1
|
Kim JH, Kang DJ, Seok JY, Kim MH, Kim DS, Jeon SB, Choi HD, Moon JI, Kim N, Kim HR. Exposure to Radiofrequency Electromagnetic Fields Enhances Melanin Synthesis by Activating the P53 Signaling Pathway in Mel-Ab Melanocytes. Int J Mol Sci 2024; 25:12457. [PMID: 39596520 PMCID: PMC11595227 DOI: 10.3390/ijms252212457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
The skin is the largest body organ that can be physiologically affected by exposure to radiofrequency electromagnetic fields (RF-EMFs). We investigated the effect of RF-EMFs on melanogenesis; Mel-Ab melanocytes were exposed to 1760 MHz radiation with a specific absorption rate of 4.0 W/kg for 4 h/day over 4 days. Exposure to the RF-EMF led to skin pigmentation, with a significant increase in melanin production in Mel-Ab melanocytes. The phosphorylation level of cAMP response element binding protein (CREB) and the expression of microphthalmia-associated transcription factor (MITF), which regulate the expression of tyrosinase, were significantly increased in Mel-Ab after RF-EMF exposure. Interestingly, the expression of tyrosinase was significantly increased, but tyrosinase activity was unchanged in the RF-EMF-exposed Mel-Ab cells. Additionally, the expression of p53 and melanocortin 1 receptor (MC1R), which regulate MITF expression, was significantly increased. These results suggest that the RF-EMF induces melanogenesis by increasing phospho-CREB and MITF activity. Importantly, when Mel-Ab cells were incubated at 38 °C, the melanin production and the levels of tyrosinase significantly decreased, indicating that the increase in melanin synthesis by RF-EMF exposure is not due to a thermal effect. In conclusion, RF-EMF exposure induces melanogenesis in Mel-Ab cells through the increased expression of tyrosinase via the activation of MITF or the phosphorylation of CREB, which are initiated by the activation of p53 and MC1R.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (D.-J.K.); (J.Y.S.)
| | - Dong-Jun Kang
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (D.-J.K.); (J.Y.S.)
| | - Jun Young Seok
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (D.-J.K.); (J.Y.S.)
| | - Mi-Hye Kim
- Department of Medical Laser, Graduate School, Dankook University, Cheonan 31116, Republic of Korea;
| | - Dong-Seok Kim
- Department of Biochemistry, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea;
| | - Sang-Bong Jeon
- Radio and Broadcasting Technology Laboratory, ETRI, Daejeon 34129, Republic of Korea; (S.-B.J.); (H.-D.C.); (J.I.M.)
| | - Hyung-Do Choi
- Radio and Broadcasting Technology Laboratory, ETRI, Daejeon 34129, Republic of Korea; (S.-B.J.); (H.-D.C.); (J.I.M.)
| | - Jung Ick Moon
- Radio and Broadcasting Technology Laboratory, ETRI, Daejeon 34129, Republic of Korea; (S.-B.J.); (H.-D.C.); (J.I.M.)
| | - Nam Kim
- School of Electrical and Computer Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (D.-J.K.); (J.Y.S.)
| |
Collapse
|
2
|
Veríssimo SN, Veloso F, Neves F, Ramos JA, Paiva VH, Norte AC. Plastic use as nesting material can alter incubation temperature and behaviour but does not affect yellow-legged gull chicks. J Therm Biol 2024; 125:104005. [PMID: 39481149 DOI: 10.1016/j.jtherbio.2024.104005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024]
Abstract
Optimal incubation temperature is crucial for embryos' development and survival. With the increasing use of plastics in gulls' nests, it is essential to understand how their incorporation affects incubation temperature, parental behaviour, and hatching success. Considering this, we conducted an experiment where plastic was introduced into yellow-legged gulls (Larus michahellis) nests. The experiment comprised three groups: a control group, a group with low amount of plastic, and a third with a high amount of plastic. This design allowed us to investigate the effects of plastic on 1) the heart rate of incubating adults, 2) the number and duration of adults' absences from their nest, 3) how the presence or absence of the adult influenced egg temperature, and 4) chick hatching success, physiological parameters, and bill colour phenotype. We observed that incubation temperature was consistently higher in nests with plastic. The number of absences was higher in the low plastic group at increased temperatures, though the duration was significantly lower in both plastic groups than in the control, possibly to mitigate the effects of heat stress. During higher environmental temperatures, heart rate was higher for the high plastic group. The increase in heart rate in the low plastic group was less pronounced with increasing environmental temperatures. No significant effects were observed on hatching success or in the health condition of young chicks, except for high values of haemoglobin in both plastic groups, which might indicate dehydration.
Collapse
Affiliation(s)
- Sara N Veríssimo
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Filipe Veloso
- University of Coimbra, LIP- Laboratory of Instrumentation and Experimental Particle Physics, Department of Physics, Rua Larga, 3004-516, Coimbra, Portugal
| | - Francisco Neves
- University of Coimbra, LIP- Laboratory of Instrumentation and Experimental Particle Physics, Department of Physics, Rua Larga, 3004-516, Coimbra, Portugal
| | - Jaime A Ramos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Vitor H Paiva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Ana C Norte
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
3
|
Brennan SC, Mun HC, Delbridge L, Kuchel PW, Conigrave AD. Temperature sensing by the calcium-sensing receptor. Front Physiol 2023; 14:1117352. [PMID: 36818436 PMCID: PMC9931745 DOI: 10.3389/fphys.2023.1117352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Whether GPCRs support the sensing of temperature as well as other chemical and physical modalities is not well understood. Introduction: Extracellular Ca2+ concentration (Ca2+ o) modulates core body temperature and the firing rates of temperature-sensitive CNS neurons, and hypocalcemia provokes childhood seizures. However, it is not known whether these phenomena are mediated by Ca2+ o-sensing GPCRs, including the calcium-sensing receptor (CaSR). In favor of the hypothesis, CaSRs are expressed in hypothalamic regions that support core temperature regulation, and autosomal dominant hypocalcemia, due to CaSR activating mutations, is associated with childhood seizures. Methods: Herein, we tested whether CaSR-dependent signaling is temperature sensitive using an established model system, CaSR-expressing HEK-293 cells. Results: We found that the frequency of Ca2+ o-induced Ca2+ i oscillations but not the integrated response was linearly dependent on temperature in a pathophysiologically relevant range. Chimeric receptor analysis showed that the receptor's C-terminus is required for temperature-dependent modulation and experiments with the PKC inhibitor GF109203X and CaSR mutants T888A and T888M, which eliminate a key phosphorylation site, demonstrated the importance of repetitive phosphorylation and dephosphorylation. Discussion and Conclusion: CaSRs mediate temperature-sensing and the mechanism, dependent upon repetitive phosphorylation and dephosphorylation, suggests that GPCRs more generally contribute to temperature-sensing.
Collapse
Affiliation(s)
- Sarah C. Brennan
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Hee-chang Mun
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Leigh Delbridge
- Department of Surgery, Mater Hospital, North Sydney, NSW, Australia
| | - Philip W. Kuchel
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Arthur D. Conigrave
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia,*Correspondence: Arthur D. Conigrave,
| |
Collapse
|
4
|
Kim HM, Oh S, Choi CH, Yang JY, Kim S, Kang D, Son KH, Byun K. Attenuation Effect of Radiofrequency Irradiation on UV-B-Induced Skin Pigmentation by Decreasing Melanin Synthesis and through Upregulation of Heat Shock Protein 70. Molecules 2021; 26:molecules26247648. [PMID: 34946730 PMCID: PMC8708156 DOI: 10.3390/molecules26247648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Excess melanin deposition in the skin causes cosmetic problems. HSP70 upregulation decreases microphthalmia-associated transcription factor (MITF) expression, which eventually decreases tyrosinase activity and melanogenesis. Ultraviolet (UV) radiation upregulates p53, which increases the melanocortin receptor (MC1R) and MITF. Furthermore, HSP70 decreases p53 and radiofrequency irradiation (RF) increases HSP70. We evaluated whether RF increased HSP70 and decreased p53, consequently decreasing the MITF/tyrosinase pathway and melanogenesis in UV-B radiated animal skin. Various RF combinations with 50, 100, and 150 ms and 5, 10, and 15 W were performed on the UV-B radiated mouse skin every 2 d for 28 d. When RF was performed with 100 ms/10 W, melanin deposition, evaluated by Fontana–Masson staining, decreased without skin crust formation in the UV-B radiated skin. Thus, we evaluated the effect of RF on decreasing melanogenesis in the HEMn and UV-B radiated skin at a setting of 100 ms/10 W. HSP70 expression was decreased in the UV-B radiated skin but was increased by RF. The expression of p53, MC1R, and MITF increased in the UV-B radiated skin but was decreased by RF. The expression of p53, MC1R, and MITF increased in the α-MSH treated HEMn but was decreased by RF. The decreasing effects of RF on p53, MC1R, CREB and MITF were higher than those of HSP70-overexpressed HEMn. The decreasing effect of RF on p53, MC1R, CREB, and MITF disappeared in the HSP70-silenced HEMn. MC1R, CREB, and MITF were not significantly decreased by the p53 inhibitor in α-MSH treated HEMn. RF induced a greater decrease in MC1R, CREB, and MITF than the p53 inhibitor. Therefore, RF may have decreased melanin synthesis by increasing HSP70 and decreasing p53, thus decreasing MC1R/CREB/MITF and tyrosinase activity.
Collapse
Affiliation(s)
- Hyoung Moon Kim
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea;
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
| | - Chang Hu Choi
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea;
| | - Jin Young Yang
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
| | - Sunggeun Kim
- Jeisys Medical Inc., Seoul 08501, Korea; (S.K.); (D.K.)
| | - Donghwan Kang
- Jeisys Medical Inc., Seoul 08501, Korea; (S.K.); (D.K.)
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea;
- Correspondence: (K.H.S.); (K.B.)
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea;
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
- Correspondence: (K.H.S.); (K.B.)
| |
Collapse
|
5
|
Kravchik MV, Novikov IA, Subbot AM, Antonov AA, Petrov SY, Pakhomova NA. [Accumulation of sulfur and phosphorus in the eye's drainage system in primary open-angle glaucoma]. Vestn Oftalmol 2020; 136:5-14. [PMID: 33084273 DOI: 10.17116/oftalma20201360615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE To analyze the chemical composition of the sclera and trabecular meshwork in patients with primary open-angle glaucoma (POAG) and to assess the impact of corneal-compensated intraocular pressure (IOP) on the chemistry of the drainage area. MATERIAL AND METHODS Biopsy specimens of the trabecular meshwork (89 specimens) and sclera (41 specimens) obtained from patients with POAG on maximal medical therapy were analyzed to determine the content of certain chemical elements - carbon (C), nitrogen (N), oxygen (O), aluminum (Al), calcium (Ca), chlorine (Cl), potassium (K), magnesium (Mg), sodium (Na), phosphorus (P), silicon (Si) and sulfur (S). The elements were selected based on chemical structure target tissue and sensitivity of the method used for analysis. Visualization was performed using the «EVO LS 10» (Zeiss, Germany) scanning electron microscope (SEM), and the chemical composition was studied with the «Oxford-X-MAX-50» (Oxford, UK) energy-dispersive spectrometer (EDS). Statistical analysis was performed using the Spearman correlation. RESULTS The IOP of patients with POAG was found to have positive correlation with the total amount of S, P, and Ca in the trabecular meshwork. The accumulation of sulfur-containing compounds associated with pigment granules in trabecular meshwork's tissue was identified. A correlation was determined between the organic and inorganic (mineral) phosphorus content in the trabeculae, and the IOP values. The organic component of phosphorus was better represented than the mineral component in patients with increased IOP. CONCLUSION In patients with POAG, an increase in the IOP level causes the amount of S associated with pigment granules and the proportion of organic P to increase in the trabecular meshwork, which should be taken into account in the further search for drug therapy that would potentially affect pathologically altered tissue.
Collapse
Affiliation(s)
- M V Kravchik
- Research Institute of Eye Diseases, Moscow, Russia
| | - I A Novikov
- Research Institute of Eye Diseases, Moscow, Russia
| | - A M Subbot
- Research Institute of Eye Diseases, Moscow, Russia
| | - A A Antonov
- Research Institute of Eye Diseases, Moscow, Russia
| | - S Yu Petrov
- Research Institute of Eye Diseases, Moscow, Russia
| | | |
Collapse
|
6
|
Sousa Melo B, Voltan AR, Arruda W, Cardoso Lopes FA, Georg RC, Ulhoa CJ. Morphological and molecular aspects of sclerotial development in the phytopathogenic fungus Sclerotinia sclerotiorum. Microbiol Res 2019; 229:126326. [PMID: 31493702 DOI: 10.1016/j.micres.2019.126326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/26/2019] [Accepted: 08/25/2019] [Indexed: 11/16/2022]
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary produces a resistance structure called sclerotium, which guarantees its survival in soil for long periods. Morphological and melanization aspects during sclerotial development were evaluated by microscopy and qRT-PCR techniques. S. sclerotiorum produces sclerotia with different phases of maturation and melanization during growth in PDA medium. Using scanning electron microscopy we observed that there are no structural differences in the three stages of formation of melanized and non-melanized sclerotium. Through histochemical analysis we observed that the melanized sclerotium accumulates more glycogen and produces less protein than non-melanized sclerotia. Melanin was most commonly found in the rind of melanized sclerotia, and the highest concentration of lipofucsins was found in non-melanized sclerotia. These molecules are products of the lipid peroxidation pathway and are associated with oxidative stress during differentiation in fungi. The expression of histidine kinase (shk) and adenylate cyclase (sac) genes in melanized and non-melanized sclerotiawere also evaluated. The higher gene expression of shk and lesser expression of sac in non-melanized sclerotiais an indication of the participation of cell signaling in the development of these structures. The higher expression of polyketide synthase (pks), tyrosinase (tyr) and laccase (lac) in non-melanized sclerotia suggested that S. sclerotiorum can use the DHN and L-dopa pathways to produce melanin. Expression studies of the enzymes chitin synthase and glucan synthase suggest that this process occurs along with the formation of melanin. This is interesting since polysaccharides, such as chitin and β-1,3-glucan, serve as a scaffold to which the melanin granules are cross-linked.
Collapse
Affiliation(s)
- Bruna Sousa Melo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Goiás (ICB II), Campus Samambaia, Instituto de Ciências Biológicas, CEP 74001-970, Goiânia, GO, Brasil
| | - Aline Raquel Voltan
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Goiás (ICB II), Campus Samambaia, Instituto de Ciências Biológicas, CEP 74001-970, Goiânia, GO, Brasil
| | - Walquiria Arruda
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Goiás (ICB II), Campus Samambaia, Instituto de Ciências Biológicas, CEP 74001-970, Goiânia, GO, Brasil
| | | | - Raphaela Castro Georg
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Goiás (ICB II), Campus Samambaia, Instituto de Ciências Biológicas, CEP 74001-970, Goiânia, GO, Brasil
| | - Cirano José Ulhoa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Goiás (ICB II), Campus Samambaia, Instituto de Ciências Biológicas, CEP 74001-970, Goiânia, GO, Brasil.
| |
Collapse
|
7
|
Fan H, Yu G, Liu Y, Zhang X, Liu J, Zhang Y, Rollins JA, Sun F, Pan H. An atypical forkhead-containing transcription factor SsFKH1 is involved in sclerotial formation and is essential for pathogenicity in Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2017; 18:963-975. [PMID: 27353472 PMCID: PMC6638265 DOI: 10.1111/mpp.12453] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/24/2016] [Indexed: 05/15/2023]
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic plant pathogen with a worldwide distribution. The sclerotia of S. sclerotiorum are pigmented multicellular structures formed from the aggregation of vegetative hyphae. These survival structures play a central role in the life and infection cycles of this pathogen. Here, we characterized an atypical forkhead (FKH)-box-containing protein, SsFKH1, involved in sclerotial development and virulence. To investigate the role of SsFkh1 in S. sclerotiorum, the partial sequence of SsFkh1 was cloned and RNA interference (RNAi)-based gene silencing was employed to alter the expression of SsFkh1. RNA-silenced mutants with significantly reduced SsFkh1 RNA levels exhibited slow hyphal growth and sclerotial developmental defects. In addition, the expression levels of a set of putative melanin biosynthesis-related laccase genes and a polyketide synthase-encoding gene were significantly down-regulated in silenced strains. Disease assays demonstrated that pathogenicity in RNAi-silenced strains was significantly compromised with the development of a smaller infection lesion on tomato leaves. Collectively, the results suggest that SsFkh1 is involved in hyphal growth, virulence and sclerotial formation in S. sclerotiorum.
Collapse
Affiliation(s)
- Huidong Fan
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Gang Yu
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Yanzhi Liu
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Xianghui Zhang
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Jinliang Liu
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Yanhua Zhang
- College of Plant SciencesJilin UniversityChangchun130062China
| | | | - Fengjie Sun
- School of Science and TechnologyGeorgia Gwinnett CollegeLawrencevilleGA30024USA
| | - Hongyu Pan
- College of Plant SciencesJilin UniversityChangchun130062China
| |
Collapse
|
8
|
Gu WJ, Ma HJ, Zhao G, Yuan XY, Zhang P, Liu W, Ma LJ, Lei XB. Additive effect of heat on the UVB-induced tyrosinase activation and melanogenesis via ERK/p38/MITF pathway in human epidermal melanocytes. Arch Dermatol Res 2014; 306:583-90. [PMID: 24671267 DOI: 10.1007/s00403-014-1461-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 03/04/2014] [Accepted: 03/09/2014] [Indexed: 01/20/2023]
Abstract
Heat is known as an environmental factor that causes significant skin pigmentation, but its effects on melanogenesis have been poorly studied. It has been shown that mitogen-activated protein kinase (MAPK) is involved in ultraviolet B (UVB) and stress-induced melanogenesis in melanocytes. In this study, we investigated the effects of heat and UVB, on melanocyte melanogenesis, differentiation, and MAPK phosphorylation. The results showed that heat (1 h at 40 °C for 5 days) increased cell dendrites, enlarged cell bodies, and induced extracellular signal-regulated kinases (ERK)/p38/MITF activation but did not influence melanogenesis of human epidermal melanocytes from skin phototype III. UVB irradiation (20 mJ/cm(2) for 5 days) induced melanogenesis and c-jun N-terminal kinases (JNK)/p38/MITF/tyrosinase activation in melanocytes from skin phototype III. UVB combined with heat resulted in much more significant tyrosinase activation and melanogenesis as compared with UVB alone in melanocytes from skin phototype III. Furthermore, heat treatment and UVB irradiation induced JNK, ERK, and p38 activation but not melanogenic and morphological changes in melanocytes from skin phototype I. These findings suggested that heat promoted melanocyte differentiation, probably via heat-induced ERK/p38/MITF/activation. Furthermore, heat had an additive effect on the UVB-induced tyrosinase activation and melanogenesis. These results provide a new clue for dermatologists for the treatment of hypopigmented skin disease with heat combined with UVB irradiation.
Collapse
Affiliation(s)
- Wei-Jie Gu
- Department of Dermatology, The General Hospital of Air Force, No. 30 Fucheng Road, Haidian District, Beijing, 100142, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
De Souza Santos LR, Franco-Belussi L, Zieri R, Borges RE, De Oliveira C. Effects of Thermal Stress on Hepatic Melanomacrophages ofEupemphix nattereri(Anura). Anat Rec (Hoboken) 2014; 297:864-75. [DOI: 10.1002/ar.22884] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/23/2013] [Indexed: 11/06/2022]
Affiliation(s)
| | - Lilian Franco-Belussi
- Department of Biology, Graduate Program in Animal Biology; São Paulo State University (UNESP); São José do Rio Preto São Paulo Brazil
| | - Rodrigo Zieri
- Department of Biology; São Paulo State University (UNESP); São José do Rio Preto São Paulo Brazil
| | | | - Classius De Oliveira
- Department of Biology; São Paulo State University (UNESP); São José do Rio Preto São Paulo Brazil
| |
Collapse
|
10
|
PP2A and DUSP6 are involved in sphingosylphosphorylcholine-induced hypopigmentation. Mol Cell Biochem 2012; 367:43-9. [DOI: 10.1007/s11010-012-1317-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 04/18/2012] [Indexed: 11/25/2022]
|
11
|
Kim DS, Park SH, Lee HK, Choo SJ, Lee JH, Song GY, Yoo ID, Kwon SB, Na JI, Park KC. Hypopigmentary action of dihydropyranocoumarin D2, a decursin derivative, as a MITF-degrading agent. JOURNAL OF NATURAL PRODUCTS 2010; 73:797-800. [PMID: 20392068 DOI: 10.1021/np900455j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this study, the decursin derivative dihydropyranocoumarin D2 (1) was selected for its effects on melanogenesis using a spontaneously immortalized mouse melanocyte cell line (Mel-Ab). The results showed that 1 effectively inhibited melanin synthesis in a concentration-dependent manner, but that it did not inhibit tyrosinase in a cell-free system. In addition, the changes in ERK, Akt, and microphthalmia-associated transcription factor (MITF) in response to treatment with 1 were assessed. The results revealed that ERK was dramatically up-regulated and MITF was down-regulated in response to treatment with 1, but that Akt was unchanged. Therefore, the effects of 1 on melanogenesis were examined in the absence or presence of PD98059 (a specific inhibitor of the ERK pathway). PD98059 restored hypopigmentation and the down-regulation of MITF induced by 1. Finally, MITF down-regulation by 1 was clearly restored by both chloroquine, a lysosomal proteolysis inhibitor, and MG132, a proteasome inhibitor.
Collapse
Affiliation(s)
- Dong-Seok Kim
- Department of Biochemistry, Chung-Ang University College of Medicine, 221 Heukseok-Dong Dongjak-Gu, Seoul 156-756, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hoshino T, Matsuda M, Yamashita Y, Takehara M, Fukuya M, Mineda K, Maji D, Ihn H, Adachi H, Sobue G, Funasaka Y, Mizushima T. Suppression of melanin production by expression of HSP70. J Biol Chem 2010; 285:13254-63. [PMID: 20177067 DOI: 10.1074/jbc.m110.103051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skin hyperpigmentation disorders due to abnormal melanin production induced by ultraviolet (UV) irradiation are both a clinical and cosmetic problem. UV irradiation stimulates melanin production in melanocytes by increasing intracellular cAMP. Expression of heat shock proteins (HSPs), especially HSP70, is induced by various stressors, including UV irradiation, to provide cellular resistance to such stressors. In this study we examined the effect of expression of HSP70 on melanin production both in vitro and in vivo. 3-Isobutyl-1-methylxanthine (IBMX), a cAMP-elevating agent, stimulated melanin production in cultured mouse melanoma cells, and this stimulation was suppressed in cells overexpressing HSP70. IBMX-dependent transcriptional activation of the tyrosinase gene was also suppressed in HSP70-overexpressing cells. Expression of microphthalmia-associated transcription factor (MITF), which positively regulates transcription of the tyrosinase gene, was up-regulated by IBMX; however, this up-regulation was not suppressed in HSP70-overexpressing cells. On the other hand, immunoprecipitation and immunostaining analyses revealed a physical interaction between and co-localization of MITF and HSP70, respectively. Furthermore, the transcription of tyrosinase gene in nuclear extract was inhibited by HSP70. In vivo, UV irradiation of wild-type mice increased the amount of melanin in the basal layer of the epidermis, and this increase was suppressed in transgenic mice expressing HSP70. This study provides the first evidence of an inhibitory effect of HSP70 on melanin production both in vitro and in vivo. This effect seems to be mediated by modulation of MITF activity through a direct interaction between HSP70 and MITF.
Collapse
Affiliation(s)
- Tatsuya Hoshino
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sclerotial development in Sclerotinia sclerotiorum: awakening molecular analysis of a “Dormant” structure. FUNGAL BIOL REV 2008. [DOI: 10.1016/j.fbr.2007.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Kim DS, Park SH, Kwon SB, Na JI, Huh CH, Park KC. Additive effects of heat and p38 MAPK inhibitor treatment on melanin synthesis. Arch Pharm Res 2007; 30:581-6. [PMID: 17615677 DOI: 10.1007/bf02977652] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
It has been reported that the activation of extracellular signal-regulated kinase (ERK) reduces melanin synthesis. Recently, we also found that heat treatment induces ERK activation and inhibits melanogenesis in Mel-Ab cells (a mouse melanocyte cell line). In addition, it was reported that p38 MAPK (mitogen-activated protein kinase) inhibition blocks melanogenesis. Thus, we investigated the effects of heat and of the p38 MAPK inhibitor, SB203580, on melanogenesis. In this study, we found that heat treatment activates ERK and reduces melanin production in human melanocytes, and that this is accompanied by a reduction in tyrosinase activity. To regulate the ERK and p38 MAPK pathways simultaneously, we combined heat treatment and SB203580 and measured melanin synthesis. The results obtained showed that heat treatment and SB203580 reduced melanin synthesis more effectively than heat or SB203580 alone. We conclude that ERK activation and p38 MAPK inhibition can work in an additive manner to decrease melanogenesis.
Collapse
Affiliation(s)
- Dong-Seok Kim
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 156-756, Korea
| | | | | | | | | | | |
Collapse
|
15
|
Erental A, Harel A, Yarden O. Type 2A phosphoprotein phosphatase is required for asexual development and pathogenesis of Sclerotinia sclerotiorum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:944-54. [PMID: 17722698 DOI: 10.1094/mpmi-20-8-0944] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sclerotinia sclerotiorum is a necrotrophic, omnivorous plant pathogen with worldwide distribution. Sclerotia of S. sclerotiorum are pigmented, multihyphal structures that play a central role in the life and infection cycles of this pathogen. Plant infection depends on the formation of melanin-rich infection cushions, and secretion of hydrolytic enzymes and oxalic acid. Type 2A Ser/Thr phosphatases (PP2As) are involved in the regulation of a variety of cellular process. In the presence of cantharidin, a PP2A-specific inhibitor, hyphal elongation and sclerotia numbers were impaired whereas sclerotial size increased. We partially inactivated PP2A by antisense expression of the gene (pph1) encoding the PP2A catalytic subunit. When antisense expression was induced, almost complete cessation of fungal growth was observed, indicative of a crucial role for PP2A in fungal growth. RNAi-based gene silencing was employed to alter the expression of the 55-kDa R2 (B regulatory subunit). Isolates in which rgb1 RNA levels were decreased were slow growing, but viable. Melanin biosynthesis, infection-cushion production, and pathogenesis were significantly impaired in the rgb1 mutants, yet theses mutants were pathogenic on wounded leaves. Reduced ERK (extracellular signal-regulated kinases)-like mitogen-activated protein kinase (MAPK) function conferred a reduction in NADPH oxidase and PP2A activity levels, suggesting a functional link between MAPK, reactive oxygen species, and PP2A activity in S. sclerotiorum.
Collapse
Affiliation(s)
- A Erental
- Department of Plant Pathology and Microbiology, The Minerva Center for Agricultural Biotechnology, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | |
Collapse
|
16
|
Benes P, Macecková V, Zatloukalová J, Kovárová L, Smardová J, Smarda J. Retinoic acid enhances differentiation of v-myb-transformed monoblasts induced by okadaic acid. Leuk Res 2007; 31:1421-31. [PMID: 17624428 DOI: 10.1016/j.leukres.2007.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 02/28/2007] [Accepted: 03/02/2007] [Indexed: 11/18/2022]
Abstract
Differentiation of various leukemic cells can be induced by liganded retinoic acid receptors and protein phosphatase inhibitors. In this study, we explored the effects of okadaic acid (OA), the phosphatase inhibitor, and retinoic acid (RA) in v-myb-transformed monoblasts BM2. OA induced differentiation of BM2 monoblasts into macrophage-like cells, as documented by analyses of cell morphology, cell cycle, phagocytic activity, non-specific esterase activity, production of reactive oxygen species and expression of vimentin and Mo-1. In contrast to many other leukemic cell lines, BM2 cells do not respond to retinoic acid. However, once exposed to OA and RA simultaneously, BM2 cells differentiate along monocyte/macrophage pathway more efficiently. We conclude that RA enhances differentiation of v-myb-transformed monoblasts induced by protein phosphorylation.
Collapse
Affiliation(s)
- Petr Benes
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Genetics and Molecular Biology, Kotlarska 2, 611 37 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
17
|
Ando H, Kondoh H, Ichihashi M, Hearing VJ. Approaches to Identify Inhibitors of Melanin Biosynthesis via the Quality Control of Tyrosinase. J Invest Dermatol 2007; 127:751-61. [PMID: 17218941 DOI: 10.1038/sj.jid.5700683] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tyrosinase, a copper-containing glycoprotein, is the rate-limiting enzyme critical for melanin biosynthesis in specialized organelles termed melanosomes that are produced only by melanocytic cells. Inhibitors of tyrosinase activity have long been sought as therapeutic means to treat cutaneous hyperpigmentary disorders. Multiple potential approaches exist that could control pigmentation via the regulation of tyrosinase activity, for example: the transcription of its messenger RNA, its maturation via glycosylation, its trafficking to melanosomes, as well as modulation of its catalytic activity and/or stability. However, relatively little attention has been paid to regulating pigmentation via the stability of tyrosinase, which depends on its processing and maturation in the endoplasmic reticulum and Golgi, its delivery to melanosomes and its degradation via the ubiquitin-proteasome pathway and/or the endosomal/lysosomal system. Recently, it has been shown that carbohydrate modification, molecular chaperone engagement, and ubiquitylation all play pivotal roles in regulating the degradation/stability of tyrosinase. While such processes affect virtually all proteins, such effects on tyrosinase have immediate and dramatic consequences on pigmentation. In this review, we classify melanogenic inhibitory factors in terms of their modulation of tyrosinase function and we summarize current understanding of how the quality control of tyrosinase processing impacts its stability and melanogenic activity.
Collapse
Affiliation(s)
- Hideya Ando
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|