1
|
Zhao H, Zhang X, Zhang N, Zhu L, Lian H. The interplay between Salmonella and host: Mechanisms and strategies for bacterial survival. CELL INSIGHT 2025; 4:100237. [PMID: 40177681 PMCID: PMC11964643 DOI: 10.1016/j.cellin.2025.100237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 04/05/2025]
Abstract
Salmonella, an intracellular pathogen, infects both humans and animals, causing diverse diseases such as gastroenteritis and enteric fever. The Salmonella type III secretion system (T3SS), encoded within its pathogenicity islands (SPIs), is critical for bacterial virulence by directly delivering multiple effectors into eukaryotic host cells. Salmonella utilizes these effectors to facilitate its survival and replication within the host through modulating cytoskeletal dynamics, inflammatory responses, the biogenesis of Salmonella-containing vacuole (SCV), and host cell survival. Moreover, these effectors also interfere with immune responses via inhibiting innate immunity or antigen presentation. In this review, we summarize the current progress in the survival strategies employed by Salmonella and the molecular mechanisms underlying its interactions with the host. Understanding the interplay between Salmonella and host can enhance our knowledge of the bacterium's pathogenic processes and provide new insights into how it manipulates host cellular physiological activities to ensure its survival.
Collapse
Affiliation(s)
- Hongyu Zhao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, Hubei, China
| | - Xinyue Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, Hubei, China
| | - Ningning Zhang
- Yale Stem Cell Center, New Haven, CT, 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
- Yale Cooperative Center of Excellence in Hematology, New Haven, CT, 12208, USA
| | - Li Zhu
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Huan Lian
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, Hubei, China
| |
Collapse
|
2
|
Wang S, Tian X, Zhong Y, Xie X, Gao M, Zhang C, Cheng X, Qi Y, Zhong B, Feng P, Lan K, Zhang J. Disrupting the OTUD4-USP7 deubiquitinase complex to suppress herpesvirus replication: a novel antiviral strategy. PLoS Pathog 2025; 21:e1013052. [PMID: 40208866 PMCID: PMC12047801 DOI: 10.1371/journal.ppat.1013052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 05/02/2025] [Accepted: 03/18/2025] [Indexed: 04/12/2025] Open
Abstract
The development of effective and broad-spectrum antiviral therapies remains an unmet need. Current virus-targeted antiviral strategies are often limited by narrow spectrum of activity and the rapid emergence of resistance. As a result, there is increasing interest in alternative approaches that target host cell factors critical for viral replication. One promising strategy is the targeting of deubiquitinases (DUBs), enzymes that regulate key host and viral proteins involved in viral reactivation and replication. In this study, we explore the potential of targeting a DUB complex for antiviral therapy based on our previous study. Our previous work revealed that the OTUD4-USP7 DUB complex plays a crucial role in KSHV lytic reactivation. Here, we developed a peptide, p8, which effectively disrupts the interaction between OTUD4 and USP7, leading to decreased abundance of the key viral transcription factor, RTA, and suppression of murine herpesvirus replication in vivo. These findings underscore the OTUD4-USP7 DUB complex as a promising host-targeting antiviral therapeutic target for the treatment of KSHV-associated malignancies. Moreover, our study highlights the potential of DUB-targeting therapies as a novel and effective strategy for the development of broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Shaowei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology and Biosafety, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuezhang Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology and Biosafety, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yunhong Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology and Biosafety, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xiaoyu Xie
- Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology and Biosafety, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Chuchu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology and Biosafety, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xi Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology and Biosafety, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yining Qi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology and Biosafety, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Bo Zhong
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Ke Lan
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Junjie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology and Biosafety, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Wang J, He Y, Zhu X, Zhu J, Deng Z, Zhang H, Chen Y, Zhang G, Shi T, Chen W. Elevated SPARC Disrupts the Intestinal Barrier Integrity in Crohn's Disease by Interacting with OTUD4 and Activating the MYD88/NF-κB Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409419. [PMID: 39888301 PMCID: PMC11923920 DOI: 10.1002/advs.202409419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/03/2025] [Indexed: 02/01/2025]
Abstract
Disruption of the intestinal epithelial barrier results in increased permeability and is a key factor in the onset and progression of Crohn's disease (CD). The protein SPARC is primarily involved in cell interaction and migration, but its specific role in the intestinal epithelial barrier remains unclear. This study demonstrates that SPARC is significantly overexpressed in both CD patients and murine models of colitis. Furthermore, mice deficient in SPARC exhibits resistance to chemically induced colitis, a phenomenon associated with the modulation of barrier-associated proteins. Mechanistically, it is elucidated that SPARC competitively binds to OTUD4 in conjunction with MYD88, facilitating the translocation of p65 from the cytoplasm to the nucleus and subsequent activation of the p65-MLCK/MLC2 pathway, thereby compromising barrier integrity. Additionally, it is identified that the elevated expression of SPARC in CD is regulated via the METTL3-YTHDF1 axis. These findings indicate that SPARC levels are elevated in patients with CD and in colitis-induced mice, leading to intestinal barrier damage through direct interaction with OTUD4 and subsequent activation of the MYD88/p65/MLCK/MLC2 signaling pathway. Consequently, targeting SPARC or the OTUD4/MYD88/p65/MLCK/MLC2 axis may offer novel insights into the molecular mechanisms underlying CD and represent a potential therapeutic strategy.
Collapse
Affiliation(s)
- Jiayu Wang
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhou215000China
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhou215000China
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhou215000China
| | - Yuxin He
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhou215000China
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhou215000China
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhou215000China
| | - Xingchao Zhu
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhou215000China
| | - Jinghan Zhu
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhou215000China
- Infectious Disease DepartmentThe Fourth Affiliated Hospital of Soochow UniversitySuzhou Dushu Lake HospitalSuzhou215000China
| | - Zilin Deng
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhou215000China
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhou215000China
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhou215000China
| | - Huan Zhang
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhou215000China
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhou215000China
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhou215000China
| | - Yanjun Chen
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhou215000China
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhou215000China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhou215000China
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhou215000China
| | - Tongguo Shi
- Jiangsu Institute of Clinical ImmunologyThe First Affiliated Hospital of Soochow UniversitySuzhou215000China
| | - Weichang Chen
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhou215000China
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhou215000China
| |
Collapse
|
4
|
Yang C, Li HX, Gan H, Shuai X, Dong C, Wang W, Lin D, Zhong B. KRAS4B oncogenic mutants promote non-small cell lung cancer progression via the interaction of deubiquitinase USP25 with RNF31. Dev Cell 2025:S1534-5807(25)00035-8. [PMID: 39952242 DOI: 10.1016/j.devcel.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) oncogenic mutations are genetic drivers in various cancers, including non-small cell lung cancer (NSCLC). However, the regulatory mechanisms underlying the progression of NSCLC driven by oncogenic KRAS mutants are incompletely understood. Here, we show that ubiquitin specific peptidase 25 (USP25) impedes ring finger protein 31 (RNF31)-mediated linear ubiquitination of KRAS oncogenic mutants (KRASmuts) independently of its deubiquitinase activity, which facilitates the plasma membrane (PM) localization and the downstream oncogenic signaling of KRASmuts. Importantly, knockout (KO) of USP25 effectively suppresses tumor growth and RAS signaling in KRASmuts-driven autochthonous NSCLC mouse models and xenograft models, which is restored by additional deletion or inhibition of RNF31. Notably, knockin of USP25C178A in KRasG12D-driven NSCLC models fails to inhibit cancer progression and reconstitution of USP25C178A into USP25 KO A549 cells restores tumor growth. These findings identify previously uncharacterized roles of USP25 and RNF31 in oncogenic KRAS-driven NSCLC progression and provide potential therapeutic targets for KRASmuts-related cancers.
Collapse
Affiliation(s)
- Ci Yang
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, State Key Laboratory of Metabolism and Regulation in Complex Organisms, Wuhan University, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hong-Xu Li
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, State Key Laboratory of Metabolism and Regulation in Complex Organisms, Wuhan University, Wuhan 430072, China; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hu Gan
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, State Key Laboratory of Metabolism and Regulation in Complex Organisms, Wuhan University, Wuhan 430072, China
| | - Xin Shuai
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, State Key Laboratory of Metabolism and Regulation in Complex Organisms, Wuhan University, Wuhan 430072, China
| | - Chen Dong
- School of Medicine, Westlake University, Hangzhou 310024, China
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China.
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China.
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, State Key Laboratory of Metabolism and Regulation in Complex Organisms, Wuhan University, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
5
|
Tang Z, Hu J, Li XC, Wang W, Zhang HY, Guo YY, Shuai X, Chu Q, Xie C, Lin D, Zhong B. A subset of neutrophils activates anti-tumor immunity and inhibits non-small-cell lung cancer progression. Dev Cell 2025; 60:379-395.e8. [PMID: 39515330 DOI: 10.1016/j.devcel.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Neutrophils in the tumor microenvironment (TME) are heterogeneous populations associated with cancer prognosis and immunotherapy. However, the plasticity and function of heterogeneous neutrophils in the TME of non-small-cell lung cancer (NSCLC) remain unclear. Here, we show that neutrophils produce high levels of interleukin (IL)-8, which induce the differentiation of CD74highSiglecFlow neutrophils and suppress the generation of CD74lowSiglecFhigh neutrophils in the TME of IL-8-humanized NSCLC mice. The CD74highSiglecFlow neutrophils boost anti-tumor T cell responses via antigen cross-presentation. Deleting CD74 in IL-8-humanized neutrophils impairs T cell activation and exacerbates NSCLC progression, whereas a CD74 agonist enhances T cell activation and the efficacy of anti-programmed cell death 1 (PD-1) or osimertinib therapies. Additionally, the CD74highCD63low neutrophils in the TME and peripheral blood of advanced NSCLC patients phenocopy the CD74highSiglecFlow neutrophils in the TME of NSCLC mice and correlate well with the responsiveness to anti-PD-1 plus chemotherapies. These findings demonstrate an IL-8-CD74high neutrophil axis that promotes anti-tumor immunity in NSCLC.
Collapse
Affiliation(s)
- Zhen Tang
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jing Hu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xu-Chang Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Han-Yue Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yu-Yao Guo
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Shuai
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
6
|
Li Q, Fang X, Li Y, Lin J, Huang C, He S, Huang S, Li J, Gong S, Liu N, Ma J, Zhao Y, Tang L. DCAF7 Acts as A Scaffold to Recruit USP10 for G3BP1 Deubiquitylation and Facilitates Chemoresistance and Metastasis in Nasopharyngeal Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403262. [PMID: 38973296 PMCID: PMC11423104 DOI: 10.1002/advs.202403262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Indexed: 07/09/2024]
Abstract
Despite docetaxel combined with cisplatin and 5-fluorouracil (TPF) being the established treatment for advanced nasopharyngeal carcinoma (NPC), there are patients who do not respond positively to this form of therapy. However, the mechanisms underlying this lack of benefit remain unclear. DCAF7 is identified as a chemoresistance gene attenuating the response to TPF therapy in NPC patients. DCAF7 promotes the cisplatin resistance and metastasis of NPC cells in vitro and in vivo. Mechanistically, DCAF7 serves as a scaffold protein that facilitates the interaction between USP10 and G3BP1, leading to the elimination of K48-linked ubiquitin moieties from Lys76 of G3BP1. This process helps prevent the degradation of G3BP1 via the ubiquitin‒proteasome pathway and promotes the formation of stress granule (SG)-like structures. Moreover, knockdown of G3BP1 successfully reversed the formation of SG-like structures and the oncogenic effects of DCAF7. Significantly, NPC patients with increased levels of DCAF7 showed a high risk of metastasis, and elevated DCAF7 levels are linked to an unfavorable prognosis. The study reveals DCAF7 as a crucial gene for cisplatin resistance and offers further understanding of how chemoresistance develops in NPC. The DCAF7-USP10-G3BP1 axis contains potential targets and biomarkers for NPC treatment.
Collapse
Affiliation(s)
- Qing‐Jie Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Xue‐Liang Fang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Ying‐Qin Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Jia‐Yi Lin
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Cheng‐Long Huang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Shi‐Wei He
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Sheng‐Yan Huang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Jun‐Yan Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Sha Gong
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Na Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Jun Ma
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Yin Zhao
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| | - Ling‐Long Tang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy651 Dongfeng Road EastGuangzhouGuangdong510060China
| |
Collapse
|
7
|
Cheng Y, Wang S, Gao Q, Fang D. ATXN3 functions as a tumor suppressor through potentiating galectin-9-mediated apoptosis in human colon adenocarcinoma. J Biol Chem 2024; 300:107415. [PMID: 38815863 PMCID: PMC11254720 DOI: 10.1016/j.jbc.2024.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
While deubiquitinase ATXN3 has been implicated as a potential oncogene in various types of human cancers, its role in colon adenocarcinoma remains understudied. Surprisingly, our findings demonstrate that ATXN3 exerts an antitumor effect in human colon cancers through potentiating Galectin-9-induced apoptosis. CRISPR-mediated ATXN3 deletion unexpectedly intensified colon cancer growth both in vitro and in xenograft colon cancers. At the molecular level, we identified ATXN3 as a bona fide deubiquitinase specifically targeting Galectin-9, as ATXN3 interacted with and inhibited Galectin-9 ubiquitination. Consequently, targeted ATXN3 ablation resulted in reduced Galectin-9 protein expression, thereby diminishing Galectin-9-induced colon cancer apoptosis and cell growth arrest. The ectopic expression of Galectin-9 fully reversed the growth of ATXN3-null colon cancer in mice. Furthermore, immunohistochemistry staining revealed a significant reduction in both ATXN3 and Galectin-9 protein expression, along with a positive correlation between them in human colon cancer. Our study identifies the first Galectin-9-specific deubiquitinase and unveils a tumor-suppressive role of ATXN3 in human colon cancer.
Collapse
Affiliation(s)
- Yang Cheng
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shengnan Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Qiong Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Center for Human Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
8
|
Guo YY, Gao Y, Zhao YL, Xie C, Gan H, Cheng X, Yang LP, Hu J, Shu HB, Zhong B, Lin D, Yao J. Viral infection and spread are inhibited by the polyubiquitination and downregulation of TRPV2 channel by the interferon-stimulated gene TRIM21. Cell Rep 2024; 43:114095. [PMID: 38613787 DOI: 10.1016/j.celrep.2024.114095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2024] Open
Abstract
Interferon (IFN) contributes to the host's antiviral response by inducing IFN-stimulated genes (ISGs). However, their functional targets and the mechanism of action remain elusive. Here, we report that one such ISG, TRIM21, interacts with and degrades the TRPV2 channel in myeloid cells, reducing its expression and providing host protection against viral infections. Moreover, viral infection upregulates TRIM21 in paracrine and autocrine manners, downregulating TRPV2 in neighboring cells to prevent viral spread to uninfected cells. Consistently, the Trim21-/- mice are more susceptible to HSV-1 and VSV infection than the Trim21+/+ littermates, in which viral susceptibility is rescued by inhibition or deletion of TRPV2. Mechanistically, TRIM21 catalyzes the K48-linked ubiquitination of TRPV2 at Lys295. TRPV2K295R is resistant to viral-infection-induced TRIM21-dependent ubiquitination and degradation, promoting viral infection more profoundly than wild-type TRPV2 when reconstituted into Lyz2-Cre;Trpv2fl/fl myeloid cells. These findings characterize targeting the TRIM21-TRPV2 axis as a conducive strategy to control viral spread to bystander cells.
Collapse
Affiliation(s)
- Yu-Yao Guo
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China; Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, Hubei, China
| | - Yue Gao
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China
| | - Yun-Lin Zhao
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China
| | - Chang Xie
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China
| | - Hu Gan
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China
| | - Xufeng Cheng
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China
| | - Li-Ping Yang
- Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, Hubei, China
| | - Junyan Hu
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China
| | - Hong-Bing Shu
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China; Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, Hubei, China
| | - Bo Zhong
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China; Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, Hubei, China; Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, Hubei, China.
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China.
| | - Jing Yao
- Cancer Center, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430072, Hubei, China; Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, Hubei, China.
| |
Collapse
|
9
|
Zhang ZD, Shi CR, Li FX, Gan H, Wei Y, Zhang Q, Shuai X, Chen M, Lin YL, Xiong TC, Chen X, Zhong B, Lin D. Disulfiram ameliorates STING/MITA-dependent inflammation and autoimmunity by targeting RNF115. Cell Mol Immunol 2024; 21:275-291. [PMID: 38267694 PMCID: PMC10901794 DOI: 10.1038/s41423-024-01131-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
STING (also known as MITA) is an adaptor protein that mediates cytoplasmic DNA-triggered signaling, and aberrant activation of STING/MITA by cytosolic self-DNA or gain-of-function mutations causes severe inflammation. Here, we show that STING-mediated inflammation and autoimmunity are promoted by RNF115 and alleviated by the RNF115 inhibitor disulfiram (DSF). Knockout of RNF115 or treatment with DSF significantly inhibit systemic inflammation and autoimmune lethality and restore immune cell development in Trex1-/- mice and STINGN153S/WT bone marrow chimeric mice. In addition, knockdown or pharmacological inhibition of RNF115 substantially downregulate the expression of IFN-α, IFN-γ and proinflammatory cytokines in PBMCs from patients with systemic lupus erythematosus (SLE) who exhibit high concentrations of dsDNA in peripheral blood. Mechanistically, knockout or inhibition of RNF115 impair the oligomerization and Golgi localization of STING in various types of cells transfected with cGAMP and in organs and cells from Trex1-/- mice. Interestingly, knockout of RNF115 inhibits the activation and Golgi localization of STINGN153S as well as the expression of proinflammatory cytokines in myeloid cells but not in endothelial cells or fibroblasts. Taken together, these findings highlight the RNF115-mediated cell type-specific regulation of STING and STINGN153S and provide potential targeted intervention strategies for STING-related autoimmune diseases.
Collapse
Affiliation(s)
- Zhi-Dong Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Chang-Rui Shi
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Fang-Xu Li
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Hu Gan
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanhong Wei
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qianhui Zhang
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xin Shuai
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Min Chen
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yu-Lin Lin
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Tian-Chen Xiong
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Xiaoqi Chen
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China.
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|