1
|
Induction of premature senescence and a less-fibrogenic phenotype by programmed cell death 4 knockdown in the human hepatic stellate cell line Lieming Xu-2. Hum Cell 2023; 36:583-601. [PMID: 36522523 PMCID: PMC9947070 DOI: 10.1007/s13577-022-00844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Although programmed cell death 4 (PDCD4) was initially reported as a tumor suppressor and has been shown to inhibit cancer cell growth and metastasis, recent studies have demonstrated that loss of PDCD4 expression also induces growth inhibition by inducing apoptosis and/or cellular senescence. At present, the roles of PDCD4 in the activation and profibrogenic properties of myofibroblasts, which are critically involved in organ fibrosis, such as that in the liver, are unclear. We, therefore, investigated the roles of PDCD4 in myofibroblasts using human hepatic stellate cell line Lieming Xu-2 (LX-2). PDCD4 knockdown inhibited LX-2 proliferation and induced a senescent phenotype with increased β-galactosidase staining and p21 expression in a p53-independent manner together with downregulation of the notch signaling mediator RBJ-κ/CSL. During PDCD4 knockdown, alpha smooth muscle actin (α-SMA; an activation marker of myofibroblasts), matrix metalloproteinases MMP-1 and MMP-9, and collagen IV were upregulated, but the expression of collagen1α1 and collagen III was markedly downregulated without any marked change in the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1). These results demonstrated that knockdown of PDCD4 induced the cellular senescence phenotype and activated myofibroblasts while suppressing the profibrogenic phenotype, suggesting roles of PDCD4 in cellular senescence and fibrogenesis in the liver.
Collapse
|
2
|
Fan Q, Lu Q, Wang G, Zhu W, Teng L, Chen W, Bi L. Optimizing component formula suppresses lung cancer by blocking DTL-mediated PDCD4 ubiquitination to regulate the MAPK/JNK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115546. [PMID: 35850313 DOI: 10.1016/j.jep.2022.115546] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bunge and Panax ginseng C. A. Meyer have special curative effect on cancer treatment. The optimizing component formula (OCF) extracted from those two herbs was in line with the anti-lung cancer treatment principle of activating blood and supplementing 'Qi'. However, the study on the mechanism of component formula has always been an insurmountable challenge. Nowadays, the application of network pharmacology and artificial intelligence (AI) in the field of TCM provides new ideas for the study of new targets and mechanisms of TCM, which promotes the modernization of TCM. AIM OF THE STUDY This study aims to further explore the anti-lung cancer mechanism of OCF by using an integrated strategy of network pharmacology and AI technology. MATERIALS AND METHODS Bioinformatic analysis was used to analyze the expression levels, prognosis and survival of DTL and PDCD4 in cancer patients. The binding strength of OCF and DTL was simulated by molecular docking, and the affinity between them was detected by Bio-layer interferometry. Network pharmacology was used to predict the active components, potential targets and pathways of OCF. The association between key targets and their corresponding components and DTL was analyzed by Ingenuity Pathway Analysis (IPA). MTT assay, colony formation assay, wound-healing assay and transwell assay were used to verify the inhibitory effects of OCF on lung cancer cells in vitro. qRT-PCR and Western blot assay were used to detect the effects of OCF on mRNA and protein expression of DTL, PDCD4 and key genes in MAPK/JNK pathways. RESULTS Bioinformatics analysis showed that DTL was significantly up-regulated in lung cancer, which was associated with high malignancy rate, high metastasis rate and poor prognosis of primary tumor. PDCD4 was down-regulated in lung cancer, and associated with high metastasis rate and poor prognosis. The good affinity between OCF and DTL was predicted and verified by molecular docking and Bio-layer interferometry. Based on the network pharmacological databases, 40 active components and 220 corresponding targets of OCF were screened out. KEGG analysis showed that OCF component targets were mainly enriched in MAPK signaling pathway. IPA results showed the interrelationship between DTL, PDCD4, MAPK pathway genes and their corresponding OCF components. In addition, in vitro experiments demonstrated anti-lung cancer activity of OCF, as validated, via impairing cell viability and cell proliferation, as well as inhibiting migration and invasion abilities in lung cancer cells. qRT-PCR showed that OCF down-regulated the mRNA expression of DTL, MAP4K1, JNK, c-Jun and c-Myc, and up-regulated the mRNA expression of PDCD4 and P53 genes in A549 lung cancer cells. Western blot suggested that OCF suppressed the protein level of DTL and blocked the ubiquitination of PDCD4 in A549 lung cancer cells, and down-regulated the protein levels of MAP4K1, p-JNK and p-c-Jun while up-regulated the proteins expression level of P53. CONCLUSIONS OCF might elicit an anti-lung cancer effect by blocking DTL-mediated PDCD4 ubiquitination and suppression of the MAPK/JNK pathway. Meanwhile, our work revealed that network pharmacology and AI technology strategy are cogent means of studying the active components and mechanism of TCM.
Collapse
Affiliation(s)
- Qianqian Fan
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qinwei Lu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guiyang Wang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenjing Zhu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Linxin Teng
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weiping Chen
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lei Bi
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Herbst WA, Deng W, Wohlschlegel JA, Achiro JM, Martin KC. Neuronal activity regulates the nuclear proteome to promote activity-dependent transcription. J Cell Biol 2021; 220:e202103087. [PMID: 34617965 PMCID: PMC8504181 DOI: 10.1083/jcb.202103087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/23/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
The formation and plasticity of neuronal circuits relies on dynamic activity-dependent gene expression. Although recent work has revealed the identity of important transcriptional regulators and of genes that are transcribed and translated in response to activity, relatively little is known about the cell biological mechanisms by which activity alters the nuclear proteome of neurons to link neuronal stimulation to transcription. Using nucleus-specific proteomic mapping in silenced and stimulated neurons, we uncovered an understudied mechanism of nuclear proteome regulation: activity-dependent proteasome-mediated degradation. We found that the tumor suppressor protein PDCD4 undergoes rapid stimulus-induced degradation in the nucleus of neurons. We demonstrate that degradation of PDCD4 is required for normal activity-dependent transcription and that PDCD4 target genes include those encoding proteins critical for synapse formation, remodeling, and transmission. Our findings highlight the importance of the nuclear proteasome in regulating the activity-dependent nuclear proteome and point to a specific role for PDCD4 as a regulator of activity-dependent transcription in neurons.
Collapse
Affiliation(s)
- Wendy A. Herbst
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| | - Weixian Deng
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| | - Jennifer M. Achiro
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| | - Kelsey C. Martin
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
4
|
Kozinova M, Joshi S, Ye S, Belinsky MG, Sharipova D, Farma JM, Reddy SS, Litwin S, Devarajan K, Campos AR, Yu Y, Schwartz B, von Mehren M, Rink L. Combined Inhibition of AKT and KIT Restores Expression of Programmed Cell Death 4 (PDCD4) in Gastrointestinal Stromal Tumor. Cancers (Basel) 2021; 13:cancers13153699. [PMID: 34359600 PMCID: PMC8345102 DOI: 10.3390/cancers13153699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
The majority of gastrointestinal stromal tumor (GIST) patients develop resistance to the first-line KIT inhibitor, imatinib mesylate (IM), through acquisition of secondary mutations in KIT or bypass signaling pathway activation. In addition to KIT, AKT is a relevant target for inhibition, since the PI3K/AKT pathway is crucial for IM-resistant GIST survival. We evaluated the activity of a novel pan-AKT inhibitor, MK-4440 (formerly ARQ 751), as monotherapy and in combination with IM in GIST cell lines and preclinical models with varying IM sensitivities. Dual inhibition of KIT and AKT demonstrated synergistic effects in IM-sensitive and -resistant GIST cell lines. Proteomic analyses revealed upregulation of the tumor suppressor, PDCD4, in combination treated cells. Enhanced PDCD4 expression correlated to increased cell death. In vivo studies revealed superior efficacy of MK-4440/IM combination in an IM-sensitive preclinical model of GIST compared with either single agent. The combination demonstrated limited efficacy in two IM-resistant models, including a GIST patient-derived xenograft model possessing an exon 9 KIT mutation. These studies provide strong rationale for further use of AKT inhibition in combination with IM in primary GIST; however, alternative agents will need to be tested in combination with AKT inhibition in the resistant setting.
Collapse
Affiliation(s)
- Marya Kozinova
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (M.K.); (S.J.); (S.Y.); (M.G.B.); (D.S.); (M.v.M.)
- Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Shalina Joshi
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (M.K.); (S.J.); (S.Y.); (M.G.B.); (D.S.); (M.v.M.)
| | - Shuai Ye
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (M.K.); (S.J.); (S.Y.); (M.G.B.); (D.S.); (M.v.M.)
| | - Martin G. Belinsky
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (M.K.); (S.J.); (S.Y.); (M.G.B.); (D.S.); (M.v.M.)
| | - Dinara Sharipova
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (M.K.); (S.J.); (S.Y.); (M.G.B.); (D.S.); (M.v.M.)
| | - Jeffrey M. Farma
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.M.F.); (S.S.R.)
| | - Sanjay S. Reddy
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (J.M.F.); (S.S.R.)
| | - Samuel Litwin
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (S.L.); (K.D.)
| | - Karthik Devarajan
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (S.L.); (K.D.)
| | - Alex Rosa Campos
- Proteomics Core Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
| | - Yi Yu
- ArQuIe Inc., A Wholly-Owned Subsidiary of Merck & Co., Inc. (Known as MSD Outside the United States and Canada), Kenilworth, NJ 07033, USA; (Y.Y.); (B.S.)
| | - Brian Schwartz
- ArQuIe Inc., A Wholly-Owned Subsidiary of Merck & Co., Inc. (Known as MSD Outside the United States and Canada), Kenilworth, NJ 07033, USA; (Y.Y.); (B.S.)
| | - Margaret von Mehren
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (M.K.); (S.J.); (S.Y.); (M.G.B.); (D.S.); (M.v.M.)
- Department of Hematology and Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Lori Rink
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (M.K.); (S.J.); (S.Y.); (M.G.B.); (D.S.); (M.v.M.)
- Correspondence: ; Tel.: +1-(215)-214-1608
| |
Collapse
|
5
|
Ni SY, Xu WT, Liao GY, Wang YL, Li J. LncRNA HOTAIR Promotes LPS-Induced Inflammation and Apoptosis of Cardiomyocytes via Lin28-Mediated PDCD4 Stability. Inflammation 2021; 44:1452-1463. [PMID: 33665757 DOI: 10.1007/s10753-021-01431-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/06/2021] [Accepted: 02/01/2021] [Indexed: 02/05/2023]
Abstract
Sepsis is one of the primary causes of death in intensive care units. Recently, increasing evidence has identified lncRNA HOTAIR is involved in septic cardiomyopathy. However, the potential mechanism underlying HOTAIR on septic cardiomyopathy is still unknown. H9C2 cells were treated with lipopolysaccharide (LPS) after transfection with sh-HOTAIR, sh-Lin28, pcDNA3.1-HOTAIR, and pcDNA3.1-PDCD4. qRT-PCR was used to examine the level of HOTAIR, Lin28, PDCD4, and sepsis-related inflammatory cytokines. Flow cytometric analysis was applied to detect cell apoptosis. The interaction between Lin28 and HOTAIR or PDCD4 was verified by RNA pull-down and RIP assay. HOTAIR levels were interfered by AAV9-sh-HOTAIR in LPS-induced septic cardiomyopathy mice. ELISA analysis was used to evaluate TNF-α, IL-6, and IL-1β level. Western blot was used to detect the expression of LIN28 and PDCD4 in mouse cardiomyocytes. Echocardiography was used to evaluate the cardiac function. In our study, knockdown of HOTAIR inhibited LPS-induced inflammation and H9C2 cells apoptosis. HOTAIR promoted LPS-induced inflammatory response and apoptosis of H9C2 cells by enhancing PDCD4 stability. RNA pull-down and RIP assay exhibited that Lin28, a highly conserved RNA-binding protein, was combined with HOTAIR and PDCD4. The in vivo experiments verified that the HOTAIR knockdown alleviated the cardiac function injury and secretion of inflammatory factors caused by sepsis. In conclusion, our findings supported that the HOTAIR/Lin28/PDCD4 axis serves as a critical regulator of sepsis, which may open a new direction for the development of sepsis therapeutic.
Collapse
Affiliation(s)
- Shu-Yuan Ni
- Department of Intensive Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong Province, People's Republic of China.
| | - Wen-Ting Xu
- Department of Intensive Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong Province, People's Republic of China
| | - Guang-Yuan Liao
- Department of Intensive Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong Province, People's Republic of China
| | - Yin-Ling Wang
- Department of Intensive Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong Province, People's Republic of China
| | - Jing Li
- Department of Intensive Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong Province, People's Republic of China
| |
Collapse
|
6
|
Montero JC, Pandiella A. PDCD4 limits prooncogenic neuregulin-ErbB signaling. Cell Mol Life Sci 2021; 78:1799-1815. [PMID: 32804243 PMCID: PMC11073242 DOI: 10.1007/s00018-020-03617-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/21/2020] [Accepted: 08/07/2020] [Indexed: 11/26/2022]
Abstract
The neuregulins and their ErbB/HER receptors play essential roles in mammalian development and tissue homeostasis. In addition, deregulation of their function has been linked to the pathogenesis of diseases such as cancer or schizophrenia. These circumstances have stimulated research into the biology of this ligand-receptor system. Here we show the identification of programmed cell death protein-4 (PDCD4) as a novel neuregulin-ErbB signaling mediator. Phosphoproteomic analyses identified PDCD4 as protein whose phosphorylation increased in cells treated with neuregulin. Mutagenesis experiments defined serine 67 of PDCD4 as a site whose phosphorylation increased upon activation of neuregulin receptors. Phosphorylation of that site promoted degradation of PDCD4 by the proteasome, which depended on exit of PDCD4 from the nucleus to the cytosol. Mechanistic studies defined mTORC1 and ERK1/2 as routes implicated in neuregulin-induced serine 67 phosphorylation and PDCD4 degradation. Functionally, PDCD4 regulated several important biological functions of neuregulin, such as proliferation, migration, or invasion.
Collapse
Affiliation(s)
- Juan Carlos Montero
- Institute of Biomedical Research of Salamanca (IBSAL), Instituto de Biología Molecular y Celular del Cáncer (CSIC) and CIBERONC, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | - Atanasio Pandiella
- Institute of Biomedical Research of Salamanca (IBSAL), Instituto de Biología Molecular y Celular del Cáncer (CSIC) and CIBERONC, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| |
Collapse
|
7
|
Xia H, Zhao Y. miR-155 is high-expressed in polycystic ovarian syndrome and promotes cell proliferation and migration through targeting PDCD4 in KGN cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:197-205. [PMID: 31851829 DOI: 10.1080/21691401.2019.1699826] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is a typical disease of female endocrine and metabolic abnormalities. miR-155, famous as a multifunctional miRNA, promotes the proliferation, migration and invasion of human cancer cells. Therefore, we aimed to explore its regulation mechanism in PCOS. BrdU incorporation and apoptosis assay were used to test KGN cell survival. Luciferase activity experiment was employed to test targeting link between miR-155 and programmed cell death 4 (PDCD4). Migration and invasion assay were operated to examine the influence of miR-155 and PDCD4 in migration and invasion of KGN cells. In addition, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay and western blot analysis were utilized to measure expression of miR-155 and other relative factors. We found that expression of miR-155 was high in PCOS patients' tissues and it promoted proliferation, migration and invasion in KGN cells. Further studies found that PDCD4 was down-regulated by miR-155 and was a target of miR-155. Overexpression of PDCD4 promoted cell apoptosis to mitigate PCOS. Besides, up-regulation of PDCD4 suppressed PI3K/AKT and JNK signal pathways. To sum up, miR-155 promoted proliferation, migration, invasion and the activation of PI3K/AKT and JNK pathways in KGN cells through negatively regulating PDCD4.
Collapse
Affiliation(s)
- Huanjun Xia
- School of Nursing, Jining Medical University, Jining, P. R. China
| | - Yaxian Zhao
- Department of Obstetrics, No.1 People's Hospital of Jining, Jining, P. R. China
| |
Collapse
|
8
|
Degradation of the Tumor Suppressor PDCD4 Is Impaired by the Suppression of p62/SQSTM1 and Autophagy. Cells 2020; 9:cells9010218. [PMID: 31952347 PMCID: PMC7016974 DOI: 10.3390/cells9010218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 02/07/2023] Open
Abstract
PDCD4 (programmed cell death 4) is a tumor suppressor that plays a crucial role in multiple cellular functions, such as the control of protein synthesis and transcriptional control of some genes, the inhibition of cancer invasion and metastasis. The expression of this protein is controlled by synthesis, such as via transcription and translation, and degradation by the ubiquitin-proteasome system. The mitogens, known as tumor promotors, EGF (epidermal growth factor) and TPA (12-O-tetradecanoylphorbol-13-acetate) stimulate the degradation of PDCD4 protein. However, the whole picture of PDCD4 degradation mechanisms is still unclear, we therefore investigated the relationship between PDCD4 and autophagy. The proteasome inhibitor MG132 and the autophagy inhibitor bafilomycin A1 were found to upregulate the PDCD4 levels. PDCD4 protein levels increased synergistically in the presence of both inhibitors. Knockdown of p62/SQSTM1 (sequestosome-1), a polyubiquitin binding partner, also upregulated the PDCD4 levels. P62 and LC3 (microtubule-associated protein 1A/1B-light chain 3)-II were co-immunoprecipitated by an anti-PDCD4 antibody. Colocalization particles of PDCD4, p62 and the autophagosome marker LC3 were observed and the colocalization areas increased in the presence of autophagy and/or proteasome inhibitor(s) in Huh7 cells. In ATG (autophagy related) 5-deficient Huh7 cells in which autophagy was impaired, the PDCD4 levels were increased at the basal levels and upregulated in the presence of autophagy inhibitors. Based on the above findings, we concluded that after phosphorylation in the degron and ubiquitination, PDCD4 is degraded by both the proteasome and autophagy systems.
Collapse
|
9
|
Matsuhashi S, Manirujjaman M, Hamajima H, Ozaki I. Control Mechanisms of the Tumor Suppressor PDCD4: Expression and Functions. Int J Mol Sci 2019; 20:ijms20092304. [PMID: 31075975 PMCID: PMC6539695 DOI: 10.3390/ijms20092304] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
PDCD4 is a novel tumor suppressor to show multi-functions inhibiting cell growth, tumor invasion, metastasis, and inducing apoptosis. PDCD4 protein binds to the translation initiation factor eIF4A, some transcription factors, and many other factors and modulates the function of the binding partners. PDCD4 downregulation stimulates and PDCD4 upregulation inhibits the TPA-induced transformation of cells. However, PDCD4 gene mutations have not been found in tumor cells but gene expression was post transcriptionally downregulated by micro environmental factors such as growth factors and interleukins. In this review, we focus on the suppression mechanisms of PDCD4 protein that is induced by the tumor promotors EGF and TPA, and in the inflammatory conditions. PDCD4-protein is phosphorylated at 2 serines in the SCFβTRCP ubiquitin ligase binding sequences via EGF and/or TPA induced signaling pathway, ubiquitinated, by the ubiquitin ligase and degraded in the proteasome system. The PDCD4 protein synthesis is inhibited by microRNAs including miR21.
Collapse
Affiliation(s)
- Sachiko Matsuhashi
- Department of Internal Medicine, Saga Medical School, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | - M Manirujjaman
- Department of Internal Medicine, Saga Medical School, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | - Hiroshi Hamajima
- Saga Food & Cosmetics Laboratory, Division of Food Manufacturing Industry Promotion, SAGA Regional Industry Support Center, 114 Yaemizo, Nabesima-Machi, Saga 849-0932, Japan.
| | - Iwata Ozaki
- Health Administration Center, Saga Medical School, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| |
Collapse
|
10
|
Guo J, Ozaki I, Xia J, Kuwashiro T, Kojima M, Takahashi H, Ashida K, Anzai K, Matsuhashi S. PDCD4 Knockdown Induces Senescence in Hepatoma Cells by Up-Regulating the p21 Expression. Front Oncol 2019; 8:661. [PMID: 30687637 PMCID: PMC6334536 DOI: 10.3389/fonc.2018.00661] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/13/2018] [Indexed: 12/26/2022] Open
Abstract
While the over-expression of tumor suppressor programmed cell death 4 (PDCD4) induces apoptosis, it was recently shown that PDCD4 knockdown also induced apoptosis. In this study, we examined the cell cycle regulators whose activation is affected by PDCD4 knockdown to investigate the contribution of PDCD4 to cell cycle regulation in three types of hepatoma cells: HepG2, Huh7 (mutant p53 and p16-deficient), and Hep3B (p53- and Rb-deficient). PDCD4 knockdown suppressed cell growth in all three cell lines by inhibiting Rb phosphorylation via down-regulating the expression of Rb itself and CDKs, which phosphorylate Rb, and up-regulating the expression of the CDK inhibitor p21 through a p53-independent pathway. We also found that apoptosis was induced in a p53-dependent manner in PDCD4 knockdown HepG2 cells (p53+), although the mechanism of cell death in PDCD4 knockdown Hep3B cells (p53-) was different. Furthermore, PDCD4 knockdown induced cellular senescence characterized by β-galactosidase staining, and p21 knockdown rescued the senescence and cell death as well as the inhibition of Rb phosphorylation induced by PDCD4 knockdown. Thus, PDCD4 is an important cell cycle regulator of hepatoma cells and may be a promising therapeutic target for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jing Guo
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| | - Iwata Ozaki
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan.,Health Administration Centre, Saga Medical School, Saga University, Saga, Japan
| | - Jinghe Xia
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| | - Takuya Kuwashiro
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| | - Motoyasu Kojima
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| | - Hirokazu Takahashi
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| | - Kenji Ashida
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| | - Keizo Anzai
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| | - Sachiko Matsuhashi
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| |
Collapse
|
11
|
Burmi RS, Maginn EN, Gabra H, Stronach EA, Wasan HS. Combined inhibition of the PI3K/mTOR/MEK pathway induces Bim/Mcl-1-regulated apoptosis in pancreatic cancer cells. Cancer Biol Ther 2018; 20:21-30. [PMID: 30261145 PMCID: PMC6343713 DOI: 10.1080/15384047.2018.1504718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) progression and chemotherapy insensitivity have been associated with aberrant PI3K/mTOR/MEK signalling. However, cell death responses activated by inhibitors of these pathways can differ – contextually varying with tumour genetic background. Here, we demonstrate that combining the dual PI3K/mTOR inhibitor PF5212384 (PF384) and MEK inhibitor PD325901 (PD901) more effectively induces apoptosis compared with either agent alone, independent of KRAS mutational status in PDAC cell lines. Additionally, a non-caspase dependent decrease in cell viability upon PF384 treatment was observed, and may be attributed to autophagy and G0/G1 cell cycle arrest. Using reverse phase protein arrays, we identify key molecular events associated with the conversion of cytostatic responses (elicited by single inhibitor treatments) into a complete cell death response when PF384 and PD901 are combined. This response was also independent of KRAS mutation, occurring in both BxPC3 (KRAS wildtype) and MIA-PaCa-2 (KRASG12C mutated) cells. In both cell lines, Bim expression increased in response to PF384/PD901 treatment (by 60% and 48%, respectively), while siRNA-mediated silencing of Bim attenuated the apoptosis induced by combination treatment. In parallel, Mcl-1 levels decreased by 36% in BxPC3, and 30% in MIA-PaCa-2 cells. This is consistent with a functional role for Mcl-1, and siRNA-mediated silencing enhanced apoptosis in PF384/PD901-treated MIA-PaCa-2 cells, whilst Mcl-1 overexpression decreased apoptosis induction by 24%. Moreover, a novel role was identified for PDCD4 loss in driving the apoptotic response to PF384/PD901 in BxPC3 and MIA-PaCa-2 cell lines. Overall, our data indicates PF384/PD901 co-treatment activates the same apoptotic mechanism in wild-type or KRAS mutant PDAC cells.
Collapse
Affiliation(s)
- Rajpal S Burmi
- a Department of Surgery and Cancer , Imperial College London , London , United Kingdom
| | - Elaina N Maginn
- a Department of Surgery and Cancer , Imperial College London , London , United Kingdom
| | - Hani Gabra
- a Department of Surgery and Cancer , Imperial College London , London , United Kingdom.,b Clinical Discovery Unit , Early Clinical Development, AstraZeneca , Cambridge , United Kingdom
| | - Euan A Stronach
- a Department of Surgery and Cancer , Imperial College London , London , United Kingdom
| | - Harpreet S Wasan
- a Department of Surgery and Cancer , Imperial College London , London , United Kingdom
| |
Collapse
|
12
|
Liu F, Song D, Wu Y, Liu X, Zhu J, Tang Y. MiR-155 inhibits proliferation and invasion by directly targeting PDCD4 in non-small cell lung cancer. Thorac Cancer 2017; 8:613-619. [PMID: 28842954 PMCID: PMC5668490 DOI: 10.1111/1759-7714.12492] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/16/2022] Open
Abstract
Background MicroRNAs are often abnormally expressed in human non‐small cell lung cancer (NSCLC) and are thought to play a critical role in the emergence or maintenance of NSCLC by binding to its target messenger RNA. We assessed the effects of miR‐155 on cell proliferation and invasion to elucidate the role played by miR‐155/PDCD4 in NSCLC. Methods Quantitative reverse transcription‐PCR, Western blotting, and cell counting kit‐8, luciferase, and transwell invasion assays were conducted on a normal human bronchial epithelial cell line (BEAS‐2B) and three NSCLC cell lines (SPC‐A‐1, A549, and H2170). Results We confirmed that miR‐155 was upregulated, while PDCD4 messenger RNA and protein levels were downregulated in NSCLC cell lines. miR‐155 negatively regulated PDCD4 at both transcriptional and post‐transcriptional levels. Moreover, PDCD4 was forecast as an assumed target of miR‐155 using bioinformatic methods and we demonstrated that PDCD4 was a direct target of miR‐155 using luciferase reporter assays. Furthermore, PDCD4 overexpression could restrain NSCLC proliferation and invasion induced by miR‐155. Conclusion Our results collectively demonstrate that miR‐155 exerts an oncogenic role in NSCLC by directly targeting PDCD4.
Collapse
Affiliation(s)
- Feng Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Cardiothoracic Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China.,Department of Cardiothoracic Surgery, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Dalong Song
- Department of Urology, GuiZhou Provincial People's Hospital, Guiyang, China.,Medical College, Guizhou University, Guiyang, China.,CAS Key Laboratory of Bio-Medical Diagnostic, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yanhu Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinfu Zhu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yihu Tang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Nedaeinia R, Avan A, Ahmadian M, Nia SN, Ranjbar M, Sharifi M, Goli M, Piroozmand A, Nourmohammadi E, Manian M, Ferns GA, Ghayour-Mobarhan M, Salehi R. Current Status and Perspectives Regarding LNA-Anti-miR Oligonucleotides and microRNA miR-21 Inhibitors as a Potential Therapeutic Option in Treatment of Colorectal Cancer. J Cell Biochem 2017; 118:4129-4140. [PMID: 28401648 DOI: 10.1002/jcb.26047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is among the leading causes of cancer-related death, principally due to its metastatic spread and multifactorial chemoresistance. The therapeutic failure can also be explained by inter- or intra-tumor genetic heterogeneity and tumor stromal content. Thus, the identification of novel prognostic biomarkers and therapeutic options are warranted in the management of CRC patients. There are data showing that microRNA-21 is elevated in different types of cancer, particularly colon adenocarcinoma and that this is association with a poor prognosis. This suggests that microRNA-21 may be of value as a potential therapeutic target. Furthermore, locked nucleic acid (LNA)-modified oligonucleotides have recently emerged as a therapeutic option for targeting dysregulated miRNAs in cancer therapy, through antisense-based gene silencing. Further work is required to identify innovative anticancer drugs that improve the current therapy either through novel combinatorial approaches or with better efficacy than conventional drugs. We aimed to provide an overview of the preclinical and clinical studies targeting key dysregulated signaling pathways in CRC as well as the therapeutic application of LNA-modified oligonucleotides, and miR inhibitors in the treatment of CRC patients. J. Cell. Biochem. 118: 4129-4140, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Reza Nedaeinia
- Deputy of Food and Drug, Isfahan University of Medical Sciences, Isfahan, Iran.,Student Research Committee, Department of medical biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Ahmadian
- Department of Gastroentrology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sasan Nedaee Nia
- Department of Agricultural engineering and Weed science, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Maryam Ranjbar
- Deputy of Food and Drug, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Goli
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Ahmad Piroozmand
- School of Medicine, Kashan University of Medical Sciences, Autoimmune Diseases Research Center, Kashan, Iran
| | - Esmail Nourmohammadi
- Student Research Committee, Department of medical biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Manian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gordon A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Falmer, Brighton BN1 9PH, Sussex, UK
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Li Y, Liu X, Sun Y, Liu Y, Wan L, Zhang L, Fang Z, Wei Z, Wang X. The Expression of PDCD4 in Patients With Missed Abortion and Its Clinical Significance. Reprod Sci 2017; 24:1512-1519. [DOI: 10.1177/1933719117692044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yue Li
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Xihong Liu
- Department of Pathology, The Fourth People’s Hospital of Jinan, Jinan, Shandong, People’s Republic of China
| | - Yingshun Sun
- Department of Gynecology and Obstetrics, Clinical Medical School, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yanping Liu
- Department of Gynecology and Obstetrics, Jinan Central Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Lu Wan
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Lining Zhang
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Zhenghui Fang
- Department of Gynecology and Obstetrics, Jinan Central Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Zengtao Wei
- Department of Gynecology and Obstetrics, Clinical Medical School, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Gynecology and Obstetrics, Jinan Central Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Xiaoyan Wang
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
15
|
Ochoa D, Jonikas M, Lawrence RT, El Debs B, Selkrig J, Typas A, Villén J, Santos SD, Beltrao P. An atlas of human kinase regulation. Mol Syst Biol 2016; 12:888. [PMID: 27909043 PMCID: PMC5199121 DOI: 10.15252/msb.20167295] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The coordinated regulation of protein kinases is a rapid mechanism that integrates diverse cues and swiftly determines appropriate cellular responses. However, our understanding of cellular decision‐making has been limited by the small number of simultaneously monitored phospho‐regulatory events. Here, we have estimated changes in activity in 215 human kinases in 399 conditions derived from a large compilation of phosphopeptide quantifications. This atlas identifies commonly regulated kinases as those that are central in the signaling network and defines the logic relationships between kinase pairs. Co‐regulation along the conditions predicts kinase–complex and kinase–substrate associations. Additionally, the kinase regulation profile acts as a molecular fingerprint to identify related and opposing signaling states. Using this atlas, we identified essential mediators of stem cell differentiation, modulators of Salmonella infection, and new targets of AKT1. This provides a global view of human phosphorylation‐based signaling and the necessary context to better understand kinase‐driven decision‐making.
Collapse
Affiliation(s)
- David Ochoa
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Mindaugas Jonikas
- Quantitative Cell Biology Group, MRC Clinical Sciences Centre, Imperial College, London, UK
| | - Robert T Lawrence
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Bachir El Debs
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Joel Selkrig
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Athanasios Typas
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Silvia Dm Santos
- Quantitative Cell Biology Group, MRC Clinical Sciences Centre, Imperial College, London, UK
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| |
Collapse
|
16
|
Jia Z, Wang J, Shi Q, Liu S, Wang W, Tian Y, Lu Q, Chen P, Ma K, Zhou C. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition. Apoptosis 2016; 21:174-83. [PMID: 26659076 PMCID: PMC4712245 DOI: 10.1007/s10495-015-1201-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sepsis-induced cardiac apoptosis is one of the major pathogenic factors in myocardial dysfunction. As it enhances numerous proinflammatory factors, lipopolysaccharide (LPS) is considered the principal mediator in this pathological process. However, the detailed mechanisms involved are unclear. In this study, we attempted to explore the mechanisms involved in LPS-induced cardiomyocyte apoptosis. We found that LPS stimulation inhibited microRNA (miR)-499 expression and thereby upregulated the expression of SOX6 and PDCD4 in neonatal rat cardiomyocytes. We demonstrate that SOX6 and PDCD4 are target genes of miR-499, and they enhance LPS-induced cardiomyocyte apoptosis by activating the BCL-2 family pathway. The apoptosis process enhanced by overexpression of SOX6 or PDCD4, was rescued by the cardiac-abundant miR-499. Overexpression of miR-499 protected the cardiomyocytes against LPS-induced apoptosis. In brief, our results demonstrate the existence of a miR-499-SOX6/PDCD4-BCL-2 family pathway in cardiomyocytes in response to LPS stimulation.
Collapse
Affiliation(s)
- Zhuqing Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China
| | - Jiaji Wang
- Beijing Jianhua Experimental School, Yuquan Road 66, Haidian District, Beijing, China
| | - Qiong Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China
| | - Siyu Liu
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Weiping Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China
| | - Yuyao Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China
| | - Qin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China
| | - Ping Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China
| | - Kangtao Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China
| | - Chunyan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, China.
| |
Collapse
|
17
|
Jiang LH, Ge MH, Hou XX, Cao J, Hu SS, Lu XX, Han J, Wu YC, Liu X, Zhu X, Hong LL, Li P, Ling ZQ. miR-21 regulates tumor progression through the miR-21-PDCD4-Stat3 pathway in human salivary adenoid cystic carcinoma. J Transl Med 2015; 95:1398-408. [PMID: 26367487 DOI: 10.1038/labinvest.2015.105] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 05/11/2015] [Accepted: 05/11/2015] [Indexed: 01/07/2023] Open
Abstract
miR-21, which is a putative tumor onco-miR and frequently overexpressed microRNA in various tumors, has been linked to tumor progression through targeting of tumor-suppressor genes. In this study, we sought to determine whether miR-21 has any role on tumor progression of salivary adenoid cystic carcinoma (SACC) and the possible mechanisms. We found that the level of miR-21 expression was significantly higher in SACC than that in normal salivary tissues, and it is also higher in tumors with metastasis than that without metastasis. Using an anti-miR-21 inhibitor in an in vitro model, downregulation of miR-21 significantly decreased the capacity of invasion and migration of SACC cells, whereas a pre-miR-21 increased the capacity of invasion and migration of SACC cells. To explore the potential mechanisms by which miR-21 regulate invasion and migration, we identified one direct miR-21 target gene, programmed cell death 4 (PDCD4), which has been implicated in invasion and metastasis. The suppression of miR-21 in metastatic SACC-LM cells significantly increased the report activity of PDCD4 promoter and the expression of PDCD4 protein. This subsequently resulted in downregulation of the p-STAT3 protein. The level of miR-21 expression positively related to the expression of PDCD4 protein and negatively related to the expression of p-STAT3 protein in SACC specimens, respectively, indicating the potential role of the STAT3-miR-21-PDCD4 pathway in these tumors. Dysregulation of miR-21 has an important role in tumor growth and invasion by targeting PDCD4. Therefore, suppression of miR-21 may provide a potential approach for the treatment of advanced SACC patients.
Collapse
Affiliation(s)
- Lie-Hao Jiang
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China.,Department of Head and Neck Tumor Surgery, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Ming-Hua Ge
- Department of Head and Neck Tumor Surgery, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Xiu-Xiu Hou
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China.,Department of Head and Neck Tumor Surgery, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Jun Cao
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China.,Department of Head and Neck Tumor Surgery, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Si-Si Hu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China.,Department of Head and Neck Tumor Surgery, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Xiao-Xiao Lu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China.,Department of Head and Neck Tumor Surgery, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China
| | - Jing Han
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China
| | - Yi-Chen Wu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China
| | - Xiang Liu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China
| | - Xin Zhu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China
| | - Lian-Lian Hong
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China
| | - Pei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou 310022, China
| |
Collapse
|
18
|
Kloos B, Chakraborty S, Lindner SG, Noack K, Harre U, Schett G, Krämer OH, Kubatzky KF. Pasteurella multocida toxin- induced osteoclastogenesis requires mTOR activation. Cell Commun Signal 2015; 13:40. [PMID: 26369790 PMCID: PMC4570759 DOI: 10.1186/s12964-015-0117-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/04/2015] [Indexed: 11/10/2022] Open
Abstract
Background Pasteurella multocida toxin (PMT) is a potent inducer of osteoclast formation. Pigs suffering from an infection with toxigenic Pasteurella multocida strains develop atrophic rhinitis characterised by a loss of turbinate bones and conchae. However, on the molecular level the process of bone loss remains largely uncharacterised. Results Recently it was found that PMT activates the serine/threonine kinase mammalian target of rapamycin (mTOR) in fibroblasts. Using RAW264.7 macrophages, we investigated the role of the mTOR complex 1 (mTORC1) in PMT-mediated osteoclast formation. PMT induces the differentiation of RAW264.7 macrophages into multinucleated, tartrate resistant acid phosphatase (TRAP) positive osteoclasts that are capable to resorb bone. In the presence of the mTORC1 inhibitor rapamycin, PMT was significantly less able to induce the formation of TRAP-positive osteoclasts. Accordingly, the resulting resorption of bone was strongly reduced. A major target of mTOR is the 70 kDa ribosomal protein S6 kinase 1 (p70 S6K1). Activated p70 S6K1 decreases the expression of programmed cell death protein 4 (PDCD4), a negative transcriptional regulator of osteoclastogenesis, at the protein and gene level. Ultimately this results in the activation of c-Jun, a component of the activator protein 1 (AP-1) complex, which is a major transcription factor for the induction of osteoclast-specific genes. We now demonstrate that c-Jun and its downstream target, the osteoclast-specific bone degrading protease cathepsin K, are upregulated upon PMT treatment in an mTOR-dependent manner. Conclusions Activation of mTOR signalling plays a central role in the formation of osteoclasts through the bacterial toxin PMT. On the molecular level, PMT-induced activation of mTOR leads to down regulation of PDCD4, a known repressor of AP-1 complex, culminating in the activation of c-Jun, an essential transcription factor for triggering osteoclastogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12964-015-0117-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bianca Kloos
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Sushmita Chakraborty
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Sonja G Lindner
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Katrin Noack
- Center for Molecular Biomedicine (CMB), Department of Biochemistry, University of Jena, Hans Knöll Str. 2, 07745, Jena, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany
| | - Ulrike Harre
- Department of Internal Medicine 3 and Institute of Clinical Immunology, University of Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 and Institute of Clinical Immunology, University of Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Oliver H Krämer
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Str. 67, 55131, Mainz, Germany
| | - Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
19
|
Yang M, Liu R, Li X, Liao J, Pu Y, Pan E, Yin L, Wang Y. miRNA-183 suppresses apoptosis and promotes proliferation in esophageal cancer by targeting PDCD4. Mol Cells 2014; 37:873-80. [PMID: 25518924 PMCID: PMC4275704 DOI: 10.14348/molcells.2014.0147] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 02/08/2023] Open
Abstract
In our previous study, miRNA-183, a miRNA in the miR-96-182-183 cluster, was significantly over-expressed in esophageal squamous cell carcinoma (ESCC). In the present study, we explored the oncogenic roles of miR-183 in ESCC by gain and loss of function analysis in an esophageal cancer cell line (EC9706). Genome-wide mRNA microarray was applied to determine the genes that were regulated directly or indirectly by miR-183. 3'UTR luciferase reporter assay, RT-PCR, and Western blot were conducted to verify the target gene of miR-183. Cell culture results showed that miR-183 inhibited apoptosis (p < 0.05), enhanced cell proliferation (p < 0.05), and accelerated G1/S transition (p < 0.05). Moreover, the inhibitory effect of miR-183 on apoptosis was rescued when miR-183 was suppressed via miR-183 inhibitor (p < 0.05). Western blot analysis showed that the expression of programmed cell death 4 (PDCD4), which was predicted as the target gene of miR-183 by microarray profiling and bioinformatics predictions, decreased when miR-183 was over-expressed. The 3'UTR luciferase reporter assay confirmed that miR-183 directly regulated PDCD4 by binding to sequences in the 3'UTR of PDCD4. Pearson correlation analysis further confirmed the significant negative correlation between miR-183 and PDCD4 in both cell lines and in ESCC patients. Our data suggest that miR-183 might play an oncogenic role in ESCC by regulating PDCD4 expression.
Collapse
Affiliation(s)
- Miao Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009,
China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009,
China
| | - Xiajun Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009,
China
| | - Juan Liao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009,
China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009,
China
| | - Enchun Pan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009,
China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009,
China
| | - Yi Wang
- Huaian Center for Disease Control and Prevention, Huaian 223001,
China
| |
Collapse
|