1
|
Haque A, Trager NNM, Butler JT, Das A, Zaman V, Banik NL. A novel combination approach to effectively reduce inflammation and neurodegeneration in multiple sclerosis models. Neurochem Int 2024; 175:105697. [PMID: 38364938 PMCID: PMC10994736 DOI: 10.1016/j.neuint.2024.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by immune-mediated attacks on the central nervous system (CNS), resulting in demyelination and recurring T-cell responses. Unfortunately, there is no cure for it. Current therapies that target immunomodulation and/or immunosuppression show only modest beneficial effects, have many side effects, and do not block neurodegeneration or progression of the disease. Since neurodegeneration and in particular axonal degeneration is implicated in disability in progressive MS, development of novel therapeutic strategies to attenuate the neurodegenerative processes is imperative. This study aims to develop new safe and efficacious treatments that address both the inflammatory and neurodegenerative aspects of MS using its animal model, experimental allergic encephalomyelitis (EAE). In EAE, the cysteine protease calpain is upregulated in CNS tissue, and its activity correlates with neurodegeneration. Our immunologic studies on MS have indicated that increased calpain activity promotes pro-inflammatory T helper (Th)1 cells and the severity of the disease in EAE, suggesting that calpain inhibition could be a novel target to combat neurodegeneration in MS/EAE. While calpain inhibition by SNJ1945 reduced disease severity, treatment of EAE animals with a novel protease-resistant altered small peptide ligand (3aza-APL) that mimic myelin basic protein (MBP), also decreased the incidence of EAE, disease severity, infiltration of inflammatory cells, and protected myelin. A reduction in inflammatory T-cells with an increase in Tregs and myeloid suppressor cells is also found in EAE mice treated with SNJ1945 and 3aza-APL. Thus, a novel combination strategy was tested in chronic EAE mouse model in B10 mice which showed multiple pathological mechanisms could be addressed by simultaneous treatment with calpain inhibitor SNJ1945 and protease-resistant 3aza-APL to achieve a stronger therapeutic effect.
Collapse
Affiliation(s)
- Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, 29401, USA.
| | - Nicole N M Trager
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jonathan T Butler
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Arabinda Das
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, 29401, USA
| | - Naren L Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, 29401, USA.
| |
Collapse
|
2
|
Rosado AM, Zhang Y, Choi HK, Chen Y, Ehrlich SM, Jin F, Grakoui A, Evavold BD, Zhu C. Memory in repetitive protein–protein interaction series. APL Bioeng 2023. [DOI: 10.1063/5.0130805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Interactions between proteins coordinate biological processes in an organism and may impact its responses to changing environments and diseases through feedback systems. Feedback systems function by using changes in the past to influence behaviors in the future, which we refer to here as memory. Here, we summarized several observations made, ideas conceptualized, and mathematical models developed for quantitatively analyzing memory effects in repetitive protein–protein interactions (PPIs). Specifically, we consider how proteins on the cell or in isolation retain information about prior interactions to impact current interactions. The micropipette, biomembrane force probe, and atomic force microscopic techniques were used to repeatedly assay PPIs. The resulting time series were analyzed by a previous and two new models to extract three memory indices of short (seconds), intermediate (minutes), and long (hours) timescales. We found that interactions of cell membrane, but not soluble, T cell receptor (TCR) with peptide-major histocompatibility complex (pMHC) exhibits short-term memory that impacts on-rate, but not off-rate of the binding kinetics. Peptide dissociation from MHC resulted in intermediate- and long-term memories in TCR–pMHC interactions. However, we observed no changes in kinetic parameters by repetitive measurements on living cells over intermediate timescales using stable pMHCs. Parameters quantifying memory effects in PPIs could provide additional information regarding biological mechanisms. The methods developed herein also provide tools for future research.
Collapse
Affiliation(s)
- Aaron M. Rosado
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, Georgia 30332, USA
| | - Yan Zhang
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Georgia W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Hyun-Kyu Choi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Yunfeng Chen
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Georgia W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Samuel M. Ehrlich
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Georgia W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Fengzhi Jin
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30332, USA
| | - Arash Grakoui
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30332, USA
| | - Brian D. Evavold
- Department of Immunology and Microbiology, Emory University School of Medicine, Atlanta, Georgia 30332 USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Georgia W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
3
|
Welsh RA, Song N, Sadegh-Nasseri S. How Does B Cell Antigen Presentation Affect Memory CD4 T Cell Differentiation and Longevity? Front Immunol 2021; 12:677036. [PMID: 34177919 PMCID: PMC8224923 DOI: 10.3389/fimmu.2021.677036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells are the antigen presenting cells that process antigens effectively and prime the immune system, a characteristic that have gained them the spotlights in recent years. B cell antigen presentation, although less prominent, deserves equal attention. B cells select antigen experienced CD4 T cells to become memory and initiate an orchestrated genetic program that maintains memory CD4 T cells for life of the individual. Over years of research, we have demonstrated that low levels of antigens captured by B cells during the resolution of an infection render antigen experienced CD4 T cells into a quiescent/resting state. Our studies suggest that in the absence of antigen, the resting state associated with low-energy utilization and proliferation can help memory CD4 T cells to survive nearly throughout the lifetime of mice. In this review we would discuss the primary findings from our lab as well as others that highlight our understanding of B cell antigen presentation and the contributions of the MHC Class II accessory molecules to this outcome. We propose that the quiescence induced by the low levels of antigen presentation might be a mechanism necessary to regulate long-term survival of CD4 memory T cells and to prevent cross-reactivity to autoantigens, hence autoimmunity.
Collapse
Affiliation(s)
- Robin A Welsh
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Nianbin Song
- Department of Biology, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Scheherazade Sadegh-Nasseri
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Sant AJ, DiPiazza AT, Nayak JL, Rattan A, Richards KA. CD4 T cells in protection from influenza virus: Viral antigen specificity and functional potential. Immunol Rev 2019; 284:91-105. [PMID: 29944766 DOI: 10.1111/imr.12662] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD4 T cells convey a number of discrete functions to protective immunity to influenza, a complexity that distinguishes this arm of adaptive immunity from B cells and CD8 T cells. Although the most well recognized function of CD4 T cells is provision of help for antibody production, CD4 T cells are important in many aspects of protective immunity. Our studies have revealed that viral antigen specificity is a key determinant of CD4 T cell function, as illustrated both by mouse models of infection and human vaccine responses, a factor whose importance is due at least in part to events in viral antigen handling. We discuss research that has provided insight into the diverse viral epitope specificity of CD4 T cells elicited after infection, how this primary response is modified as CD4 T cells home to the lung, establish memory, and after challenge with a secondary and distinct influenza virus strain. Our studies in human subjects point out the challenges facing vaccine efforts to facilitate responses to novel and avian strains of influenza, as well as strategies that enhance the ability of CD4 T cells to promote protective antibody responses to both seasonal and potentially pandemic strains of influenza.
Collapse
Affiliation(s)
- Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Anthony T DiPiazza
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer L Nayak
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.,Division of Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Ajitanuj Rattan
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Katherine A Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
5
|
Trager NNM, Butler JT, Harmon J, Mount J, Podbielska M, Haque A, Banik NL, Beeson CC. A Novel Aza-MBP Altered Peptide Ligand for the Treatment of Experimental Autoimmune Encephalomyelitis. Mol Neurobiol 2019; 55:267-275. [PMID: 28889362 DOI: 10.1007/s12035-017-0739-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Myelin basic protein (MBP) is a major target of T cells in lesions of multiple sclerosis (MS) patients and its animal model, experimental autoimmune encephalomyelitis (EAE). Interactions between the major histocompatibility complex II containing antigenic peptides and the T cell receptor activate CD4+ T cells that perpetuate EAE and MS. Previously reported data has shown that treating with an altered peptide ligand (APL) in which the normal antigenic peptide sequence of MBP has been slightly changed at T cell contact positions is helpful in reducing disease in both rodents and humans. The use of natural peptides, which are susceptible to protease degradation, requires high concentrations that can create hypersensitivity reactions. Our hypothesis is that APL containing aza substitutions, CH(R)-N- > N(R)N, could lead to improved protease resistance, reduced clinical disease scores, and a shift in T cell profile. In this study, several aza-APLs and control peptides were synthesized and screened for the best aza-APL candidate (3aza-APL) based on dissociation half time from major histocompatibility complex (MHC) class II, induction of IL-2 response, and resistance to degradation by proteases. The efficacy was then tested in vivo. Results indicate that 3aza-APL is superior to currently available APLs in terms of protease resistance and disease suppression in EAE mice. The 3aza-APL induced anti-inflammatory immune responses by altering key transcription factors and cytokine genes which regulate T cell subpopulations. These data suggest that the novel 3aza-APL has increased protease resistance property and is effective in reducing clinical and physiological signs of disease in EAE animals.
Collapse
Affiliation(s)
- Nicole N M Trager
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Jennifer Harmon
- Department of Drug Discovery and Biomedical Science, Medical University of South Carolina, 280 Calhoun Street, MSC140, Charleston, SC, 29425, USA
| | - Joshua Mount
- Department of Drug Discovery and Biomedical Science, Medical University of South Carolina, 280 Calhoun Street, MSC140, Charleston, SC, 29425, USA
| | - Maria Podbielska
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St, MSC606, Charleston, SC, 29425, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Naren L Banik
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St, MSC606, Charleston, SC, 29425, USA. .,Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Science, Medical University of South Carolina, 280 Calhoun Street, MSC140, Charleston, SC, 29425, USA.
| |
Collapse
|
6
|
Sauer EL, Cloake NC, Greer JM. Taming the TCR: antigen-specific immunotherapeutic agents for autoimmune diseases. Int Rev Immunol 2015; 34:460-85. [PMID: 25970132 DOI: 10.3109/08830185.2015.1027822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Current treatments for autoimmune diseases are typically non-specific anti-inflammatory agents that affect not only the autoreactive cells but also the parts of the immune system that are required to maintain health. There is a need for the development of antigen-specific therapeutic agents that can effectively prevent the autoimmune attack while leaving the rest of the immune system functioning as normal. The simplest way to achieve this is using the autoantigen itself as a tolerizing agent; however, there is some risk involved with administering a potentially pathogenic antigen. In this review, we focus instead on the development and use of modified T cell receptor (TCR) ligands, in which the peptide ligand is modified to change the response by the T cell from a disease inducing to a protective response, and still retain the antigen-specificity necessary to target the autoreactive T cells. We review the use of modified TCR ligands as therapeutic agents in animal models of autoimmunity and in human autoimmune disease, and finally consider how they need to be improved in order to use them effectively in patients with autoimmune disease.
Collapse
Affiliation(s)
- Evan L Sauer
- a UQ Centre for Clinical Research , The University of Queensland , Brisbane , Queensland , Australia
| | - Nancy C Cloake
- a UQ Centre for Clinical Research , The University of Queensland , Brisbane , Queensland , Australia
| | - Judith M Greer
- a UQ Centre for Clinical Research , The University of Queensland , Brisbane , Queensland , Australia
| |
Collapse
|
7
|
Single β³-amino acid substitutions to MOG peptides suppress the development of experimental autoimmune encephalomyelitis. J Neuroimmunol 2014; 277:67-76. [PMID: 25454728 DOI: 10.1016/j.jneuroim.2014.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/17/2014] [Accepted: 09/30/2014] [Indexed: 12/12/2022]
Abstract
CD4(+) T-cells play a key role in the pathogenesis of multiple sclerosis (MS). Altered peptide ligands capable of modulating T-cell autoreactivity are considered a promising strategy for development of antigen-specific therapies for MS. Since peptides are inherently unstable, the current study explored single β-amino acid substitution as a means of stabilizing an epitope of myelin oligodendrocyte glycoprotein. β-Amino acid substitution at position 44, the major T-cell receptor contact residue, increased the half-life of active metabolites. Vaccination with one altered peptide, MOG44βF, conferred protection from EAE, decreased T-cell autoreactivity and pro-inflammatory cytokine production. Additional studies using MOG44βF in an oral treatment regimen, administered after EAE induction, also attenuated disease severity. Thus, altered peptides such as those reported here may lead to the development of novel and more specific treatments for MS.
Collapse
|
8
|
Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat Rev Immunol 2014; 14:377-91. [PMID: 24830344 PMCID: PMC4757912 DOI: 10.1038/nri3667] [Citation(s) in RCA: 939] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fate of developing T cells is specified by the interaction of their antigen receptors with self-peptide-MHC complexes that are displayed by thymic antigen-presenting cells (APCs). Various subsets of thymic APCs are strategically positioned in particular thymic microenvironments and they coordinate the selection of a functional and self-tolerant T cell repertoire. In this Review, we discuss the different strategies that these APCs use to sample and process self antigens and to thereby generate partly unique, 'idiosyncratic' peptide-MHC ligandomes. We discuss how the particular composition of the peptide-MHC ligandomes that are presented by specific APC subsets not only shapes the T cell repertoire in the thymus but may also indelibly imprint the behaviour of mature T cells in the periphery.
Collapse
Affiliation(s)
- Ludger Klein
- Institute for Immunology, Ludwig Maximilians University, 80336 Munich, Germany
| | - Bruno Kyewski
- Division of Developmental Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55414, USA
| |
Collapse
|
9
|
Blanchfield JL, Shorter SK, Evavold BD. Monitoring the Dynamics of T Cell Clonal Diversity Using Recombinant Peptide:MHC Technology. Front Immunol 2013; 4:170. [PMID: 23840195 PMCID: PMC3699728 DOI: 10.3389/fimmu.2013.00170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/14/2013] [Indexed: 12/31/2022] Open
Abstract
The capacity to probe antigen specific T cells within the polyclonal repertoire has been revolutionized by the advent of recombinant peptide:MHC (pMHC) technology. Monomers and multimers of pMHC molecules can enrich for and identify antigen specific T cells to elucidate the contributions of T cell frequency, localization, and T cell receptor (TCR) affinity during immune responses. Two-dimensional (2D) measurements of TCR–pMHC interactions are at the forefront of this field because the biological topography is replicated such that TCR and pMHC are membrane anchored on opposing cells, allowing for biologically pertinent measures of TCR antigen specificity and diversity. 2D measurements of TCR-pMHC kinetics have also demonstrated increased fidelity compared to three-dimensional surface plasmon resonance data and are capable of detecting T cell affinities that are below the detection level of most pMHC multimers. Importantly, 2D techniques provide a platform to evaluate T cell affinity and antigen specificity against multiple protein epitopes within the polyclonal repertoire directly ex vivo from sites of ongoing immune responses. This review will discuss how antigen specific pMHC molecules, with a focus on 2D technologies, can be used as effective tools to evaluate the range of TCR affinities that comprise an immune response and more importantly how the breadth of affinities determine functional outcome against a given exposure to antigen.
Collapse
Affiliation(s)
- J Lori Blanchfield
- Department of Microbiology and Immunology, Emory University, Atlanta, GA , USA
| | | | | |
Collapse
|
10
|
Thymoproteasome subunit-β5T generates peptide-MHC complexes specialized for positive selection. Proc Natl Acad Sci U S A 2013; 110:6979-84. [PMID: 23569244 DOI: 10.1073/pnas.1222244110] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cortical thymic epithelial cells (cTECs) express a unique thymoproteasome subunit-β5T that plays an essential role in the development of CD8 T cells. In contrast, the immunoproteasome subunit-β5i is expressed in other thymic antigen-presenting cells (APCs). The thymoproteasome may generate peptides that are specialized for positive selection, or it may simply serve to generate peptides that are distinct from other APCs that cause negative selection, thereby promoting an overall larger number of surviving clones to mature and function in the immune system. To distinguish these models, we genetically engineered mice to express distinct peptide repertoires in cTECs vs. other APCs without expressing β5T, by generating β5t(5i) knockin mice, in which β5i replaced β5T in cTECs. When such animals were crossed to β5i(-/-) mice, β5i was exclusively expressed in cTECs, whereas β5 was expressed in other cells. However, this mouse did not support normal positive selection, suggesting that β5T generates peptides that are intrinsically better for positive selection (i.e., β5i could not replace β5T) and not merely because these peptides are distinct from peptides presented by other APCs. Finally, using an Nur77(GFP) reporter, we show that the T cells generated in the absence of β5T have higher reactivity to self, generating predominantly CD44(hi) memory phenotype peripheral CD8(+) T cells. Altogether, our results suggest that the thymoproteasome supports positive selection by generating peptides that are optimized for the selection of weakly self-reactive, naïve T-cell clones.
Collapse
|
11
|
Andersson IE, Andersson CD, Batsalova T, Dzhambazov B, Holmdahl R, Kihlberg J, Linusson A. Design of glycopeptides used to investigate class II MHC binding and T-cell responses associated with autoimmune arthritis. PLoS One 2011; 6:e17881. [PMID: 21423632 PMCID: PMC3058040 DOI: 10.1371/journal.pone.0017881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/13/2011] [Indexed: 01/12/2023] Open
Abstract
The glycopeptide fragment CII259–273 from type II collagen (CII) binds to the murine Aq and human DR4 class II Major Histocompatibility Complex (MHC II) proteins, which are associated with development of murine collagen-induced arthritis (CIA) and rheumatoid arthritis (RA), respectively. It has been shown that CII259–273 can be used in therapeutic vaccination of CIA. This glycopeptide also elicits responses from T-cells obtained from RA patients, which indicates that it has an important role in RA as well. We now present a methodology for studies of (glyco)peptide-receptor interactions based on a combination of structure-based virtual screening, ligand-based statistical molecular design and biological evaluations. This methodology included the design of a CII259–273 glycopeptide library in which two anchor positions crucial for binding in pockets of Aq and DR4 were varied. Synthesis and biological evaluation of the designed glycopeptides provided novel structure-activity relationship (SAR) understanding of binding to Aq and DR4. Glycopeptides that retained high affinities for these MHC II proteins and induced strong responses in panels of T-cell hybridomas were also identified. An analysis of all the responses revealed groups of glycopeptides with different response patterns that are of high interest for vaccination studies in CIA. Moreover, the SAR understanding obtained in this study provides a platform for the design of second-generation glycopeptides with tuned MHC affinities and T-cell responses.
Collapse
Affiliation(s)
| | | | - Tsvetelina Batsalova
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Balik Dzhambazov
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Jan Kihlberg
- Department of Chemistry, Umeå University, Umeå, Sweden
- AstraZeneca R&D Mölndal, Mölndal, Sweden
| | | |
Collapse
|
12
|
Sadegh-Nasseri S, Dalai SK, Korb Ferris LC, Mirshahidi S. Suboptimal engagement of the T-cell receptor by a variety of peptide-MHC ligands triggers T-cell anergy. Immunology 2009; 129:1-7. [PMID: 20002785 DOI: 10.1111/j.1365-2567.2009.03206.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
T cells recognize antigen via the T-cell receptor (TCR) and produce a spectrum of responses that range from activation to anergy or cell death. The variety of outcomes may be dictated by the strength of the signals transmitted upon cognate recognition of the TCR. The physiological outcome of TCR engagement is determined by several factors, including the avidity of the ligand for TCR, the duration of engagement, and the presence and nature of accessory molecules present on antigen-presenting cells (APCs). In this review, we discuss a model of anergy induced by presentation of low densities of peptide-major histocompatibility complex (MHC) ligand in CD4(+) T cells and compare it to anergy induced by altered peptide ligands in an effort to identify a unifying mechanism. We suggest that altered peptide ligand (APL) and low densities of agonist ligands induce anergy by engaging less than optimal numbers of TCRs. The physiological impacts of anergy in memory CD4(+) T cells are discussed.
Collapse
|
13
|
Manipulating antigenic ligand strength to selectively target myelin-reactive CD4+ T cells in EAE. J Neuroimmune Pharmacol 2009; 5:176-88. [PMID: 19904613 DOI: 10.1007/s11481-009-9181-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 10/15/2009] [Indexed: 10/20/2022]
Abstract
The development of antigen-specific therapies for the selective tolerization of autoreactive T cells remains the Holy Grail for the treatment of T-cell-mediated autoimmune diseases such as multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). This quest remains elusive, however, as the numerous antigen-specific strategies targeting myelin-specific T cells over the years have failed to result in clinical success. In this review, we revisit the antigen-based therapies used in the treatment of myelin-specific CD4+ T cells in the context of the functional avidity and the strength of signal of the encephalitogenic CD4+ T cell repertoire. In light of differences in activation thresholds, we propose that autoreactive T cells are not all equal, and therefore tolerance induction strategies must incorporate ligand strength in order to be successful in treating EAE and ultimately the human disease MS.
Collapse
|
14
|
Wasserman HA, Evavold BD. Induction of anergy by antibody blockade of TCR in myelin oligodendrocyte glycoprotein-specific cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:7259-64. [PMID: 18490725 DOI: 10.4049/jimmunol.180.11.7259] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Previous studies have found that a 95% reduction in TCR expression does not adversely affect response to foreign Ags, indicating that T cells have an excess of TCR for Ag recognition. Because self-reactive T cells may have low affinity for peptide:MHC, we investigated whether myelin-reactive T cells require these excess TCR for optimal response. To test this concept, mAb were used to effectively reduce the TCR of Valpha3.2 and Vbeta11 TCR transgenic mice (referred to as 2D2). After masking the TCR with either continuous or prepulsed anti-Valpha3.2 Ab, 2D2 cells were immediately stimulated with myelin oligodendrocyte glycoprotein (MOG)(35-55). These cells have a dramatic Ab dose-dependent reduction in proliferation, with a small reduction in TCR expression leading to a 50% reduction in proliferation in vitro. Additionally, 2D2 cells, treated with anti-Valpha3.2 Ab and peptide for 7 days, were re-stimulated with MOG and continue to have a dose-dependent reduction in proliferation. TCR quantitation identified the same amount of TCR on the Ab/peptide treatment compared with the peptide-only control. These results point out that the combination of reduced TCR and peptide challenge leads to a phenotypic change resulting in T cell anergy. Importantly, adoptive transfer of these anergic T cells upon autoimmune disease induction had a marked reduction in disease severity compared with untreated MOG-specific CD4(+) T cells, which had significant autoimmune disease manifested by optic neuritis and death. Thus, reduction of TCR expression may provide a potential therapy for self-reactive T cells involved in autoimmune diseases through the induction of anergy.
Collapse
Affiliation(s)
- Heather A Wasserman
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
15
|
Cobb BA, Kasper DL. Characteristics of carbohydrate antigen binding to the presentation protein HLA-DR. Glycobiology 2008; 18:707-18. [PMID: 18525076 DOI: 10.1093/glycob/cwn050] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zwitterionic polysaccharide antigens (ZPSs) were recently shown to activate T cells in a class II major histocompatibility complex (MHCII)-dependent fashion requiring antigen presenting cell (APC)-mediated oxidative processing although little is known about the mechanism or affinity of carbohydrate presentation (Cobb BA, Wang Q, Tzianabos AO, Kasper DL. 2004. Polysaccharide processing and presentation by the MHCII pathway. Cell. 117:677-687). A recent study showed that the helical conformation of ZPSs (Wang Y, Kalka-Moll WM, Roehrl MH, Kasper DL. 2000. Structural basis of the abscess-modulating polysaccharide A2 from Bacteroides fragilis. Proc Natl Acad Sci USA. 97:13478-13483; Choi YH, Roehrl MH, Kasper DL, Wang JY. 2002. A unique structural pattern shared by T-cell-activating and abscess-regulating zwitterionic polysaccharides. Biochemistry. 41:15144-15151) is closely linked with immunogenic activity (Tzianabos AO, Onderdonk AB, Rosner B, Cisneros RL, Kasper DL. 1993. Structural features of polysaccharides that induce intra-abdominal abscesses. Science. 262:416-419) and is stabilized by a zwitterionic charge motif (Kreisman LS, Friedman JH, Neaga A, Cobb BA. 2007. Structure and function relations with a T-cell-activating polysaccharide antigen using circular dichroism. Glycobiology. 17:46-55), suggesting a strong carbohydrate structure-function relationship. In this study, we show that PSA, the ZPS from Bacteroides fragilis, associates with MHCII at high affinity and 1:1 stoichiometry through a mechanism mirroring peptide presentation. Interestingly, PSA binding was mutually exclusive with common MHCII antigens and showed significant allelic differences in binding affinity. The antigen exchange factor HLA-DM that catalyzes peptide antigen association with MHCII also increased the rate of ZPS association and was required for APC presentation and ZPS-mediated T cell activation. Finally, the zwitterionic nature of these antigens was required only for MHCII binding, and not endocytosis, processing, or vesicular trafficking to MHCII-containing vesicles. This report is the first quantitative analysis of the binding mechanism of carbohydrate antigens with MHCII and leads to a novel model for nontraditional MHCII antigen presentation during bacterial infections.
Collapse
Affiliation(s)
- Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | | |
Collapse
|
16
|
Boots AMH, Hubers H, Kouwijzer M, den Hoed-van Zandbrink L, Westrek-Esselink BM, van Doorn C, Stenger R, Bos ES, van Lierop MJC, Verheijden GF, Timmers CM, van Staveren CJ. Identification of an altered peptide ligand based on the endogenously presented, rheumatoid arthritis-associated, human cartilage glycoprotein-39(263-275) epitope: an MHC anchor variant peptide for immune modulation. Arthritis Res Ther 2008; 9:R71. [PMID: 17645792 PMCID: PMC2206373 DOI: 10.1186/ar2269] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 06/25/2007] [Accepted: 07/23/2007] [Indexed: 11/28/2022] Open
Abstract
We sought to identify an altered peptide ligand (APL) based on the endogenously expressed synovial auto-epitope of human cartilage glycoprotein-39 (HC gp-39) for modulation of cognate, HLA-DR4-restricted T cells. For this purpose we employed a panel of well-characterized T cell hybridomas generated from HC gp-39-immunized HLA-DR4 transgenic mice. The hybridomas all respond to the HC gp-39(263–275) epitope when bound to HLA-DR4(B1*0401) but differ in their fine specificities. First, the major histocompatibility complex (MHC) and T-cell receptor (TCR) contact residues were identified by analysis of single site substituted analogue peptides for HLA-DR4 binding and cognate T cell recognition using both T hybridomas and polyclonal T cells from peptide-immunized HLA-DR4 transgenic mice. Analysis of single site substituted APL by cognate T cells led to identification of Phe265 as the dominant MHC anchor. The amino acids Ala268, Ser269, Glu271 and Thr272 constituted the major TCR contact residues, as substitution at these positions did not affect HLA-DR4(B1*0401) binding but abrogated T cell responses. A structural model for visualisation of TCR recognition was derived. Second, a set of non-classical APLs, modified at the MHC key anchor position but with unaltered TCR contacts, was developed. When these APLs were analysed, a partial TCR agonist was identified and found to modulate the HC gp-39(263–275)-specific, pro-inflammatory response in HLA-DR4 transgenic mice. We identified a non-classical APL by modification of the p1 MHC anchor in a synovial auto-epitope. This APL may qualify for rheumatoid arthritis immunotherapy.
Collapse
Affiliation(s)
| | - Henk Hubers
- NV Organon, Research Laboratories, Oss, The Netherlands
| | | | | | | | | | | | - Ebo S Bos
- NV Organon, Research Laboratories, Oss, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Petrich de Marquesini LG, Moustakas AK, Thomas IJ, Wen L, Papadopoulos GK, Wong FS. Functional inhibition related to structure of a highly potent insulin-specific CD8 T cell clone using altered peptide ligands. Eur J Immunol 2008; 38:240-9. [PMID: 18157812 PMCID: PMC2901522 DOI: 10.1002/eji.200737762] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin-reactive CD8 T cells are amongst the earliest islet-infiltrating CD8 T cells in NOD mice. Cloned insulin B15–23-reactive cells (designated G9C8), restricted by H-2Kd, are highly diabetogenic. We used altered peptide ligands (APL) substituted at TCR contact sites, positions (p)6 and 8, to investigate G9C8 T cell function and correlated this with structure. Cytotoxicity and IFN-γ production assays revealed that p6G and p8R could not be replaced by any naturally occurring amino acid without abrogating recognition and functional response by the G9C8 clone. When tested for antagonist activity with APL differing from the native peptide at either of these positions, the peptide variants, G6H and R8L showed the capacity to reduce the agonist response to the native peptide. The antagonist activity in cytotoxicity and IFN-γ production assays can be correlated with conformational changes induced by different structures of the MHC-peptide complexes, shown by molecular modeling. We conclude that p6 and p8 of the insulin B15–23 peptide are very important for TCR stimulation of this clone and no substitutions are tolerated at these positions in the peptide. This is important in considering the therapeutic use of peptides as APL that encompass both CD4 and CD8 epitopes of insulin.
Collapse
|
18
|
Li R, Li X, Li Z. Altered collagen II peptides inhibited T-cell activation in rheumatoid arthritis. Clin Immunol 2006; 118:317-23. [PMID: 16343992 DOI: 10.1016/j.clim.2005.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 09/15/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
It has been reported that collagen II (CII)-derived peptide induced T-cell activation via its amino acids responsible for T-cell receptor (TCR) recognition. In this study, three altered CII263-272 peptide ligands (APL) containing multiple substitutions of TCR contact residues were synthesized. Their roles in inhibition of T-cell activation were evaluated in peripheral blood lymphocytes (PBL) of rheumatoid arthritis (RA) in vitro. It was shown that 41% (25/61) of RA patients were responsive to the wild-type antigenic CII263-272. In contrast, marginal or silent T-cell responses to the three APLs were found, accompanied by inhibitory effects on secretion of Th1 type cytokines and expression of cell surface markers, CD69 and CD25. In addition, T-cell activation induced by the wild-type antigenic CII263-272 was inhibited by all the three APLs in a dose-dependent manner. It is demonstrated that APLs with substitutions of TCR contact residues are capable of down-regulating T-cell responses in PBLs of RA, suggesting that the CII-derived APLs are potentially therapeutic in RA.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/genetics
- Arthritis, Rheumatoid/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Cells, Cultured
- Collagen Type II/immunology
- Collagen Type II/metabolism
- Cytokines/metabolism
- Female
- HLA-DR4 Antigen/immunology
- HLA-DR4 Antigen/metabolism
- Humans
- Immunosuppressive Agents/pharmacology
- Lectins, C-Type
- Ligands
- Lymphocyte Activation/immunology
- Male
- Middle Aged
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Interleukin-2/biosynthesis
- Receptors, Interleukin-2/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Ru Li
- Department of Rheumatology and Immunology, People's Hospital, Beijing University Medical School, 11 Xizhimen South St., Beijing 100044, China
| | | | | |
Collapse
|
19
|
Sant AJ, Chaves FA, Jenks SA, Richards KA, Menges P, Weaver JM, Lazarski CA. The relationship between immunodominance, DM editing, and the kinetic stability of MHC class II:peptide complexes. Immunol Rev 2005; 207:261-78. [PMID: 16181342 DOI: 10.1111/j.0105-2896.2005.00307.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Immunodominance refers to the restricted antigen specificity of T cells detected in the immune response after immunization with complex antigens. Despite the presence of many potential peptide epitopes within these immunogens, the elicited T-cell response apparently focuses on a very limited number of peptides. Over the last two decades, a number of distinct explanations have been put forth to explain this very restricted specificity of T cells, many of which suggest that endosomal antigen processing restricts the array of peptides available to recruit CD4 T cells. In this review, we present evidence from our laboratory that suggest that immunodominance in CD4 T-cell responses is primarily due to an intrinsic property of the peptide:class II complexes. The intrinsic kinetic stability of peptide:class II complexes controls DM editing within the antigen-presenting cells and thus the initial epitope density on priming dendritic cells. Additionally, we hypothesize that peptides that possess high kinetic stability interactions with class II molecules display persistence at the cell surface over time and will more efficiently promote T-cell signaling and differentiation than competing, lower-stability peptides contained within the antigen. We discuss this model in the context of the existing data in the field of immunodominance.
Collapse
Affiliation(s)
- Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute and Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Bernardeau K, Gouard S, David G, Ruellan AL, Devys A, Barbet J, Bonneville M, Chérel M, Davodeau F. Assessment of CD8 involvement in T cell clone avidity by direct measurement of HLA-A2/Mage3 complex density using a high-affinity TCR like monoclonal antibody. Eur J Immunol 2005; 35:2864-75. [PMID: 16163672 DOI: 10.1002/eji.200526307] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptide affinity for MHC molecules determines the number of MHC/peptide complexes stabilized at the cell surface in in vitro tests or in vaccination protocols. We isolated a high affinity monoclonal antibody specific for the HLA-A2/Mage3 complex that enables an equilibrium binding assay to be performed on T2 cell line loaded with a range of Mage3 peptides. Binding of Mage3 to the HLA-A2 molecule can be modeled by a standard receptor-ligand interaction characterized by an affinity constant. This model enables the measurement of the affinity of other immunogenic peptides for HLA-A2 by a competition test and the calculation of the density of complexes stabilized at the T2 cell surface for all peptide concentrations. Quantification of the HLA-A2/Mage3 complexes at target cell surfaces was used to estimate the number of complexes required to reach cytotoxicity ED50 of human T cell clones sorted from an unprimed repertoire. We confirm with this antibody the direct relationship between clone avidity and TCR affinity, and the moderate contribution of the CD8 co-receptor in the reinforcement of TCR-MHC/peptide contact. Nevertheless, CD8 plays a critical role in the amplification of the specific signal to establish an efficient T cell response at low specific complex densities found in physiological situations.
Collapse
Affiliation(s)
- Karine Bernardeau
- INSERM U601, Institut de Biologie, and Université Nantes, Nantes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lazarski CA, Chaves FA, Jenks SA, Wu S, Richards KA, Weaver JM, Sant AJ. The kinetic stability of MHC class II:peptide complexes is a key parameter that dictates immunodominance. Immunity 2005; 23:29-40. [PMID: 16039577 DOI: 10.1016/j.immuni.2005.05.009] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 04/20/2005] [Accepted: 05/11/2005] [Indexed: 11/29/2022]
Abstract
T cell priming to exogenous antigens reflects regulated antigen processing in dendritic cells, subsequent homing to lymph nodes, sustained interactions between T cells and antigen-bearing dendritic cells, and, ultimately, selective T cell activation and differentiation. In this study, we test the hypothesis that an intrinsic property of the class II:peptide complex is a key determinant that dictates the specificity of an emerging CD4 T cell response. We found that immunodominant peptides possess extremely long half-lives with class II molecules (t(1/2) > 150 hr), whereas cryptic peptides displayed half-lives of less than 10 hr. Furthermore, and most importantly, by using a peptide shuttle vector and four independent antigens, we demonstrate a direct, causative relationship between the half-life of peptide epitopes and their immunogenicity in vivo. Taken collectively, our results suggest the half-life of class II:peptide complexes is the primary parameter that dictates the ultimate hierarchy of the elicited T cell response.
Collapse
Affiliation(s)
- Christopher A Lazarski
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Margot CD, Ford ML, Evavold BD. Amelioration of established experimental autoimmune encephalomyelitis by an MHC anchor-substituted variant of proteolipid protein 139-151. THE JOURNAL OF IMMUNOLOGY 2005; 174:3352-8. [PMID: 15749867 DOI: 10.4049/jimmunol.174.6.3352] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Murine experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell-mediated autoimmune disorder directed against myelin proteins within the CNS. We propose that variant peptides containing amino acid substitutions at MHC anchor residues will provide a unique means to controlling the polyclonal autoimmune T cell response. In this study, we have identified an MHC variant of proteolipid protein (PLP) 139-151 (145D) that renders PLP(139-151)-specific T cell lines anergic in vitro, as defined by a significant reduction in proliferation and IL-2 production following challenge with wild-type peptide. In vivo administration of 145D before challenge with PLP(139-151) results in a significant reduction in disease severity and incidence. Importantly, we demonstrate the ability of an MHC variant peptide to ameliorate established EAE. An advantage to this treatment is that the MHC variant peptide does not induce an acute hypersensitivity reaction. This is in contrast to previous work in the PLP(139-151) model demonstrating that anaphylactic shock resulting in death occurs upon rechallenge with the encephalitogenic peptide. Taken together, these data demonstrate the effectiveness of MHC anchor-substituted peptides in the treatment of EAE and suggest their utility in the treatment of other autoimmune disorders.
Collapse
Affiliation(s)
- Carrie D Margot
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
23
|
Hess AD, Thoburn CJ, Miura Y, Bright EC. Functionally divergent T lymphocyte responses induced by modification of a self-peptide from a tumor-associated antigen. Clin Immunol 2005; 114:307-19. [PMID: 15721842 DOI: 10.1016/j.clim.2004.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 11/12/2004] [Indexed: 11/26/2022]
Abstract
The N- and C-terminal flanking domains of the invariant chain peptide, CLIP, have remarkable immunological properties. Addition of these flanking domains to a foreign peptide antigen increases its immunologic potency. The present studies evaluated whether altering a peptide ligand from the tumor-associated antigen c-neu with the flanking domains of CLIP could modify the systemic immune response. The results indicate that the immunogenicity of an MHC class II restricted peptide (NEU) derived from c-neu was significantly altered by addition of the flanking domains from CLIP. Interestingly, selective modification of the peptide with either the N- or the C-terminal flanking domains resulted in functionally divergent systemic immune responses. Immunization of normal F344 rats with the NEU peptide modified with the N-terminal domain of CLIP (N-NEU) resulted in an immune response primarily consisting of type 1 (IL-2, IFNgamma) cytokine producing T cells. On the other hand, type 2 (IL-4) cytokine responses were largely predominant following immunization with the self-peptide modified with the C-terminal flanking domain (NEU-C). The functionally divergent responses elicited by the modified self-peptides were accompanied by significant changes in the expression of the CD28/CTLA4/B7 family of co-stimulatory molecules. Immunization with the N-NEU peptide led to enhanced expression of CD28 in the antigen-specific, CD4+ T cell compartment while expression of B7.1 was dramatically reduced in antigen-specific CD8+ T cells. Comparatively, expression of CTLA4 was down-regulated in the antigen-specific CD4+ T cell compartment following immunization with NEU-C peptide. The N-NEU peptide also had a direct effect on dendritic cells leading to the up-regulation of B7.1 expression. Taken together, functionally divergent systemic immune responses can be elicited by strategically altering a self-peptide ligand with the N- and C-terminal flanking domains of CLIP. Moreover, changes in expression of co-stimulatory molecules that are required for T cell activation and T cell-T cell communication may account for the polarization of the immune response elicited by the chimeric peptides.
Collapse
Affiliation(s)
- Allan D Hess
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, 1650 Orleans Street, Room 489, Baltimore, MD 21231, USA.
| | | | | | | |
Collapse
|
24
|
Abstract
The MHC molecules present normal as well as disease-related and pathogen-derived peptides to T cells as a way of alerting the immune system of the health status of a cell. Proteomic technologies involving immunoaffinity purification are now extensively used to separate MHC complexes from their peptide cargo, and then the petides are sequenced by tandem mass spectrometry. The identified peptides are tested as vaccine candidates for viral diseases, immunostimulants for treating cancer, and immune-tolerance-inducing agents for autoimmune disorders. One of the challenges in devising novel HLA-peptide-based immunotherapies is to decipher whether a therapeutic window exists between the induction of tumor immunity and the onset of autoimmunity, which can have dangerous sequelae. This review will cover these topics with an overview of the vast possibilities emerging in the field of proteomic analyses of MHC-bound antigens as novel targets for immunotherapy.
Collapse
Affiliation(s)
- Stacy H Shoshan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|