1
|
Qin Z, Li Y, Shao X, Li K, Bai Y, Wang B, Ma F, Shi W, Song L, Zhuang A, He F, Ding C, Yang W. HNF4A functions as a hepatocellular carcinoma oncogene or tumor suppressor depending upon the AMPK pathway activity status. Cancer Lett 2025; 623:217732. [PMID: 40254090 DOI: 10.1016/j.canlet.2025.217732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Cancer cells frequently undergo energy metabolic stress induced by the increased dynamics of nutrient supply. Hepatocyte nuclear factor 4A (HNF4A) is a master transcription factor (TF) in hepatocytes that regulates metabolism and differentiation. However, the mechanism underlying how HNF4A functions in cancer progression remains unclear due to conflicting results observed in numerous studies. To address the roles of HNF4A in hepatocellular carcinoma (HCC), we investigated the regulatory functions of HNF4A in HCC cells under different glucose supply conditions. We found that HNF4A exhibited tumor-suppressive effects on the proliferation and migration of HCC cells in glucose-sufficient conditions and tumor-promotive effects on HCC cells in glucose-insufficient conditions. Further investigation revealed that this diverse function of HNF4A was dependent upon the AMPK pathway activity. Similarly, the prognosis predicted by HNF4A was also correlated with whether the AMPKa expression levels were low or high in clinical HCC patients. Multiomics approaches consisting of proteomics and ChIP-seq revealed that key HNF4A target genes, including NEDD4 and RPS6KA2, are involved in the diverse function of HNF4A in HCC in response to the AMPK activity status. Specifically, HNF4A could bind to the promoter region of NEDD4 and RPS6KA2, and upregulating their expression. Our study has demonstrated the relationship between and synergism of AMPK and HNF4A in the progression of HCC under diverse nutrient conditions.
Collapse
Affiliation(s)
- Zhaoyu Qin
- Department of Pediatric Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Yan Li
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Xiexiang Shao
- Department of Pediatric Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Kai Li
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Yihe Bai
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Bing Wang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Fahan Ma
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Wenhao Shi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Aojia Zhuang
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China
| | - Fuchu He
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chen Ding
- State Key Laboratory of Genetics and Development of Complex Phenotypes, Institutes of Biomedical Sciences, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200032, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Wenjun Yang
- Department of Pediatric Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Lei ZN, Teng QX, Tian Q, Chen W, Xie Y, Wu K, Zeng Q, Zeng L, Pan Y, Chen ZS, He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022; 7:358. [PMID: 36209270 PMCID: PMC9547882 DOI: 10.1038/s41392-022-01190-w] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qin Tian
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Kaiming Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Qianlin Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Wang MD, Wang NY, Zhang HL, Sun LY, Xu QR, Liang L, Li C, Huang DS, Zhu H, Yang T. Fatty acid transport protein-5 (FATP5) deficiency enhances hepatocellular carcinoma progression and metastasis by reprogramming cellular energy metabolism and regulating the AMPK-mTOR signaling pathway. Oncogenesis 2021; 10:74. [PMID: 34772914 PMCID: PMC8589992 DOI: 10.1038/s41389-021-00364-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Aberrant lipid metabolism is an essential feature of hepatocellular carcinoma (HCC). Fatty acid transport protein-5 (FATP5) is highly expressed in the liver and is involved in the fatty acid transport pathway. However, the potential role of FATP5 in the pathogenesis of HCC remains largely unknown. Herein, we showed that FATP5 was downregulated in HCC tissues and even much lower in vascular tumor thrombi. Low expression of FATP5 was correlated with multiple aggressive and invasive clinicopathological characteristics and contributed to tumor metastasis and a poor prognosis in HCC patients. FATP5 inhibited the epithelial-mesenchymal transition (EMT) process and suppressed HCC cell migration and invasion, while silencing FATP5 had the opposite effects. Mechanistically, knockdown of FATP5 promoted cellular glycolytic flux and ATP production, thus suppressing AMP-activated protein kinase (AMPK) and activating its downstream signaling mammalian target of rapamycin (mTOR) to support HCC progression and metastasis. Activation of AMPK using metformin reversed the EMT program and impaired the metastatic capacity of FATP5-depleted HCC cells. Collectively, FATP5 served as a novel suppressor of HCC progression and metastasis partly by regulating the AMPK/mTOR pathway in HCC, and targeting the FATP5-AMPK axis may be a promising therapeutic strategy for personalized HCC treatment.
Collapse
Affiliation(s)
- Ming-Da Wang
- Department of Hepatobiliary Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), Shanghai, China
| | - Nan-Ya Wang
- The Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Hui-Lu Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Li-Yang Sun
- Department of Hepatobiliary Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Qiu-Ran Xu
- Department of Hepatobiliary Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Lei Liang
- Department of Hepatobiliary Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), Shanghai, China
| | - Dong-Sheng Huang
- Department of Hepatobiliary Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China.
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China.
| | - Hong Zhu
- Department of Medical Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Tian Yang
- Department of Hepatobiliary Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, China.
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), Shanghai, China.
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
4
|
Raggi C, Taddei ML, Sacco E, Navari N, Correnti M, Piombanti B, Pastore M, Campani C, Pranzini E, Iorio J, Lori G, Lottini T, Peano C, Cibella J, Lewinska M, Andersen JB, di Tommaso L, Viganò L, Di Maira G, Madiai S, Ramazzotti M, Orlandi I, Arcangeli A, Chiarugi P, Marra F. Mitochondrial oxidative metabolism contributes to a cancer stem cell phenotype in cholangiocarcinoma. J Hepatol 2021; 74:1373-1385. [PMID: 33484774 DOI: 10.1016/j.jhep.2020.12.031] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Little is known about the metabolic regulation of cancer stem cells (CSCs) in cholangiocarcinoma (CCA). We analyzed whether mitochondrial-dependent metabolism and related signaling pathways contribute to stemness in CCA. METHODS The stem-like subset was enriched by sphere culture (SPH) in human intrahepatic CCA cells (HUCCT1 and CCLP1) and compared to cells cultured in monolayer. Extracellular flux analysis was examined by Seahorse technology and high-resolution respirometry. In patients with CCA, expression of factors related to mitochondrial metabolism was analyzed for possible correlation with clinical parameters. RESULTS Metabolic analyses revealed a more efficient respiratory phenotype in CCA-SPH than in monolayers, due to mitochondrial oxidative phosphorylation. CCA-SPH showed high mitochondrial membrane potential and elevated mitochondrial mass, and over-expressed peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α, a master regulator of mitochondrial biogenesis. Targeting mitochondrial complex I in CCA-SPH using metformin, or PGC-1α silencing or pharmacologic inhibition (SR-18292), impaired spherogenicity and expression of markers related to the CSC phenotype, pluripotency, and epithelial-mesenchymal transition. In mice with tumor xenografts generated by injection of CCA-SPH, administration of metformin or SR-18292 significantly reduced tumor growth and determined a phenotype more similar to tumors originated from cells grown in monolayer. In patients with CCA, expression of PGC-1α correlated with expression of mitochondrial complex II and of stem-like genes. Patients with higher PGC-1α expression by immunostaining had lower overall and progression-free survival, increased angioinvasion and faster recurrence. In GSEA analysis, patients with CCA and high levels of mitochondrial complex II had shorter overall survival and time to recurrence. CONCLUSIONS The CCA stem-subset has a more efficient respiratory phenotype and depends on mitochondrial oxidative metabolism and PGC-1α to maintain CSC features. LAY SUMMARY The growth of many cancers is sustained by a specific type of cells with more embryonic characteristics, termed 'cancer stem cells'. These cells have been described in cholangiocarcinoma, a type of liver cancer with poor prognosis and limited therapeutic approaches. We demonstrate that cancer stem cells in cholangiocarcinoma have different metabolic features, and use mitochondria, an organelle located within the cells, as the major source of energy. We also identify PGC-1α, a molecule which regulates the biology of mitochondria, as a possible new target to be explored for developing new treatments for cholangiocarcinoma.
Collapse
Affiliation(s)
- Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Sacco
- SYSBIO, Centre of Systems Biology, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Nadia Navari
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Margherita Correnti
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Benedetta Piombanti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Claudia Campani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Erica Pranzini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulia Lori
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Tiziano Lottini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Clelia Peano
- Genomic Unit, IRCCS, Humanitas Clinical and Research Center, Rozzano, Italy; Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Rozzano, Italy
| | - Javier Cibella
- Genomic Unit, IRCCS, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Monika Lewinska
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Luca di Tommaso
- Department of Pathology, Humanitas Clinical and Research Center, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Luca Viganò
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy; Department of Hepatobiliary Surgery, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Giovanni Di Maira
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefania Madiai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Ivan Orlandi
- SYSBIO, Centre of Systems Biology, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Excellence Center for Research, Transfer and High Education DenoTHE, Florence, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Excellence Center for Research, Transfer and High Education DenoTHE, Florence, Italy.
| |
Collapse
|
5
|
Hwang KE, Kim HJ, Song IS, Park C, Jung JW, Park DS, Oh SH, Kim YS, Kim HR. Salinomycin suppresses TGF-β1-induced EMT by down-regulating MMP-2 and MMP-9 via the AMPK/SIRT1 pathway in non-small cell lung cancer. Int J Med Sci 2021; 18:715-726. [PMID: 33437206 PMCID: PMC7797542 DOI: 10.7150/ijms.50080] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Salinomycin (Sal) is a recently identified anti-tumor drug for treating several types of solid tumor; however, its effects on the migratory and invasive properties of non-small cell lung cancer (NSCLC) remain unclear. This study investigated the inhibitory effect underlying mechanisms of Salon transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) and cell migration. Sal solidly blocked cell migration and invasion enhancement by TGF-β1-induced EMT, through recovering E-cadherin loss and suppressing mesenchymal markers induction, as well as TGF-β1-mediated AMPK/SIRT signaling activity upregulation. The pharmacologic inhibition or knockdown of AMPK or SIRT1 can act synergistically with Sal to inhibit TGF-β1-induced MMP-2 and MMP-9. In contrast, AMPK or SIRT1 upregulation can protect against TGF-β1-induced MMP-2 and MMP-9 inhibition by Sal. Next we demonstrated that the MMP-2 and MMP-9 knockdown can act synergistically with Sal to inhibit TGF-β1-induced EMT. Moreover, treatment of PMA of MMP activator increased TGF-β1-induced MMP-2 and MMP-9, even with Sal. Our results demonstrate that Sal suppresses TGF-β1-induced EMT by downregulating MMP-2 and MMP-9 through the AMPK/SIRT pathway, thereby inhibiting lung cancer cell migration and invasion.
Collapse
Affiliation(s)
- Ki-Eun Hwang
- Department of Internal Medicine, Wonkwang University, School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hyo-Jin Kim
- Medical Convergence Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - In-Sol Song
- Department of Internal Medicine, Wonkwang University, School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Chul Park
- Department of Internal Medicine, Wonkwang University, School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Jae Wan Jung
- Department of Internal Medicine, Wonkwang University, School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Do-Sim Park
- Department of Laboratory Medicine, Wonkwang University, School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seon-Hee Oh
- Department of Premedicine, Chosun University, School of Medicine, Gwangju 61452, Republic of Korea
| | - Young-Suk Kim
- Medical Convergence Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hak-Ryul Kim
- Department of Internal Medicine, Wonkwang University, School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
6
|
Yin X, Ma F, Fan X, Zhao Q, Liu X, Yang Y. Knockdown of AMPKα2 impairs epithelial‑mesenchymal transition in rat renal tubular epithelial cells by downregulating ETS1 and RPS6KA1. Mol Med Rep 2020; 22:4619-4628. [PMID: 33173986 PMCID: PMC7646838 DOI: 10.3892/mmr.2020.11556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/25/2020] [Indexed: 11/07/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) serves an important regulatory role in obstructive nephropathy and renal fibrosis. As an intracellular energy sensor, AMP-activated protein kinase (AMPK) is essential in the process of EMT. The aim of the present study was to elucidate changes in the expression levels of AMPKα2 and which AMPKα2 genes play a role during EMT. TGF-β1 was used to induce EMT in normal rat renal tubular epithelial (NRK-52E) cells. The short hairpin AMPKα2 lentivirus was used to interfere with AMPKα2 expression levels in EMT-derived NRK-52E cells and AMPKα2 expression levels and EMT were detected. Differential gene expression levels following AMPKα2 knockdown in EMT-derived NRK-52E cells were assessed via gene microarray. Potential regulatory pathways were analyzed using ingenuity pathway analysis (IPA) and differentially expressed genes were partially verified by reverse transcription-quantitative PCR (RT-qPCR) and western blotting. AMPKα2 was upregulated in TGF-β1-induced EMT-derived NRK-52E cells. EMT progression was significantly inhibited following downregulation of expression levels of AMPKα2 by shAMPKα2 lentivirus. A total of 1,588 differentially expressed genes were detected following AMPKα2 knockdown in NRK-52E cells in which EMT occurred. The ERK/MAPK pathway was significantly impaired following AMPKα2 knockdown, as indicated by IPA analysis. Furthermore, RT-qPCR and western blot results demonstrated that the expression levels of AMPKα2, v-ets erythroblastosis virus E26 oncogene homolog-1 (ETS1) and ribosomal protein S6 kinase A1 (RPS6KA1) were upregulated following EMT in NRK-52E cells, whereas the expression levels of ETS1 and RPS6KA1 were downregulated following AMPKα2 knockdown. It was concluded that AMPKα2 plays a key role in the regulation of rat renal tubular EMT, which may be achieved by modulating ETS1 and RPS6KA1 in the ERK/MAPK pathway.
Collapse
Affiliation(s)
- Xiaoming Yin
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Fujiang Ma
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xu Fan
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qi Zhao
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xin Liu
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yi Yang
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
7
|
Shi W, Wang D, Yuan X, Liu Y, Guo X, Li J, Song J. Glucocorticoid receptor-IRS-1 axis controls EMT and the metastasis of breast cancers. J Mol Cell Biol 2020; 11:1042-1055. [PMID: 30726932 PMCID: PMC6934157 DOI: 10.1093/jmcb/mjz001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/13/2018] [Accepted: 02/02/2019] [Indexed: 01/05/2023] Open
Abstract
Glucocorticoid receptor (GR) is involved in the transcriptional regulation of genes that are important for various biological functions, including tumor growth and metastatic progression. However, the cellular and biological effects of GR remain poorly understood. Here, we investigated the role of GR and its underlying mechanism in mediating breast cancer cell survival and metastasis. We observed that the GR levels were increased in drug-resistant breast cancer cells and in metastatic breast cancer samples. GR promoted tumor cell invasion and lung metastasis in vivo. The GR expression levels were negatively correlated with the survival rates of breast cancer patients. Both ectopic expression and knockdown of GR revealed that GR is a strong inducer of epithelial-to-mesenchymal transition (EMT), which is consistent with its effects on cell survival and metastasis. GR suppressed the expression of insulin receptor substrate 1 (IRS-1) by acting as an IRS-1 transcriptional repressor. In addition, GR has an opposite effect on the expression levels of IRS-2, indicating that GR is able to differentially regulate the IRS-1 and IRS-2 expression. The cellular and biological effects elicited by GR were consistent with the reduced levels of IRS-1 observed in cancer cells, and GR-mediated IRS-1 suppression activated the ERK2 MAP kinase pathway, which is required for GR-mediated EMT. Taken together, our results indicate that GR–IRS-1 signaling axis plays an essential role in regulating the survival, invasion, and metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Weiwei Shi
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dongmei Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xinwang Yuan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaojie Guo
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jingsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jianguo Song
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Yano N, Zhang L, Wei D, Dubielecka PM, Wei L, Zhuang S, Zhu P, Qin G, Liu PY, Chin YE, Zhao TC. Irisin counteracts high glucose and fatty acid-induced cytotoxicity by preserving the AMPK-insulin receptor signaling axis in C2C12 myoblasts. Am J Physiol Endocrinol Metab 2020; 318:E791-E805. [PMID: 32182124 PMCID: PMC7272726 DOI: 10.1152/ajpendo.00219.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Irisin, a newly identified myokine, is critical to modulating body metabolism and biological homeostasis. However, whether irisin protects the skeletal muscles against metabolic stresses remains unknown. In this study, we determine the effect of irisin on high glucose and fatty acid-induced damages using irisin-overexpressed mouse C2C12 (irisin-C2C12) myoblasts and skeletal muscle from irisin-injected mice. Compared with empty vector-transfected control C2C12 cells, irisin overexpression resulted in a marked increase in cell viability and decrease in apoptosis under high-glucose stress. Progression of the cell cycle into the G2/M phase in the proliferative condition was also observed with irisin overexpression. Furthermore, glucose uptake, glycogen accumulation, and phosphorylation of AMPKα/insulin receptor (IR) β-subunit/Erk1/2 in response to insulin stimulation were enhanced by irisin overexpression. In irisin-C2C12 myoblasts, these responses of phosphorylation were preserved under palmitate treatment, which induced insulin resistance in the control cells. These effects of irisin were reversed by inhibiting AMPK with compound C. In addition, high glucose-induced suppression of the mitochondrial membrane potential was also prevented by irisin. Moreover, suppression of IR in irisin-C2C12 myoblasts by cotransfection of shRNA against IR also mitigated the effects of irisin while not affecting AMPKα phosphorylation. As an in vivo study, soleus muscles from irisin-injected mice showed elevated phosphorylation of AMPKα and Erk1/2 and glycogen contents. Our results indicate that irisin counteracts the stresses generated by high glucose and fatty acid levels and irisin overexpression serves as a novel approach to elicit cellular protection. Furthermore, AMPK activation is a crucial factor that regulates insulin action as a downstream target.
Collapse
Affiliation(s)
- Naohiro Yano
- Department of Surgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | - Ling Zhang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Dennis Wei
- Department of Surgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | - Patrycja M Dubielecka
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Lei Wei
- Department of Orthopedics, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Paul Y Liu
- Plastic Surgery, Rhode Island Hospital, Brown University, Providence, Rhode Island
| | - Y Eugene Chin
- Translation Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ting C Zhao
- Department of Surgery, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| |
Collapse
|
9
|
Liu J, Song N, Huang Y, Chen Y. Irisin inhibits pancreatic cancer cell growth via the AMPK-mTOR pathway. Sci Rep 2018; 8:15247. [PMID: 30323244 PMCID: PMC6189061 DOI: 10.1038/s41598-018-33229-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/25/2018] [Indexed: 01/10/2023] Open
Abstract
Irisin, a recently identified myokine that is released from skeletal muscle following exercise, regulates body weight and influences various metabolic diseases such as obesity and diabetes. In this study, human recombinant nonglycosylated P-irisin (expressed in Escherichia coli prokaryote cell system) or glycosylated E-irisin (expressed in Pichia pastoris eukaryote cell system) were compared to examine the role of recombinant irisin against pancreatic cancer (PC) cells lines, MIA PaCa-2 and Panc03.27. MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-di phenyltetrazolium bromide] and cell colony formation assays revealed that irisin significantly inhibited the growth of MIA PaCa-2 and Panc03.27 in a dose-dependent manner. Irisin also induced G1 arrest in both cell lines. Scratch wound healing and transwell assays revealed that irisin also inhibited the migration of PC cells. Irisin reversed the activity of epithelial-mesenchymal transition (EMT) while increasing E-cadherin expression and reducing vimentin expression. Irisin activated the adenosine monophosphate-activated protein kinase (AMPK) pathway and suppressed the mammalian target of rapamycin (mTOR) signaling. Besides, our results suggest that irisin receptors exist on the surface of human MIA PaCa-2 and Panc03.27 cells. Our results clearly demonstrate that irisin suppressed PC cell growth via the activation of AMPK, thereby downregulating the mTOR pathway and inhibiting EMT of PC cells.
Collapse
Affiliation(s)
- Jiayu Liu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Nannan Song
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
10
|
Saxena M, Balaji SA, Deshpande N, Ranganathan S, Pillai DM, Hindupur SK, Rangarajan A. AMP-activated protein kinase promotes epithelial-mesenchymal transition in cancer cells through Twist1 upregulation. J Cell Sci 2018; 131:jcs.208314. [PMID: 29950484 PMCID: PMC6080604 DOI: 10.1242/jcs.208314] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 06/20/2018] [Indexed: 12/24/2022] Open
Abstract
The developmental programme of epithelial-mesenchymal transition (EMT), involving loss of epithelial and acquisition of mesenchymal properties, plays an important role in the invasion-metastasis cascade of cancer cells. In the present study, we show that activation of AMP-activated protein kinase (AMPK) using A769662 led to a concomitant induction of EMT in multiple cancer cell types, as observed by enhanced expression of mesenchymal markers, decrease in epithelial markers, and increase in migration and invasion. In contrast, inhibition or depletion of AMPK led to a reversal of EMT. Importantly, AMPK activity was found to be necessary for the induction of EMT by physiological cues such as hypoxia and TGFβ treatment. Furthermore, AMPK activation increased the expression and nuclear localization of Twist1, an EMT transcription factor. Depletion of Twist1 impaired AMPK-induced EMT phenotypes, suggesting that AMPK might mediate its effects on EMT, at least in part, through Twist1 upregulation. Inhibition or depletion of AMPK also attenuated metastasis. Thus, our data underscore a central role for AMPK in the induction of EMT and in metastasis, suggesting that strategies targeting AMPK might provide novel approaches to curb cancer spread. Highlighted Article: Pharmacological and physiological activation of AMPK promotes epithelial-mesenchymal transition in cancer cells through Twist1 upregulation and its increased nuclear localization.
Collapse
Affiliation(s)
- Meera Saxena
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Sai A Balaji
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Neha Deshpande
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Santhalakshmi Ranganathan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Divya Mohan Pillai
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Sravanth Kumar Hindupur
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
11
|
Gao J, Ye J, Ying Y, Lin H, Luo Z. Negative regulation of TGF-β by AMPK and implications in the treatment of associated disorders. Acta Biochim Biophys Sin (Shanghai) 2018; 50:523-531. [PMID: 29873702 DOI: 10.1093/abbs/gmy028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 01/18/2023] Open
Abstract
Transforming growth factor beta (TGF-β) regulates a large number of biological processes, including proliferation, differentiation, immune response, and development. In addition, TGF-β plays important roles in some pathological processes, for instance, it is upregulated and activated in fibrosis and advanced cancer. Adenosine monophosphate-activated protein kinase (AMPK) acts as a fuel gauge that is activated when cells sense shortage of ATP and increase in AMP or AMP:ATP ratio. Activation of AMPK slows down anabolic processes and stimulates catabolic processes, leading to increased production of ATP. Furthermore, the functions of AMPK have been extended beyond energy homeostasis. In fact, AMPK has been shown to exert a tumor suppressive effect. Recent studies have demonstrated negative impacts of AMPK on TGF-β function. Therefore, in this review, we will discuss the differences in the biological functions of TGF-β and AMPK, and some pathological processes such as fibrosis, epithelial-mesenchymal transition (EMT) and cancer metastasis, as well as angiogenesis and heterotopic ossifications where TGF-β and AMPK exert opposite effects.
Collapse
Affiliation(s)
- Jiayu Gao
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Jiangxi Medical College, Nanchang 330000, China
- Department of Pathology, Schools of Basic Sciences, Nanchang University Jiangxi Medical College, Nanchang 330000, China
| | - Jinhui Ye
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Jiangxi Medical College, Nanchang 330000, China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Jiangxi Medical College, Nanchang 330000, China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Jiangxi Medical College, Nanchang 330000, China
| | - Zhijun Luo
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University Jiangxi Medical College, Nanchang 330000, China
- Department of Pathology, Schools of Basic Sciences, Nanchang University Jiangxi Medical College, Nanchang 330000, China
| |
Collapse
|
12
|
Song J, Shi W. The concomitant apoptosis and EMT underlie the fundamental functions of TGF-β. Acta Biochim Biophys Sin (Shanghai) 2018; 50:91-97. [PMID: 29069287 DOI: 10.1093/abbs/gmx117] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/01/2017] [Indexed: 01/08/2023] Open
Abstract
TGF-β's multipotent cellular effects and their relations are critical for TGF-β's pathophysiological functions. However, these effects may appear to be paradoxical in understanding TGF-β's functions. Apoptosis and epithelial-mesenchymal transition (EMT) are two fundamental events that are deeply linked to various physiological and disease-related processes. These two major cellular fates are subtly regulated and can be potently stimulated by TGF-β, which profoundly contribute to the biological roles of TGF-β. Moreover, these two events are also indirectly and directly correlated with TGF-β-mediated growth inhibition and are relevant to the current understanding of the roles of TGF-β in tumorigenesis and cancer progression. Although TGF-β-induced apoptosis and EMT can be singly independent cellular events, they can also be mutually exclusive but interrelated concomitant events in various cases. Thus, the modulation of apoptosis and EMT is essential for the seemingly paradoxical functions of TGF-β. However, the concomitant effect of TGF-β on apoptosis and EMT, the balance and regulated alterations of them are still been ignored or underestimated. This review focuses on the TGF-β-induced concomitant apoptosis and EMT. We aim to provide an insight in understanding their significance, balance, and modulation in TGF-β-mediated biological functions.
Collapse
Affiliation(s)
- Jianguo Song
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weiwei Shi
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
13
|
Ye T, Su J, Huang C, Yu D, Dai S, Huang X, Chen B, Zhou M. Isoorientin induces apoptosis, decreases invasiveness, and downregulates VEGF secretion by activating AMPK signaling in pancreatic cancer cells. Onco Targets Ther 2016; 9:7481-7492. [PMID: 28003763 PMCID: PMC5161403 DOI: 10.2147/ott.s122653] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Isoorientin (or homoorientin) is a flavone, which is a chemical flavonoid-like compound, and a 6-C-glucoside of luteolin. Isoorientin has been demonstrated to have anti-cancer activities against various tumors, but its effects on pancreatic cancer (PC) have not been studied in detail. In this study, we aim to investigate whether isoorientin has potential anti-PC effects and its underlying mechanism. In PC, isoorientin strongly inhibited the survival of the cells, induced cell apoptosis, and decreased its malignancy by reversing the expression of epithelial-mesenchymal transition and matrix metalloproteinase and decreased vascular endothelial growth factor expression. Meanwhile, we investigated the activity of the AMP-activated protein kinase (AMPK) signaling pathway after isoorientin treatment, which was forcefully activated by isoorientin, as expected. In addition, in the PC cells that were transfected with lentivirus to interfere with the expression of the gene PRKAA1, there were no differences in the apoptosis rate and the expression of malignancy biomarkers in the tumors of the isoorientin-treated and untreated groups. Thus, we demonstrated that isoorientin has potential antitumor effects via the AMPK signaling pathway, and isoorientin merits further investigation.
Collapse
Affiliation(s)
- Tingting Ye
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University
| | - Jiadong Su
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University
| | - Chaohao Huang
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University
| | - Dinglai Yu
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University
| | - Shengjie Dai
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University
| | - Xince Huang
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University
| | - Bicheng Chen
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Mengtao Zhou
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University
| |
Collapse
|
14
|
Ingthorsson S, Briem E, Bergthorsson JT, Gudjonsson T. Epithelial Plasticity During Human Breast Morphogenesis and Cancer Progression. J Mammary Gland Biol Neoplasia 2016; 21:139-148. [PMID: 27815674 PMCID: PMC5159441 DOI: 10.1007/s10911-016-9366-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/23/2016] [Indexed: 01/05/2023] Open
Abstract
Understanding the complex events leading to formation of an epithelial-based organ such as the breast requires a detailed insight into the crosstalk between epithelial and stromal compartments. These interactions occur both through heterotypic cellular interactions and between cells and matrix components. While in vivo models may partially capture these complex interactions, there is a need for in- vitro models to study these events. In this review we discuss cell-cell interactions in breast development focusing on the stem cell niche and branching morphogenesis. Given the recent understanding that the basic developmental events underlying branching morphogenesis are closely related to pathways important to cancer progression, i.e. epithelial plasticity and epithelial to mesenchymal transition (EMT), we will also discuss aspects relevant to cancer progression. In cancer, the adoption of mesenchymal phenotype by the malignant cells allows stromal invasion and subsequent intravasation to blood- or lymphatic vessels, a route that is a prerequisite for metastasis. A number of publications have demonstrated that tumor initiating cells, sometimes referred to as cancer stem cells adapt an EMT phenotype that renders them more resistant to apoptosis and drug therapy. The mechanism behind this phenomenon is currently unknown but this may partially explain relapse in breast cancer patients. Increased understanding of branching morphogenesis in the breast gland and the regulation of EMT and its reverse process mesenchymal to epithelial transition (MET) may hold the keys for future development of methods/drugs that neutralize the invading properties of cancer cells.
Collapse
Affiliation(s)
- Saevar Ingthorsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Eirikur Briem
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Jon Thor Bergthorsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland
- Department of Laboratory Hematology, Landspitali, University Hospital, Reykjavík, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland.
- Department of Laboratory Hematology, Landspitali, University Hospital, Reykjavík, Iceland.
| |
Collapse
|
15
|
He K, Guo X, Liu Y, Li J, Hu Y, Wang D, Song J. TUFM downregulation induces epithelial-mesenchymal transition and invasion in lung cancer cells via a mechanism involving AMPK-GSK3β signaling. Cell Mol Life Sci 2016; 73:2105-21. [PMID: 26781467 PMCID: PMC11108297 DOI: 10.1007/s00018-015-2122-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 11/25/2015] [Accepted: 12/15/2015] [Indexed: 12/30/2022]
Abstract
Mitochondrial dysfunction and epithelial-to-mesenchymal transition (EMT) play important roles in cancer development and metastasis. However, very little is known about the connection between mitochondrial dysfunction and EMT. Tu translation elongation factor, mitochondrial (TUFM), a key factor in the translational expression of mitochondrial DNA, plays an important role in the control of mitochondrial function. Here, we show that TUFM is downregulated in human cancer tissues. TUFM expression level was positively correlated with that of E-cadherin and decreased significantly during the progression of human lung cancer. TUFM knockdown induced EMT, reduced mitochondrial respiratory chain activity, and increased glycolytic function and the production of reactive oxygen species (ROS). Mechanistically, TUFM knockdown activated AMPK and phosphorylated GSK3β and increased the nuclear accumulation of β-catenin, leading to the induction of EMT and increased migration and metastasis of A549 lung cancer cells. Although TUFM knockdown also induced EMT of MCF7 breast cancer cells, the underlying mechanism appeared somewhat different from that in lung cancer cells. Our work identifies TUFM as a novel regulator of EMT and suggests a molecular link between mitochondrial dysfunction and EMT induction.
Collapse
Affiliation(s)
- Kai He
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signalling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Xiaojie Guo
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signalling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Yi Liu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signalling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Jingsong Li
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signalling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Ying Hu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signalling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Dongmei Wang
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signalling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Jianguo Song
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signalling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
| |
Collapse
|
16
|
Jia Y, Wang H, Wang Q, Ding H, Wu H, Pan H. Silencing Nrf2 impairs glioma cell proliferation via AMPK-activated mTOR inhibition. Biochem Biophys Res Commun 2016; 469:665-71. [DOI: 10.1016/j.bbrc.2015.12.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022]
|
17
|
Lin H, Li N, He H, Ying Y, Sunkara S, Luo L, Lv N, Huang D, Luo Z. AMPK Inhibits the Stimulatory Effects of TGF- βon Smad2/3 Activity, Cell Migration, and Epithelial-to-Mesenchymal Transition. Mol Pharmacol 2015. [DOI: 10.1124/mol.115.099549 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
18
|
Lin H, Li N, He H, Ying Y, Sunkara S, Luo L, Lv N, Huang D, Luo Z. AMPK Inhibits the Stimulatory Effects of TGF- βon Smad2/3 Activity, Cell Migration, and Epithelial-to-Mesenchymal Transition. Mol Pharmacol 2015. [DOI: 10.1124/mol.115.099549 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
19
|
Lin H, Li N, He H, Ying Y, Sunkara S, Luo L, Lv N, Huang D, Luo Z. AMPK Inhibits the Stimulatory Effects of TGF- βon Smad2/3 Activity, Cell Migration, and Epithelial-to-Mesenchymal Transition. Mol Pharmacol 2015. [DOI: 10.1124/mol.115.099549 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
20
|
Lin H, Li N, He H, Ying Y, Sunkara S, Luo L, Lv N, Huang D, Luo Z. AMPK Inhibits the Stimulatory Effects of TGF-β on Smad2/3 Activity, Cell Migration, and Epithelial-to-Mesenchymal Transition. Mol Pharmacol 2015; 88:1062-71. [PMID: 26424816 PMCID: PMC4658597 DOI: 10.1124/mol.115.099549] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 09/22/2015] [Indexed: 12/12/2022] Open
Abstract
AMP-activated protein kinase (AMPK), an important downstream effector of the tumor suppressor liver kinase 1 (LKB1) and pharmacologic target of metformin, is well known to exert a preventive and inhibitory effect on tumorigenesis; however, its role in cancer progression and metastasis has not been well characterized. The present study investigates the potential roles of AMPK in inhibiting cancer-cell migration and epithelial-to-mesenchymal transition (EMT) by regulating the canonical transforming growth factor β (TGF-β) signaling pathway, an important promoting factor for cancer progression. Our results showed that activation of AMPK by metformin inhibited TGF-β-induced Smad2/3 phosphorylation in cancer cells in a dose-dependent manner. The effect of metformin is dependent on the presence of LKB1. A similar effect was obtained by expressing a constitutive active mutant of AMPKα1 subunit, whereas the expression of a dominant negative mutant of AMPKα1 or ablation of AMPKα subunits greatly enhanced TGF-β stimulation of Smad2/3 phosphorylation. As a consequence, expression of genes downstream of Smad2/3, including plasminogen activator inhibitor-1, fibronectin, and connective tissue growth factor, was suppressed by metformin in a LKB1-dependent fashion. In addition, metformin blocked TGF-β-induced inteleukin-6 expression through both LKB1-dependent and -independent mechanisms. Our results also indicate that activation of LKB1/AMPK inhibits TGF-β-stimulated cancer cell migration. Finally, TGF-β induction of EMT was inhibited by phenformin and enhanced by knockdown of LKB1 expression with shRNA. Together, our data suggest that AMPK could be a drug target for controlling cancer progression and metastasis.
Collapse
Affiliation(s)
- Hui Lin
- Graduate Program of Clinical Medicine, School of Basic Medical Sciences (H.L, N.-S.L., H.H., Y.Y., Z.L.), Research Institute of Digestive Diseases, and Department of Gastroenterology, the First Affiliated Hospital (L.L., D.H., N.L.); Nanchang University, Nanchang, Jiangxi and Graduate Program in Biological Sciences, Northeastern University (S.S.) and Department of Biochemistry, Boston University School of Medicine (H.L., H.H., Y.Y. Z.L.), Boston, Massachusetts
| | - Nianshuang Li
- Graduate Program of Clinical Medicine, School of Basic Medical Sciences (H.L, N.-S.L., H.H., Y.Y., Z.L.), Research Institute of Digestive Diseases, and Department of Gastroenterology, the First Affiliated Hospital (L.L., D.H., N.L.); Nanchang University, Nanchang, Jiangxi and Graduate Program in Biological Sciences, Northeastern University (S.S.) and Department of Biochemistry, Boston University School of Medicine (H.L., H.H., Y.Y. Z.L.), Boston, Massachusetts
| | - Huan He
- Graduate Program of Clinical Medicine, School of Basic Medical Sciences (H.L, N.-S.L., H.H., Y.Y., Z.L.), Research Institute of Digestive Diseases, and Department of Gastroenterology, the First Affiliated Hospital (L.L., D.H., N.L.); Nanchang University, Nanchang, Jiangxi and Graduate Program in Biological Sciences, Northeastern University (S.S.) and Department of Biochemistry, Boston University School of Medicine (H.L., H.H., Y.Y. Z.L.), Boston, Massachusetts
| | - Ying Ying
- Graduate Program of Clinical Medicine, School of Basic Medical Sciences (H.L, N.-S.L., H.H., Y.Y., Z.L.), Research Institute of Digestive Diseases, and Department of Gastroenterology, the First Affiliated Hospital (L.L., D.H., N.L.); Nanchang University, Nanchang, Jiangxi and Graduate Program in Biological Sciences, Northeastern University (S.S.) and Department of Biochemistry, Boston University School of Medicine (H.L., H.H., Y.Y. Z.L.), Boston, Massachusetts
| | - Shashank Sunkara
- Graduate Program of Clinical Medicine, School of Basic Medical Sciences (H.L, N.-S.L., H.H., Y.Y., Z.L.), Research Institute of Digestive Diseases, and Department of Gastroenterology, the First Affiliated Hospital (L.L., D.H., N.L.); Nanchang University, Nanchang, Jiangxi and Graduate Program in Biological Sciences, Northeastern University (S.S.) and Department of Biochemistry, Boston University School of Medicine (H.L., H.H., Y.Y. Z.L.), Boston, Massachusetts
| | - Lingyu Luo
- Graduate Program of Clinical Medicine, School of Basic Medical Sciences (H.L, N.-S.L., H.H., Y.Y., Z.L.), Research Institute of Digestive Diseases, and Department of Gastroenterology, the First Affiliated Hospital (L.L., D.H., N.L.); Nanchang University, Nanchang, Jiangxi and Graduate Program in Biological Sciences, Northeastern University (S.S.) and Department of Biochemistry, Boston University School of Medicine (H.L., H.H., Y.Y. Z.L.), Boston, Massachusetts
| | - Nonghua Lv
- Graduate Program of Clinical Medicine, School of Basic Medical Sciences (H.L, N.-S.L., H.H., Y.Y., Z.L.), Research Institute of Digestive Diseases, and Department of Gastroenterology, the First Affiliated Hospital (L.L., D.H., N.L.); Nanchang University, Nanchang, Jiangxi and Graduate Program in Biological Sciences, Northeastern University (S.S.) and Department of Biochemistry, Boston University School of Medicine (H.L., H.H., Y.Y. Z.L.), Boston, Massachusetts
| | - Deqiang Huang
- Graduate Program of Clinical Medicine, School of Basic Medical Sciences (H.L, N.-S.L., H.H., Y.Y., Z.L.), Research Institute of Digestive Diseases, and Department of Gastroenterology, the First Affiliated Hospital (L.L., D.H., N.L.); Nanchang University, Nanchang, Jiangxi and Graduate Program in Biological Sciences, Northeastern University (S.S.) and Department of Biochemistry, Boston University School of Medicine (H.L., H.H., Y.Y. Z.L.), Boston, Massachusetts
| | - Zhijun Luo
- Graduate Program of Clinical Medicine, School of Basic Medical Sciences (H.L, N.-S.L., H.H., Y.Y., Z.L.), Research Institute of Digestive Diseases, and Department of Gastroenterology, the First Affiliated Hospital (L.L., D.H., N.L.); Nanchang University, Nanchang, Jiangxi and Graduate Program in Biological Sciences, Northeastern University (S.S.) and Department of Biochemistry, Boston University School of Medicine (H.L., H.H., Y.Y. Z.L.), Boston, Massachusetts
| |
Collapse
|
21
|
Lin H, Li N, He H, Ying Y, Sunkara S, Luo L, Lv N, Huang D, Luo Z. AMPK Inhibits the Stimulatory Effects of TGF- βon Smad2/3 Activity, Cell Migration, and Epithelial-to-Mesenchymal Transition. Mol Pharmacol 2015. [DOI: 10.1124/mol.115.099549 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
22
|
Lin H, Li N, He H, Ying Y, Sunkara S, Luo L, Lv N, Huang D, Luo Z. AMPK Inhibits the Stimulatory Effects of TGF- βon Smad2/3 Activity, Cell Migration, and Epithelial-to-Mesenchymal Transition. Mol Pharmacol 2015. [DOI: 10.1124/mol.115.099549 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
23
|
Lin H, Li N, He H, Ying Y, Sunkara S, Luo L, Lv N, Huang D, Luo Z. AMPK Inhibits the Stimulatory Effects of TGF- βon Smad2/3 Activity, Cell Migration, and Epithelial-to-Mesenchymal Transition. Mol Pharmacol 2015. [DOI: 10.1124/mol.115.099549 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
24
|
Lin H, Li N, He H, Ying Y, Sunkara S, Luo L, Lv N, Huang D, Luo Z. AMPK Inhibits the Stimulatory Effects of TGF- βon Smad2/3 Activity, Cell Migration, and Epithelial-to-Mesenchymal Transition. Mol Pharmacol 2015. [DOI: 10.1124/mol.115.099549 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
25
|
Thakur S, Viswanadhapalli S, Kopp JB, Shi Q, Barnes JL, Block K, Gorin Y, Abboud HE. Activation of AMP-activated protein kinase prevents TGF-β1-induced epithelial-mesenchymal transition and myofibroblast activation. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2168-80. [PMID: 26071397 DOI: 10.1016/j.ajpath.2015.04.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 03/27/2015] [Accepted: 04/21/2015] [Indexed: 12/26/2022]
Abstract
Transforming growth factor (TGF)-β contributes to tubulointerstitial fibrosis. We investigated the mechanism by which TGF-β exerts its profibrotic effects and specifically the role of AMP-activated protein kinase (AMPK) in kidney tubular epithelial cells and interstitial fibroblasts. In proximal tubular epithelial cells, TGF-β1 treatment causes a decrease in AMPK phosphorylation and activation together with increased fibronectin and α-smooth muscle actin expression and decreased in E-cadherin. TGF-β1 causes similar changes in interstitial fibroblasts. Activation of AMPK with 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside, metformin, or overexpression of constitutively active AMPK markedly attenuated TGF-β1 functions. Conversely, inhibition of AMPK with adenine 9-β-d-arabinofuranoside or siRNA-mediated knockdown of AMPK (official name PRKAA1) mimicked the effect of TGF-β1 and enhanced basal and TGF-β1-induced phenotypic changes. Importantly, we found that tuberin contributed to the protective effects of AMPK and that TGF-β1 promoted cell injury by blocking AMPK-mediated tuberin phosphorylation and activation. In the kidney cortex of TGF-β transgenic mice, the significant decrease in AMPK phosphorylation and tuberin phosphorylation on its AMPK-dependent activating site was associated with an increase in mesenchymal markers and a decrease in E-cadherin. Collectively, the data indicate that TGF-β exerts its profibrotic action in vitro and in vivo via inactivation of AMPK. AMPK and tuberin activation prevent tubulointerstitial injury induced by TGF-β. Activators of AMPK provide potential therapeutic strategy to prevent kidney fibrosis and progressive kidney disease.
Collapse
Affiliation(s)
- Sachin Thakur
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | | | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Qian Shi
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Jeffrey L Barnes
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Karen Block
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; Audie L. Murphy Memorial Hospital Division, South Texas Veterans Healthcare System, San Antonio, Texas
| | - Yves Gorin
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Hanna E Abboud
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; Audie L. Murphy Memorial Hospital Division, South Texas Veterans Healthcare System, San Antonio, Texas
| |
Collapse
|
26
|
Epithelial–mesenchymal transition in human cancer: Comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol Ther 2015; 150:33-46. [PMID: 25595324 DOI: 10.1016/j.pharmthera.2015.01.004] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 02/07/2023]
|
27
|
ZHANG XIULI, LIANG DAN, ZHI-HONG CHI, QINGQING CHU, CHENGHAI ZHAO, RONG-ZHENG MA, YUE ZHAO, HONGJUAN LI. Effect of zinc on high glucose-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells. Int J Mol Med 2015; 35:1747-54. [DOI: 10.3892/ijmm.2015.2170] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/23/2015] [Indexed: 11/05/2022] Open
|
28
|
Park JH, Yoon J. Schizandrin inhibits fibrosis and epithelial-mesenchymal transition in transforming growth factor-β1-stimulated AML12 cells. Int Immunopharmacol 2015; 25:276-84. [PMID: 25701504 DOI: 10.1016/j.intimp.2015.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 11/15/2022]
Abstract
The transforming growth factor (TGF)-β1 plays a crucial role in the induction of the epithelial-to-mesenchymal transition (EMT) in hepatocytes, which contributes to the pathogenesis of liver fibrosis. The inhibition of the TGF-β1 cascade suppresses EMT and the resultant fibrosis. Schizandrin (Sch) has various therapeutic effects on a range of medical conditions such as anti-asthmatic, anti-cancer, and anti-inflammatory effects. However, the effect of Sch on TGF-β1-stimulated hepatic fibrosis and EMT is still unknown. In the present investigation, we evaluated the anti-fibrotic and anti-EMT properties of Sch and its underlying mechanisms in murine hepatocyte AML12 cells. Overall, we found that Sch inhibited the pro-fibrotic activity of TGF-β1 in AML12 cells; thus, it suppressed the accumulation of ECM proteins. Also, Sch inhibited the EMT as assessed by reduced expression of vimentin and fibronectin, and increased E-cadherin and ZO-1 in TGF-β1 induced AML12 cells. Sch reduced TGF-β1-mediated phosphorylation of Smad2/3 and Smad3/4 DNA binding activity. On the other hand, Sch reduced TGF-β1-induced ERK1/2 and PI3K/Akt phosphorylation in the non-Smad pathway. In conclusion, Sch can antagonize TGF-β1-mediated fibrosis and EMT in AML12 cells. Sch may possess potential as an anti-fibrotic molecule in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Ji-hyun Park
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Republic of Korea
| | - Jaewoo Yoon
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Republic of Korea.
| |
Collapse
|
29
|
Bonini MG, Gantner BN. The multifaceted activities of AMPK in tumor progression--why the "one size fits all" definition does not fit at all? IUBMB Life 2014; 65:889-96. [PMID: 24265196 DOI: 10.1002/iub.1213] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/27/2013] [Indexed: 12/19/2022]
Abstract
AMP-activated kinase (AMPK) is a central cellular energetic biosensor and regulator of a broad array of cellular metabolic routes activated by nutrient deprivation, mitochondrial dysfunction, oxidative stress, and cytokines. The activation of AMPK maintains ATP levels in response to hypoxia, mitochondrial dysfunction, and shortage of essential metabolic fuels. Activated AMPK turns on energy sparing pathways and promotes antiapoptotic functions thereby permitting cells to survive extremely hostile conditions for prolonged periods of time. Cancer cells in solid tumors are generally subjected to such harsh conditions; however, they manage to efficiently survive and proliferate. This is likely due, in great part, to a peculiar form of metabolism that is heavily reliant on glycolysis and which promotes cancer cell adaptation and tumor progression. AMPK controls the influx and utilization of glucose by cancer cells and therefore has emerged as an attractive target to treat cancer. Investigations exploring this possibility demonstrated that activators or inhibitors of AMPK impact cancer cell viability and possibly cancer progression. For example, the AMPK activator metformin induces apoptosis in a variety of cancer cell lines and models. A major problem with many of the studies on metformin is that little effort has been invested in unraveling how metformin activates AMPK in the many contexts it has been tested. This is significant because many AMPK-independent effects of metformin have been documented. The notion that AMPK acts solely as a tumor suppressor also conflicts with findings that it confers resistance to nutrient deprivation, sustains NADPH levels in cancer cells, facilitates stress-induced gene transcription, promotes cell survival via antiapoptotic function upregulation, intermediates epithelial-to-mesenchymal transition, and increases malignant transformation. These are all recognized steps necessary for the successful evolution of tumors. This review highlights some of these findings and proposes that the role of AMPK in cancer should be reconsidered in light of the complex roles of AMPK under different metabolic conditions.
Collapse
Affiliation(s)
- Marcelo G Bonini
- Department of Medicine, University of Illinois at Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, IL, USA; Department of Pathology, University of Illinois at Chicago, IL, USA
| | | |
Collapse
|
30
|
p21(WAF1/CIP1) Expression is Differentially Regulated by Metformin and Rapamycin. Int J Chronic Dis 2014; 2014:327640. [PMID: 26464852 PMCID: PMC4590942 DOI: 10.1155/2014/327640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/03/2014] [Accepted: 02/13/2014] [Indexed: 12/14/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway plays an important role in the development of diabetic nephropathy and other age-related diseases. One of the features of DN is the elevated expression of p21WAF1/CIP1. However, the importance of the mTOR signalling pathway in p21 regulation is poorly understood. Here we investigated the effect of metformin and rapamycin on mTOR-related phenotypes in cell lines of epithelial origin. This study reports that metformin inhibits high glucose-induced p21 expression. High glucose opposed metformin in regulating cell size, proliferation, and protein synthesis. These effects were associated with reduced AMPK activation, affecting downstream mTOR signalling. However, the inhibition of the mTOR pathway by rapamycin did not have a negative effect on p21 expression, suggesting that metformin regulates p21 upstream of mTOR. These findings provide support for the hypothesis that AMPK activation may regulate p21 expression, which may have implications for diabetic nephropathy and other age-related pathologies.
Collapse
|
31
|
High dose of extracellular ATP switched autophagy to apoptosis in anchorage-dependent and anchorage-independent hepatoma cells. Purinergic Signal 2013; 9:585-98. [PMID: 23780311 DOI: 10.1007/s11302-013-9369-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 05/15/2013] [Indexed: 01/08/2023] Open
Abstract
Extracellular adenosine triphosphate (eATP) transduces purinergic signal and plays an important regulatory role in many biological processes, including tumor cell growth and cell death. A large amount of eATP exists in the fast-growing tumor center and inflammatory tumor microenvironment. Tumor cells could acquire anoikis resistance and anchorage independence in tumor microenvironment and further cause metastatic lesion. Whether such a high amount of eATP has any effect on the anchored and non-anchored tumor cells in tumor microenvironment has not been elucidated and is investigated in this study. Our data showed that autophagy helped hepatoma cells to maintain survival under the treatment of no more than 1 mM of eATP. Only when eATP concentration reached a relatively high level (2.5 mM), cell organelle could not be further maintained by autophagy, and apoptosis and cell death occurred. In hepatoma cells under treatment of 2.5 mM of eATP, an AMP-activated protein kinase (AMPK) pathway was dramatically activated while mTOR signaling pathway was suppressed in coordination with apoptosis. Further investigation showed that the AMPK/mTOR axis played a key role in tipping the balance between autophagy-mediated cell survival and apoptosis-induced cell death under the treatment of eATP. This work provides evidence to explain how hepatoma cells escape from eATP-induced cytotoxicity as well as offers an important clue to consider effective manipulation of cancer.
Collapse
|
32
|
Hu Y, He K, Wang D, Yuan X, Liu Y, Ji H, Song J. TMEPAI regulates EMT in lung cancer cells by modulating the ROS and IRS-1 signaling pathways. Carcinogenesis 2013; 34:1764-72. [PMID: 23615405 DOI: 10.1093/carcin/bgt132] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) has been implicated in various pathophysiological processes, including cancer cell migration and distal metastasis. Reactive oxygen species (ROS) and insulin receptor substrate-1 (IRS-1) are important in cancer progression and regulation of EMT. To explore the biological significance and regulatory mechanism of EMT, we determined the expression, the biological function and the signaling pathway of prostate transmembrane protein, androgen induced-1 (TMEPAI), during the induction of EMT and cell migration. Transforming growth factor (TGF)-β1 significantly upregulated the expression of TMEPAI during EMT in human lung adenocarcinoma. Depletion of TMEPAI abolished TGF-β1-induced downregulation of ferritin heavy chain and the subsequent generation of ROS, thus suppressing TGF-β1-induced EMT and cell migration. In addition, increased ROS production and overexpression of TMEPAI downregulated the level of IRS-1. Both the addition of H2O2 and IRS-1 small interfering RNA rescued the ability of TGF-β1 to induce EMT in TMEPAI-depleted cells. Remarkably, the levels of TMEPAI in lung tumor tissues are very high, whereas its expression in normal lung epithelium is very low. Moreover, TMEPAI expression was positively correlated with the cell mesenchymal phenotype and migration potential. Our work reveals that TMEPAI contributes to TGF-β1-induced EMT through ROS production and IRS-1 downregulation in lung cancer cells.
Collapse
Affiliation(s)
- Ying Hu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
33
|
Zhang L, Lei W, Wang X, Tang Y, Song J. Glucocorticoid induces mesenchymal-to-epithelial transition and inhibits TGF-β1-induced epithelial-to-mesenchymal transition and cell migration. FEBS Lett 2010; 584:4646-54. [PMID: 20971111 DOI: 10.1016/j.febslet.2010.10.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/30/2010] [Accepted: 10/16/2010] [Indexed: 12/21/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) has been implicated in various physiological and pathological events. In this study, we found that the synthetic glucocorticoid dexamethasone (Dex) can inhibit transforming growth factor-beta1-induced EMT and cell migration. We also demonstrated that Dex inhibits EMT through a mechanism involving the suppression of ROS generation. Surprisingly, Dex alone induced mesenchymal-to-epithelial transition (MET). Dexamethasone treatment abolished Snail1 binding to the E-cadherin promoter, suggesting that suppression of Snail1 contributes to the above roles of Dex. Our findings demonstrate that Dex functions as both a suppressor of EMT and as an inducer of MET and therefore may be implicated in certain pathophysiological events.
Collapse
Affiliation(s)
- Liang Zhang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. 320 Yue-Yang Road, Shanghai 200031, China
| | | | | | | | | |
Collapse
|