1
|
Wang G, Yang Y, Yi D, Yuan L, Yin PH, Ke X, Jun-Jie W, Tao MF. Eudragit S100 prepared pH-responsive liposomes-loaded betulinic acid against colorectal cancer in vitro and in vivo. J Liposome Res 2021; 32:250-264. [PMID: 34895013 DOI: 10.1080/08982104.2021.1999974] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study aimed to develop polymer Eudragit S100 for preparing pH-responsive liposomes-loaded betulinic acid (pH-BA-LP) to improve the therapeutic index of chemotherapy for colorectal cancer. BA-loaded liposomes were coated with Eudragit S100 by a thin film dispersion and easily scalable pH-driven method. The prepared liposomes were evaluated for size, surface morphology, entrapment efficiency, stability, in vitro drug release, and antitumor activity. In particular, pH-BA-LP showed advantages such as lower size (<100 nm), encapsulation efficiency of 90%, high stability, and stably cumulative release. By detecting the antitumor effects of pH-BA-LP in vivo, it showed that the tumor proliferation and cell migration were significantly inhibited in colorectal cancer. The pH-BA-LP also inhibited tumor growth via the regulation of Akt/TLR-mediated signalling and significantly down-regulated the expression of NFAT1 and NFAT4 proteins. It was found that pH-BA-LP can increase NK cells and CD3+ cells in tumor tissues, and the proportion of CD8+ cells in CD3+ cells was also increased, which proved that pH-BA-LP can play an antitumor effect by enhancing the autoimmunity level in tumor-bearing mice. The positive infiltration rates of CD8 and CD68 were increased and CD163 was relatively decreased by using pH-BA-LP, which proved that pH-BA-LP can regulate the immune infiltration levels in tumor-bearing mice. Therefore, the present work provides an effective method to prepare pH-responsive polymer-coated liposomes for colonic delivery with biologically active compounds.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Yu Yang
- Jiangsu University School of Pharmacy, Zhenjiang City, China
| | - Du Yi
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Lu Yuan
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Pei-Hao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Ke
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wang Jun-Jie
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Min-Fang Tao
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| |
Collapse
|
2
|
Wang G, Yu Y, Li ZM, Zhu ZM, Wang ZJ, Tao MF. Triterpenoids of Rhus chinensis Supressed Colorectal Cancer Progress by Enhancing Antitumor Immunity and CD8 + T Cells Tumor Infiltration. Nutr Cancer 2021; 74:2550-2564. [PMID: 34866510 DOI: 10.1080/01635581.2021.2009523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The absence of CD8+ T cells in the tumor center has become a major obstacle in the immunotherapy of colorectal cancer. Therefore, new therapeutic strategies are urgently needed to promote the accumulation of CD8+ T cells in the tumor center. Previous studies have shown that triterpenoid of Rhus chinensis (TER) is involved in the proliferation and apoptosis of colorectal cancer cells, and can regulate their immune activity, but its mechanism needs to be further elucidated. In this study, the antitumor effect and adaptive immune response of TER on tumor-bearing mice were evaluated and compared with 5-fluorouracil. The results showed that TER could significantly inhibit tumor growth and prolong the survival time of tumor-bearing mice. The In Vivo studies have shown that TER can not only enhance antitumor immunity and promote the accumulation of CD8 + T cells to tumor sites, but also inhibit tumor progression by regulating the expression of PD-1 and PD-L1 and significantly reducing the mortality of mice. Our study demonstrated for the first time that TER has oncolytic effect, and recruited adaptive immune cells to enhance the efficacy of anti-PD-1/PD-L1 in colorectal cancer, which provides a potential therapeutic target for combined immunotherapy of colorectal cancer.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Yang Yu
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zi-Meng Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Zhi-Min Zhu
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Zhi-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Min-Fang Tao
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| |
Collapse
|
3
|
Jiang M, Qin B, Luo L, Li X, Shi Y, Zhang J, Luo Z, Zhu C, Guan G, Du Y, You J. A clinically acceptable strategy for sensitizing anti-PD-1 treatment by hypoxia relief. J Control Release 2021; 335:408-419. [PMID: 34089792 DOI: 10.1016/j.jconrel.2021.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
The hypoxic tumor microenvironment (TME) hinders the effectiveness of immunotherapy. Alleviating tumor hypoxia to improve the efficacy of immune checkpoint inhibitors (ICIs) represented by programmed cell death protein 1 (PD-1) antibody has become a meaningful strategy. In this study, we adopted three methods to alleviate hypoxia, including direct oxygen delivery using two different carriers and an indirect way involving HIF-1α inhibition. Both in vivo and in vitro experiments showed that liposomes modified with perfluorocarbon or hemoglobin (PFC@lipo or Hb@lipo) were able to efficiently load and release oxygen, relieving tumor hypoxia. However, the gas release behavior of PFC@lipo was uncontrollable, which might induce acute hyperoxia side effects during intravenous injection and reduce its biosafety. In contrast, whether administered locally or systemically, Hb@lipo revealed high animal tolerance, and was much safer than commercial HIF-1α inhibitor (PX-478), displaying prospects as a promising oxygen carrier for clinical practice. Pharmacodynamic experiments suggested that Hb@lipo helped PD-1 antibody break the therapeutic bottleneck and significantly inhibited the progression of 4 T1 breast cancer. But in CT26 colon cancer, the combination therapy failed to suppress tumor growth. After in-depth analysis and comparison, we found that the ratio of M1/M2 tumor associated macrophages (TAMs) between these two tumor models were dramatically different. And the lower M1/M2 ratio in CT26 tumors limited the anti-tumor effect of combination therapy. In this study, three methods for alleviating tumor hypoxia were compared from the perspectives of biosafety, efficacy and clinical applicability. Among them, Hb@lipo stood out, and its combined use with PD-1 antibody exhibit a distinct synergistic suppression effect on tumors with more M1 macrophages presented in the microenvironment. Our work provided a good reference for improving the efficacy of PD-1 antibody by alleviating tumor hypoxia.
Collapse
Affiliation(s)
- Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Bing Qin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Chunqi Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Guannan Guan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yongzhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
4
|
Shytikov D, Rohila D, Li D, Wang P, Jiang M, Zhang M, Xu Q, Lu L. Functional Characterization of Ly49 +CD8 T-Cells in Both Normal Condition and During Anti-Viral Response. Front Immunol 2021; 11:602783. [PMID: 33488602 PMCID: PMC7817614 DOI: 10.3389/fimmu.2020.602783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 11/14/2022] Open
Abstract
The role of Ly49+CD8 T-cells in the immune system is not clear. Previously, several papers suggested Ly49+CD8 T-cells as immunosuppressors, while multiple studies also suggested their role as potent participants of the immune response. The mechanism of Ly49 expression on CD8 T-cells is also not clear. We investigated phenotype, functions, and regulation of Ly49 expression on murine CD8 T-cells in both normal state and during LCMV infection. CD8 T-cells express different Ly49 receptors compared with NK-cells. In intact mice, Ly49+CD8 T-cells have a phenotype similar to resting central memory CD8 T-cells and do not show impaired proliferation and cytokine production. Conventional CD8 T-cells upregulate Ly49 receptors during TCR-induced stimulation, and IL-2, as well as IL-15, affect it. At the same time, Ly49+CD8 T-cells change the Ly49 expression profile dramatically upon re-stimulation downregulating inhibitory and upregulating activating Ly49 receptors. We observed the expression of Ly49 receptors on the virus-specific CD8 T-cells during LCMV infection, especially marked in the early stages, and participation of Ly49+CD8 T-cells in the anti-viral response. Thus, CD8 T-cells acquire Ly49 receptors during the T-cell activation and show dynamic regulation of Ly49 receptors during stimulation.
Collapse
Affiliation(s)
- Dmytro Shytikov
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Deepak Rohila
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan Li
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengfei Wang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mei Jiang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mingxu Zhang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Department of Immunology and Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Xu
- Department of Immunology and Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linrong Lu
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Department of Immunology and Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Wang W, Tong Z, Zhong J, Zhang L, Zhang H, Su Y, Gao B, Zhang C. Identification of IL-10-secreting CD8 +CD28 -PD-1 + regulatory T cells associated with chronic hepatitis C virus infection. Immunol Lett 2018; 202:16-22. [PMID: 30055200 DOI: 10.1016/j.imlet.2018.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/28/2022]
Abstract
CD8+CD28- regulatory T cells (Tregs) play important roles in chronic viral infections. Programmed death 1 (PD-1) is highly expressed on hepatitis C virus (HCV)-specific CTLs. However, little is known regarding the role of CD8+CD28-PD1+ T cells in hepatitis C. Herein, we found that the frequency of CD8+CD28-PD1+, but not CD8+CD28-PD1- T cells, correlated with markers of chronic hepatitis C virus (HCV) infection and the response to treatment. Our results showed that CD8+CD28-PD1+ T cells were significantly elevated in chronic HCV-infected patients and there was a distinct correlation between the frequency of CD8+CD28-PD1+ T cells and serum levels of HCV RNA. During a 48-week course of treatment with peg-IFN-a2a plus ribavirin, dynamic changes in the frequencies of CD8+CD28-PD1+ T cells were observed, associated with the virologic response. IL-10 secretion may explain the suppressive function of CD8+CD28-PD1+ T cells in chronic HCV-infected patients. Overall, our study demonstrates that PD-1 is an important marker of CD8+CD28- Tregs in chronic HCV infection. Thus, the frequency and regulatory function of CD8+CD28-PD1+ T cells play vital roles in HCV infection and the response to treatment.
Collapse
Affiliation(s)
- Weihong Wang
- Department of Infectious Diseases,Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
| | - Zhaowei Tong
- Department of Infectious Diseases,Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
| | - Jianfeng Zhong
- Department of Infectious Diseases,Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
| | - Longqi Zhang
- Department of Infectious Diseases,Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
| | - Hui Zhang
- School of Medicine, Huzhou University, Huzhou 313000, China
| | - Yanguang Su
- School of Medicine, Huzhou University, Huzhou 313000, China
| | - Bingbing Gao
- School of Medicine, Huzhou University, Huzhou 313000, China
| | - Chun Zhang
- Department of Infectious Diseases,Huzhou Central Hospital, Huzhou, Zhejiang 313000, China.
| |
Collapse
|