMCID: PMC11255555 DOI: 10.1016/j.ccell.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 03/23/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Tumor metastasis requires systemic remodeling of distant organ microenvironments that impacts immune cell phenotypes, population structure, and intercellular communication. However, our understanding of immune phenotypic dynamics in the metastatic niche remains incomplete. Here, we longitudinally assayed lung immune transcriptional profiles in the polyomavirus middle T antigen (PyMT) and 4T1 metastatic breast cancer models from primary tumorigenesis, through pre-metastatic niche formation, to the final stages of metastatic outgrowth at single-cell resolution. Computational analyses of these data revealed a TLR-NFκB inflammatory program enacted by both peripherally derived and tissue-resident myeloid cells that correlated with pre-metastatic niche formation and mirrored CD14+ "activated" myeloid cells in the primary tumor. Moreover, we observed that primary tumor and metastatic niche natural killer (NK) cells are differentially regulated in mice and human patient samples, with the metastatic niche featuring elevated cytotoxic NK cell proportions. Finally, we identified cell-type-specific dynamic regulation of IGF1 and CCL6 signaling during metastatic progression that represents anti-metastatic immunotherapy candidate pathways.
Collapse
Affiliation(s)
- Christopher S McGinnis
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Zhuang Miao
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Daphne Superville
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94158, USA; Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA; Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | - Winnie Yao
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Andrei Goga
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94158, USA; Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA; Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | | | - Juliane Winkler
- Center for Cancer Research, Medical University of Vienna, Vienna 1090, Austria.
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA.
| |
Collapse
|
48
|
Robertson AL, Yue L, Choudhuri A, Kubaczka C, Wattrus SJ, Mandelbaum J, Avagyan S, Yang S, Freeman RJ, Chan V, Blair MC, Daley GQ, Zon LI. Hematopoietic stem cell division is governed by distinct RUNX1 binding partners. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.596542. [PMID: 38895208 PMCID: PMC11185638 DOI: 10.1101/2024.06.07.596542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A defined number of hematopoietic stem cell (HSC) clones are born during development and expand to form the pool of adult stem cells. An intricate balance between self-renewal and differentiation of these HSCs supports hematopoiesis for life. HSC fate is determined by complex transcription factor networks that drive cell-type specific gene programs. The transcription factor RUNX1 is required for definitive hematopoiesis, and mutations in Runx1 have been shown to reduce clonal diversity. The RUNX1 cofactor, CBFý, stabilizes RUNX1 binding to DNA, and disruption of their interaction alters downstream gene expression. Chemical screening for modulators of Runx1 and HSC expansion in zebrafish led us to identify a new mechanism for the RUNX1 inhibitor, Ro5-3335. We found that Ro5-3335 increased HSC divisions in zebrafish, and animals transplanted with Ro5-3335 treated cells had enhanced chimerism compared to untreated cells. Using human CD34+ cells, we show that Ro5-3335 remodels the RUNX1 transcription complex by binding to ELF1, independent of CBFý. This allows specific expression of cell cycle and hematopoietic genes that enhance HSC self-renewal and prevent differentiation. Furthermore, we provide the first evidence to show that it is possible to pharmacologically increase the number of stem cell clones in vivo , revealing a previously unknown mechanism for enhancing clonal diversity. Our studies have revealed a mechanism by which binding partners of RUNX1 determine cell fate, with ELF transcription factors guiding cell division. This information could lead to treatments that enhance clonal diversity for blood diseases.
Collapse
|
49
|
Miller CN, Waterfield MR, Gardner JM, Anderson MS. Aire in Autoimmunity. Annu Rev Immunol 2024; 42:427-53. [PMID: 38360547 PMCID: PMC11774315 DOI: 10.1146/annurev-immunol-090222-101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The role of the autoimmune regulator (Aire) in central immune tolerance and thymic self-representation was first described more than 20 years ago, but fascinating new insights into its biology continue to emerge, particularly in the era of advanced single-cell genomics. We briefly describe the role of human genetics in the discovery of Aire, as well as insights into its function gained from genotype-phenotype correlations and the spectrum of Aire-associated autoimmunity-including insights from patients with Aire mutations with broad and diverse implications for human health. We then highlight emerging trends in Aire biology, focusing on three topic areas. First, we discuss medullary thymic epithelial diversity and the role of Aire in thymic epithelial development. Second, we highlight recent developments regarding the molecular mechanisms of Aire and its binding partners. Finally, we describe the rapidly evolving biology of the identity and function of extrathymic Aire-expressing cells (eTACs), and a novel eTAC subset called Janus cells, as well as their potential roles in immune homeostasis.
Collapse
Affiliation(s)
- Corey N Miller
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Medicine, University of California, San Francisco, California, USA
| | - Michael R Waterfield
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - James M Gardner
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Surgery, University of California, San Francisco, California, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
50
|
Lin P, Gan YB, He J, Lin SE, Xu JK, Chang L, Zhao LM, Zhu J, Zhang L, Huang S, Hu O, Wang YB, Jin HJ, Li YY, Yan PL, Chen L, Jiang JX, Liu P. Advancing skeletal health and disease research with single-cell RNA sequencing. Mil Med Res 2024; 11:33. [PMID: 38816888 PMCID: PMC11138034 DOI: 10.1186/s40779-024-00538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Orthopedic conditions have emerged as global health concerns, impacting approximately 1.7 billion individuals worldwide. However, the limited understanding of the underlying pathological processes at the cellular and molecular level has hindered the development of comprehensive treatment options for these disorders. The advent of single-cell RNA sequencing (scRNA-seq) technology has revolutionized biomedical research by enabling detailed examination of cellular and molecular diversity. Nevertheless, investigating mechanisms at the single-cell level in highly mineralized skeletal tissue poses technical challenges. In this comprehensive review, we present a streamlined approach to obtaining high-quality single cells from skeletal tissue and provide an overview of existing scRNA-seq technologies employed in skeletal studies along with practical bioinformatic analysis pipelines. By utilizing these methodologies, crucial insights into the developmental dynamics, maintenance of homeostasis, and pathological processes involved in spine, joint, bone, muscle, and tendon disorders have been uncovered. Specifically focusing on the joint diseases of degenerative disc disease, osteoarthritis, and rheumatoid arthritis using scRNA-seq has provided novel insights and a more nuanced comprehension. These findings have paved the way for discovering novel therapeutic targets that offer potential benefits to patients suffering from diverse skeletal disorders.
Collapse
Grants
- 2022YFA1103202 National Key Research and Development Program of China
- 82272507 National Natural Science Foundation of China
- 32270887 National Natural Science Foundation of China
- 32200654 National Natural Science Foundation of China
- CSTB2023NSCQ-ZDJO008 Natural Science Foundation of Chongqing
- BX20220397 Postdoctoral Innovative Talent Support Program
- SFLKF202201 Independent Research Project of State Key Laboratory of Trauma and Chemical Poisoning
- 2021-XZYG-B10 General Hospital of Western Theater Command Research Project
- 14113723 University Grants Committee, Research Grants Council of Hong Kong, China
- N_CUHK472/22 University Grants Committee, Research Grants Council of Hong Kong, China
- C7030-18G University Grants Committee, Research Grants Council of Hong Kong, China
- T13-402/17-N University Grants Committee, Research Grants Council of Hong Kong, China
- AoE/M-402/20 University Grants Committee, Research Grants Council of Hong Kong, China
Collapse
Affiliation(s)
- Peng Lin
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi-Bo Gan
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jian He
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, the General Hospital of Western Theater Command, Chengdu, 610031, China
| | - Si-En Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, 999077, China
| | - Jian-Kun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, 999077, China
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, 999077, China
| | - Li-Ming Zhao
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Sacramento, CA, 94305, USA
| | - Jun Zhu
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Liang Zhang
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Sha Huang
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ou Hu
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ying-Bo Wang
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Huai-Jian Jin
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yang-Yang Li
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Pu-Lin Yan
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma and Chemical Poisoning, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jian-Xin Jiang
- Wound Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Peng Liu
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|