1
|
Bakhshivand M, Masoumi J, Ghorbaninezhad F, Aghebati-Maleki L, Shanebandi D, Sandoghchian Shotorbani S, Jadidi-Niaragh F, Baghbanzadeh A, Hemmat N, Baghbani E, Ghaffari A, Baradaran B. Boosting immunotherapy efficacy: Empowering the Potency of Dendritic cells loaded with breast cancer lysates through CTLA-4 suppression. Heliyon 2024; 10:e37699. [PMID: 39309891 PMCID: PMC11416247 DOI: 10.1016/j.heliyon.2024.e37699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Anticancer immunotherapies with a dendritic Cell (DC) basis are becoming more popular. However, it has been suggested that the tumor's immunosuppressive mechanisms, such as inhibitory immunological checkpoint molecules, reduce the effectiveness of anticancer immunogenicity mediated by DC. Thus, overcoming immune checkpoints and inducing effective antigen-specific T-cell responses uniquely produced with malignant cells represent the key challenges. Among the inhibitory immune checkpoints, DCs' ability to mature and present antigens is decreased by CTLA-4 expression. Consequently, we hypothesized that by expressing CTLA-4 cells on DCs, the T cells' activation against tumor antigens would be suppressed when confronted with these antigens presented by DCs. In this research, by loading cell lysate of breast cancer (BC) on DCs and the other hand by inhibiting the induction of CTLA-4 using small interfering RNA (siRNA), we assessed the functional activities and phenotypes of DCs, and also the responses associated with T-cells following co-culture DC/T cell. Our research has shown that the suppression of CTLA-4 enhanced the stimulating capabilities of DCs. Additionally, CTLA-4-suppressed BC cell lysate-loaded DCs produced more IL-4 and IFN-ϒ and increased T cell induction in contrast to DCs without CTLA-4 suppression. Together, our data point to CTLA-4-suppressed DCs loaded with BC cell lysate as a potentially effective treatment method. However, further research is required before employing this method in therapeutic contexts.
Collapse
Affiliation(s)
- Mohammad Bakhshivand
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farid Ghorbaninezhad
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Dariush Shanebandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghaffari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Wen J, Creaven D, Luan X, Wang J. Comparison of immunotherapy mediated by apoptotic bodies, microvesicles and exosomes: apoptotic bodies' unique anti-inflammatory potential. J Transl Med 2023; 21:478. [PMID: 37461033 DOI: 10.1186/s12967-023-04342-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Immunotherapy, including immunostimulation and immunosuppression, has seen significant development in the last 10 years. Immunostimulation has been verified as effective in anti-cancer treatment, while immunosuppression is used in the treatment of autoimmune disease and inflammation. Currently, with the update of newly-invented simplified isolation methods and the findings of potent triggered immune responses, extracellular vesicle-based immunotherapy is very eye-catching. However, the research on three main types of extracellular vesicles, exosomes, microvesicles and apoptotic bodies, needs to be more balanced. These three subtypes share a certain level of similarity, and at the same time, they have their own properties caused by the different methods of biogensis. Herein, we summarized respectively the status of immunotherapy based on each kind of vesicle and discuss the possible involved mechanisms. In conclusion, we highlighted that the effect of the apoptotic body is clear and strong. Apoptotic bodies have an excellent potential in immunosuppressive and anti-inflammatory therapies .
Collapse
Affiliation(s)
- Jing Wen
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China
| | - Dale Creaven
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Xiangshu Luan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiemin Wang
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland.
| |
Collapse
|
3
|
Ghorbaninezhad F, Masoumi J, Bakhshivand M, Baghbanzadeh A, Mokhtarzadeh A, Kazemi T, Aghebati-Maleki L, Shotorbani SS, Jafarlou M, Brunetti O, Santarpia M, Baradaran B, Silvestris N. CTLA-4 silencing in dendritic cells loaded with colorectal cancer cell lysate improves autologous T cell responses in vitro. Front Immunol 2022; 13:931316. [PMID: 35979362 PMCID: PMC9376327 DOI: 10.3389/fimmu.2022.931316] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Dendritic cell (DC)-based immunotherapy has increased interest among anti-cancer immunotherapies. Nevertheless, the immunosuppressive mechanisms in the tumor milieu, e.g., inhibitory immune checkpoint molecules, have been implicated in diminishing the efficacy of DC-mediated anti-tumoral immune responses. Therefore, the main challenge is to overcome inhibitory immune checkpoint molecules and provoke efficient T-cell responses to antigens specifically expressed by cancerous cells. Among the inhibitory immune checkpoints, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) expression on DCs diminishes their maturation and antigen presentation capability. Accordingly, we hypothesized that the expression of CTLA-4 on DCs inhibits the T cell-mediated anti-tumoral responses generated following the presentation of tumor antigens by DCs to T lymphocytes. In this study, we loaded colorectal cancer (CRC) cell lysate on DCs and inhibited the expression of CTLA-4 by small interfering RNA (siRNA) in them to investigate the DCs’ functional and phenotypical features, and T-cell mediated responses following DC/T cell co-culture. Our results demonstrated that blockade of CTLA-4 could promote stimulatory properties of DCs. In addition, CTLA-4 silenced CRC cell lysate-loaded DCs compared to the DCs without CTLA-4 silencing resulted in augmented T cell proliferation and cytokine production, i.e., IFN-γ and IL-4. Taken together, our findings suggest CTLA-4 silenced CRC cell lysate-loaded DCs as a promising therapeutic approach however further studies are needed before this strategy can be used in clinical practice.
Collapse
Affiliation(s)
- Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Bakhshivand
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Behzad Baradaran, ; Nicola Silvestris,
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
- *Correspondence: Behzad Baradaran, ; Nicola Silvestris,
| |
Collapse
|
4
|
Hu K, Lv L, Huang H, Yin G, Gao J, Liu J, Yang Y, Zeng W, Chen Y, Zhang N, Zhang F, Ma Y, Chen F. A Novel Tree Shrew Model of Chronic Experimental Autoimmune Uveitis and Its Disruptive Application. Front Immunol 2022; 13:889596. [PMID: 35711454 PMCID: PMC9196886 DOI: 10.3389/fimmu.2022.889596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022] Open
Abstract
Background Previous studies have established several animal models for experimental autoimmune uveitis (EAU) in rodents without the fovea centralis in the human retina. This study aimed to develop and explore the application of a novel EAU model in tree shrews with a cone-dominated retina resembling the human fovea. Methods Tree shrews were clinically and pathologically evaluated for the development and characteristics of EAU immunized with six inter-photoreceptor retinoid-binding proteins (IRBPs). IRBP-specific T-cell proliferation and serum cytokine of tree shrews were evaluated to determine the immune responses. Differentially expressed genes (DEGs) were identified in the eyes of tree shrews with EAU by RNA-sequencing. The disruptive effects of the DEG RGS4 inhibitor CCG 203769 and dihydroartemisinin on the EAU were investigated to evaluate the potential application of tree shrew EAU. Results IRBP1197–1211 and R14 successfully induced chronic EAU with subretinal deposits and retinal damage in the tree shrews. The immunological characteristics presented the predominant infiltration of microglia/macrophages, dendritic cells, and CD4-T-cells into the uvea and retina and pathogenic T helper (Th) 1 and Th17 responses. The subretinal deposits positively expressed amyloid β-protein (Aβ), CD8, and P2Y purinoceptor 12 (P2RY12). The crucial DEGs in R14-induced EAU, such as P2RY2 and adenylate cyclase 4 (ADCY4), were enriched for several pathways, including inflammatory mediator regulation of transient receptor potential (TRP) channels. The upregulated RGS4 in IRBP-induced EAU was associated with mitogen-activated protein kinase (MAPK) activity. RGS4 inhibition and dihydroartemisinin could significantly alleviate the retinal pathological injuries of IRBP1197-1211-induced EAU by decreasing the expression of CD4 T-cells. Conclusion Our study provides a novel chronic EAU in tree shrews elicited by bovine R14 and tree shrew IRBP1197-1211 characterized by retinal degeneration, retinal damage with subretinal Aβ deposits and microglia/macrophage infiltration, and T-cell response, probably by altering important pathways and genes related to bacterial invasion, inflammatory pain, microglial phagocytosis, and lipid and glucose metabolism. The findings advance the knowledge of the pathogenesis and therapeutics of the fovea-involved visual disturbance in human uveitis.
Collapse
Affiliation(s)
- Kaijiao Hu
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing, China
| | - Longbao Lv
- Laboratory Animal Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hui Huang
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing, China
| | - Guangnian Yin
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing, China.,Department of Clinical Laboratory, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jie Gao
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing, China
| | - Jianping Liu
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Yaying Yang
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Wenxin Zeng
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing, China
| | - Yan Chen
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Ni Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing, China
| | - Feiyan Zhang
- Laboratory Animal Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yuhua Ma
- Laboratory Animal Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Feilan Chen
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center for Rodent Laboratory Animals, Chongqing, China
| |
Collapse
|
5
|
Wang JK, Zhao BS, Wang M, Liu CY, Li YQ, Ma QT, Li PF, Wang TS, Wang CG, Zhou YM. Anti-tumor and Phenotypic Regulation Effect of Matrine on Dendritic Cells through Regulating TLRs Pathway. Chin J Integr Med 2020; 27:520-526. [PMID: 33170941 DOI: 10.1007/s11655-020-3433-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the effects of matrine on antigen presentation of dendritic cells (DCs), and to explore the pharmacological mechanism of matrine on anti-tumor effect. METHODS Different concentrations (0, 1, 2, 4, 8 and 16 µ g/mL) of matrine were co-cultured with DCs, the harvested DCs were co-cultured with antigens of Lewis lung cancer (LLC) cells, and then DCs and T cells were co-cultured to produce DCs-activated killer (DAK) cells, which have significant tumor-killing activity. The expression of cytokines, mRNA and protein of toll-like receptors (TLRs) in DCs were detected by enzyme linked immunosobent assay, polymerase chain reaction and Western blot, respectively. And the killing effect of DAK were measured by MTT assay. RESULTS Matrine significantly increased the mRNA expression of TLR7, TLR8, myeloid differentiation factor 88 (MyD88), tumor necrosis factor receptor-associated factor 6 (TRAF-6) and I κ B kinase (IKK), as well as the protein expression of TLR7 and TLR8, and up-regulated the levels of interleukin-12 (IL-12), IL-6 and tumor necrosis factor-α (TNF-α), meanwhile, it also increased the expressions of MHC-II, CD54, CD80 and CD86 in DCs. DCs-activated effector T cells had significant tumor-killing activity. When the concentration of matrine was more than 4 µg/mL, all indices had significant difference (P<0.01 or P<0.05). CONCLUSION Matrine plays an anti-tumor role by regulating TLRs signal transduction pathway, promoting the secretion of inflammatory cytokines and enhancing immune function.
Collapse
Affiliation(s)
- Jing-Kang Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Bao-Sheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Min Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chen-Yue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ya-Qi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Quan-Tao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Peng-Fei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tie-Shan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chun-Guo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yong-Ming Zhou
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
6
|
Kohnepoushi C, Nejati V, Delirezh N, Biparva P. Poly Lactic-co-Glycolic Acid Nanoparticles Containing Human Gastric Tumor Lysates as Antigen Delivery Vehicles for Dendritic Cell-Based Antitumor Immunotherapy. Immunol Invest 2019; 48:794-808. [DOI: 10.1080/08820139.2019.1610889] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chia Kohnepoushi
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Vahid Nejati
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Nowruz Delirezh
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Pouria Biparva
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| |
Collapse
|
7
|
Bagheri V, Abbaszadegan MR, Memar B, Motie MR, Asadi M, Mahmoudian RA, Gholamin M. Induction of T cell-mediated immune response by dendritic cells pulsed with mRNA of sphere-forming cells isolated from patients with gastric cancer. Life Sci 2019; 219:136-143. [PMID: 30641083 DOI: 10.1016/j.lfs.2019.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/29/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
Gastric cancer (GC) as the third most common cause of cancer-associated mortality worldwide is one of the cancers with very high heterogeneity. Cancer stem cells (CSCs) as a small subset of cancer cells in solid tumors with the self-renewal, differentiation and tumorigenic ability are responsible for tumor initiation, progression, recurrence, metastasis, and resistance to current treatments. Therefore, eradication of CSCs is very vital to cure cancer. Here, we first isolated and identified sphere-forming cells in tumor tissue from four GC patients and then analyzed T cell responses induced by monocyte-derived dendritic cells (DCs) loaded with total mRNA of sphere-forming cells in terms of interferon-gamma (IFN-γ) gene expression and specific cytotoxicity. Spheroid colonies were formed in serum-free media. Sphere-forming cells dissociated from tumorspheres heterogeneously expressed CD44, CD54, and epithelial cell adhesion molecule (EpCAM) markers and generated one tumor in nude mice. These results demonstrated that gastric CSCs were enriched in tumorspheres. Cytokine-matured DCs loaded with mRNA of sphere-forming cells were able to induce IFN-γ gene expression in T-lymphocytes after a 12-day co-culture. mRNA level of IFN-γ gene in these lymphocytes was more highly expressed compared to stimulated T-lymphocytes by DCs transfected with normal tissue (6.4-9.39 folds). Cytotoxic activity of primed T-lymphocytes with antigens of sphere-forming cells was significantly higher than normal tissue antigens and mock DCs (P ≤ 0.0001). Taken together, DCs loaded with mRNA of sphere-forming cells that elicit effectively specific T cell-mediated immune responses in vitro, may be considered as a promising therapeutic vaccination in GC patients in future.
Collapse
Affiliation(s)
- Vahid Bagheri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Bahram Memar
- Surgical Oncology Research Center, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Motie
- Surgical Oncology Research Center, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Asadi
- Surgical Oncology Research Center, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mehran Gholamin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Allahverdiyev A, Tari G, Bagirova M, Abamor ES. Current Approaches in Development of Immunotherapeutic Vaccines for Breast Cancer. J Breast Cancer 2018; 21:343-353. [PMID: 30607155 PMCID: PMC6310717 DOI: 10.4048/jbc.2018.21.e47] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/27/2018] [Indexed: 01/12/2023] Open
Abstract
Cancer is the leading cause of death worldwide. In developed as well as developing countries, breast cancer is the most common cancer found among women. Currently, treatment of breast cancer consists mainly of surgery, chemotherapy, hormone therapy, and radiotherapy. In recent years, because of increased understanding of the therapeutic potential of immunotherapy in cancer prevention, cancer vaccines have gained importance. Here, we review various immunotherapeutic breast cancer vaccines including peptide-based vaccines, whole tumor cell vaccines, gene-based vaccines, and dendritic cell vaccines. We also discuss novel nanotechnology-based approaches to improving breast cancer vaccine efficiency.
Collapse
Affiliation(s)
- Adil Allahverdiyev
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Gamze Tari
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Melahat Bagirova
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Emrah Sefik Abamor
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
9
|
Rahmani Kukia N, Alipanah-Moghadam R, Delirezh N, Mazani M. Mesenchymal Stromal Stem Cell-Derived Microvesicles Enhance Tumor Lysate Pulsed Dendritic Cell Stimulated
Autologous T lymphocyte Cytotoxicity. Asian Pac J Cancer Prev 2018; 19:1895-1902. [PMID: 30049202 PMCID: PMC6165664 DOI: 10.22034/apjcp.2018.19.7.1895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Immunotherapy is one promising therapeutic strategy against glioma, an aggressive form of brain cancer. Previous studies have demonstrated that multiple tumor antigens exist and can be used to induce tumor specific T cell responses. Furthermore, recently it was shown that TLR4-primed mesenchymal stem cells (MSCs), also known as MSC1, mostly elaborate pro-inflammatory mediators. Compared to MSCs, MSC-derived microvesicles (MVs) have advantageous properties that present them as stable, long lasting effectors with no risk of immune rejection. Therefore, peripheral blood monocyte derived dendritic cells (MoDCs) have been used to load tumor antigens and stimulate T cell mediated responses in the presence of MSC1-derived MVs in vitro. Methods The B92 tumor cell line was heated to 43°C for 90 min prior to preparation of tumor cell lysates. MVs were purified by differential ultracentrifugation after isolation, stimulation of proliferation and treatment of MSCs. Autologous T cells isolated from non-adherent cells were harvested during the procedure to generate MoDCs and then incubated with heat stressed tumor cell lysate pulsed DCs in the presence of MSC1-derived MVs. T cells were then co-cultured with tumor cells in 96-well plates at a final volume of 200 μl CM at an effector: target ratio of 100:1 to determine their specific cytotoxic activity. Results Flow cytometric analysis, T cell mediated cytotoxicity showed that heat stressed tumor antigen pulsed MoDCs and MSC1-derived MVs primed T cells elicited non-significantly enhanced cytotoxic activity toward B92 tumor cells (P≥0.05). Conclusion These findings may offer new insights into tumor antigen presenting technology involving dendritic cells and MSC1-derived MVs. Further exploration of the potential of such nanoscale particles in immunotherapy and in novel cancer vaccine settings appears warranted.
Collapse
Affiliation(s)
- Nasim Rahmani Kukia
- Department of Clinical Biochemistry, Ardabil University of Medical Sciences, Ardabil, Iran. ,
| | | | | | | |
Collapse
|
10
|
Obleukhova I, Kiryishina N, Falaleeva S, Lopatnikova J, Kurilin V, Kozlov V, Vitsin A, Cherkasov A, Kulikova E, Sennikov S. Use of antigen-primed dendritic cells for inducing antitumor immune responses in vitro in patients with non-small cell lung cancer. Oncol Lett 2017; 15:1297-1306. [PMID: 29399182 DOI: 10.3892/ol.2017.7403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer is associated with a reduction in immature and mature circulating dendritic cells (DCs), and with an impaired migratory capacity, compared with healthy donors. Therefore, modern approaches to the in vitro generation of DCs loaded with tumor antigens and their use for inducing antitumor immune responses in vivo are being investigated. The purpose of the present study was to investigate the phenotypic and functional characteristics of peripheral blood DC subsets in patients with non-small cell lung cancer (NSCLC), and the development of an antitumor cytotoxic response by mononuclear cells (MNCs) from patients using in vitro generated antigen-primed DCs. Heparinized peripheral venous blood samples were obtained from 10 healthy donors and 20 patients with a histologically verified diagnosis of NSCLC. The ability of antigen-activated DCs to stimulate the activity of MNCs against autologous tumor cells was evaluated using a cytotoxic test. Peripheral blood DC subsets from patients with NSCLC were identified to be decreased and to exhibit an impaired ability to mature, compared with healthy donors. Furthermore, DCs generated from MNCs from patients with NSCLC were able to stimulate a specific cytotoxic response when loaded with autologous tumor lysates or RNA and matured, in vitro. A perforin and granzyme B-dependent mode of cytotoxicity was primarily induced. The ability of DCs loaded with tumor antigens to increase the cytotoxic activity of MNCs against NSCLC cells in vitro indicates the effective induction and co-stimulation of T lymphocytes by the generated DCs.
Collapse
Affiliation(s)
- Irina Obleukhova
- Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' Laboratory of Molecular Immunology, Novosibirsk 630099, Russia
| | | | - Svetlana Falaleeva
- Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' Laboratory of Molecular Immunology, Novosibirsk 630099, Russia
| | - Julia Lopatnikova
- Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' Laboratory of Molecular Immunology, Novosibirsk 630099, Russia
| | - Vasiliy Kurilin
- Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' Laboratory of Molecular Immunology, Novosibirsk 630099, Russia
| | - Vadim Kozlov
- Novosibirsk Regional Clinical Oncology Center, Novosibirsk 630108, Russia
| | | | | | - Ekaterina Kulikova
- Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' Laboratory of Molecular Immunology, Novosibirsk 630099, Russia
| | - Sergey Sennikov
- Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' Laboratory of Molecular Immunology, Novosibirsk 630099, Russia
| |
Collapse
|
11
|
Bagirova M, Allahverdiyev AM, Abamor ES, Ullah I, Cosar G, Aydogdu M, Senturk H, Ergenoglu B. Overview of dendritic cell-based vaccine development for leishmaniasis. Parasite Immunol 2017; 38:651-662. [PMID: 27591404 DOI: 10.1111/pim.12360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/20/2016] [Indexed: 12/24/2022]
Abstract
Leishmaniasis is one of the most serious vector-borne diseases in the world and is distributed over 98 countries. It is estimated that 350 million people are at risk for leishmaniasis. There are three different generation of vaccines that have been developed to provide immunity and protection against leishmaniasis. However, their use has been limited due to undesired side effects. These vaccines have also failed to provide effective and reliable protection and, as such, currently, there is no safe and effective vaccine for leishmaniasis. Dendritic cells (DCs) are a unique population of cells that come from bone marrow and become specialized to take up, process and present antigens to helper T cells in a mechanism similar to macrophages. By considering these significant features, DCs stimulated with different kinds of Leishmania antigens have been used in recent vaccine studies for leishmaniasis with promising results so far. In this review, we aim to review and combine the latest studies about this issue after defining potential problems in vaccine development for leishmaniasis and considering the importance of DCs in the immunopathogenesis of the disease.
Collapse
Affiliation(s)
- M Bagirova
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - A M Allahverdiyev
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey.
| | - E S Abamor
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - I Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - G Cosar
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - M Aydogdu
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - H Senturk
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - B Ergenoglu
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| |
Collapse
|
12
|
Sennikov SV, Khantakova JN, Kulikova EV, Obleukhova IA, Shevchenko JA. Modern strategies and capabilities for activation of the immune response against tumor cells. Tumour Biol 2017; 39:1010428317698380. [PMID: 28513301 DOI: 10.1177/1010428317698380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells are professional antigen-presenting cells and the most potent stimulators of various immune responses, such as antitumor responses. Modern studies have not shown an effective antitumor immune response development in patients with malignant tumors. The major cause is the decrease in functional activity of dendritic cells in cancer patients through irregularities in the maturation process to a functionally active form and in the antigen presentation process to naive T lymphocytes. This review describes the main stages of cellular antitumor immune response induction in vitro, aimed at resolving the problems that are blocking the full functioning of dendritic cells, and additional stimulation of antitumor immune response.
Collapse
Affiliation(s)
- Sergey Vital'evich Sennikov
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Julia Nikolaevna Khantakova
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Ekaterina Vladimirovna Kulikova
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Irina Alexandrovna Obleukhova
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| | - Julia Alexandrovna Shevchenko
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology," Novosibirsk, Russia
| |
Collapse
|
13
|
Zhao T, Jia H, Cheng Q, Xiao Y, Li M, Ren W, Li C, Feng Y, Feng Z, Wang H, Zheng J. Nifuroxazide prompts antitumor immune response of TCL-loaded DC in mice with orthotopically-implanted hepatocarcinoma. Oncol Rep 2017; 37:3405-3414. [PMID: 28498414 DOI: 10.3892/or.2017.5629] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/13/2017] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive malignancy with a poor prognosis and high mortality. At present, vaccination with tumor cell lysate (TCL) loaded dendritic cells (DC) has been shown to be an effective therapy against HCC. However, the ability of promoting the specific T cell immune response is rather weak, influencing the antitumor response. Thus, it is necessary to find a strategy to improve the antitumor effect of TCL-loaded DC. Activation of signal transducer and activator of transcription 3 (STAT3) significantly inhibits antitumor immune response and DC maturity. Nifuroxazide, an antidiarrheal agent, has been proved to directly inhibit STAT3 activation. Thus, we investigated whether nifuroxazide could improve the antitumor immune response in mice vaccinated with TCL-loaded DC. The study provides the theoretical and experimental basis for developing an effective adjuvant for DC vaccine to treat HCC. Our results showed that the administration of nifuroxazide and DC-loaded TCL could significantly improve the survival rate, inhibit the tumor growth, and prompt the antitumor immune responses in mice with orthotopically implanted hepatocarcinomas, thus, possibly providing a new combination strategy to treat HCC.
Collapse
Affiliation(s)
- Tiesuo Zhao
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Huijie Jia
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Qian Cheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Yali Xiao
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Minming Li
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Wenjing Ren
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Chen Li
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yuchen Feng
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhiwei Feng
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Hui Wang
- Research Center for Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Junnian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
14
|
Dorostkar R, Hashemzadeh MS, Jafari S, Tat M, Ghalavand M, Asghari MH, Moloudizargari M. Immunotherapeutic efficacy of a Lactobacillus casei lysate as an adjuvant combined with a heated-4T1 mammary carcinoma cell lysate in a murine model of breast cancer. ASIAN BIOMED 2017. [DOI: 10.5372/1905-7415.1004.494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Background
Immunotherapy, during which the immune system of the patient is manipulated to act against tumors has been among the most successful methods in the treatment of breast cancer, a leading cause of mortality among women worldwide.
Objectives
To investigate the immunotherapeutic efficacy of Lactobacillus casei lysate as an adjuvant in combination with a heated-4T1 mammary carcinoma cell lysate in a model of breast cancer.
Methods
After ethics committee approval of all animal procedures, a murine model of breast cancer was induced in BALB/c mice using 4T1 cells. These mice were immunized with a combination of lysates of heated 4T1 cells and L. casei. Subsequent changes in tumor size and weight, and the production of TNF-α, IL-2, IL-12, IL-17, and IL13 were measured. Lung weights were measured as an indicator of metastasis to other organs.
Results
The tumor size and weight in mice immunized with the combined vaccine were significantly reduced compared with controls. The combined immunotherapy altered the pattern of cytokine production to the advantage of antitumor immunity, and was significantly more potent than immunization with heated-4T1-cell lysate or L. casei lysate alone.
Conclusions
Coadministration of L. casei lysate enhanced the immunotherapeutic efficacy of the heated-4T1-cell lysate as a source of tumor-associated antigens. L. casei can potentially be used as an adjuvant combined with sources of tumor antigens in the treatment of cancers, and as a safe alternative to the current adjuvants that cause greater irritation to hosts. Further studies are required to clarify the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Ruhollah Dorostkar
- Applied Virology Research Center , Baqiyatallah University of Medical Sciences , Tehran 14351 , Iran
| | | | - Sajjad Jafari
- Faculty of Veterinary Medicine , Urmia University , Urmia 57153 , Iran
| | - Mahdi Tat
- Applied Virology Research Center , Baqiyatallah University of Medical Sciences , Tehran 14351 , Iran
| | - Majdedin Ghalavand
- Applied Virology Research Center , Baqiyatallah University of Medical Sciences , Tehran 14351 , Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology, Faculty of Medicine , Babol University of Medical Sciences , Babol 47176 , Iran
- Department of Toxicology and Pharmacology , Faculty of Pharmacy and Pharmaceutical Sciences Research Center , Tehran University of Medical Sciences , Tehran 14155 , Iran
| | - Milad Moloudizargari
- Student Research Committee, Department of Immunology , School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran 19839 , Iran
| |
Collapse
|
15
|
Hou F, Huang QM, Hu DN, Jonas JB, Wei WB. Immune oppression array elucidating immune escape and survival mechanisms in uveal melanoma. Int J Ophthalmol 2016; 9:1701-1712. [PMID: 28003967 DOI: 10.18240/ijo.2016.12.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/27/2016] [Indexed: 12/18/2022] Open
Abstract
AIM To examine the genetic profile of primary uveal melanoma (UM) as compared to UM in immune escape. METHODS Dendritic cells (DC) loaded with lysates of UM cells of high metastatic potential were used to stimulate CTLs(CTLs). When CTLs co-cultured with the UM cells, most UM cells could be eliminated. Survival UM cells grew slowly and were considered to be survival variants and examined by a microarray analysis. These differential genes were analyzed further with Venn Diagrams and functions related to immune escape. We additionally examined transcriptional changes of manually selected survival variants of UM cells and of clinical UM samples by quantitative real-time polymerase chain reaction (qRT-PCR), and analyzed the correlation of these expressions and patients' survival. RESULTS Gene expression analyses revealed a marked up-regulation of SLAMF7 and CCL22 and a significant down-regulation of KRT10, FXYD3 and ABCC2. The expression of these genes in the relapsed UM was significantly greater than those in primary UM. UM patients with overexpression of these genes had a shorter survival period as compared with those of their underexpression. CONCLUSION Gene expression, in particular of SLAMF7, CCL22, KRT10, FXYD3 and ABCC2, differed between primary UM cells and survival variants of UM cells.
Collapse
Affiliation(s)
- Fang Hou
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Lab, Beijing 100730, China
| | - Qi-Ming Huang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Lab, Beijing 100730, China
| | - Dan-Ning Hu
- Departments of Ophthalmology and Pathology, New York Eye and Ear Infirmary of Mount Sinai, 310 E.14th St., NY 10003, USA
| | - Jost B Jonas
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Lab, Beijing 100730, China; Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University, Heidelberg 67117, Germany
| | - Wen-Bin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Lab, Beijing 100730, China
| |
Collapse
|
16
|
Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:168. [PMID: 27782834 PMCID: PMC5080692 DOI: 10.1186/s13046-016-0444-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/11/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Developing safe and effective cancer vaccine formulations is a primary focus in the field of cancer immunotherapy. Dendritic cells (DC) are currently employed as cellular vaccine in clinical trials of tumor immunotherapy. Recognizing the critical role of DCs in initiating anti-tumor immunity has resulted in the development of several strategies that target vaccine antigens to DCs to trigger anti-tumor T cell responses. To increase the efficiency of antigen delivery systems for anti-tumor vaccines, encapsulation of tumor-associated antigens in polymer nanoparticles (NPs) has been established. METHODS In this study, the effect of tumor lysate antigen obtained from three stage III breast cancer tissues encapsulated within PLGA NPs to enhance the DC maturation was investigated. The T-cell immune response activation was then fallowed up. Fresh breast tumors were initially used to generate tumor lysate antigens containing poly lactic-co-glycolic acid (PLGA) NP. The encapsulation efficiency and release kinetics were profiled. The efficiency of encapsulation was measured using Bradford protein assays measuring the dissolved NPs. The stability of released antigen from NPs was verified using SDS-PAGE. To evaluate the hypothesis that NPs enhances antigen presentation, including soluble tumor lysate, tumor lysate containing NPs and control NPs the efficiency of NP-mediated tumor lysate delivery to DCs was evaluated by assessing CD3+ T-cell stimulation after T cell/and DCs co-culture. RESULTS The rate of encapsulation was increased by enhancing the antigen concentration of tumor lysate. However, increasing the antigen concentration diminished the encapsulation efficiency. In addition, higher initial protein contenting NPs led to a greater cumulative release. All three patients released variable amounts of IFN-γ, IL-10, IL-12 and IL-4 in response to re-stimulation. T cells stimulated with lysate-pulsed DCs induced a substantial increase in IFN-γ and IL-12 production. We demonstrated that NPs containing tumor lysate can induce maturation and activation of DCs, as antigen alone does. CONCLUSION PLGA-NPs are attractive vehicles for protein antigen delivery which effectively induce stimulation and maturation of DCs, allowing not only an enhanced antigen processing and immunogenicity or improved antigen stability, but also the targeted delivery and slow release of antigens.
Collapse
|
17
|
Staphylococcal enterotoxin B/texosomes as a candidate for breast cancer immunotherapy. Tumour Biol 2015; 37:739-48. [DOI: 10.1007/s13277-015-3877-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022] Open
|
18
|
Phenotypic and functional comparison of two distinct subsets of programmable cell of monocytic origin (PCMOs)-derived dendritic cells with conventional monocyte-derived dendritic cells. Cell Mol Immunol 2015; 13:160-9. [PMID: 25661728 DOI: 10.1038/cmi.2014.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 12/18/2014] [Accepted: 12/18/2014] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells with the ability to induce primary T-cell responses. They are commonly produced by culturing monocytes in the presence of IL-4 and GM-CSF (cells produced in this manner are called conventional DCs). Here we report the generation of two functionally distinct subsets of DCs derived from programmable cells of monocytic origin (PCMOs) in the presence of IL-3 or tumor necrosis factor alpha (TNF-α). Monocytes were treated with macrophage colony-stimulating factor (M-CSF) and IL-3 for 6 days and then incubated with IL-4 and IL-3 (for IL-3 DCs) or with IL-4, GM-CSF and TNF-α (for TNF-α DCs) for 7 days. Monocytes were then loaded with tumor lysate (used as antigen), and poly (I∶C) was added. The maturation factors TNF-α and monocyte conditioned medium (MCM) were added on days 4 and 5, respectively. The phenotypes of the DCs generated were characterized by flow cytometry, and the cells' phagocytic activities were measured using FITC-conjugated latex bead uptake. T-cell proliferation and cytokine release were assayed using MTT and commercially available ELISA kits, respectively. We found that either IL-3DCs or TNF-α DCs induce T-cell proliferation and cytokine secretion; the cytokine release pattern showed reduced IL-12/IL-10 and IFN-γ/IL-4 ratios in both types of DCs and in DC-primed T-cell supernatant, respectively, which confirmed that the primed T cells were polarized toward aTh2-type immune response. We concluded that PCMOs are a new cell source that can develop into two functionally distinct DCs that both induce a Th2-type response in vitro. This modality can be used as a DC-based immunotherapy for autoimmune diseases.
Collapse
|
19
|
Zhang P, Yi S, Li X, Liu R, Jiang H, Huang Z, Liu Y, Wu J, Huang Y. Preparation of triple-negative breast cancer vaccine through electrofusion with day-3 dendritic cells. PLoS One 2014; 9:e102197. [PMID: 25036145 PMCID: PMC4103844 DOI: 10.1371/journal.pone.0102197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/16/2014] [Indexed: 02/02/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) in human immune system. DC-based tumor vaccine has met with some success in specific malignancies, inclusive of breast cancer. In this study, we electrofused MDA-MB-231 breast cancer cell line with day-3 DCs derived from peripheral blood monocytes, and explored the biological characteristics of fusion vaccine and its anti-tumor effects in vitro. Day-3 mature DCs were generated from day-2 immature DCs by adding cocktails composed of TNF-α, IL-1β, IL-6 and PEG2. Day-3 mature DCs were identified and electofused with breast cancer cells to generate fusion vaccine. Phenotype of fusion cells were identified by fluorescence microscope and flow cytometer. The fusion vaccine was evaluated for T cell proliferation, secretion of IL-12 and IFN-γ, and induction of tumor-specific CTL response. Despite differences in morphology, day-3 and day-7 DC expressed similar surface markers. The secretion of IL-12 and IFN-γ in fusion vaccine group was much higher than that in the control group. Compared with control group, DC-tumor fusion vaccine could better stimulate the proliferation of allogeneic T lymphocytes and kill more breast cancer cells (MDA-MB-231) in vitro. Day-3 DCs had the same function as the day-7 DCs, but with a shorter culture period. Our findings suggested that day-3 DCs fused with whole apoptotic breast cancer cells could elicit effective specific antitumor T cell responses in vitro and may be developed into a prospective candidate for adoptivet immunotherapy.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuhong Yi
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xi Li
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruilei Liu
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hua Jiang
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zenan Huang
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Liu
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Juekun Wu
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yong Huang
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
20
|
Hwang EC, Lim MS, Im CM, Kwon DD, Lee HJ, Nguyen-Pham TN, Lee YK, Lee JJ. Generation of potent cytotoxic T lymphocytes against castration-resistant prostate cancer cells by dendritic cells loaded with dying allogeneic prostate cancer cells. Scand J Immunol 2013; 77:117-24. [PMID: 23126536 DOI: 10.1111/sji.12007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 10/18/2012] [Indexed: 11/29/2022]
Abstract
To induce a potent cytotoxic T lymphocyte (CTL) response in dendritic cell (DC)-based immunotherapy against prostate cancer, various tumour antigens should be loaded onto DCs. The aim of this study was to establish a method of immunotherapy for castration-resistant prostate cancer (CRPC) using prostate cancer-specific CTLs generated in vitro by DCs. Monocyte-derived DCs from patients with CRPC were induced to mature using a standard cytokine cocktail (in IL-1β, TNF-α, IL-6 and PGE(2) : standard DCs, sDCs) or using an α-type 1-polarized DC (αDC1) cocktail (in IL-1β, TNF-α, IFN-α, IFN-γ and polyinosinic:polycytidylic acid) and loaded with the UVB-irradiated CRPC cell line PC-3. Antigen-loaded DCs were evaluated by morphological and functional assays. The αDC1s significantly increased the expression of several molecules related to DC maturation, regardless of whether the αDC1s were loaded with tumour antigens or not, compared to sDCs. The αDC1s showed a higher production of interleukin-12 both during maturation and after subsequent stimulation with CD40L, which was not significantly affected by loading with tumour antigens, as compared to standard DCs (sDCs). Prostate cancer-specific CTLs against autologous CRPC cells were successfully induced by αDC1s loaded with dying PC-3 cells. Autologous αDC1s loaded with an allogeneic CRPC cell line can generate greater CRPC-specific CTL responses as compared to sDCs and may provide a novel source of DC-based vaccines that can be used for the development of immunotherapy in patients with CRPC.
Collapse
Affiliation(s)
- E C Hwang
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Bhargava A, Mishra D, Banerjee S, Mishra PK. Dendritic cell engineering for tumor immunotherapy: from biology to clinical translation. Immunotherapy 2012; 4:703-718. [PMID: 22853757 DOI: 10.2217/imt.12.40] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dendritic cells (DCs) are the most potent APCs, with the ability to orchestrate a repertoire of immune responses. DCs play a pivotal role in the initiation, programming and regulation of tumor-specific immune responses, as they are poised to take up, process and present tumor antigens to naive or effector T lymphocytes. Although, to an extent, DC-based immunotherapeutic strategies have successfully induced specific anti-tumor responses in animal models, their clinical efficacy has rarely been translated into the clinic. This article attempts to present a complete picture of recent developments of DC-based therapeutic strategies addressing multiple components of tumor immunoenvironment. It also showcases certain practical intricacies in order to explore novel strategies for providing new impetus to DC-based cancer vaccination.
Collapse
Affiliation(s)
- Arpit Bhargava
- Division of Translational Research, Tata Memorial Centre, ACTREC, India
| | | | | | | |
Collapse
|
22
|
Wang ZY, Xing Y, Liu B, Lu L, Huang X, Ge CY, Yao WJ, Xu ML, Gao ZQ, Cao RY, Wu J, Li TM, Liu JJ. Protective antitumor immunity induced by tumor cell lysates conjugated with diphtheria toxin and adjuvant epitope in mouse breast tumor models. CHINESE JOURNAL OF CANCER 2012; 31:295-305. [PMID: 22464650 PMCID: PMC3777491 DOI: 10.5732/cjc.011.10384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer cell vaccine-based immunotherapy has received increasing interest in many clinical trials involving patients with breast cancer. Combining with appropriate adjuvants can enhance the weak immunogenic properties of tumor cell lysates (TCL). In this study, diphtheria toxin (DT) and two tandem repeats of mycobacterial heat shock protein 70 (mHSP70) fragment 407-426 (M2) were conjugated to TCL with glutaraldehyde, and the constructed cancer cell vaccine was named DT-TCL-M2. Subcutaneous injection of DT-TCL-M2 in mice effectively elicited tumor-specific polyclonal immune responses, including humoral and cellular immune responses. High levels of antibodies against TCL were detected in the serum of immunized mice with ELISA and verified with Western blot analyses. The splenocytes from immunized mice showed potent cytotoxicity on Ehrlich ascites carcinoma cells. Moreover, the protective antitumor immunity induced by DT-TCL-M2 inhibited tumor growth in a mouse breast tumor model. DT-TCL-M2 also attenuated tumor-induced angiogenesis and slowed tumor growth in a mouse intradermal tumor model. These findings demonstrate that TCL conjugated with appropriate adjuvants induced effective antitumor immunity in vivo. Improvements in potency could further make cancer cell vaccines a useful and safe method for preventing cancer recurrence after resection.
Collapse
Affiliation(s)
- Ze-Yu Wang
- State Key Laboratory of Natural Medicine, Institute of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kovalcsik E, Lowe K, Fischer M, Dalgleish A, Bodman-Smith MD. Poly(I:C)-induced tumour cell death leads to DC maturation and Th1 activation. Cancer Immunol Immunother 2011; 60:1609-24. [PMID: 21691724 PMCID: PMC11028976 DOI: 10.1007/s00262-011-1058-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 05/30/2011] [Indexed: 01/23/2023]
Abstract
Dendritic cells (DCs) have the ability to generate peptide epitopes for MHC class I molecules derived from apoptotic tumour cells for direct recognition by cytotoxic T cells. This function has lead to DCs being used in vaccine strategies. In this study, we investigate the effect of inducing apoptosis in tumour cell lines using IFN-γ and poly(I:C), the subsequent maturation of the endocytosing DC and its ability to direct the resulting T cell response. We show that uptake of poly(I:C)-induced apoptotic tumour cells leads to DC maturation and activation with a Th1 cell polarising capacity. In contrast, these effects are not seen by DCs loaded with γ-irradiated apoptotic tumour cells. We propose that the manner in which tumour cells are induced to die can have a profound effect on the endocytosing DC and the resulting T cell response.
Collapse
Affiliation(s)
- Edit Kovalcsik
- Systems Immunology Group, Cellular and Molecular Medicine, St George’s University of London, Cranmer Terrace, London, SW17 ORE UK
| | - Katie Lowe
- Systems Immunology Group, Cellular and Molecular Medicine, St George’s University of London, Cranmer Terrace, London, SW17 ORE UK
| | - Mike Fischer
- Systems Immunology Group, Cellular and Molecular Medicine, St George’s University of London, Cranmer Terrace, London, SW17 ORE UK
| | - Angus Dalgleish
- Systems Immunology Group, Cellular and Molecular Medicine, St George’s University of London, Cranmer Terrace, London, SW17 ORE UK
| | - Mark D. Bodman-Smith
- Systems Immunology Group, Cellular and Molecular Medicine, St George’s University of London, Cranmer Terrace, London, SW17 ORE UK
| |
Collapse
|
24
|
GanjiBakhsh M, Nejati V, Delirezh N, Asadi M, Gholami K. Mixture of fibroblast, epithelial and endothelial cells conditioned media induce monocyte-derived dendritic cell maturation. Cell Immunol 2011; 272:18-24. [PMID: 22035776 DOI: 10.1016/j.cellimm.2011.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 10/02/2011] [Accepted: 10/03/2011] [Indexed: 12/26/2022]
Abstract
Fully matured DCs with large amount cytoplasm and copious dendritic projections were visible at the end of culturing period in the presence of MCM, TNF-α and poly (I:C), with or without FEECM. Thus, DCs generated with these maturation factors are nonadherent and have typical satellite morphology. Flow cytometric analysis using anti-CD14, -CD80, -CD86, -HLA-DR and -CD83 revealed that expression of CD14 is decreased in particular in FEECM treated DCs, on day 5 and expression of CD80, CD86 and HLA-DR was the higher when FEECM are added to maturation factor. Functionally, when DCs matured in the presence of FEECM elicited stronger MLR, reduced phagocytic activity. These results support the use of the FEECM with MCM, TNF-α and poly (I-C) as maturation factor in DC generation that could result in functionally mature monocyte-derived DCs in comparison to either alone.
Collapse
Affiliation(s)
- Meysam GanjiBakhsh
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | | | | | | | | |
Collapse
|
25
|
Immunization with apoptotic phagocytes containing Histoplasma capsulatum activates functional CD8(+) T cells to protect against histoplasmosis. Infect Immun 2011; 79:4493-502. [PMID: 21911464 DOI: 10.1128/iai.05350-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have previously revealed the protective role of CD8(+) T cells in host defense against Histoplasma capsulatum in animals with CD4(+) T cell deficiency and demonstrated that sensitized CD8(+) T cells are restimulated in vitro by dendritic cells that have ingested apoptotic macrophage-associated Histoplasma antigen. Here we show that immunization with apoptotic phagocytes containing heat-killed Histoplasma efficiently activated functional CD8(+) T cells whose contribution was equal to that of CD4(+) T cells in protection against Histoplasma challenge. Inhibition of macrophage apoptosis due to inducible nitric oxide synthase (iNOS) deficiency or by caspase inhibitor treatment dampened the CD8(+) T cell but not the CD4(+) T cell response to pulmonary Histoplasma infection. In mice subcutaneously immunized with viable Histoplasma yeasts whose CD8(+) T cells are protective against Histoplasma challenge, there was heavy granulocyte and macrophage infiltration and the infiltrating cells became apoptotic. In mice subcutaneously immunized with carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled apoptotic macrophages containing heat-killed Histoplasma, the CFSE-labeled macrophage material was found to localize within dendritic cells in the draining lymph node. Moreover, depleting dendritic cells in immunized CD11c-DTR mice significantly reduced CD8(+) T cell activation. Taken together, our results revealed that phagocyte apoptosis in the Histoplasma-infected host is associated with CD8(+) T cell activation and that immunization with apoptotic phagocytes containing heat-killed Histoplasma efficiently evokes a protective CD8(+) T cell response. These results suggest that employing apoptotic phagocytes as antigen donor cells is a viable approach for the development of efficacious vaccines to elicit strong CD8(+) T cell as well as CD4(+) T cell responses to Histoplasma infection.
Collapse
|
26
|
Park MH, Yang DH, Kim MH, Jang JH, Jang YY, Lee YK, Jin CJ, Pham TNN, Thi TAN, Lim MS, Lee HJ, Hong CY, Yoon JH, Lee JJ. Alpha-Type 1 Polarized Dendritic Cells Loaded with Apoptotic Allogeneic Breast Cancer Cells Can Induce Potent Cytotoxic T Lymphocytes against Breast Cancer. Cancer Res Treat 2011; 43:56-66. [PMID: 21509164 PMCID: PMC3072536 DOI: 10.4143/crt.2011.43.1.56] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 08/05/2010] [Indexed: 01/08/2023] Open
Abstract
Purpose Various tumor antigens can be loaded onto dendritic cells (DCs) to induce a potent cytotoxic T lymphocyte (CTL) response in DC-based immunotherapy against breast cancer. However, in the clinical setting, obtaining a sufficient number of autologous tumor cells as a source of tumor antigens is a laborious process. We therefore investigated the feasibility of immunotherapy using breast-cancer-specific CTLs generated in vitro by use of alpha-type 1 polarized DCs (α DC1s) loaded with ultraviolet B-irradiated cells of the breast cancer cell line MCF-7. Materials and Methods αDC1s were induced by loading allogeneic tumor antigen generated from the MCF-7 UVB-irradiated breast cancer cell line. Antigen-pulsed αDC1s were evaluated by morphological and functional assays, and the breast-cancer-specific CTL response was analyzed by cytotoxic assay. Results The αDC1s significantly increased the expression of several molecules related to DC maturation without differences according to whether the αDC1s were loaded with tumor antigens. The αDC1s showed a high production of interleukin-12 both during maturation and after subsequent stimulation with CD40L, which was not significantly affected by loading with tumor antigens. Breast-cancer-specific CTLs against autologous breast cancer cells were successfully induced by αDC1s loaded with apoptotic MCF-7 cells. Conclusion Autologous DCs loaded with an allogeneic breast cancer cell line can generate potent breast-cancer-specific CTL responses. This may be a practical method for cellular immunotherapy in patients with breast cancer.
Collapse
Affiliation(s)
- Min-Ho Park
- Department of Surgery, Chonnam National University Hwasun Hospital, Chonnam National University School of Medicine, Hwasun, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tsai BY, Lin YL, Chiang BL. Autoimmune response induced by dendritic cells exerts anti-tumor effect in murine model of leukemia. J Autoimmun 2010; 34:364-70. [DOI: 10.1016/j.jaut.2009.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 08/29/2009] [Accepted: 08/29/2009] [Indexed: 01/20/2023]
|