1
|
Ng ASN, Zhang S, Mak VCY, Zhou Y, Yuen Y, Sharma R, Lu Y, Zhuang G, Zhao W, Pang HH, Cheung LWT. AKTIP loss is enriched in ERα-positive breast cancer for tumorigenesis and confers endocrine resistance. Cell Rep 2022; 41:111821. [PMID: 36516775 PMCID: PMC9837615 DOI: 10.1016/j.celrep.2022.111821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Recurrent deletion of 16q12.2 is observed in luminal breast cancer, yet the causal genomic alterations in this region are largely unknown. In this study, we identify that loss of AKTIP, which is located on 16q12.2, drives tumorigenesis of estrogen receptor alpha (ERα)-positive, but not ERα-negative, breast cancer cells and is associated with poor prognosis of patients with ERα-positive breast cancer. Intriguingly, AKTIP-depleted tumors have increased ERα protein level and activity. Cullin-associated and neddylation-dissociated protein 1 (CAND1), which regulates the cullin-RING E3 ubiquitin ligases, protects ERα from cullin 2-dependent proteasomal degradation. Apart from ERα signaling, AKTIP loss triggers JAK2-STAT3 activation, which provides an alternative survival signal when ERα is inhibited. AKTIP-depleted MCF7 cells and ERα-positive patient-derived organoids are more resistant to ERα antagonists. Importantly, the resistance can be overcome by co-inhibition of JAK2/STAT3. Together, our results highlight the subtype-specific functional consequences of AKTIP loss and provide a mechanistic explanation for the enriched AKTIP copy-number loss in ERα-positive breast cancer.
Collapse
Affiliation(s)
- Angel S N Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shibo Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Victor C Y Mak
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuan Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yin Yuen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rakesh Sharma
- Proteomics and Metabolomics Core, Center for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yiling Lu
- Department of Genomic Medicine, Division of Cancer Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Wei Zhao
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Herbert H Pang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lydia W T Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Effects of Ruxolitinib and Calcitriol Combination Treatment on Various Molecular Subtypes of Breast Cancer. Int J Mol Sci 2022; 23:ijms23052535. [PMID: 35269680 PMCID: PMC8910493 DOI: 10.3390/ijms23052535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/28/2022] Open
Abstract
The anticancer effects of ruxolitinib and calcitriol against breast cancer were reported previously. However, the effect of ruxolitinib and calcitriol combination treatment on various molecular subtypes of breast cancer remains unexplored. In this study, we used MCF-7, SKBR3, and MDA-MB-468 cells to investigate the effect of ruxolitinib and calcitriol combination treatment on cell proliferation, apoptosis, cell cycle, and cell signaling markers, in vitro and in vivo. Our results revealed the synergistic anticancer effect of ruxolitinib and calcitriol combination treatment in SKBR3 and MDA-MB-468 cells, but not in MCF-7 cells in vitro, via cell proliferation inhibition, apoptosis induction, cell cycle arrest, and the alteration of cell signaling protein expression, including cell cycle-related (cyclin D1, CDK1, CDK4, p21, and p27), apoptosis-related (c-caspase and c-PARP), and cell proliferation-related (c-Myc, p-p53, and p-JAK2) proteins. Furthermore, in the MDA-MB-468 xenograft mouse model, we demonstrated the synergistic antitumor effect of ruxolitinib and calcitriol combination treatment, including the alteration of c-PARP, cyclin D1, and c-Myc expression, without significant drug toxicity. The combination exhibited a synergistic effect in HER2-enriched and triple-negative breast cancer subtypes. In conclusion, our results suggest different effects of the combination treatment of ruxolitinib and calcitriol depending on the molecular subtype of breast cancer.
Collapse
|
3
|
Song D, He H, Indukuri R, Huang Z, Stepanauskaite L, Sinha I, Haldosén LA, Zhao C, Williams C. ERα and ERβ Homodimers in the Same Cellular Context Regulate Distinct Transcriptomes and Functions. Front Endocrinol (Lausanne) 2022; 13:930227. [PMID: 35872983 PMCID: PMC9299245 DOI: 10.3389/fendo.2022.930227] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The two estrogen receptors ERα and ERβ are nuclear receptors that bind estrogen (E2) and function as ligand-inducible transcription factors. They are homologues and can form dimers with each other and bind to the same estrogen-response element motifs in the DNA. ERα drives breast cancer growth whereas ERβ has been reported to be anti-proliferative. However, they are rarely expressed in the same cells, and it is not fully investigated to which extent their functions are different because of inherent differences or because of different cellular context. To dissect their similarities and differences, we here generated a novel estrogen-dependent cell model where ERα homodimers can be directly compared to ERβ homodimers within the identical cellular context. By using CRISPR-cas9 to delete ERα in breast cancer MCF7 cells with Tet-Off-inducible ERβ expression, we generated MCF7 cells that express ERβ but not ERα. MCF7 (ERβ only) cells exhibited regulation of estrogen-responsive targets in a ligand-dependent manner. We demonstrated that either ER was required for MCF7 proliferation, but while E2 increased proliferation via ERα, it reduced proliferation through a G2/M arrest via ERβ. The two ERs also impacted migration differently. In absence of ligand, ERβ increased migration, but upon E2 treatment, ERβ reduced migration. E2 via ERα, on the other hand, had no significant impact on migration. RNA sequencing revealed that E2 regulated a transcriptome of around 800 genes via each receptor, but over half were specific for either ERα or ERβ (417 and 503 genes, respectively). Functional gene ontology enrichment analysis reinforced that E2 regulated cell proliferation in opposite directions depending on the ER, and that ERβ specifically impacted extracellular matrix organization. We corroborated that ERβ bound to cis-regulatory chromatin of its unique proposed migration-related direct targets ANXA9 and TFAP2C. In conclusion, we demonstrate that within the same cellular context, the two ERs regulate cell proliferation in the opposite manner, impact migration differently, and each receptor also regulates a distinct set of target genes in response to E2. The developed cell model provides a novel and valuable resource to further complement the mechanistic understanding of the two different ER isoforms.
Collapse
Affiliation(s)
- Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Jinan, China
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Huan He
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- School of Public Health, Jilin University, Changchun, China
| | - Rajitha Indukuri
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Solna, Sweden
| | - Zhiqiang Huang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Lina Stepanauskaite
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Solna, Sweden
| | - Indranil Sinha
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Arne Haldosén
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Chunyan Zhao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Cecilia Williams
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Solna, Sweden
- *Correspondence: Cecilia Williams,
| |
Collapse
|
4
|
Zhang X. The Expression Profile and Prognostic Values of EPHA Family Members in Breast Cancer. Front Oncol 2021; 11:619949. [PMID: 34221956 PMCID: PMC8250424 DOI: 10.3389/fonc.2021.619949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND EphAs are a class of ephrin receptors that belong to the membrane-bound receptor tyrosine kinases group. Accumulating experimental evidence has shown that the EphA family is involved in tumor progression, namely in cell proliferation, invasiveness, and metastasis. EphAs are a promising target for anticancer therapy. However, their role in breast cancer (BC) is still not well understood. MATERIALS AND METHODS We used a series of bioinformatic approaches to analyze the expression of the EphA family members and investigate their prognostic value in BC. RESULTS Lower expression levels of EphA2, EphA3, EphA4, EphA5, and EphA7 and higher expression levels of EphA10 were found in BC tissues compared to those in normal tissues. The expression levels of the EphA family genes were correlated with molecular subtyping but not with tumor stage. High expression levels of most EphAs indicated a better prognosis in BC. CONCLUSIONS This study suggested that EphA2, EphA3, EphA4, and EphA5 can act as tumor-inhibiting factors as well as biomarkers for the prognosis of BC.
Collapse
|
5
|
Sedley L. Advances in Nutritional Epigenetics-A Fresh Perspective for an Old Idea. Lessons Learned, Limitations, and Future Directions. Epigenet Insights 2020; 13:2516865720981924. [PMID: 33415317 PMCID: PMC7750768 DOI: 10.1177/2516865720981924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Nutritional epigenetics is a rapidly expanding field of research, and the natural modulation of the genome is a non-invasive, sustainable, and personalized alternative to gene-editing for chronic disease management. Genetic differences and epigenetic inflexibility resulting in abnormal gene expression, differential or aberrant methylation patterns account for the vast majority of diseases. The expanding understanding of biological evolution and the environmental influence on epigenetics and natural selection requires relearning of once thought to be well-understood concepts. This research explores the potential for natural modulation by the less understood epigenetic modifications such as ubiquitination, nitrosylation, glycosylation, phosphorylation, and serotonylation concluding that the under-appreciated acetylation and mitochondrial dependant downstream epigenetic post-translational modifications may be the pinnacle of the epigenomic hierarchy, essential for optimal health, including sustainable cellular energy production. With an emphasis on lessons learned, this conceptional exploration provides a fresh perspective on methylation, demonstrating how increases in environmental methane drive an evolutionary down regulation of endogenous methyl groups synthesis and demonstrates how epigenetic mechanisms are cell-specific, making supplementation with methyl cofactors throughout differentiation unpredictable. Interference with the epigenomic hierarchy may result in epigenetic inflexibility, symptom relief and disease concomitantly and may be responsible for the increased incidence of neurological disease such as autism spectrum disorder.
Collapse
Affiliation(s)
- Lynda Sedley
- Bachelor of Health Science (Nutritional Medicine),
GC Biomedical Science (Genomics), The Research and Educational Institute of
Environmental and Nutritional Epigenetics, Queensland, Australia
| |
Collapse
|
6
|
Viewing the Eph receptors with a focus on breast cancer heterogeneity. Cancer Lett 2018; 434:160-171. [PMID: 30055288 DOI: 10.1016/j.canlet.2018.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023]
Abstract
Aberrant expression of different family members of the Eph/ephrin system, which comprises the Eph receptors (Ephs) and their ligands (ephrins), has been implicated in various malignancies including breast cancer. The latter presents as a heterogeneous disease with diverse molecular, morphologic and clinical behavior signatures. This review reflects the existing Eph/ephrin literature while focusing on breast cancer heterogeneity. Hormone positive, HER2 positive and triple negative breast cancer (TNBC) cell lines, xenografts/mutant animal models and patient samples are examined separately as, in humans, they represent entities with differences in prognosis and treatment. EphA2, EphB4 and EphB6 are the members most extensively studied in breast cancer. Existing research points to the potential use of various Eph/ephrin members as biomarkers for assessing prognosis and selecting the most suitable therapeutic strategies in variable clinical scenarios, also for overcoming drug resistance, in the era of breast cancer heterogeneity.
Collapse
|
7
|
Becerril JLM, Benítez JGS, Juárez JJT, Bañales JMG, Zerón HM, Navarro MDH. Evaluation of the Effect of 1,3-Bis(4-Phenyl)-1H-1,2,3-Triazolyl-2-Propanolol on Gene Expression Levels of JAK2–STAT3, NF-κB, and SOCS3 in Cells Cultured from Biopsies of Mammary Lesions. Biochem Genet 2015; 53:291-300. [DOI: 10.1007/s10528-015-9691-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/19/2015] [Indexed: 02/02/2023]
|
8
|
Slattery ML, Lundgreen A, Hines LM, Torres-Mejia G, Wolff RK, Stern MC, John EM. Genetic variation in the JAK/STAT/SOCS signaling pathway influences breast cancer-specific mortality through interaction with cigarette smoking and use of aspirin/NSAIDs: the Breast Cancer Health Disparities Study. Breast Cancer Res Treat 2014; 147:145-58. [PMID: 25104439 PMCID: PMC4167366 DOI: 10.1007/s10549-014-3071-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/19/2014] [Indexed: 11/26/2022]
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway is involved in immune function and cell growth; genetic variation in this pathway could influence breast cancer risk. We examined 12 genes in the JAK/STAT/SOCS signaling pathway with breast cancer risk and mortality in an admixed population of Hispanic (2,111 cases, 2,597 controls) and non-Hispanic white (1,481 cases, 1,585 controls) women. Associations were assessed by Indigenous American (IA) ancestry. After adjustment for multiple comparisons, JAK1 (three of ten SNPs) and JAK2 (4 of 11 SNPs) interacted with body mass index (BMI) among pre-menopausal women, while STAT3 (four of five SNPs) interacted significantly with BMI among post-menopausal women to alter breast cancer risk. STAT6 rs3024979 and TYK2 rs280519 altered breast cancer-specific mortality among all women. Associations with breast cancer-specific mortality differed by IA ancestry; SOCS1 rs193779, STAT3 rs1026916, and STAT4 rs11685878 associations were limited to women with low IA ancestry, and associations with JAK1 rs2780890, rs2254002, and rs310245 and STAT1 rs11887698 were observed among women with high IA ancestry. JAK2 (5 of 11 SNPs), SOCS2 (one of three SNPs), and STAT4 (2 of 20 SNPs) interacted with cigarette smoking status to alter breast cancer-specific mortality. SOCS2 (one of three SNPs) and all STAT3, STAT5A, and STAT5B SNPs significantly interacted with use of aspirin/NSAIDs to alter breast cancer-specific mortality. Genetic variation in the JAK/STAT/SOCS pathway was associated with breast cancer-specific mortality. The proportion of SNPs within a gene that significantly interacted with lifestyle factors lends support for the observed associations.
Collapse
Affiliation(s)
- Martha L. Slattery
- University of Utah, Department of Medicine, 383 Colorow, Salt Lake City, UT 84108
| | - Abbie Lundgreen
- University of Utah, Department of Medicine, 383 Colorow, Salt Lake City, UT 84108
| | - Lisa M. Hines
- University of Colorado at Colorado Springs, Department of Biology, Colorado Springs, CO 80918
| | - Gabriela Torres-Mejia
- Instituto Nacional de Salud Pública, Centro de Investigación en Salud Poblacional, Av. Universidad No. 655, Col. Sta. Ma. Ahuacatitlán, Cuernavaca Morelos CP 62100
| | - Roger K. Wolff
- University of Utah, Department of Medicine, 383 Colorow, Salt Lake City, UT 84108
| | - Mariana C. Stern
- Department of Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90089
| | - Esther M. John
- Cancer Prevention Institute of California, Fremont, CA 94538, and Division of Epidemiology, Department of Health Research and Policy and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
9
|
Hodgkinson KM, Vanderhyden BC. Consideration of GREB1 as a potential therapeutic target for hormone-responsive or endocrine-resistant cancers. Expert Opin Ther Targets 2014; 18:1065-76. [PMID: 24998469 DOI: 10.1517/14728222.2014.936382] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Steroid hormones increase the incidence and promote the progression of many types of cancer. Exogenous estrogens increase the risk of developing breast, ovarian and endometrial cancer and many breast cancers initially respond to estrogen deprivation. Although steroid hormone signaling has been extensively studied, the mechanisms of hormone-stimulated cancer growth have not yet been fully elucidated, limiting opportunities for novel approaches to therapeutic intervention. AREAS COVERED This review examines growing evidence for the important role played by the steroid hormone-induced gene called GREB1, or growth regulation by estrogen in breast cancer 1. GREB1 is a critical mediator of both the estrogen-stimulated proliferation of breast cancer cells and the androgen-stimulated proliferation of prostate cancer cells. EXPERT OPINION Although its exact function in the cascade of hormone action remains unclear, the ability of GREB1 to modulate tumor progression in models of breast, ovarian and prostate cancer renders this gene an excellent candidate for further consideration as a potential therapeutic target. Research examining the mechanism of GREB1 action will help to elucidate its role in proliferation and its potential contribution to endocrine resistance and will determine whether GREB1 interference may have therapeutic efficacy.
Collapse
Affiliation(s)
- Kendra M Hodgkinson
- Ottawa Hospital Research Institute, Centre for Cancer Therapeutics , 501 Smyth Road, 3rd Floor, Box 926, Ottawa, Ontario K1H 8L6 , Canada
| | | |
Collapse
|
10
|
Schmitt F, Nguyen PH, Gupta N, Mayer D. Eph receptor B4 is a regulator of estrogen receptor alpha in breast cancer cells. J Recept Signal Transduct Res 2013; 33:244-8. [PMID: 23725356 DOI: 10.3109/10799893.2013.795971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Estrogen receptor alpha (ER-α) plays an important role in breast cancer initiation and progression and represents a major target in cancer therapy. The expression and activity of ER-α is regulated by multiple mechanisms at the transcriptional and post-translational level. Interaction of tyrosine kinase receptor-activated signaling pathways with ER-α function has been reported. We previously performed a kinome-wide small interfering RNA high-throughput screen to identify novel protein kinases involved in the regulation of ER-α transcriptional activity in human breast cancer cells. Our screening analysis identified the Eph receptor tyrosine kinases (Eph) as potential positive regulators of ER-α. RESULTS In this study, we demonstrate Eph receptor B4 (EphB4), a member of Eph kinase family, a positive regulator of ER-α in human breast cancer cell lines (MCF-7, T-47D and BT-474). Down-regulation of EphB4 by RNA interference technology impairs estrogen-dependent ER-α transcriptional activity in breast cancer cells. Decreased activity of ER-α after EphB4 knockdown is the consequence of diminished ER-α messenger RNA and protein expression. Furthermore, phosphorylation of Akt, a downstream mediator of EphB4, is reduced following EphB4 silencing. CONCLUSIONS Our data suggests EphB4 as an upstream regulator of ER-α in human breast cancer cells by modulating ER-α transcription. The results also suggest Akt as a relevant downstream signaling molecule in this novel EphB4-ER-α pathway.
Collapse
Affiliation(s)
- Fee Schmitt
- Hormones and Signal Transduction Group, German Cancer Research Center, Heidelberg, Germany
| | | | | | | |
Collapse
|
11
|
Gupta N, Mayer D. Interaction of JAK with steroid receptor function. JAKSTAT 2013; 2:e24911. [PMID: 24416641 PMCID: PMC3881601 DOI: 10.4161/jkst.24911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/02/2013] [Accepted: 05/02/2013] [Indexed: 11/23/2022] Open
Abstract
The function of steroid receptors is not only regulated by steroid hormones, but also by multiple cellular signaling cascades activated by membrane-bound receptors which are stimulated by growth factors or cytokines. Cross-talk between JAK and steroid receptors plays a central role in the regulation of a multitude of physiological processes and aberrant signaling is involved in the development of numerous diseases including cancer. In this review we provide a brief summary of the knowledge of interactions between JAK and the function of steroid receptors in normal cells and tissues and in diseases.
Collapse
Affiliation(s)
- Nibedita Gupta
- Hematology and Oncology; University Hospital Magdeburg; Magdeburg, Germany
| | - Doris Mayer
- Hormones and Signal Transduction Group; German Cancer Research Center; Heidelberg, Germany
| |
Collapse
|
12
|
GREB1 functions as a growth promoter and is modulated by IL6/STAT3 in breast cancer. PLoS One 2012; 7:e46410. [PMID: 23056300 PMCID: PMC3463574 DOI: 10.1371/journal.pone.0046410] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
Background Growth Regulation by Estrogen in Breast cancer (GREB1) was an estrogen receptor (ER) target gene, and GREB1 expression inversely correlated with HER2 status, possibly as a surrogate marker for ER status and a predictor for tamoxifen resistance in breast cancer patients. In the present study, we examine the function and regulation of GREB1 in breast cancer, with the goal to develop GREB1 as a biomarker in breast cancer with de novo and acquired tamoxifen resistance. Methods We overexpressed GREB1 using adenovirus containing the full length GREB1 cDNA (Ad-GREB1) in breast cancer cell lines. The soft agar assay was used as a measure of anchorage independent growth. The effects of GREB1 on cell proliferation in MCF-7 cells transduced with Ad-GREB1 were also measured by the me olic activity using AlamarBlue assay. We tested whether there was interaction between STAT3 and ER, which could repress GREB1 expression by immunoprecipitation assay. The effects of IL-6/JAK/STAT3 cascade activation on estrogen-induced GREB1 promoter activity were determined by luciferase assay and those on gene expression were measured by real time reverse transcription polymerase chain reaction (qRT-PCR). Results We found that the ability of breast cancer cells to grow in soft agar is enhanced following GREB1 transfection. In MCF-7 cells transduced with Ad-GREB1 or transfected with siRNA GREB1, the metabolic activity was increased or completely abolished, suggesting that GREB1 may function as a growth promoter in breast cancer. E2 treatment increased GREB1 promoter luciferase activity. IL-6 inhibited E2-induced GREB1 transcription activity and GREB1 mRNA expression. Constitutively expressing active STAT3 construct (STAT3-C) dramatically decreased GREB1 transcription. Conclusions These data indicate that overexpression of GREB1 promotes cell proliferation and increases the clonogenic ability in breast cancer cells. Moreover, Il6/STAT3 modulates estrogen-induced GREB1 transcriptional activity in breast cancer cells.
Collapse
|
13
|
Reversine induces cell cycle arrest, polyploidy, and apoptosis in human breast cancer cells. Breast Cancer 2012; 21:358-69. [PMID: 22926505 DOI: 10.1007/s12282-012-0400-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/08/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Reversine, a small synthetic purine analogue, has been reported to be effective in tumor suppression. In the present study, we demonstrated an antitumor activity of reversine that could suppress cellular proliferation and induce cell cycle arrest and apoptosis in human breast cancer cell lines. METHODS To evaluate whether reversine could suppress cell growth of MCF-7 and MDA-MB-231 cells and induce cell death, the cell viability, cell cycle, and apoptosis were determined in this study. RESULTS Reversine treatment in human breast cancer cells reduced cell viability in a dose-dependent manner. Cell cycle accumulation at the G2/M phase in reversine-treated cells was also determined. Moreover, polyploidy was also found in reversine-treated cells. Apoptosis in reversine-treated cells was exhibited with PARP cleavage and caspase-3 and caspase-8 activation, but not caspase-9 activation, indicating that caspase-dependent apoptosis mediated by an extrinsic pathway took place in reversine-treated cells. Furthermore, reversine attenuated cell death in cells pretreated with a pan-caspase inhibitor before reversine treatment. CONCLUSIONS In the present study, we demonstrated that reversine contributes to growth inhibition in human breast cancer cells through cell cycle arrest, polyploidy, and/or apoptosis induction. The apoptosis mediated by reversine was induced by the mitochondria-independent pathway. Therefore, the potential role of reversine as a novel therapeutic agent for the treatment of breast cancer is worthy of further investigation.
Collapse
|