1
|
Rivas V, González-Muñoz T, Albitre Á, Lafarga V, Delgado-Arévalo C, Mayor F, Penela P. GRK2-mediated AKT activation controls cell cycle progression and G2 checkpoint in a p53-dependent manner. Cell Death Discov 2024; 10:385. [PMID: 39198399 PMCID: PMC11358448 DOI: 10.1038/s41420-024-02143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Cell cycle checkpoints, activated by stressful events, halt the cell cycle progression, and prevent the transmission of damaged DNA. These checkpoints prompt cell repair but also trigger cell death if damage persists. Decision-making between these responses is multifactorial and context-dependent, with the tumor suppressor p53 playing a central role. In many tumor cells, p53 alterations lead to G1/S checkpoint loss and the weakening of the G2 checkpoint, rendering cell viability dependent on the strength of the latter through mechanisms not fully characterized. Cells with a strong pro-survival drive can evade cell death despite substantial DNA lesions. Deciphering the integration of survival pathways with p53-dependent and -independent mechanisms governing the G2/M transition is crucial for understanding G2 arrest functionality and predicting tumor cell response to chemotherapy. The serine/threonine kinase GRK2 emerges as a signaling node in cell cycle modulation. In cycling cells, but not in G2 checkpoint-arrested cells, GRK2 protein levels decline during G2/M transition through a process triggered by CDK2-dependent phosphorylation of GRK2 at the S670 residue and Mdm2 ubiquitination. We report now that this downmodulation in G2 prevents the unscheduled activation of the PI3K/AKT pathway, allowing cells to progress into mitosis. Conversely, higher GRK2 levels lead to tyrosine phosphorylation by the kinase c-Abl, promoting the direct association of GRK2 with the p85 regulatory subunit of PI3K and AKT activation in a GRK2 catalytic-independent manner. Hyperactivation of AKT is conditioned by p53's scaffolding function, triggering FOXO3a phosphorylation, impaired Cyclin B1 accumulation, and CDK1 activation, causing a G2/M transition delay. Upon G2 checkpoint activation, GRK2 potentiates early arrest independently of p53 through AKT activation. However, its ability to overcome the G2 checkpoint in viable conditions depends on p53. Our results suggest that integrating the GRK2/PI3K/AKT axis with non-canonical functions of p53 might confer a survival advantage to tumor cells.
Collapse
Affiliation(s)
- Verónica Rivas
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Teresa González-Muñoz
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Ángela Albitre
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Vanesa Lafarga
- Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Delgado-Arévalo
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain
| | - Petronila Penela
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain.
| |
Collapse
|
2
|
Liu H, Acharya S, Sudan SK, Hu L, Wu C, Cao Y, Li H, Zhang X. Comparative study of the molecular mechanisms underlying the G protein and β-arrestin-dependent pathways that lead to ERKs activation upon stimulation by dopamine D 2 receptor. FEBS J 2023; 290:5204-5233. [PMID: 37531324 DOI: 10.1111/febs.16921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/09/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
Dopamine D2 receptor (D2 R) has been shown to activate extracellular signal-regulated kinases (ERKs) via distinct pathways dependent on either G-protein or β-arrestin. However, there has not been a systematic study of the regulatory process of D2 R-mediated ERKs activation by G protein- versus β-arrestin-dependent signaling since D2 R stimulation of ERKs reflects the simultaneous action of both pathways. Here, we investigated that differential regulation of D2 R-mediated ERKs activation via these two pathways. Our results showed that G protein-dependent ERKs activation was transient, rapid, reached maximum level at around 2 min, and importantly, the activated ERKs were entirely confined to the cytoplasm. In contrast, β-arrestin-dependent ERKs activation was more sustained, slower, reached maximum level at around 10 min, and phosphorylated ERKs translocated into the nucleus. Src was found to be commonly involved in both the G protein- and β-arrestin-dependent pathway-mediated ERKs activation. Pertussis toxin Gi/o inhibitor, GRK2-CT, AG1478 epidermal growth factor receptor inhibitor, and wortmannin phosphoinositide 3-kinase inhibitor all blocked G protein-dependent ERKs activation. In contrast, GRK2 and β-Arr2 played a main role in β-arrestin-dependent ERKs activation. Receptor endocytosis showed minimal effect on the activation of ERKs mediated by both pathways. Furthermore, we found that the formation of a complex composed of phospho-ERKs, β-Arr2, and importinβ1 promoted the nuclear translocation of activated ERKs. The differential regulation of various cellular components, as well as temporal and spatial patterns of ERKs activation via these two pathways, suggest the existence of distinct physiological outcomes.
Collapse
Affiliation(s)
- Haiping Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Srijan Acharya
- Mitchell Cancer Institute, School of Medicine, University of South Alabama, Mobile, AL, USA
| | - Sarabjeet Kour Sudan
- Mitchell Cancer Institute, School of Medicine, University of South Alabama, Mobile, AL, USA
| | - Li Hu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Chengyan Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Yongkai Cao
- Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, China
| | - Huijun Li
- Department of Pharmaceuticals, People's Hospital of Zunyi City Bo Zhou District, China
| | - Xiaohan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Alonazi A, Nash CA, Wang CH, Christofidou E, Challiss RAJ, Willets JM. GRK2 expression and catalytic activity are essential for vasoconstrictor/ERK-stimulated arterial smooth muscle proliferation. Biochem Pharmacol 2023; 216:115795. [PMID: 37690571 DOI: 10.1016/j.bcp.2023.115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Prolonged vasoconstrictor signalling found in hypertension, increases arterial contraction, and alters vessel architecture by stimulating arterial smooth muscle cell (ASMC) growth, underpinning the development of re-stenosis lesions and vascular remodelling. Vasoconstrictors interact with their cognate G protein coupled receptors activating a variety of signalling pathways to promote smooth muscle proliferation. Here, angiotensin II (AngII) and endothelin 1 (ET1), but not UTP stimulates ASMC proliferation. Moreover, siRNA-mediated depletion of endogenous GRK2 expression, or GRK2 inhibitors, compound 101 or paroxetine, prevented AngII and ET1-promoted ASMC growth. Depletion of GRK2 expression or inhibition of GRK2 activity ablated the prolonged phase of AngII and ET-stimulated ERK signalling, while enhancing and prolonging UTP-stimulated ERK signalling. Increased GRK2 expression enhanced and prolonged AngII and ET1-stimulated ERK signalling, but suppressed UTP-stimulated ERK signalling. In ASMC prepared from 6-week-old WKY and SHR, AngII and ET1-stimulated proliferation rates were similar, however, in cultures prepared from 12-week-old rats AngII and ET1-stimulated growth was enhanced in SHR-derived ASMC, which was reversed following depletion of GRK2 expression. Furthermore, in ASMC cultures isolated from 6-week-old WKY and SHR rats, AngII and ET1-stimulated ERK signals were similar, while in cultures from 12-week-old rats ERK signals were both enhanced and prolonged in SHR-derived ASMC, and were reversed to those seen in age-matched WKY-derived ASMC following pre-treatment of SHR-derived ASMC with compound 101. These data indicate that the presence of GRK2 and its catalytic activity are essential to enable pro-proliferative vasoconstrictors to promote growth via recruitment and activation of the ERK signalling pathway in ASMC.
Collapse
Affiliation(s)
- Asma Alonazi
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom; Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Riyadh, P.O. Box 145111, Saudi Arabia(1)
| | - Craig A Nash
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom; Cardiovascular Metabolism, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA 02139, USA
| | - Chuan-Han Wang
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom
| | - Elena Christofidou
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom; Tumor Viruses and Cancer Laboratory, Department of Biological Sciences, University of Cyprus, Panepistimiou 1, Aglantzia 2109, Nicosia, Cyprus(1)
| | - R A John Challiss
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom
| | - Jonathon M Willets
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom.
| |
Collapse
|
4
|
Liu H, Ma H, Zeng X, Wu C, Acharya S, Sudan SK, Zhang X. Ubiquitination of GRK2 Is Required for the β-Arrestin-Biased Signaling Pathway of Dopamine D2 Receptors to Activate ERK Kinases. Int J Mol Sci 2023; 24:10031. [PMID: 37373182 DOI: 10.3390/ijms241210031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
A class-A GPCR dopamine D2 receptor (D2R) plays a critical role in the proper functioning of neuronal circuits through the downstream activation of both G-protein- and β-arrestin-dependent signaling pathways. Understanding the signaling pathways downstream of D2R is critical for developing effective therapies with which to treat dopamine (DA)-related disorders such as Parkinson's disease and schizophrenia. Extensive studies have focused on the regulation of D2R-mediated extracellular-signal-regulated kinase (ERK) 1/2 signaling; however, the manner in which ERKs are activated upon the stimulation of a specific signaling pathway of D2R remains unclear. The present study conducted a variety of experimental techniques, including loss-of-function experiments, site-directed mutagenesis, and the determination of protein interactions, in order to investigate the mechanisms underlying β-arrestin-biased signaling-pathway-mediated ERK activation. We found that the stimulation of the D2R β-arrestin signaling pathway caused Mdm2, an E3 ubiquitin ligase, to move from the nucleus to the cytoplasm and interact with tyrosine phosphorylated G-protein-coupled receptor kinase 2 (GRK2), which was facilitated by Src, a non-receptor tyrosine kinase. This interaction led to the ubiquitination of GRK2, which then moved to the plasma membrane and interacted with activated D2R, followed by the phosphorylation of D2R as well as the mediation of ERK activation. In conclusion, Mdm2-mediated GRK2 ubiquitination, which is selectively triggered by the stimulation of the D2R β-arrestin signaling pathway, is necessary for GRK2 membrane translocation and its interaction with D2R, which in turn mediates downstream ERK signaling. This study is primarily novel and provides essential information with which to better understand the detailed mechanisms of D2R-dependent signaling.
Collapse
Affiliation(s)
- Haiping Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Haixiang Ma
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Xingyue Zeng
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Chengyan Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Srijan Acharya
- Mitchell Cancer Institute, School of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Sarabjeet Kour Sudan
- Mitchell Cancer Institute, School of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Xiaohan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Fu L, Adu-Amankwaah J, Sang L, Tang Z, Gong Z, Zhang X, Li T, Sun H. Gender differences in GRK2 in cardiovascular diseases and its interactions with estrogen. Am J Physiol Cell Physiol 2023; 324:C505-C516. [PMID: 36622065 DOI: 10.1152/ajpcell.00407.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
G protein-coupled receptor kinase 2 (GRK2) is a multifunctional protein involved in regulating G protein-coupled receptor (GPCR) and non-GPCR signaling in the body. In the cardiovascular system, increased expression of GRK2 has been implicated in the occurrence and development of several cardiovascular diseases (CVDs). Recent studies have found gender differences in GRK2 in the cardiovascular system under physiological and pathological conditions, where GRK2's expression and activity are increased in males than in females. The incidence of CVDs in premenopausal women is lower than in men of the same age, which is related to estrogen levels. Given the shared location of GRK2 and estrogen receptors, estrogen may interact with GRK2 by modulating vital molecules such as calmodulin (CaM), caveolin, RhoA, nitrate oxide (NO), and mouse double minute 2 homolog (Mdm2), via signaling pathways mediated by estrogen's genomic (ERα and ERβ), and non-genomic (GPER) receptors, conferring cardiovascular protection in females. Highlighting the gender differences in GRK2 and understanding its interaction with estrogen in the cardiovascular system is pertinent in treating gender-related CVDs. As a result, this article explores the gender differences of GRK2 in the cardiovascular system and its relationship with estrogen during disease conditions. Estrogen's protective and therapeutic effects and its mechanism on GRK2-related cardiovascular diseases have also been discussed.
Collapse
Affiliation(s)
- Lu Fu
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Lili Sang
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Ziqing Tang
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Zheng Gong
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China.,School of Public Affairs & Governance, Silliman University, Dumaguete, Philippines
| | - Xiaoyan Zhang
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Tao Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
6
|
Alonazi ASA, Willets JM. G protein-coupled receptor kinase 2 is essential to enable vasoconstrictor-mediated arterial smooth muscle proliferation. Cell Signal 2021; 88:110152. [PMID: 34555505 DOI: 10.1016/j.cellsig.2021.110152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 01/05/2023]
Abstract
Hypertension is associated with increased production and circulation of vasoconstrictors, resulting in enhanced signalling through their cognate G protein-coupled receptors (GPCR). Prolonged vasoconstrictor GPCR signalling increases arterial contraction and stimulates signalling pathways that promote vascular smooth muscle cell (VSMC) proliferation, contributing to the development of atherosclerotic plaques, re-stenosis lesions and vascular remodelling. GPCR signalling through phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) promotes VSMC proliferation. In VSMC, G protein-coupled receptor kinase 2 (GRK2) is known to regulate numerous vasoconstrictor GPCRs and their downstream signalling pathways. As GRK2 is implicated in controlling various aspects of cellular growth, we examined whether GRK2 could affect VSMC proliferation. Using two indices of cell growth, we show that PI3K inhibition and depletion of GRK2 expression produced a similar ablation of pro-proliferative vasoconstrictor-stimulated VSMC growth. Furthermore, GRK2-knockdown ablated the sustained phase of endothelin-1 and angiotensin-II-stimulated Akt phosphorylation, whilst the peak (5 min) phase was unaffected. Conversely, the GRK2 inhibitor compound 101 did not affect vasoconstrictor-driven Akt phosphorylation. Vasoconstrictor-stimulated phosphorylation of the Akt substrates GSK3α and GSK3β was ablated following RNAi-mediated GRK2 depletion, or after PI3K inhibition. Moreover, GRK2 knockdown prevented endothelin-1 and angiotensin-II from increasing cyclin D1 expression. These data suggest GRK2 expression is essential to facilitate vasoconstrictor-driven VSMC proliferation through its ability to promote efficient prolonged PI3K-Akt signalling, and thus relieve the GSK3-mediated block on cell cycling. Considering VSMC GRK2 expression increases early in the development of hypertension, this highlights the potential for GRK2 to promote VSMC growth and exacerbate hypertensive pathophysiological vascular remodelling.
Collapse
Affiliation(s)
- Asma S A Alonazi
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom; Department of Pharmacology and Toxicology, Pharmacy College, King Saud University, Riyadh, Saudi Arabia
| | - Jonathon M Willets
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7RH, United Kingdom.
| |
Collapse
|
7
|
Kammala AK, Yang C, Panettieri RA, Das R, Subramanian H. G Protein-Coupled Receptor Kinase 2 (GRK2) Regulates T Cell Response in a Murine Model of House Dust Mite-Induced Asthma. FRONTIERS IN ALLERGY 2021; 2:656886. [PMID: 35386975 PMCID: PMC8974720 DOI: 10.3389/falgy.2021.656886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
G protein-coupled receptor kinase 2 (GRK2) is an adapter protein that modulates G protein-coupled receptor (GPCR) signaling. It also regulates the functions and activity of other intracellular proteins in many cell types. Accordingly, GRK2 is thought to contribute to disease progression by a variety of mechanisms related to its multifunctional roles. Indeed, GRK2 levels are enhanced in patient samples as well as in preclinical models of several diseases. We have previously shown that GRK2 regulates mast cell functions, and thereby contributes to exacerbated inflammation during allergic reactions. In the current study, we observed that GRK2 levels are enhanced in the lungs of human asthma patients and in mice sensitized to house dust mite extract (HDME) allergen. Consistent with these findings, interleukin (IL)-4 and IL-13 levels were reduced in the lungs of GRK2+/- mice in a HMDE mouse model of asthma. Because Th2 cells are the major source of these cytokines during asthma, we determined the role of GRK2 in regulating T cell-specific responses in our HMDE mouse model. We observed a significant reduction of airway hyperresponsiveness (AHR), lung eosinophil and lymphocyte counts, serum IgE, Th2 cytokines (IL-4 and IL-13), goblet cell hyperplasia and mucus production in mice that had reduced GRK2 expression specifically in T cells. Collectively, our studies reveal an important role for GRK2 in regulating T cell response during asthma pathogenesis and further elucidation of the mechanisms through which GRK2 modulates airway inflammation will lead to the development of new therapeutic strategies for asthma.
Collapse
Affiliation(s)
- Ananth K. Kammala
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Canchai Yang
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Reynold A. Panettieri
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ, United States
| | - Rupali Das
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Hariharan Subramanian
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
8
|
Chaudhary PK, Kim S. The GRKs Reactome: Role in Cell Biology and Pathology. Int J Mol Sci 2021; 22:ijms22073375. [PMID: 33806057 PMCID: PMC8036551 DOI: 10.3390/ijms22073375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptor kinases (GRKs) are protein kinases that function in concert with arrestins in the regulation of a diverse class of G protein-coupled receptors (GPCRs) signaling. Although GRKs and arrestins are key participants in the regulation of GPCR cascades, the complex regulatory mechanisms of GRK expression, its alternation, and their function are not thoroughly understood. Several studies together with the work from our lab in recent years have revealed the critical role of these kinases in various physiological and pathophysiological processes, including cardiovascular biology, inflammation and immunity, neurodegeneration, thrombosis, and hemostasis. A comprehensive understanding of the mechanisms underlying functional interactions with multiple receptor proteins and how these interactions take part in the development of various pathobiological processes may give rise to novel diagnostic and therapeutic strategies. In this review, we summarize the current research linking the role of GRKs to various aspects of cell biology, pathology, and therapeutics, with a particular focus on thrombosis and hemostasis.
Collapse
|
9
|
The G Protein-Coupled Receptor Kinases (GRKs) in Chemokine Receptor-Mediated Immune Cell Migration: From Molecular Cues to Physiopathology. Cells 2021; 10:cells10010075. [PMID: 33466410 PMCID: PMC7824814 DOI: 10.3390/cells10010075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Although G protein-coupled receptor kinases (GRKs) have long been known to regulate G protein-coupled receptor (GPCR) desensitization, their more recently characterized functions as scaffolds and signalling adapters underscore that this small family of proteins governs a larger array of physiological functions than originally suspected. This review explores how GRKs contribute to the complex signalling networks involved in the migration of immune cells along chemokine gradients sensed by cell surface GPCRs. We outline emerging evidence indicating that the coordinated docking of several GRKs on an active chemokine receptor determines a specific receptor phosphorylation barcode that will translate into distinct signalling and migration outcomes. The guidance cues for neutrophil migration are emphasized based on several alterations affecting GRKs or GPCRs reported to be involved in pathological conditions.
Collapse
|
10
|
Zhang J, Liu Y, Long M, Li J, Zhao W, Su Q. Inhibitory effect of CP-25 on intimal formation and vascular hyperplasia via suppression of GRK2/ERK1/2/EVI1 signaling. Arch Biochem Biophys 2020; 694:108601. [PMID: 32980350 DOI: 10.1016/j.abb.2020.108601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 02/02/2023]
Abstract
Excessive proliferation, migration and dedifferentiation of vascular smooth muscle cells (VSMCs) are the center of intimal formation during in-stent restenosis and vein graft disease. Paeoniflorin-6'-O-benzene sulfonate (CP-25) is known to suppress inflammation and atherogenesis. However, the potential effect of CP-25 on intimal formation remains elusive. In the present study, we found that CP-25 significantly attenuated wire injury-induced intimal formation in C57BL/6 mice (intimal area: 2.64 ± 0.25 × 104 μm2 vs. 1.53 ± 0.21 × 104 μm2, P < 0.05) and vascular hyperplasia indicated by PCNA staining. In vitro experiments showed that CP-25 significantly alleviated human aortic smooth muscle cell (HASMC) proliferation, migration and dedifferentiation induced by PDGF-BB. Mechanistically, CP-25 inhibited GRK2 phosphorylation through PDGF receptor in the presence of PDGF-BB. In accordance with these results, CP-25 disrupted the interaction of GRK2 with ERK1/2 and suppressed the activation of ERK1/2 signaling in HASMCs. EVI1, which is considered as a downstream of ERK1/2 signaling and a novel transcription factor for VSMC differentiation, was also downregulated by CP-25 treatment. Moreover, overexpression of EVI1 partly restored the decreased proliferation and dedifferentiation of HASMCs treated by CP-25. Collectively, these findings suggested that CP-25 could alleviate intimal formation in response to wire injury via suppression of the interaction of GRK2 and ERK1/2 and EVI1 activation, indicating CP-25 might serve as a potent pharmaceutical for intimal formation.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiology, Liuzhou Municipal Liutie Central Hospital, Guangxi Autonomous Region, People's Republic of China
| | - Yang Liu
- Department of Cardiology, The Second People's Hospital of Nanning City, The Third Affiliated Hospital of Guangxi Medical University, Guangxi Autonomous Region, People's Republic of China
| | - Ming Long
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, People's Republic of China
| | - Jun Li
- Department of Cardiology, Liuzhou Municipal Liutie Central Hospital, Guangxi Autonomous Region, People's Republic of China
| | - Weikun Zhao
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guangxi Autonomous Region, 541001, People's Republic of China
| | - Qiang Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guangxi Autonomous Region, 541001, People's Republic of China.
| |
Collapse
|
11
|
Chen X, Zhang P, Liu Q, Zhang Q, Gu F, Xu S, Körner H, Wu H, Wei W. Alleviating effect of paeoniflorin-6′-O-benzene sulfonate in antigen-induced experimental Sjögren’s syndrome by modulating B lymphocyte migration via CXCR5-GRK2-ERK/p38 signaling pathway. Int Immunopharmacol 2020; 80:106199. [DOI: 10.1016/j.intimp.2020.106199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
|
12
|
Penela P, Ribas C, Sánchez-Madrid F, Mayor F. G protein-coupled receptor kinase 2 (GRK2) as a multifunctional signaling hub. Cell Mol Life Sci 2019; 76:4423-4446. [PMID: 31432234 PMCID: PMC6841920 DOI: 10.1007/s00018-019-03274-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
Accumulating evidence indicates that G protein-coupled receptor kinase 2 (GRK2) is a versatile protein that acts as a signaling hub by modulating G protein-coupled receptor (GPCR) signaling and also via phosphorylation or scaffolding interactions with an extensive number of non-GPCR cellular partners. GRK2 multifunctionality arises from its multidomain structure and from complex mechanisms of regulation of its expression levels, activity, and localization within the cell, what allows the precise spatio-temporal shaping of GRK2 targets. A better understanding of the GRK2 interactome and its modulation mechanisms is helping to identify the GRK2-interacting proteins and its substrates involved in the participation of this kinase in different cellular processes and pathophysiological contexts.
Collapse
Affiliation(s)
- Petronila Penela
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029, Madrid, Spain
| | - Catalina Ribas
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029, Madrid, Spain
- Cell-Cell Communication Laboratory, Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029, Madrid, Spain.
| |
Collapse
|
13
|
Pathare ADS, Hinduja I. Aberrant DNA methylation profiling affecting the endometrial receptivity in recurrent implantation failure patients undergoing in vitro fertilization. Am J Reprod Immunol 2019; 83:e13196. [PMID: 31595580 DOI: 10.1111/aji.13196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 02/03/2023] Open
Abstract
PROBLEM DNA methylation profile in mid-secretory phase of endometrium is reported to be varied from other phases in natural menstrual cycle. Therefore, we intended to study the impairment in endometrial receptivity by performing whole-genome methylation and gene expression profiling in endometrium of recurrent implantation failure patients (RIF) during IVF under controlled ovarian stimulation (COS). METHOD OF STUDY Endometrial biopsies were collected from IVF-RIF patients (cases, n = 6) and healthy fertile oocyte donors (controls, n = 6) undergoing COS after 6/7th day of human chorionic gonadotropin administration. The whole-genome methylation and gene expression microarray were performed and analysed by GenomeStudio software (P < .05 by Illumina Custom Model), whereas the enrichment analysis was performed using "Database for Annotation, Visualization and Integrated Discovery" (DAVID, V6.8). Significant differentially methylated genes were correlated with dys-regulated genes using Pearson's correlation. RESULTS Differential methylation in RIF patients revealed 448 CpG sites. The enrichment analysis showed aberrant methylation in genes involved in immunological response and G protein activity. Methylation in NLRP2 gene in inflammatory pathway had significant negative correlation with gene expression (P = .008), whereas SERPINA5 gene that is already known to be involved in endometrial receptivity was observed to be hypomethylated in promoter region with highest delta beta value and up-regulated in gene expression analysis. CONCLUSION The aberrant methylation of genes involved in immunological functions and G protein activation was found to be prevalent which might suggest a role in endometrial receptivity. However, the findings need to be further validated on a larger cohort of IVF-RIF patients.
Collapse
Affiliation(s)
- Amruta D S Pathare
- Department of IVF and Research, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| | - Indira Hinduja
- Department of IVF and Research, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| |
Collapse
|
14
|
Brand CS, Lighthouse JK, Trembley MA. Protective transcriptional mechanisms in cardiomyocytes and cardiac fibroblasts. J Mol Cell Cardiol 2019; 132:1-12. [PMID: 31042488 DOI: 10.1016/j.yjmcc.2019.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Heart failure is the leading cause of morbidity and mortality worldwide. Several lines of evidence suggest that physical activity and exercise can pre-condition the heart to improve the response to acute cardiac injury such as myocardial infarction or ischemia/reperfusion injury, preventing the progression to heart failure. It is becoming more apparent that cardioprotection is a concerted effort between multiple cell types and converging signaling pathways. However, the molecular mechanisms of cardioprotection are not completely understood. What is clear is that the mechanisms underlying this protection involve acute activation of transcriptional activators and their corresponding gene expression programs. Here, we review the known stress-dependent transcriptional programs that are activated in cardiomyocytes and cardiac fibroblasts to preserve function in the adult heart after injury. Focus is given to prominent transcriptional pathways such as mechanical stress or reactive oxygen species (ROS)-dependent activation of myocardin-related transcription factors (MRTFs) and transforming growth factor beta (TGFβ), and gene expression that positively regulates protective PI3K/Akt signaling. Together, these pathways modulate both beneficial and pathological responses to cardiac injury in a cell-specific manner.
Collapse
Affiliation(s)
- Cameron S Brand
- Department of Pharmacology, School of Medicine, University of California - San Diego, 9500 Gilman Drive, Biomedical Sciences Building, La Jolla, CA 92093, USA.
| | - Janet K Lighthouse
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY 14624, USA.
| | - Michael A Trembley
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Hendrickx JO, van Gastel J, Leysen H, Santos-Otte P, Premont RT, Martin B, Maudsley S. GRK5 - A Functional Bridge Between Cardiovascular and Neurodegenerative Disorders. Front Pharmacol 2018; 9:1484. [PMID: 30618771 PMCID: PMC6304357 DOI: 10.3389/fphar.2018.01484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
Complex aging-triggered disorders are multifactorial programs that comprise a myriad of alterations in interconnected protein networks over a broad range of tissues. It is evident that rather than being randomly organized events, pathophysiologies that possess a strong aging component such as cardiovascular diseases (hypertensions, atherosclerosis, and vascular stiffening) and neurodegenerative conditions (dementia, Alzheimer's disease, mild cognitive impairment, Parkinson's disease), in essence represent a subtly modified version of the intricate molecular programs already in place for normal aging. To control such multidimensional activities there are layers of trophic protein control across these networks mediated by so-called "keystone" proteins. We propose that these "keystones" coordinate and interconnect multiple signaling pathways to control whole somatic activities such as aging-related disease etiology. Given its ability to control multiple receptor sensitivities and its broad protein-protein interactomic nature, we propose that G protein coupled receptor kinase 5 (GRK5) represents one of these key network controllers. Considerable data has emerged, suggesting that GRK5 acts as a bridging factor, allowing signaling regulation in pathophysiological settings to control the connectivity between both the cardiovascular and neurophysiological complications of aging.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| | - Jaana van Gastel
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| | - Hanne Leysen
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| | - Paula Santos-Otte
- Institute of Biophysics, Humboldt-Universitat zu Berlin, Berlin, Germany
| | - Richard T. Premont
- Harrington Discovery Institute, Case Western Reserve University, Cleveland, GA, United States
| | - Bronwen Martin
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| |
Collapse
|
16
|
Yu DS, Weng TH, Hu CY, Wu ZG, Li YH, Cheng LF, Wu NP, Li LJ, Yao HP. Chaperones, Membrane Trafficking and Signal Transduction Proteins Regulate Zaire Ebola Virus trVLPs and Interact With trVLP Elements. Front Microbiol 2018; 9:2724. [PMID: 30483236 PMCID: PMC6240689 DOI: 10.3389/fmicb.2018.02724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/24/2018] [Indexed: 01/19/2023] Open
Abstract
Ebolavirus (EBOV) life cycle involves interactions with numerous host factors, but it remains poorly understood, as does pathogenesis. Herein, we synthesized 65 siRNAs targeting host genes mostly connected with aspects of the negative-sense RNA virus life cycle (including viral entry, uncoating, fusion, replication, assembly, and budding). We produced EBOV transcription- and replication-competent virus-like particles (trVLPs) to mimic the EBOV life cycle. After screening host factors associated with the trVLP life cycle, we assessed interactions of host proteins with trVLP glycoprotein (GP), VP40, and RNA by co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP). The results demonstrate that RNAi silencing with 11 siRNAs (ANXA5, ARFGAP1, FLT4, GRP78, HSPA1A, HSP90AB1, HSPA8, MAPK11, MEK2, NTRK1, and YWHAZ) decreased the replication efficiency of trVLPs. Co-IP revealed nine candidate host proteins (FLT4, GRP78, HSPA1A, HSP90AB1, HSPA8, MAPK11, MEK2, NTRK1, and YWHAZ) potentially interacting with trVLP GP, and four (ANXA5, GRP78, HSPA1A, and HSP90AB1) potentially interacting with trVLP VP40. Ch-IP identified nine candidate host proteins (ANXA5, ARFGAP1, FLT4, GRP78, HSPA1A, HSP90AB1, MAPK11, MEK2, and NTRK1) interacting with trVLP RNA. This study was based on trVLP and could not replace live ebolavirus entirely; in particular, the interaction between trVLP RNA and host proteins cannot be assumed to be identical in live virus. However, the results provide valuable information for further studies and deepen our understanding of essential host factors involved in the EBOV life cycle.
Collapse
Affiliation(s)
- Dong-Shan Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tian-Hao Weng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen-Yu Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Gang Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan-Hua Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin-Fang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Nan-Ping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Chen X, Zhang S, Wang Z, Wang F, Cao X, Wu Q, Zhao C, Ma H, Ye F, Wang H, Fang Z. Supervillin promotes epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma in hypoxia via activation of the RhoA/ROCK-ERK/p38 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:128. [PMID: 29954442 PMCID: PMC6025706 DOI: 10.1186/s13046-018-0787-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 06/07/2018] [Indexed: 01/27/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world and metastasis is the leading cause of death associated with HCC. Hypoxia triggers the epithelial-mesenchymal transition (EMT) of cancer cells, which enhances their malignant character and elevates metastatic risk. Supervillin associates tightly with the membrane and cytoskeleton, promoting cell motility, invasiveness, and cell survival. However, the roles of supervillin in HCC metastasis remain unclear. Methods Tissue microarray technology was used to immunohistochemically stain for supervillin antibody in 173 HCC tissue specimens and expression levels correlated with the clinicopathological variables. Tumor cell motility and invasiveness, as well as changes in the mRNA expression levels of genes associated with cancer cell EMT, were investigated. The relationship between supervillin and Rho GTPases was examined using Co-IP and GST pull-down. Results Hypoxia-induced upregulation of supervillin promoted cancer cell migration and invasion via the activation of the ERK/p38 pathway downstream of RhoA/ROCK signaling. Furthermore, supervillin regulated the expression of EMT genes during hypoxia and accelerated the metastasis of HCC in vivo. Conclusions Hypoxia-induced increase in supervillin expression is a significant and independent predictor of cancer metastasis, which leads to poor survival in HCC patients. Our results suggest that supervillin may be a candidate prognostic factor for HCC and a valuable target for therapy. Electronic supplementary material The online version of this article (10.1186/s13046-018-0787-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xueran Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Shangrong Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Zhen Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China
| | - Fengsong Wang
- School of Life Science, Anhui Medical University, No. 81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Xinwang Cao
- School of Life Science, Anhui Medical University, No. 81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Quan Wu
- Central Laboratory of Medical Research Center, Anhui Provincial Hospital, No. 17, Lu Jiang Road, Hefei, 230001, Anhui, China
| | - Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China
| | - Huihui Ma
- University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China.,Department of Radiation Oncology, First Affiliated Hospital, Anhui Medical University, No. 81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Fang Ye
- Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China. .,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
| |
Collapse
|
18
|
Yu S, Sun L, Jiao Y, Lee LTO. The Role of G Protein-coupled Receptor Kinases in Cancer. Int J Biol Sci 2018; 14:189-203. [PMID: 29483837 PMCID: PMC5821040 DOI: 10.7150/ijbs.22896] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/17/2017] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of plasma membrane receptors. Emerging evidence demonstrates that signaling through GPCRs affects numerous aspects of cancer biology such as vascular remolding, invasion, and migration. Therefore, development of GPCR-targeted drugs could provide a new therapeutic strategy to treating a variety of cancers. G protein-coupled receptor kinases (GRKs) modulate GPCR signaling by interacting with the ligand-activated GPCR and phosphorylating its intracellular domain. This phosphorylation initiates receptor desensitization and internalization, which inhibits downstream signaling pathways related to cancer progression. GRKs can also regulate non-GPCR substrates, resulting in the modulation of a different set of pathophysiological pathways. In this review, we will discuss the role of GRKs in modulating cell signaling and cancer progression, as well as the therapeutic potential of targeting GRKs.
Collapse
Affiliation(s)
- Shan Yu
- Centre of Reproduction Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Litao Sun
- Department of Ultrasound, The Secondary Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yufei Jiao
- Department of Pathology, The Secondary Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Leo Tsz On Lee
- Centre of Reproduction Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
19
|
Nogués L, Palacios-García J, Reglero C, Rivas V, Neves M, Ribas C, Penela P, Mayor F. G protein-coupled receptor kinases (GRKs) in tumorigenesis and cancer progression: GPCR regulators and signaling hubs. Semin Cancer Biol 2018; 48:78-90. [DOI: 10.1016/j.semcancer.2017.04.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/22/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022]
|
20
|
Blurring Boundaries: Receptor Tyrosine Kinases as functional G Protein-Coupled Receptors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:1-40. [DOI: 10.1016/bs.ircmb.2018.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Hou SM, Hou CH, Liu JF. CX3CL1 promotes MMP-3 production via the CX3CR1, c-Raf, MEK, ERK, and NF-κB signaling pathway in osteoarthritis synovial fibroblasts. Arthritis Res Ther 2017; 19:282. [PMID: 29268768 PMCID: PMC5740560 DOI: 10.1186/s13075-017-1487-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022] Open
Abstract
Background Osteoarthritis (OA) is a degenerative joint disease that affects the cartilage, synovium, and subchondral bone and is the leading cause of disability in older populations. Specific diagnostic biomarkers are lacking; hence, treatment options for OA are limited. Synovial inflammation is very common in OA joints and has been associated with both OA’s symptoms and pathogenesis. Confirming the role of the synovium in OA pathogenesis is a promising strategy for mitigating the symptoms and progression of OA. CX3CL1 is the only member of the CX3C class of chemokines that combines the properties of chemoattractants and adhesion molecules. CX3CL1 levels in the synovium and serum were both discovered to be positively associated with OA pathogenesis. CX3CL1 and its receptor CX3CR1 belong to a family of G protein-coupled receptors. Matrix metalloproteinases (MMPs), which are responsible for matrix degradation, play a crucial role in OA progression. The relationship between CX3CL1 and MMPs in the pathophysiology of OA is still unclear. Methods CX3CL1-induced MMP-3 production was assessed with quantitative real-time PCR and ELISA. The mechanisms of action of CX3CL1 in different signaling pathways were studied using western blot analysis, quantitative real-time PCR and ELISA. Neutralization antibodies of integrin were achieved to block the CX3CR1 signaling pathway. Luciferase assays were used to study NF-κB promoter activity. Results We investigated the signaling pathway involved in CX3CL1-induced MMP-3 production in osteoarthritis synovial fibroblasts (OASFs). CX3CL1 was found to induce MMP-3 production in a concentration-dependent and time-dependent manner. Using pharmacological inhibitors and CX3CR1 small interfering RNA to block CX3CR1 revealed that the CX3CR1 receptor was involved in the CX3CL1-mediated upregulation of MMP-3. CX3CL1-mediated MMP-3 production was attenuated by c-Raf inhibitors (GW5074) and MEK/ERK inhibitors (PD98059 and U0126). The OASFs were stimulated using CX3CL1-activated p65 phosphorylation. Conclusions Our results demonstrate that CX3CL1 activates c-Raf, MEK, ERK, and NF-κB on the MMP-3 promoter through CX3CR1, thus contributing to cartilage destruction during OA.
Collapse
Affiliation(s)
- Sheng-Mou Hou
- Department of Orthopedic Surgery, Shin Kong Wu Ho-Su Memorial Hospital, No. 95, Wen Chang Road, Taipei, 111, Taiwan
| | - Chun-Han Hou
- Department of Orthopedic Surgery, National Taiwan University Hospital, No. 1, Jen-Ai Road, Taipei, 100, Taiwan
| | - Ju-Fang Liu
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, No. 95, Wenchang Road, Shilin, Taipei, 111, Taiwan.
| |
Collapse
|
22
|
Huhtinen A, Hongisto V, Laiho A, Löyttyniemi E, Pijnenburg D, Scheinin M. Gene expression profiles and signaling mechanisms in α 2B-adrenoceptor-evoked proliferation of vascular smooth muscle cells. BMC SYSTEMS BIOLOGY 2017; 11:65. [PMID: 28659168 PMCID: PMC5490158 DOI: 10.1186/s12918-017-0439-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND α2-adrenoceptors are important regulators of vascular tone and blood pressure. Regulation of cell proliferation is a less well investigated consequence of α2-adrenoceptor activation. We have previously shown that α2B-adrenoceptor activation stimulates proliferation of vascular smooth muscle cells (VSMCs). This may be important for blood vessel development and plasticity and for the pathology and therapeutics of cardiovascular disorders. The underlying cellular mechanisms have remained mostly unknown. This study explored pathways of regulation of gene expression and intracellular signaling related to α2B-adrenoceptor-evoked VSMC proliferation. RESULTS The cellular mechanisms and signaling pathways of α2B-adrenoceptor-evoked proliferation of VSMCs are complex and include redundancy. Functional enrichment analysis and pathway analysis identified differentially expressed genes associated with α2B-adrenoceptor-regulated VSMC proliferation. They included the upregulated genes Egr1, F3, Ptgs2 and Serpine1 and the downregulated genes Cx3cl1, Cav1, Rhoa, Nppb and Prrx1. The most highly upregulated gene, Lypd8, represents a novel finding in the VSMC context. Inhibitor library screening and kinase activity profiling were applied to identify kinases in the involved signaling pathways. Putative upstream kinases identified by two different screens included PKC, Raf-1, Src, the MAP kinases p38 and JNK and the receptor tyrosine kinases EGFR and HGF/HGFR. As a novel finding, the Src family kinase Lyn was also identified as a putative upstream kinase. CONCLUSIONS α2B-adrenoceptors may mediate their pro-proliferative effects in VSMCs by promoting the activity of bFGF and PDGF and the growth factor receptors EGFR, HGFR and VEGFR-1/2. The Src family kinase Lyn was also identified as a putative upstream kinase. Lyn is known to be expressed in VSMCs and has been identified as an important regulator of GPCR trafficking and GPCR effects on cell proliferation. Identified Ser/Thr kinases included several PKC isoforms and the β-adrenoceptor kinases 1 and 2. Cross-talk between the signaling mechanisms involved in α2B-adrenoceptor-evoked VSMC proliferation thus appears to involve PKC activation, subsequent changes in gene expression, transactivation of EGFR, and modulation of kinase activities and growth factor-mediated signaling. While many of the identified individual signals were relatively small in terms of effect size, many of them were validated by combining pathway analysis and our integrated screening approach.
Collapse
Affiliation(s)
- Anna Huhtinen
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Vesa Hongisto
- Toxicology Division, Misvik Biology Oy, Turku, Finland
| | - Asta Laiho
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Dirk Pijnenburg
- PamGene International BV, Wolvenhoek 10, 5211HH s’Hertogenbosch, The Netherlands
| | - Mika Scheinin
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| |
Collapse
|
23
|
Steury MD, McCabe LR, Parameswaran N. G Protein-Coupled Receptor Kinases in the Inflammatory Response and Signaling. Adv Immunol 2017; 136:227-277. [PMID: 28950947 DOI: 10.1016/bs.ai.2017.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptor kinases (GRKs) are serine/threonine kinases that regulate a large and diverse class of G protein-coupled receptors (GPCRs). Through GRK phosphorylation and β-arrestin recruitment, GPCRs are desensitized and their signal terminated. Recent work on these kinases has expanded their role from canonical GPCR regulation to include noncanonical regulation of non-GPCR and nonreceptor substrates through phosphorylation as well as via scaffolding functions. Owing to these and other regulatory roles, GRKs have been shown to play a critical role in the outcome of a variety of physiological and pathophysiological processes including chemotaxis, signaling, migration, inflammatory gene expression, etc. This diverse set of functions for these proteins makes them popular targets for therapeutics. Role for these kinases in inflammation and inflammatory disease is an evolving area of research currently pursued in many laboratories. In this review, we describe the current state of knowledge on various GRKs pertaining to their role in inflammation and inflammatory diseases.
Collapse
Affiliation(s)
| | - Laura R McCabe
- Michigan State University, East Lansing, MI, United States
| | | |
Collapse
|
24
|
Wang Q, Wang L, Wu L, Zhang M, Hu S, Wang R, Han Y, Wu Y, Zhang L, Wang X, Sun W, Wei W. Paroxetine alleviates T lymphocyte activation and infiltration to joints of collagen-induced arthritis. Sci Rep 2017; 7:45364. [PMID: 28349925 PMCID: PMC5368980 DOI: 10.1038/srep45364] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
T cell infiltration to synovial tissue is an early pathogenic mechanism of rheumatoid arthritis (RA). In the present work, we reveal that G protein coupled receptor kinase 2 (GRK2) is abundantly expressed in T cells of collagen-induced arthritis (CIA). A GRK2 inhibitor, paroxetine protects the joints from inflammation and destruction, primarily through inhibition of both CD4+ helper T (Th) cell and CD8+ cytotoxic T (Tc) cell migration to synovial tissue. Meanwhile, paroxetine restores the balance of Th/Tc, effector Th (Theff)/ naïve Th (Thnaive) and effector Tc (Tceff)/ naïve Tc (Tcnaive) to equilibrium by elevating the frequency of Thnaive, Tcnaive and regulatory Th cells; reducing the increased Theff, activated Th and Tceff, having a similar effect as methotrexate (MTX). In addition, both serum and synovial IL-1β, TNF-α and CX3CL1 expression was effectively inhibited in treated rats. In vitro assay confirmed that paroxetine inhibits CX3CL1-induced T cell migration through blocking the activity of GRK2. Among three MAPK families, paroxetine was found to be able to decrease the phosphorylation of ERK. This study elucidates that paroxetine attenuates the symptoms of CIA rats due to its inhibitory effect on T cell activation and infiltration to synovial tissue via suppression of ERK pathway.
Collapse
Affiliation(s)
- Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Longsheng Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Li Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Mei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Shanshan Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Rui Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yongsheng Han
- Emergency Center, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Yujing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Xinming Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wuyi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| |
Collapse
|
25
|
Nogués L, Reglero C, Rivas V, Neves M, Penela P, Mayor F. G-Protein-Coupled Receptor Kinase 2 as a Potential Modulator of the Hallmarks of Cancer. Mol Pharmacol 2017; 91:220-228. [PMID: 27895163 DOI: 10.1124/mol.116.107185] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/23/2016] [Indexed: 02/14/2025] Open
Abstract
Malignant features-such as sustained proliferation, refractoriness to growth suppressors, resistance to cell death or aberrant motility, and metastasis-can be triggered by a variety of mutations and signaling adaptations. Signaling nodes can act as cancer-associated factors by cooperating with oncogene-governed pathways or participating in compensatory transduction networks to strengthen tumor properties. G-protein-coupled receptor kinase 2 (GRK2) is arising as one of such nodes. Via its complex network of connections with other cellular proteins, GRK2 contributes to the modulation of basic cellular functions-such as cell proliferation, survival, or motility-and is involved in metabolic homeostasis, inflammation, or angiogenic processes. Moreover, altered GRK2 levels are starting to be reported in different tumoral contexts and shown to promote breast tumorigenesis or to trigger the tumoral angiogenic switch. The ability to modulate several of the hallmarks of cancer puts forward GRK2 as an oncomodifier, able to modulate carcinogenesis in a cell-type specific way.
Collapse
Affiliation(s)
- Laura Nogués
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid (L.N., C.R., V.R., M.N., P.P., F.M), and Instituto de Investigación Sanitaria La Princesa (L.N., C.R., V.R., P.P., F.M.), Madrid, Spain
| | - Clara Reglero
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid (L.N., C.R., V.R., M.N., P.P., F.M), and Instituto de Investigación Sanitaria La Princesa (L.N., C.R., V.R., P.P., F.M.), Madrid, Spain
| | - Verónica Rivas
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid (L.N., C.R., V.R., M.N., P.P., F.M), and Instituto de Investigación Sanitaria La Princesa (L.N., C.R., V.R., P.P., F.M.), Madrid, Spain
| | - María Neves
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid (L.N., C.R., V.R., M.N., P.P., F.M), and Instituto de Investigación Sanitaria La Princesa (L.N., C.R., V.R., P.P., F.M.), Madrid, Spain
| | - Petronila Penela
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid (L.N., C.R., V.R., M.N., P.P., F.M), and Instituto de Investigación Sanitaria La Princesa (L.N., C.R., V.R., P.P., F.M.), Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid (L.N., C.R., V.R., M.N., P.P., F.M), and Instituto de Investigación Sanitaria La Princesa (L.N., C.R., V.R., P.P., F.M.), Madrid, Spain
| |
Collapse
|
26
|
Zhang L, Wang X, Cao H, Chen Y, Chen X, Zhao X, Xu F, Wang Y, Woo AYH, Zhu W. Vasopressin V 1A receptor mediates cell proliferation through GRK2-EGFR-ERK 1/2 pathway in A7r5 cells. Eur J Pharmacol 2016; 792:15-25. [PMID: 27773680 DOI: 10.1016/j.ejphar.2016.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 12/23/2022]
Abstract
Abnormal proliferation and hypertrophy of vascular smooth muscle (VSMC), as the main structural component of the vasculature, is an important pathological mechanism of hypertension. Recently, increased levels of arginine vasopressin (AVP) and copeptin, the C-terminal fragment of provasopressin, have been shown to correlate with the development of preeclampsia. AVP targets on the Gq-coupled vasopressin V1A receptor and the Gs-coupled V2 receptor in VSMC and the kidneys to regulate vascular tone and water homeostasis. However, the role of the vasopressin receptor on VSM cell proliferation during vascular remodeling is unclear. Here, we studied the effects of AVP on the proliferation of the rat VSMC-derived A7r5 cells. AVP, in a time- and concentration-dependent manner, promoted A7r5 cell proliferation as indicated by the induction of proliferating cell nuclear antigen expression, methylthiazolyldiphenyl-tetrazolium reduction and incorporation of 5'-bromodeoxyuridine into cellular DNA. These effects, coupled with the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), were blocked by a V1A receptor antagonist SR45059 but not by a V2 receptor antagonist lixivaptan. Although acute activation of V1A receptor induced ERK1/2 phosphorylation via a protein kinase C-dependent pathway, this effect was not involved in cell proliferation. Cell proliferation and ERK1/2 phosphorylation in response to prolonged stimulation with AVP were abolished by inhibition of G protein-coupled receptor kinase 2 (GRK2) and epidermal growth factor receptor (EGFR) using specific inhibitors or small hairpin RNA knock-down. These results suggest that activation of V1A, but not V2 receptor, produces a cell proliferative signal in A7r5 cells via a GRK2/EGFR/ERK1/2-dependent mechanism.
Collapse
Affiliation(s)
- Lingling Zhang
- Cardiovascular laboratory, Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Xiaojun Wang
- Cardiovascular laboratory, Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Hong Cao
- Cardiovascular laboratory, Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yunxuan Chen
- Cardiovascular laboratory, Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Xianfan Chen
- Cardiovascular laboratory, Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Xi Zhao
- Cardiovascular laboratory, Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Feifei Xu
- Cardiovascular laboratory, Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yifan Wang
- Cardiovascular laboratory, Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Anthony Yiu-Ho Woo
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weizhong Zhu
- Cardiovascular laboratory, Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
27
|
Nogués L, Reglero C, Rivas V, Salcedo A, Lafarga V, Neves M, Ramos P, Mendiola M, Berjón A, Stamatakis K, Zhou XZ, Lu KP, Hardisson D, Mayor F, Penela P. G Protein-coupled Receptor Kinase 2 (GRK2) Promotes Breast Tumorigenesis Through a HDAC6-Pin1 Axis. EBioMedicine 2016; 13:132-145. [PMID: 27720394 PMCID: PMC5264252 DOI: 10.1016/j.ebiom.2016.09.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 01/14/2023] Open
Abstract
In addition to oncogenic drivers, signaling nodes can critically modulate cancer-related cellular networks to strength tumor hallmarks. We identify G-protein-coupled receptor kinase 2 (GRK2) as a relevant player in breast cancer. GRK2 is up-regulated in breast cancer cell lines, in spontaneous tumors in mice, and in a proportion of invasive ductal carcinoma patients. Increased GRK2 functionality promotes the phosphorylation and activation of the Histone Deacetylase 6 (HDAC6) leading to de-acetylation of the Prolyl Isomerase Pin1, a central modulator of tumor progression, thereby enhancing its stability and functional interaction with key mitotic regulators. Interestingly, a correlation between GRK2 expression and Pin1 levels and de-acetylation status is detected in breast cancer patients. Activation of the HDAC6-Pin1 axis underlies the positive effects of GRK2 on promoting growth factor signaling, cellular proliferation and anchorage-independent growth in both luminal and basal breast cancer cells. Enhanced GRK2 levels promote tumor growth in mice, whereas GRK2 down-modulation sensitizes cells to therapeutic drugs and abrogates tumor formation. Our data suggest that GRK2 acts as an important onco-modulator by strengthening the functionality of key players in breast tumorigenesis such as HDAC6 and Pin1. Pathways commonly altered in breast cancer converge in promoting GRK2 upregulation, leading to enhanced HDAC6 functionality. The GRK2-HDAC6 module fosters cancer hallmarks by enabling de-acetylation and gain-of function of the Prolyl Isomerase Pin1. GRK2 downregulation sensitizes cells to therapeutic drugs and abrogates tumor formation in mice.
Targeting growth factors or estrogen receptors have improved the clinical outcome of certain subtypes of breast cancer, although these treatments are limited by the emergence of resistances. We uncover that G-protein-coupled receptor kinase 2(GRK2) increases in breast cancer experimental models and in certain ductal carcinoma patients, thus enhancing the transforming growth properties of both luminal and basal breast cancer cells, by augmenting the functionality of cancer-driving nodes such as Histone Deacetylase 6 and Pin1. GRK2 inhibition sensitizes breast cancer cells to chemotherapeutic agents and blocks tumor growth in mice. The GRK2-HDAC6-Pin1 axis emerges as a relevant molecular signature in breast tumorigenesis and as a potential target for combination therapies.
Collapse
Affiliation(s)
- Laura Nogués
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain; Molecular Oncology and Nutritional Genomics of Cancer, Madrid Institute of Advanced Studies-Food Institute, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Clara Reglero
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Verónica Rivas
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Alicia Salcedo
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Vanesa Lafarga
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Maria Neves
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Paula Ramos
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Marta Mendiola
- Laboratory of Pathology and Translational Oncology, Hospital la Paz Institute for Health Research, IdiPAZ, 28046 Madrid, Spain
| | - Alberto Berjón
- Department of Pathology, Hospital Universitario La Paz, School of Medicine, Universidad Autónoma de Madrid, IdiPaz, 28046 Madrid, Spain
| | - Kostas Stamatakis
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Xiao Zhen Zhou
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
| | - Kun Ping Lu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
| | - David Hardisson
- Department of Pathology, Hospital Universitario La Paz, School of Medicine, Universidad Autónoma de Madrid, IdiPaz, 28046 Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain.
| | - Petronila Penela
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain.
| |
Collapse
|
28
|
Song W, Li W, Li L, Zhang S, Yan X, Wen X, Zhang X, Tian H, Li A, Hu JF, Cui J. Friend leukemia virus integration 1 activates the Rho GTPase pathway and is associated with metastasis in breast cancer. Oncotarget 2016; 6:23764-75. [PMID: 26156017 PMCID: PMC4695150 DOI: 10.18632/oncotarget.4350] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/11/2015] [Indexed: 01/22/2023] Open
Abstract
Breast cancer is the most prevalent malignant disease in women worldwide. In patients with breast cancer, metastasis to distant sites directly determines the survival outcome. However, the molecular mechanism underlying metastasis in breast cancer remains to be defined. In this report, we found that Friend leukemia virus integration 1 (FLI1) proto-oncogene was differentially expressed between the aggressive MDA-MB231 and the non-aggressive MCF-7 breast cancer cells. Congruently, immunohistochemical staining of clinical samples revealed that FLI1 was overexpressed in breast cancers as compared with the adjacent tissues. The abundance of FLI1 protein was strongly correlated with the advanced stage, poor differentiation, and lymph node metastasis in breast cancer patients. Knockdown of FLI1 with small interfering RNAs significantly attenuated the potential of migration and invasion in highly metastatic human breast cancer cells. FLI1 oncoprotein activated the Rho GTPase pathway that is known to play a role in tumor metastasis. This study for the first time identifies FLI1 as a clinically and functionally important target gene of metastasis, providing a rationale for developing FLI1 inhibitors in the treatment of breast cancer.
Collapse
Affiliation(s)
- Wei Song
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Lingyu Li
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Shilin Zhang
- Cancer Center, the First Hospital of Jilin University, Changchun, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Xu Yan
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Xue Wen
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Xiaoying Zhang
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Huimin Tian
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Ailing Li
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Ji-Fan Hu
- Cancer Center, the First Hospital of Jilin University, Changchun, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Hou X, Hu H, Lin Y, Qu B, Gao X, Li Q. The effect of G protein-coupled receptor kinase 2 (GRK2) on lactation and on proliferation of mammary epithelial cells from dairy cows. J Dairy Sci 2016; 99:5828-5836. [DOI: 10.3168/jds.2015-10560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 03/12/2016] [Indexed: 11/19/2022]
|
30
|
Penela P. Chapter Three - Ubiquitination and Protein Turnover of G-Protein-Coupled Receptor Kinases in GPCR Signaling and Cellular Regulation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:85-140. [PMID: 27378756 DOI: 10.1016/bs.pmbts.2016.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
G-protein-coupled receptors (GPCRs) are responsible for regulating a wide variety of physiological processes, and distinct mechanisms for GPCR inactivation exist to guarantee correct receptor functionality. One of the widely used mechanisms is receptor phosphorylation by specific G-protein-coupled receptor kinases (GRKs), leading to uncoupling from G proteins (desensitization) and receptor internalization. GRKs and β-arrestins also participate in the assembly of receptor-associated multimolecular complexes, thus initiating alternative G-protein-independent signaling events. In addition, the abundant GRK2 kinase has diverse "effector" functions in cellular migration, proliferation, and metabolism homeostasis by means of the phosphorylation or interaction with non-GPCR partners. Altered expression of GRKs (particularly of GRK2 and GRK5) occurs during pathological conditions characterized by impaired GPCR signaling including inflammatory syndromes, cardiovascular disease, and tumor contexts. It is increasingly appreciated that different pathways governing GRK protein stability play a role in the modulation of kinase levels in normal and pathological conditions. Thus, enhanced GRK2 degradation by the proteasome pathway occurs upon GPCR stimulation, what allows cellular adaptation to chronic stimulation in a physiological setting. β-arrestins participate in this process by facilitating GRK2 phosphorylation by different kinases and by recruiting diverse E3 ubiquitin ligase to the receptor complex. Different proteolytic systems (ubiquitin-proteasome, calpains), chaperone activities and signaling pathways influence the stability of GRKs in different ways, thus endowing specificity to GPCR regulation as protein turnover of GRKs can be differentially affected. Therefore, modulation of protein stability of GRKs emerges as a versatile mechanism for feedback regulation of GPCR signaling and basic cellular processes.
Collapse
Affiliation(s)
- P Penela
- Department of Molecular Biology and Centre of Molecular Biology "Severo Ochoa" (CSIC-UAM), Madrid, Autonomous University of Madrid, Madrid, Spain; Spain Health Research Institute The Princesa, Madrid, Spain.
| |
Collapse
|
31
|
Bacillus bombysepticus α-Toxin Binding to G Protein-Coupled Receptor Kinase 2 Regulates cAMP/PKA Signaling Pathway to Induce Host Death. PLoS Pathog 2016; 12:e1005527. [PMID: 27022742 PMCID: PMC4811588 DOI: 10.1371/journal.ppat.1005527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/04/2016] [Indexed: 02/06/2023] Open
Abstract
Bacterial pathogens and their toxins target host receptors, leading to aberrant behavior or host death by changing signaling events through subversion of host intracellular cAMP level. This is an efficient and widespread mechanism of microbial pathogenesis. Previous studies describe toxins that increase cAMP in host cells, resulting in death through G protein-coupled receptor (GPCR) signaling pathways by influencing adenylyl cyclase or G protein activity. G protein-coupled receptor kinase 2 (GRK2) has a central role in regulation of GPCR desensitization. However, little information is available about the pathogenic mechanisms of toxins associated with GRK2. Here, we reported a new bacterial toxin-Bacillus bombysepticus (Bb) α-toxin that was lethal to host. We showed that Bb α-toxin interacted with BmGRK2. The data demonstrated that Bb α-toxin directly bound to BmGRK2 to promote death by affecting GPCR signaling pathways. This mechanism involved stimulation of Gαs, increase level of cAMP and activation of protein kinase A (PKA). Activated cAMP/PKA signal transduction altered downstream effectors that affected homeostasis and fundamental biological processes, disturbing the structural and functional integrity of cells, resulting in death. Preventing cAMP/PKA signaling transduction by inhibitions (NF449 or H-89) substantially reduced the pathogenicity of Bb α-toxin. The discovery of a toxin-induced host death specifically linked to GRK2 mediated signaling pathway suggested a new model for bacterial toxin action. Characterization of host genes whose expression and function are regulated by Bb α-toxin and GRK2 will offer a deeper understanding of the pathogenesis of infectious diseases caused by pathogens that elevate cAMP. Interference with regulation of host signaling by pathogens can alter gene expression, leading to functional disarray in the host cells that causes abnormal division or death. Here, we propose a previously undescribed model for how bacterial toxins subvert host processes via interaction with GRK2 that influences cAMP/PKA signaling. Our findings provide new fundamental information about how bacterial pathogens regulate host signal transduction to cause death, which offers additional perspectives in host-pathogen systems. These findings will help to advance our understanding of bacteria pathogenic mechanism. Furthermore, these might extend to other microbial pathogenesis and assist in designing new or safer strategies against pathogens.
Collapse
|
32
|
Abstract
Myocardial fibrosis is a significant global health problem associated with nearly all forms of heart disease. Cardiac fibroblasts comprise an essential cell type in the heart that is responsible for the homeostasis of the extracellular matrix; however, upon injury, these cells transform to a myofibroblast phenotype and contribute to cardiac fibrosis. This remodeling involves pathological changes that include chamber dilation, cardiomyocyte hypertrophy and apoptosis, and ultimately leads to the progression to heart failure. Despite the critical importance of fibrosis in cardiovascular disease, our limited understanding of the cardiac fibroblast impedes the development of potential therapies that effectively target this cell type and its pathological contribution to disease progression. This review summarizes current knowledge regarding the origins and roles of fibroblasts, mediators and signaling pathways known to influence fibroblast function after myocardial injury, as well as novel therapeutic strategies under investigation to attenuate cardiac fibrosis.
Collapse
Affiliation(s)
- Joshua G Travers
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Fadia A Kamal
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Jeffrey Robbins
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Katherine E Yutzey
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Burns C Blaxall
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH.
| |
Collapse
|
33
|
Halls ML, Yeatman HR, Nowell CJ, Thompson GL, Gondin AB, Civciristov S, Bunnett NW, Lambert NA, Poole DP, Canals M. Plasma membrane localization of the μ-opioid receptor controls spatiotemporal signaling. Sci Signal 2016; 9:ra16. [PMID: 26861044 DOI: 10.1126/scisignal.aac9177] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Differential regulation of the μ-opioid receptor (MOR), a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor, contributes to the clinically limiting effects of opioid analgesics, such as morphine. We used biophysical approaches to quantify spatiotemporal MOR signaling in response to different ligands. In human embryonic kidney (HEK) 293 cells overexpressing MOR, morphine caused a Gβγ-dependent increase in plasma membrane-localized protein kinase C (PKC) activity, which resulted in a restricted distribution of MOR within the plasma membrane and induced sustained cytosolic extracellular signal-regulated kinase (ERK) signaling. In contrast, the synthetic opioid peptide DAMGO ([d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin) enabled receptor redistribution within the plasma membrane, resulting in transient increases in cytosolic and nuclear ERK activity, and, subsequently, receptor internalization. When Gβγ subunits or PKCα activity was inhibited or when the carboxyl-terminal phosphorylation sites of MOR were mutated, morphine-activated MOR was released from its restricted plasma membrane localization and stimulated a transient increase in cytosolic and nuclear ERK activity in the absence of receptor internalization. Thus, these data suggest that the ligand-induced redistribution of MOR within the plasma membrane, and not its internalization, controls its spatiotemporal signaling.
Collapse
Affiliation(s)
- Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Holly R Yeatman
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Cameron J Nowell
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Georgina L Thompson
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Arisbel Batista Gondin
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Srgjan Civciristov
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nigel W Bunnett
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. Department of Anesthesia and Perioperative Medicine, Monash University, Melbourne, Victoria 3004, Australia. Department of Pharmacology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Nevin A Lambert
- Department of Toxicology and Pharmacology, Georgia Regents University, Augusta, GA 30912, USA
| | - Daniel P Poole
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Meritxell Canals
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
34
|
Ouyang H, Yang HS, Yu T, Shan TD, Li JY, Huang CZ, Zhong W, Xia ZS, Chen QK. MEK/ERK pathway activation by insulin receptor isoform alteration is associated with the abnormal proliferation and differentiation of intestinal epithelial cells in diabetic mice. Mol Cell Biochem 2016; 413:165-78. [PMID: 26724951 DOI: 10.1007/s11010-015-2650-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/23/2015] [Indexed: 12/15/2022]
Abstract
In previous studies, we have reported the abnormal proliferation and differentiation of intestinal epithelial cells (IECs) in diabetes mellitus (DM) mice. The insulin receptor (IR) and its downstream mitogen-activated protein kinase kinase (MAPKK also known as MEK)/extracellular-regulated protein kinase (ERK) pathway is a classic pathway associated with cell proliferation and differentiation. The purpose of the present study is to investigate the role of the MEK/ERK pathway in abnormal proliferation and differentiation of IECs in DM mice. DM mouse models were induced by intraperitoneal injection of streptozotocin. The expression levels of the IR and its isoforms in IECs of DM mice and in IEC-6 cells were investigated. To ensure that the downstream pathways were monitored, QPCR and Western blotting were performed to detect the expression levels of MEK1/2, ERK1/2, PI3K, and Akt. Moreover, siRNA for IR-A and U0126, a specific inhibitor of MEK, were used to further investigate the relationship between the IR/MEK/ERK pathway and abnormal proliferation and differentiation of IECs in DM mice. In DM mice, excessive proliferation, disturbed differentiation, and a high ratio of IR-A/IR-B were detected in IECs. The expression levels of MEK1, MEK2, and ERK1/2 and their phosphorylated proteins in DM mice were significantly higher than those in the control group (P < 0.05), which could be offset by using siRNA for IR-A. The abnormal proliferation and differentiation of IECs in DM mice were normalized after the in vivo administration of U0126. The abnormal proliferation and differentiation of IECs in DM mice are associated with high IR-A/IR-B ratio and increased IR/MEK/ERK pathway activity.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Hong-Sheng Yang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Tao Yu
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China.
| | - Ti-Dong Shan
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Jie-Yao Li
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Can-Ze Huang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Wa Zhong
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Zhong-Sheng Xia
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Qi-Kui Chen
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120, Guangdong, People's Republic of China.
| |
Collapse
|
35
|
Yamaguchi R, Yamamoto T, Sakamoto A, Ishimaru Y, Narahara S, Sugiuchi H, Yamaguchi Y. Substance P enhances tissue factor release from granulocyte-macrophage colony-stimulating factor-dependent macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway. Blood Cells Mol Dis 2016; 57:85-90. [PMID: 26852662 DOI: 10.1016/j.bcmd.2016.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/18/2016] [Indexed: 12/15/2022]
Abstract
Granulocyte-macrophage colony stimulating factor (GM-CSF) induces procoagulant activity of macrophages. Tissue factor (TF) is a membrane-bound glycoprotein and substance P (SP) is a pro-inflammatory neuropeptide involved in the formation of membrane blebs. This study investigated the role of SP in TF release by GM-CSF-dependent macrophages. SP significantly decreased TF levels in whole-cell lysates of GM-CSF-dependent macrophages. TF was detected in the culture supernatant by enzyme-linked immunosorbent assay after stimulation of macrophages by SP. Aprepitant (an SP/neurokinin 1 receptor antagonist) reduced TF release from macrophages stimulated with SP. Pretreatment of macrophages with a radical scavenger(pyrrolidinedithiocarbamate) also limited the decrease of TF in whole-cell lysates after stimulation with SP. A protein kinase C inhibitor (rottlerin) partially blocked this macrophage response to SP, while it was significantly inhibited by a ROCK inhibitor (Y-27632) or a dynamin inhibitor (dinasore). An Akt inhibitor (perifosine) also partially blocked this response. Furthermore, siRNA targeting p22phox, β-arrestin 2, or Rho A, blunted the release of TF from macrophages stimulated with SP. In other experiments, visceral adipocytes derived from cryopreserved preadipocytes were found to produce SP. In conclusion, SP enhances the release of TF from macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway.
Collapse
Affiliation(s)
- Rui Yamaguchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan; Graduate School of Medical Science, Kumamoto University Medical School, Kumamoto, Japan
| | - Takatoshi Yamamoto
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Arisa Sakamoto
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Yasuji Ishimaru
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Shinji Narahara
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Hiroyuki Sugiuchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Yasuo Yamaguchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| |
Collapse
|
36
|
Chang C, Niu Z, Gu N, Zhao W, Wang G, Jia Y, Li D, Xu C. Analysis of the ways and methods of signaling pathways in regulating cell cycle of NIH3T3 at transcriptional level. BMC Cell Biol 2015; 16:25. [PMID: 26511608 PMCID: PMC4625951 DOI: 10.1186/s12860-015-0071-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 10/19/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND To analyze the ways and methods of signaling pathways in regulating cell cycle progression of NIH3T3 at transcriptional level, we modeled cell cycle of NIH3T3 and found that G1 phase of NIH3T3 cell cycle was at 5-15 h after synchronization, S phase at 15-21 h, G2 phase at 21-22 h, M phase at 22-25 h. RESULTS Mouse Genome 430 2.0 microarray was used to detect the gene expression profiles of the model, and results showed remarkable changes in the expressions of 64 cell cycle genes and 960 genes associated with other physiological activity during the cell cycle of NIH3T3. For the next step, IPA software was used to analyze the physiological activities, cell cycle genes-associated signal transduction activities and their regulatory roles of these genes in cell cycle progression, and our results indicated that the reported genes were involved in 17 signaling pathways in the regulation of cell cycle progression. Newfound genes such as PKC, RAS, PP2A, NGR and PI3K etc. belong to the functional category of molecular mechanism of cancer, cyclins and cell cycle regulation HER-2 signaling in breast cancer signaling pathways. These newfound genes could promote DNA damage repairment and DNA replication progress, regulate the metabolism of protein, and maintain the cell cycle progression of NIH3T3 modulating the reported genes CCND1 and C-FOS. CONCLUSION All of the aforementioned signaling pathways interacted with the cell cycle network, indicating that NIH3T3 cell cycle was regulated by a number of signaling pathways.
Collapse
Affiliation(s)
- Cuifang Chang
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Zhipeng Niu
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Ningning Gu
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Weiming Zhao
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Gaiping Wang
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Yifeng Jia
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Deming Li
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| |
Collapse
|
37
|
Albano GD, Zhao J, Etling EB, Park SY, Hu H, Trudeau JB, Profita M, Wenzel SE. IL-13 desensitizes β2-adrenergic receptors in human airway epithelial cells through a 15-lipoxygenase/G protein receptor kinase 2 mechanism. J Allergy Clin Immunol 2015; 135:1144-53.e1-9. [PMID: 25819984 PMCID: PMC4426258 DOI: 10.1016/j.jaci.2015.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND β2-Adrenergic receptor (β2AR) agonists are critical treatments for asthma. However, receptor desensitization can lead to loss of therapeutic effects. Although desensitization to repeated use of β2-agonists is well studied, type 2 inflammation could also affect β2AR function. OBJECTIVE We sought to evaluate the effect of the type 2 cytokine IL-13 on β2AR desensitization in human airway epithelial cells (HAECs) and determine whether 15-lipoxygenase-1 (15LO1) binding with phosphatidylethanolamine-binding protein 1 (PEBP1) contributes to desensitization through release of G protein receptor kinase 2 (GRK2). METHODS HAECs in air-liquid interface culture with or without IL-13 (48 hours) or isoproterenol hydrochloride (ISO; 30 minutes) pretreatment were stimulated with ISO (10 minutes). Cyclic adenosine 3, 5-monophosphate (cAMP) levels were measured using ELISA, and β2AR and GRK2 phosphorylation was measured using Western blotting. Short interfering RNA was used for 15LO1 knockdown. Interactions of GRK2, PEBP1, and 15LO1 were detected by means of immunoprecipitation/Western blotting and immunofluorescence. HAECs and airway tissue from control subjects and asthmatic patients were evaluated for I5LO1, PEBP1, and GRK2. RESULTS Pretreatment with ISO or IL-13 decreased ISO-induced cAMP generation compared with ISO for 10 minutes alone paralleled by increases in β2AR and GRK2 phosphorylation. GRK2 associated with PEBP1 after 10 minutes of ISO in association with low phosphorylated GRK2 (pGRK2) levels. In contrast, in the presence of IL-13 plus ISO (10 minutes), binding of GRK2 to PEBP1 decreased, whereas 15LO1 binding and pGRK2 levels increased. 15LO1 knockdown restored ISO-induced cAMP generation. These findings were recapitulated in freshly brushed HAECs from cells and tissue of asthmatic patients. CONCLUSION IL-13 treatment of HAECs leads to β2AR desensitization, which involves 15LO1/PEBP1 interactions to free GRK2, and allows it to phosphorylate (and desensitize) β2ARs, suggesting that the beneficial effects of β2-agonists could be blunted in patients with type 2 associated asthma.
Collapse
Affiliation(s)
- Giusy D Albano
- University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pa; Institute of Biomedicine and Molecular Immunology, Italian National Research Council, Palermo, Italy
| | - Jinming Zhao
- University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pa.
| | - Emily B Etling
- University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Seo Young Park
- Center for Research on Health Care Data Center, University of Pittsburgh, Pittsburgh, Pa
| | - Haizhen Hu
- University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - John B Trudeau
- University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Mirella Profita
- Institute of Biomedicine and Molecular Immunology, Italian National Research Council, Palermo, Italy
| | - Sally E Wenzel
- University of Pittsburgh Asthma Institute at UPMC, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pa
| |
Collapse
|
38
|
Penela P, Nogués L, Mayor F. Role of G protein-coupled receptor kinases in cell migration. Curr Opin Cell Biol 2013; 27:10-7. [PMID: 24680425 DOI: 10.1016/j.ceb.2013.10.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/21/2013] [Accepted: 10/23/2013] [Indexed: 01/09/2023]
Abstract
G protein-coupled receptor kinases (GRKs) are emerging as important integrative nodes in cell migration processes. Recent evidence links GRKs (particularly the GRK2 isoform) to the complex modulation of diverse aspects of cell motility. In addition to its well-established role in the desensitization of G protein-coupled receptors involved in chemotaxis, GRK2 can play an effector role in the organization of actin and microtubule networks and in adhesion dynamics, by means of novel substrates and transient interacting partners, such as the GIT1 scaffold or the cytoplasmic α-tubulin deacetylase histone deacetylase 6 (HDAC6). The overall effect of altering GRK levels or activity on chemotaxis would depend on how such different roles are integrated in a given cell type and physiological context, and may have relevant implications in inflammatory diseases or cancer progression.
Collapse
Affiliation(s)
- Petronila Penela
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Laura Nogués
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain.
| |
Collapse
|