1
|
Guo G, Wang W, Tu M, Zhao B, Han J, Li J, Pan Y, Zhou J, Ma W, Liu Y, Sun T, Han X, An Y. Deciphering adipose development: Function, differentiation and regulation. Dev Dyn 2024; 253:956-997. [PMID: 38516819 DOI: 10.1002/dvdy.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
The overdevelopment of adipose tissues, accompanied by excess lipid accumulation and energy storage, leads to adipose deposition and obesity. With the increasing incidence of obesity in recent years, obesity is becoming a major risk factor for human health, causing various relevant diseases (including hypertension, diabetes, osteoarthritis and cancers). Therefore, it is of significance to antagonize obesity to reduce the risk of obesity-related diseases. Excess lipid accumulation in adipose tissues is mediated by adipocyte hypertrophy (expansion of pre-existing adipocytes) or hyperplasia (increase of newly-formed adipocytes). It is necessary to prevent excessive accumulation of adipose tissues by controlling adipose development. Adipogenesis is exquisitely regulated by many factors in vivo and in vitro, including hormones, cytokines, gender and dietary components. The present review has concluded a comprehensive understanding of adipose development including its origin, classification, distribution, function, differentiation and molecular mechanisms underlying adipogenesis, which may provide potential therapeutic strategies for harnessing obesity without impairing adipose tissue function.
Collapse
Affiliation(s)
- Ge Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wanli Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiali Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yanbing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wen Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Lee AT, Yang MY, Tsai IN, Chang YC, Hung TW, Wang CJ. Gallic Acid Alleviates Glucolipotoxicity-Induced Nephropathy by miR-709-NFE2L2 Pathway in db/db Mice on a High-Fat Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 39365293 PMCID: PMC11487656 DOI: 10.1021/acs.jafc.4c05898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) has become a major global issue, with diabetic nephropathy (DN) ranking as one of its most serious complications. The involvement of microRNAs (miRNAs) in the progression of T2DM and DN is an area of active research, yet the molecular mechanisms remain only partially elucidated. Gallic acid (GA), a naturally occurring polyphenolic compound found in various plants such as bearberry leaves, pomegranate root bark, tea leaves, and oak bark, has demonstrated antioxidant properties that may offer therapeutic benefits in DN. METHODS AND RESULTS The study aimed to investigate the therapeutic potential of GA in mitigating kidney fibrosis, oxidative stress and inflammation, within a glucolipotoxicity-induced diabetic model using db/db mice. The mice were subjected to a high-fat diet to induce glucolipotoxicity, a condition that mimics the metabolic stress experienced in T2DM. Through microarray data analysis, we identified a significant upregulation of renal miR-709a-5p in the diabetic mice, linking this miRNA to the pathological processes underlying DN. GA treatment was shown to boost the activity of including catalase, essential antioxidant enzymes, glutathione peroxidase and superoxide dismutase, while also reducing lipid accumulation in the kidneys, indicating a protective effect against HFD-induced steatosis. In vitro experiments further revealed that silencing miR-709a-5p in MES-13 renal cells led to a reduction in oxidative stress markers, notably lowering lipid peroxidation markers, and significantly boosting the activity of antioxidant defenses. Additionally, NFE2L2, a crucial transcription factor involved in the antioxidant response, was identified as a direct target of miR-709a-5p. The downregulation of miR-709a-5p by GA suggests that this polyphenol mitigates glucolipotoxicity-induced lipogenesis and oxidative stress, potentially offering a novel therapeutic avenue for managing diabetic fatty liver disease and DN. CONCLUSION Our findings indicate that GA exerts a protective effect in DN by downregulating miR-709a-5p, thereby alleviating oxidative stress through the suppression of NFE2L2. The results highlight the potential of GA and NFE2L2-activating agents as promising therapeutic strategies in the treatment of DN.
Collapse
Affiliation(s)
- Ang-Tse Lee
- Institute
of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Mon-Yuan Yang
- Department
of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan
| | - I-Ning Tsai
- Institute
of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yun-Ching Chang
- Department
of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan
- Department
of Medical Research, Chung Shan Medical
University Hospital, Taichung 402, Taiwan
| | - Tung-Wei Hung
- Division
of Nephrology, Department of Medicine, Chung
Shan Medical University Hospital, Taichung 40201, Taiwan
- School
of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chau-Jong Wang
- Department
of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan
- Department
of Medical Research, Chung Shan Medical
University Hospital, Taichung 402, Taiwan
| |
Collapse
|
3
|
Hongfang G, Khan R, El-Mansi AA. Bioinformatics Analysis of miR-181a and Its Role in Adipogenesis, Obesity, and Lipid Metabolism Through Review of Literature. Mol Biotechnol 2024; 66:2710-2724. [PMID: 37773313 DOI: 10.1007/s12033-023-00894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
The miRNAs regulate various biological processes in the mammalian body system. The role of miR-181a in the development, progression, and expansion of cancers is well-documented. However, the role of miR-181a in adipogenesis; lipid metabolism; obesity; and obesity-related issues such as diabetes mellitus needs to be explored. Therefore, in the present study, the literature was searched and bioinformatics tools were applied to explore the role of miR-181a in adipogenesis. The list of adipogenic and lipogenic target genes validated through different publications were extracted and compiled. The network and functional analysis of these target genes was performed through in-silico analysis. The mature sequence of miR-181a of different species were extracted from and were found highly conserved among the curated species. Additionally, we also used various bioinformatics tools such as target gene extraction from Targetscan, miRWalk, and miRDB, and the list of the target genes from these different databases was compared, and common target genes were predicted. These common target genes were further subjected to the enrichment score and KEGG pathways analysis. The enrichment score of the vital KEGG pathways of the target genes is the key regulator of adipogenesis, lipogenesis, obesity, and obesity-related syndromes in adipose tissues. Therefore, the information presented in the current review will explore the regulatory roles of miR-181a in fat tissues and its associated functions and manifestations.
Collapse
Affiliation(s)
- Guo Hongfang
- Medical College of Xuchang University, No.1389, Xufan Road, Xuchang City, 461000, Henan Province, People's Republic of China
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, 25130, Pakistan.
| | - Ahmed A El-Mansi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
4
|
Sun Y, Hao Y, Wu J, Qian S, Shen S, Yu Y. Analysis of miRNAs involved in mouse brain injury upon Coxsackievirus A6 infection. Front Cell Infect Microbiol 2024; 14:1405689. [PMID: 39239635 PMCID: PMC11374775 DOI: 10.3389/fcimb.2024.1405689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction Coxsackievirus A6 (CV-A6) has emerged as the predominant epidemic strain responsible for hand, foot and mouth disease (HFMD). CV-A6 infection can result in severe clinical manifestations, including encephalitis, meningitis, and potentially life-threatening central nervous system disorders. Our previous research findings demonstrated that neonatal mice infected with CV-A6 exhibited limb weakness, paralysis, and ultimately succumbed to death. However, the underlying mechanism of CV-A6-induced nervous system injury remains elusive. Numerous reports have highlighted the pivotal role of miRNAs in various viral infections. Methods Separately established infection and control groups of mice were used to create miRNA profiles of the brain tissues before and after CV-A6 transfection, followed by experimental verification, prediction, and analysis of the results. Results At 2 days post-infection (dpi), 4 dpi, and 2dpi vs 4dpi, we identified 175, 198 and 78 significantly differentially expressed miRNAs respectively using qRT-PCR for validation purposes. Subsequently, we predicted target genes of these differentially expressed miRNAs and determined their potential targets through GO (Gene Ontology) enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis. Finally, we verified the miRNA-mRNA pairing via double luciferase experiments while confirming functional enrichment of target genes through Western Blotting analyses. Discussion The results from this study suggest that transcriptional regulation, neuronal necrosis, pro-inflammatory cytokine release, and antiviral immunity are all implicated in the pathogenesis of central nervous system injury in mice infected with CV-A6. Brain injury resulting from CV-A6 infection may involve multiple pathways, including glial cell activation, neuronal necrosis, synaptic destruction, degenerative diseases of the nervous system. It can even encompass destruction of the blood-brain barrier, leading to central nervous system injury. The dysregulated miRNAs and signaling pathways discovered in this study provide valuable insights for further investigations into the pathogenesis of CV-A6.
Collapse
Affiliation(s)
- Yihao Sun
- Department of Biopharmacy, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
- Viral Vaccine Research Laboratory I, Wuhan Institute of Biological Products Co. Ltd., Wuhan, China
| | - Yilin Hao
- Department of Biopharmacy, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Jie Wu
- Viral Vaccine Research Laboratory I, Wuhan Institute of Biological Products Co. Ltd., Wuhan, China
| | - Shasha Qian
- Viral Vaccine Research Laboratory I, Wuhan Institute of Biological Products Co. Ltd., Wuhan, China
| | - Shuo Shen
- Viral Vaccine Research Laboratory I, Wuhan Institute of Biological Products Co. Ltd., Wuhan, China
| | - Yuting Yu
- Department of Biopharmacy, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
5
|
Ueno K, Kurazumi H, Suzuki R, Yanagihara M, Mizoguchi T, Harada T, Morikage N, Hamano K. miR-709 exerts an angiogenic effect through a FGF2 upregulation induced by a GSK3B downregulation. Sci Rep 2024; 14:11372. [PMID: 38762650 PMCID: PMC11102560 DOI: 10.1038/s41598-024-62340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/15/2024] [Indexed: 05/20/2024] Open
Abstract
The aim of this study was to identify angiogenic microRNAs (miRNAs) that could be used in the treatment of hindlimb ischemic tissues. miRNAs contained in extracellular vesicles (EVs) deriving from the plasma were analyzed in C57BL/6 mice, which have ischemia tolerance, and in BALB/c mice without ischemia tolerance as part of a hindlimb ischemia model; as a result 43 angiogenic miRNA candidates were identified. An aortic ring assay was employed by using femoral arteries isolated from BALC/c mice and EVs containing miRNA; as a result, the angiogenic miRNA candidates were limited to 14. The blood flow recovery was assessed after injecting EVs containing miRNA into BALB/c mice with hindlimb ischemia, and miR-709 was identified as a promising angiogenic miRNA. miR-709-encapsulating EVs were found to increase the expression levels of the fibroblast growth factor 2 (FGF2) mRNA in the thigh tissues of hindlimb ischemia model BALB/c mice. miR-709 was also found to bind to the 3'UTR of glycogen synthase kinase 3 beta (GSK3B) in three places. GSK3B-knockdown human artery-derived endothelial cells were found to express high levels of FGF2, and were characterized by increased cell proliferation. These findings indicate that miR-709 induces an upregulation of FGF2 through the downregulation of GSK3B.
Collapse
Affiliation(s)
- Koji Ueno
- Department of Surgery and Clinical Science, Graduate School of Medicine, Yamaguchi University, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan.
- Division of Advanced Cell Therapy, Research Institute for Cell Design Medical Science, Yamaguchi University, Ube, Yamaguchi, Japan.
| | - Hiroshi Kurazumi
- Department of Surgery and Clinical Science, Graduate School of Medicine, Yamaguchi University, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Ryo Suzuki
- Department of Surgery and Clinical Science, Graduate School of Medicine, Yamaguchi University, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Masashi Yanagihara
- Department of Surgery and Clinical Science, Graduate School of Medicine, Yamaguchi University, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Takahiro Mizoguchi
- Department of Surgery and Clinical Science, Graduate School of Medicine, Yamaguchi University, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Takasuke Harada
- Department of Surgery and Clinical Science, Graduate School of Medicine, Yamaguchi University, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Noriyasu Morikage
- Department of Surgery and Clinical Science, Graduate School of Medicine, Yamaguchi University, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Kimikazu Hamano
- Department of Surgery and Clinical Science, Graduate School of Medicine, Yamaguchi University, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
- Division of Advanced Cell Therapy, Research Institute for Cell Design Medical Science, Yamaguchi University, Ube, Yamaguchi, Japan
| |
Collapse
|
6
|
Kang SA, Yu HS. Anti-obesity effects by parasitic nematode ( Trichinella spiralis) total lysates. Front Cell Infect Microbiol 2024; 13:1285584. [PMID: 38259965 PMCID: PMC10800963 DOI: 10.3389/fcimb.2023.1285584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Background Obesity is an inducible factor for the cause of chronic diseases and is described by an increase in the size and number of adipocytes that differentiate from precursor cells (preadipocytes). Parasitic helminths are the strongest natural trigger of type 2 immune system, and several studies have showed that helminth infections are inversely correlated with metabolic syndromes. Methodology/Principal findings To investigate whether helminth-derived molecules have therapeutic effects on high-fat diet (HFD)-induced obesity, we isolated total lysates from Trichinella spiralis muscle larvae. We then checked the anti-obesity effect after intraperitoneal administration and intraoral administration of total lysate from T. spiralis muscle larvae in a diet-induced obesity model. T. spiralis total lysates protect against obesity by inhibiting the proinflammatory response and/or enhancing M2 macrophages. In addition, we determined the effects of total lysates from T. spiralis muscle larvae on anti-obesity activities in 3T3-L1 preadipocytes by investigating the expression levels of key adipogenic regulators, including peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT-enhancer-binding protein alpha (C/EBPα) and adipocyte protein 2 (aP2). Oil Red O staining showed that the total lysates from T. spiralis muscle larvae decreased the differentiation of 3T3-L1 preadipocytes by decreasing the number of lipid droplets. In addition, the production levels of proinflammatory cytokines IL-1β, IL-6, IFN-γ and TNF-α were examined by enzyme-linked immunosorbent assay (ELISA). T. spiralis total lysates decreased intracellular lipid accumulation and suppressed the expression levels of PPARγ, C/EBPα and aP2. Conclusion/Significance These results show that T. spiralis total lysate significantly suppresses the symptoms of obesity in a diet- induced obesity model and 3T3-L1 cell differentiation and suggest that it has potential for novel anti-obesity therapeutics.
Collapse
Affiliation(s)
- Shin Ae Kang
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
7
|
Kim IK, Song BW, Lim S, Kim SW, Lee S. The Role of Epicardial Adipose Tissue-Derived MicroRNAs in the Regulation of Cardiovascular Disease: A Narrative Review. BIOLOGY 2023; 12:498. [PMID: 37106699 PMCID: PMC10135702 DOI: 10.3390/biology12040498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Cardiovascular diseases have been leading cause of death worldwide for many decades, and obesity has been acknowledged as a risk factor for cardiovascular diseases. In the present review, human epicardial adipose tissue-derived miRNAs reported to be differentially expressed under pathologic conditions are discussed and summarized. The results of the literature review indicate that some of the epicardial adipose tissue-derived miRNAs are believed to be cardioprotective, while some others show quite the opposite effects depending on the underlying pathologic conditions. Furthermore, they suggest that that the epicardial adipose tissue-derived miRNAs have great potential as both a diagnostic and therapeutic modality. Nevertheless, mainly due to highly limited availability of human samples, it is very difficult to make any generalized claims on a given miRNA in terms of its overall impact on the cardiovascular system. Therefore, further functional investigation of a given miRNA including, but not limited to, the study of its dose effect, off-target effects, and potential toxicity is required. We hope that this review can provide novel insights to transform our current knowledge on epicardial adipose tissue-derived miRNAs into clinically viable therapeutic strategies for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Il-Kwon Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Sang-Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon 22711, Republic of Korea
| |
Collapse
|
8
|
Feng S, Xu Z, Zhang Z, Mo Y, Deng Y, Li L, Fei S, Wu J, Wang K, Zhang Q, Song J, Zhou R. RNA-Seq approach to investigate the effects of melatonin on bone marrow-derived dendritic cells from dextran sodium sulfate-induced colitis mice. Toxicology 2022; 481:153354. [DOI: 10.1016/j.tox.2022.153354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022]
|
9
|
New long-non coding RNAs related to fat deposition based on pig model. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Obesity is a problem in the last decades since the development of certain technologies has forced submission to a faster pace of life, resulting in nutritional changes. Domestic pigs are an excellent animal model in recognition of adiposity-related processes, corresponding to the size of individual organs, the distribution of body fat in the organism, and similar metabolism. The present study applied next-generation sequencing to identify adipose tissue (AT) transcriptomic signals related to increased fat content by identifying differentially expressed genes (DEGs), including long-non coding RNAs in Złotnicka White pigs (n=16). Moreover, besides commonly used functional analysis, we applied the Freiburg RNA tool to predict DE lncRNA targets based on calculation hybridisation energy. And in addition, DE lncRNAs were recognized based on information available in databases. The obtained results show that closely 230 gene expression was found to be dependent on fat content, included 8 lncRNAs. The most interesting was that among identified DE lncRNAs was transcript corresponding to human MALAT1, which was previously considered in the obesity-related context. Moreover, it was identified that in ENSSSCG00000048394, ENSSSCG00000047210, ENSSSCG00000047442 and ENSSSCG00000041577 lncRNAs are contained repeat insertion domains of LncRNAs (RIDLs) considered as important gene expression regulatory elements, and ENSSSCG00000041577 seems to be the host for mir1247(NR_031649.1). The analysis of energy hybridisation between DE lncRNAs and DEGs using the Freiburg IntaRNAv2 tool, including isoforms expressed in AT, showed that ENSSSCG00000047210 lncRNA interacted with the highest number of DEGs and ENSSSCG00000047210 expression was only correlated with positive fat-related DEGs. The functional analysis showed that down-regulated DEGs involved in ECM proteoglycan pathways could be under control of both positive and negative fat-related lncRNAs. The present study, using pigs as an animal model, expands our current knowledge of possible gene expression regulation by lncRNAs in fat tissue and indicates for MALAT1 role in the fat deposition determination, which function is still often questioned or doubtful.
Collapse
|
10
|
Zhang P, Li X, Zhang S, Wu S, Xiao Q, Gu Y, Guo X, Lin X, Chen L, Zhao Y, Niu L, Tang G, Jiang Y, Shen L, Zhu L. miR-370-3p Regulates Adipogenesis through Targeting Mknk1. Molecules 2021; 26:molecules26226926. [PMID: 34834018 PMCID: PMC8619113 DOI: 10.3390/molecules26226926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/04/2022] Open
Abstract
Excessive fat accumulation can lead to obesity, diabetes, hyperlipidemia, atherosclerosis, and other diseases. MicroRNAs are a class of microRNAs that regulate gene expression and are highly conserved in function among species. microRNAs have been shown to act as regulatory factors to inhibit fat accumulation in the body. We found that miR-370-3p was expressed at lower levels in the fat mass of mice on a high-fat diet than in mice on a normal control diet. Furthermore, our data showed that the overexpression of miR-370-3p significantly suppressed the mRNA expression levels of adipogenic markers. Thus, miR-370-3p overexpression reduced lipid accumulation. Conversely, the inhibition of miR-370-3p suppressed 3T3-L1 preadipocyte proliferation and promoted preadipocyte differentiation. In addition, Mknk1, a target gene of miR-370-3p, plays an opposing role in preadipocyte proliferation and differentiation. Moreover, consistent results from in vitro as well as in vivo experiments suggest that the inhibition of fat accumulation by miR-370-3p may result from the inhibition of saturated fatty acids that promote the accumulation of polyunsaturated fatty acids. In conclusion, these results suggest that miR-370-3p plays an important role in adipogenesis and fatty acid metabolism through the regulation of Mknk1.
Collapse
Affiliation(s)
- Peiwen Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinrong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuang Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Gu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinyu Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xutao Lin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanzhi Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.S.); (L.Z.)
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (X.L.); (S.Z.); (S.W.); (Q.X.); (Y.G.); (X.G.); (X.L.); (L.C.); (Y.Z.); (L.N.); (G.T.); (Y.J.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.S.); (L.Z.)
| |
Collapse
|
11
|
Huang B, Jiao Y, Zhu Y, Ning Z, Ye Z, Li QX, Hu C, Wang C. Putative MicroRNA-mRNA Networks Upon Mdfi Overexpression in C2C12 Cell Differentiation and Muscle Fiber Type Transformation. Front Mol Biosci 2021; 8:675993. [PMID: 34738011 PMCID: PMC8560695 DOI: 10.3389/fmolb.2021.675993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022] Open
Abstract
Mdfi, an inhibitor of myogenic regulatory factors, is involved in myoblast myogenic development and muscle fiber type transformation. However, the regulatory network of Mdfi regulating myoblasts has not been revealed. In this study, we performed microRNAs (miRNAs)-seq on Mdfi overexpression (Mdfi-OE) and wild-type (WT) C2C12 cells to establish the regulatory networks. Comparative analyses of Mdfi-OE vs. WT identified 66 differentially expressed miRNAs (DEMs). Enrichment analysis of the target genes suggested that DEMs may be involved in myoblast differentiation and muscle fiber type transformation through MAPK, Wnt, PI3K-Akt, mTOR, and calcium signaling pathways. miRNA-mRNA interaction networks were suggested along with ten hub miRNAs and five hub genes. We also identified eight hub miRNAs and eleven hub genes in the networks of muscle fiber type transformation. Hub miRNAs mainly play key regulatory roles in muscle fiber type transformation through the PI3K-Akt, MAPK, cAMP, and calcium signaling pathways. Particularly, the three hub miRNAs (miR-335-3p, miR-494-3p, and miR-709) may be involved in both myogenic differentiation and muscle fiber type transformation. These hub miRNAs and genes might serve as candidate biomarkers for the treatment of muscle- and metabolic-related diseases.
Collapse
Affiliation(s)
- Bo Huang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yiren Jiao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yifan Zhu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zuocheng Ning
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zijian Ye
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Chingyuan Hu
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Chong Wang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Li T, Zhu L, Zhu L, Wang P, Xu W, Huang J. Recent Developments in Delivery of MicroRNAs Utilizing Nanosystems for Metabolic Syndrome Therapy. Int J Mol Sci 2021; 22:ijms22157855. [PMID: 34360621 PMCID: PMC8346175 DOI: 10.3390/ijms22157855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetS) is a set of complex, chronic inflammatory conditions that are characterized by central obesity and associated with an increased risk of cardiovascular diseases. In recent years, microRNAs (miRNAs) have become an important type of endocrine factors, which play crucial roles in maintaining energy balance and metabolic homeostasis. However, its unfavorable properties such as easy degradation in blood and off-target effect are still a barrier for clinical application. Nanosystem based delivery possess strong protection, high bioavailability and control release rate, which is beneficial for success of gene therapy. This review first describes the current progress and advances on miRNAs associated with MetS, then provides a summary of the therapeutic potential and targets of miRNAs in metabolic organs. Next, it discusses recent advances in the functionalized development of classic delivery systems (exosomes, liposomes and polymers), including their structures, properties, functions and applications. Furthermore, this work briefly discusses the intelligent strategies used in emerging novel delivery systems (selenium nanoparticles, DNA origami, microneedles and magnetosomes). Finally, challenges and future directions in this field are discussed provide a comprehensive overview of the future development of targeted miRNAs delivery for MetS treatment. With these contributions, it is expected to address and accelerate the development of effective NA delivery systems for the treatment of MetS.
Collapse
Affiliation(s)
- Tong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Liye Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
| | - Longjiao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
| | - Pengjie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Jiaqiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
13
|
Qi R, Han X, Wang J, Qiu X, Wang Q, Yang F. MicroRNA-489-3p promotes adipogenesis by targeting the Postn gene in 3T3-L1 preadipocytes. Life Sci 2021; 278:119620. [PMID: 34004251 DOI: 10.1016/j.lfs.2021.119620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
AIMS Accumulating evidence indicates that a number of microRNAs (miRNAs) serve as essential regulators during adipogenesis and adipolysis in humans and animals and play critical roles in the development of fat tissue. In this study, we aimed to determine the functional role and underlying regulatory mechanism of microRNA-489-3p (miR-489) in adipocytes. MATERIALS AND METHODS The expression patterns of miR-489 in mice were measured by qRT-PCR. Overexpression and knockdown of miR-489 by mimic and inhibitor transfections in 3T3-L1 preadipocytes revealed the regulatory effect of miR-489 on cellular proliferation and differentiation and energy turnover. Furthermore, RNA-seq, bioinformatics prediction, and dual luciferase reporter assays were used to identify the direct target of miR-489. KEY FINDINGS The results showed that miR-489 was highly expressed in the visceral fat tissue of adult mice, and obese mice exhibited higher levels of miR-489 than normal mice. Overexpression of miR-489 suppressed proliferation but promoted adipogenic differentiation and lipid accumulation in the cells. Mitochondrial oxidation also fluctuated in the cells due to the high expression of miR-489. Notably, knockdown of miR-489 did not have a strong opposing effect on the cells. Periostin (Postn) was identified as a direct target gene for miR-489, and silencing the Postn gene similarly stimulated adipogenesis and differentiation of adipocytes. SIGNIFICANCE miR-489 provides a strong driving force for adipogenesis metabolism and adipocyte differentiation by targeting the Postn gene. This result may contribute to the treatment of obesity.
Collapse
Affiliation(s)
- Renli Qi
- Chongqing Academy of Animal Science, Rongchang 402460, China; Chongqing Key Laboratory of Pig Industry Sciences, Rongchang 402460, China
| | - Xu Han
- ChaoYang Teachers College, Liaoning 122000, China
| | - Jing Wang
- Chongqing Academy of Animal Science, Rongchang 402460, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Science, Rongchang 402460, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Rongchang 402460, China
| | - Feiyun Yang
- Chongqing Academy of Animal Science, Rongchang 402460, China; Chongqing Key Laboratory of Pig Industry Sciences, Rongchang 402460, China.
| |
Collapse
|
14
|
RNA-Seq Reveals Function of Bta-miR-149-5p in the Regulation of Bovine Adipocyte Differentiation. Animals (Basel) 2021; 11:ani11051207. [PMID: 33922274 PMCID: PMC8145242 DOI: 10.3390/ani11051207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022] Open
Abstract
Intramuscular fat is a real challenge for the experts of animal science to improve meat quality traits. Research on the mechanism of adipogenesis provides invaluable information for the improvement of meat quality traits. This study investigated the effect of bta-miR-149-5p and its underlying mechanism on lipid metabolism in bovine adipocytes. Bovine adipocytes were differentiated and transfected with bta-miR-149-5p mimics or its negative control (NC). A total of 115 DEGs including 72 upregulated and 43 downregulated genes were identified in bovine adipocytes. The unigenes and GO term biological processes were the most annotated unigene contributor parts at 80.08%, followed by cellular component at 13.4% and molecular function at 6.7%. The KEGG pathways regulated by the DEGs were PI3K-Akt signaling pathway, calcium signaling pathway, pathways in cancer, MAPK signaling pathway, lipid metabolism/metabolic pathway, PPAR signaling pathway, AMPK signaling pathway, TGF-beta signaling pathway, cAMP signaling pathway, cholesterol metabolism, Wnt signaling pathway, and FoxO signaling pathway. In addition to this, the most important reactome enrichment pathways were R-BTA-373813 receptor CXCR2 binding ligands CXCL1 to 7, R-BTA-373791 receptor CXCR1 binding CXCL6 and CXCL8 ligands, R-BTA-210991 basigin interactions, R-BTA-380108 chemokine receptors binding chemokines, R-BTA-445704 calcium binding caldesmon, and R-BTA-5669034 TNFs binding their physiological receptors. Furthermore, the expression trend of the DEGs in these pathways were also exploited. Moreover, the bta-miR-149-5p significantly (p < 0.01) downregulated the mRNA levels of adipogenic marker genes such as CCND2, KLF6, ACSL1, Cdk2, SCD, SIK2, and ZEB1 in bovine adipocytes. In conclusion, our results suggest that bta-miR-149-5p regulates lipid metabolism in bovine adipocytes. The results of this study provide a basis for studying the function and molecular mechanism of the bta-miR-149-5p in regulating bovine adipogenesis.
Collapse
|
15
|
Identification of Potential Gene and MicroRNA Biomarkers of Acute Kidney Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8834578. [PMID: 33506037 PMCID: PMC7810567 DOI: 10.1155/2021/8834578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022]
Abstract
Acute kidney injury (AKI) is a disease that seriously endangers human health. At present, AKI lacks effective treatment methods, so it is particularly important to find effective treatment measures and targets. Bioinformatics analysis has become an important method to identify significant processes of disease occurrence and development. In this study, we analyzed the public expression profile with bioinformatics analysis to identify differentially expressed genes (DEGs) in two types of common AKI models (ischemia-reperfusion injury and cisplatin). DEGs were predicted in four commonly used microRNA databases, and it was found that miR-466 and miR-709 may play important roles in AKI. Then, we found key nodes through protein-protein interaction (PPI) network analysis and subnetwork analysis. Finally, by detecting the expression levels in the renal tissues of the two established AKI models, we found that Myc, Mcm5, E2f1, Oip5, Mdm2, E2f8, miR-466, and miR-709 may be important genes and miRNAs in the process of AKI damage repair. The findings of our study reveal some candidate genes, miRNAs, and pathways potentially involved in the molecular mechanisms of AKI. These data improve the current understanding of AKI and provide new insight for AKI research and treatment.
Collapse
|
16
|
Liu M, Qin J, Cong J, Yang Y. Chlorogenic Acids Inhibit Adipogenesis: Implications of Wnt/ β-Catenin Signaling Pathway. Int J Endocrinol 2021; 2021:2215274. [PMID: 34845409 PMCID: PMC8627359 DOI: 10.1155/2021/2215274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
In our previous in vitro study, we found that chlorogenic acid (CGA) inhibited adipocyte differentiation and triglyceride (TG) accumulation, but the underlying mechanism is still unclear. Accumulative genetic evidence supports that canonical Wnt signaling is a key modulator on adipogenesis. Methods. In this study, 3T3-L1 cells were induced adipogenic differentiation and then treated with CGA. We investigate the effect of CGA in inhibiting adipogenesis and evaluate its role in modulating Wnt10b (wingless integration1 10b), β-catenin, glycogen synthase kinase-3β (GSK-3β), and peroxisome proliferator-activated receptor γ (PPAR-γ) involved in the Wnt (wingless integration1)/β-catenin signaling pathway. Results. The result showed that after CGA treatment, lipid accumulation and TG level decreased significantly in 3T3-L1 cells, indicating that CGA could inhibit adipogenesis. In addition, CGA repressed the induction of adipocyte differentiation biomarkers as PPAR-γ, adipocyte protein 2 (aP2), fatty acid synthase (FAS), and lipoprotein lipase (LPL), and the secretion of GSK-3β in a dose-dependent manner upregulated the expression of β-catenin and Wnt10b both in gene and protein levels. Moreover, CGA induced phosphorylation of GSK-3β and promoted the accumulation of free cytosolic β-catenin in 3T3-L1 adipocytes. Conclusion. Overall, these findings gave us the implications that CGA inhibits adipogenesis via the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Mengting Liu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Jian Qin
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, China
| | - Jing Cong
- Academic Department, Giant Praise (HK) Pharmaceutical Group Limited, Changchun 130033, China
| | - Yubin Yang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| |
Collapse
|
17
|
Exosome-Mediated Differentiation of Mouse Embryonic Fibroblasts and Exocrine Cells into β-Like Cells and the Identification of Key miRNAs for Differentiation. Biomedicines 2020; 8:biomedicines8110485. [PMID: 33182285 PMCID: PMC7695333 DOI: 10.3390/biomedicines8110485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 01/08/2023] Open
Abstract
Diabetes is a concerning health malady worldwide. Islet or pancreas transplantation is the only long-term treatment available; however, the scarcity of transplantable tissues hampers this approach. Therefore, new cell sources and differentiation approaches are required. Apart from the genetic- and small molecule-based approaches, exosomes could induce cellular differentiation by means of their cargo, including miRNA. We developed a chemical-based protocol to differentiate mouse embryonic fibroblasts (MEFs) into β-like cells and employed mouse insulinoma (MIN6)-derived exosomes in the presence or absence of specific small molecules to encourage their differentiation into β-like cells. The differentiated β-like cells were functional and expressed pancreatic genes such as Pdx1, Nkx6.1, and insulin 1 and 2. We found that the exosome plus small molecule combination differentiated the MEFs most efficiently. Using miRNA-sequencing, we identified miR-127 and miR-709, and found that individually and in combination, the miRNAs differentiated MEFs into β-like cells similar to the exosome treatment. We also confirmed that exocrine cells can be differentiated into β-like cells by exosomes and the exosome-identified miRNAs. A new differentiation approach based on the use of exosome-identified miRNAs could help people afflicted with diabetes
Collapse
|
18
|
Luo Y, Ding X, Ji H, Li M, Song H, Li S, Wang C, Wu H, Du H. MicroRNA-503-3p affects osteogenic differentiation of human adipose-derived stem cells by regulation of Wnt2 and Wnt7b under cyclic strain. Stem Cell Res Ther 2020; 11:318. [PMID: 32711579 PMCID: PMC7382842 DOI: 10.1186/s13287-020-01842-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/05/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play a role in regulating osteogenic differentiation (OD) of mesenchymal stem cells by inhibiting mRNAs translation under cyclic strain. miR-503-3p was downregulated in OD of human adipose-derived stem cells (hASCs) in vivo under cyclic strain in our previous study, while it might target the Wnt/β-catenin (W-β) pathway. In this study, we explored miR-503-3p's role in OD of hASCs under cyclic strain. METHODS OD of hASCs was induced by cyclic strain. Bioinformatic and dual luciferase analyses were used to confirm the relationship between Wnt2/Wnt7b and miR-503-3p. Immunofluorescence was used to detect the effect of miR-503-3p on Wnt2/Wnt7b and β-catenin in hASCs transfected with miR-503-3p mimic and inhibitor. Mimic, inhibitor, and small interfering RNA (siRNA) transfected in hASCs to against Wnt2 and Wnt7b. Quantitative real-time PCR (RT-PCR) and western blot were used to examine the OD and W-β pathway at the mRNA and protein levels, respectively. Immunofluorescence was performed to locate β-catenin. ALP activity and calcium were detected by colorimetric assay. RESULTS Results of immunophenotypes by flow cytometry and multi-lineage potential confirmed that the cultured cells were hASCs. Results of luciferase reporter assay indicated that miR-503-3p could regulate the expression levels of Wnt2 and Wnt7b by targeting their respective 3'-untranslated region (UTR). Under cyclic strain, gain- or loss-function of miR-503-3p studies by mimic and inhibitor revealed that decreasing expression of miR-503-3p could significantly bring about promotion of OD of hASCs, whereas increased expression of miR-503-3p inhibited OD. Furthermore, miR-503-3p high-expression reduced the activity of the W-β pathway, as indicated by lowering expression of Wnt2 and Wnt7b, inactive β-catenin in miR-503-3p-treated hASCs. By contrast, miR-503-3p inhibition activated the W-β pathway. CONCLUSIONS Collectively, our findings indicate that miR-503-3p is a negative factor in regulating W-β pathway by Wnt2 and Wnt7b, which inhibit the OD of hASCs under cyclic strain.
Collapse
Affiliation(s)
- Yadong Luo
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Hanzhong Road No.136, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Xu Ding
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Hanzhong Road No.136, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Huan Ji
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Hanzhong Road No.136, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Meng Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Hanzhong Road No.136, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Haiyang Song
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Hanzhong Road No.136, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Sheng Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Hanzhong Road No.136, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Chenxing Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Hanzhong Road No.136, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Heming Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Hanzhong Road No.136, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Hongming Du
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Hanzhong Road No.136, Nanjing, 210029, Jiangsu Province, People's Republic of China. .,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| |
Collapse
|
19
|
Khan R, Raza SHA, Junjvlieke Z, Wang X, Wang H, Cheng G, Mei C, Elsaeid Elnour I, Zan L. Bta-miR-149-5p inhibits proliferation and differentiation of bovine adipocytes through targeting CRTCs at both transcriptional and posttranscriptional levels. J Cell Physiol 2020; 235:5796-5810. [PMID: 32003022 DOI: 10.1002/jcp.29513] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
Abstract
MicroRNAs are small, single stranded, and noncoding RNAs that have been proven to be potent regulators of adipogenesis. However, the role of bta-miR-149-5p in regulating bovine adipogenesis is still unclear. Expression profiling in different stages of adipogenesis revealed that bta-miR-149-5p was enriched in the proliferation stage, and also on Day 9 of differentiation in bovine adipocytes. Our gain of function study showed that bta-miR-149-5p can negatively regulate both bovine adipocyte proliferation and differentiation. Overexpression of bta-miR-149-5p suppressed the expression of proliferation marker genes at both the messenger RNA (mRNA) and protein levels, markedly decreased the percentage of S-phase cells, decreased the number of EdU-stained cells, and substantially reduced adipocyte proliferation vitality in the cell count assay. Collectively, these findings elucidated that bta-miR-149-5p inhibits adipocyte proliferation. Furthermore, overexpression of bta-miR-149-5p also suppressed the expression of adipogenic genes at both the mRNA and protein levels, inhibited lipid accumulation, and reduced the secretion of adiponectin in bovine adipocytes. Furthermore, a luciferase activity assay explored how bta-miR-149-5p targeted CRTCs (CRTC1 and CRTC2) directly. This targeting was further validated by the mRNA and protein level expression of CRTC1 and CRTC2, which were down regulated by bta-miR-149-5p overexpression. Moreover, bta-miR-149-5p indirectly targeted CRTC1 and CRTC2 through regulating their key transcription factors. Overexpression of bta-miR-149-5p suppressed the expression of SMAD3, while enriched the expression of NRF1, which are the key transcription factors and proven regulators of CRTC1. Overexpression of bta-miR-149-5p also repressed the expression of C/EBPγ, XBP1, INSM1, and ZNF263, which are the key regulators of CRTCs, at both the mRNA and protein levels. These findings suggest that bta-miR-149-5p is a negative regulator of CRTC1 and CRTC2 both at transcriptional and posttranscriptional level. Taken together, these findings suggest that bta-miR-149-5p can regulate adipogenesis, which implies that bta-miR-149-5p could be a target for increasing intramuscular fat in beef cattle.
Collapse
Affiliation(s)
- Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, China.,Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, China
| | - Zainaguli Junjvlieke
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, China
| | - Xiaoyu Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, China.,National Beef Cattle Improvement Research Center, Xianyang, Yangling, China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, China.,National Beef Cattle Improvement Research Center, Xianyang, Yangling, China
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, China
| | - Ibrahim Elsaeid Elnour
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, China.,National Beef Cattle Improvement Research Center, Xianyang, Yangling, China
| |
Collapse
|
20
|
Luo Y, Ge R, Wu H, Ding X, Song H, Ji H, Li M, Ma Y, Li S, Wang C, Du H. The osteogenic differentiation of human adipose-derived stem cells is regulated through the let-7i-3p/LEF1/β-catenin axis under cyclic strain. Stem Cell Res Ther 2019; 10:339. [PMID: 31753039 PMCID: PMC6873506 DOI: 10.1186/s13287-019-1470-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023] Open
Abstract
Background The Wnt/β-catenin pathway is involved in the osteogenic differentiation of human adipose-derived stem cells (hASCs) under cyclic strain. Very little is known about the role of microRNAs in these events. Methods Cells were obtained using enzyme digestion methods, and proliferation was detected using Cell Counting Kit 8. Cell cycles and immunophenotypes were detected by flow cytometry. The multilineage potential of hASCs was induced by induction media. Cyclic strain was applied to hASCs (0.5 Hz, 2 h/day, 6 days) to induce osteogenic differentiation and miRNA changes. Bioinformatic and dual-luciferase analyses confirmed lymphoid enhancer factor 1 (LEF1) as a potential target of let-7i-3p. The effect of let-7i-3p on LEF1 in hASCs transfected with a let-7i-3p mimic and inhibitor was analyzed by immunofluorescence. hASCs were transfected with a let-7i-3p mimic, inhibitor, or small interfering RNA (siRNA) against LEF1 and β-catenin. Quantitative real-time PCR (qPCR) and western blotting were performed to examine the osteogenic markers and Wnt/β-catenin pathway at the mRNA and protein levels, respectively. Immunofluorescence and western blotting were performed to confirm the activation of the Wnt/β-catenin pathway. Results Flow cytometry showed that 82.12% ± 5.83% of the cells were in G1 phase and 17.88% ± 2.59% of the cells were in S/G2 phase; hASCs were positive for CD29, CD90, and CD105. hASCs could have the potential for osteogenic, chondrogenic, and adipogenic differentiation. MicroRNA screening via microarray showed that let-7i-3p expression was decreased under cyclic strain. Bioinformatic and dual-luciferase analyses confirmed that LEF1 in the Wnt/β-catenin pathway was the target of let-7i-3p. Under cyclic strain, the osteogenic differentiation of hASCs was promoted by overexpression of LEF1and β-catenin and inhibited by overexpression of let-7i-3p. hASCs were transfected with let-7i-3p mimics and inhibitor. Gain- or loss-of-function analyses of let-7i-3p showed that the osteogenic differentiation of hASCs was promoted by decreased let-7i-3p expression and inhibited by increased let-7i-3p expression. Furthermore, high LEF1 expression inactivated the Wnt/β-catenin pathway in let-7i-3p-enhanced hASCs. In contrast, let-7i-3p inhibition activated the Wnt/β-catenin pathway. Conclusions Let-7i-3p, acting as a negative regulator of the Wnt/β-catenin pathway by targeting LEF1, inhibits the osteogenic differentiation of hASCs under cyclic strain in vitro.
Collapse
Affiliation(s)
- Yadong Luo
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Hanzhong Road No.136, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Oral Disease Key Laboratory of Jiangsu Province, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Ran Ge
- Department of Nuclear Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, People's Republic of China
| | - Heming Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Hanzhong Road No.136, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Oral Disease Key Laboratory of Jiangsu Province, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Xu Ding
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Hanzhong Road No.136, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Oral Disease Key Laboratory of Jiangsu Province, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Haiyang Song
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Hanzhong Road No.136, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Oral Disease Key Laboratory of Jiangsu Province, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Huan Ji
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Hanzhong Road No.136, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Oral Disease Key Laboratory of Jiangsu Province, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Meng Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Hanzhong Road No.136, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Oral Disease Key Laboratory of Jiangsu Province, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Yunan Ma
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Hanzhong Road No.136, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Oral Disease Key Laboratory of Jiangsu Province, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Sheng Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Hanzhong Road No.136, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Oral Disease Key Laboratory of Jiangsu Province, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Chenxing Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Hanzhong Road No.136, Nanjing, 210029, Jiangsu Province, People's Republic of China.,Oral Disease Key Laboratory of Jiangsu Province, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Hongming Du
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Hanzhong Road No.136, Nanjing, 210029, Jiangsu Province, People's Republic of China. .,Oral Disease Key Laboratory of Jiangsu Province, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| |
Collapse
|
21
|
Qi R, Wang J, Wang Q, Qiu X, Yang F, Liu Z, Huang J. MicroRNA-425 controls lipogenesis and lipolysis in adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:744-755. [DOI: 10.1016/j.bbalip.2019.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/28/2019] [Accepted: 02/23/2019] [Indexed: 12/17/2022]
|
22
|
Zhou J, Yang J, Wang X, Li M, Li F, Zhu E, Li X, Li X, Wang B. A Novel Regulatory Circuit "C/EBPα/miR-20a-5p/TOB2" Regulates Adipogenesis and Lipogenesis. Front Endocrinol (Lausanne) 2019; 10:894. [PMID: 31969862 PMCID: PMC6960138 DOI: 10.3389/fendo.2019.00894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
Recent studies have identified growing importance of microRNAs as key regulators of adipocyte differentiation. We have previously reported that miR-20a-5p is able to induce adipogenesis of established adipogenic cell lines and bone marrow derived mesenchymal stem cells (BMSCs). However, the molecular mechanisms by which miR-20a-5p controls adipogenesis and by which miR-20a-5p expression is regulated need to be further explored. In the current study we found that miR-20a-5p expression was induced during adipocyte differentiation from preadipocyte 3T3-L1 and was increased in epididymal white adipose tissue from either ob/ob mice or high fat diet-induced obese mice. Functional studies identified miR-20a-5p as a positive regulator of adipocyte differentiation and lipogenesis in 3T3-L1 by using either synthetic mimics to supplement miR-20a-5p, or using synthetic inhibitor or sponge lentivirus to inactivate endogenous miR-20a-5p. Luciferase activity assay revealed that TOB2 is a novel target of miR-20a-5p and functional experiment demonstrated its negative regulatory role in adipocyte differentiation. Moreover, Tob2 overexpression significantly attenuated adipocyte formation induced by miR-20a-5p supplementation. In-depth investigation of mechanisms that govern miR-20a-5p expression clarified that C/EBPα transcriptionally activated miR-20a-5p expression via binding to the promoter of miR-20a-5p. Taken together, we conclude that a novel C/EBPα/miR-20a-5p/TOB2 circuit exists and regulates adipogenesis and lipogenesis.
Collapse
Affiliation(s)
- Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Junying Yang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Department of Microbiology, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaochen Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Mengyue Li
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Fang Li
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Department of Microbiology, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xuemei Li
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiaoxia Li
- Department of Microbiology, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- *Correspondence: Xiaoxia Li
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Baoli Wang
| |
Collapse
|
23
|
Chen C, Cui Q, Zhang X, Luo X, Liu Y, Zuo J, Peng Y. Long non-coding RNAs regulation in adipogenesis and lipid metabolism: Emerging insights in obesity. Cell Signal 2018; 51:47-58. [PMID: 30071290 DOI: 10.1016/j.cellsig.2018.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 12/15/2022]
Abstract
Obesity is a widespread health problem that brings about various adipose tissue dysfunctions. The balance of energy storage and energy expenditure is critical for normal fat accumulation and lipid metabolism. Therefore, understanding the molecular basis of adipogenesis and thermogenesis is essential to maintain adipose development and lipid homeostasis. Increasing evidence demonstrated that lncRNAs (long non-coding RNAs), a class of non-protein coding RNAs of >200 nucleotides in length, are identified as key regulators in obesity-related biological processes through diverse regulatory mechanisms. In this review, we concentrate on recent and relevant studies on the roles of lncRNAs in regulation of white adipogenesis, brown adipocyte differentiation and lipid metabolism. In addition, the diagnostic and therapeutic potential of lncRNAs is highlighted, and that will make recommendations for the future application of lncRNAs in the treatment of obesity.
Collapse
Affiliation(s)
- Chen Chen
- Hunan Institute of Animal & Veterinary Science, Changsha, 410131, PR China.
| | - Qingming Cui
- Hunan Institute of Animal & Veterinary Science, Changsha, 410131, PR China
| | - Xing Zhang
- Hunan Institute of Animal & Veterinary Science, Changsha, 410131, PR China
| | - Xuan Luo
- Hunan Institute of Animal & Veterinary Science, Changsha, 410131, PR China
| | - Yingying Liu
- Hunan Institute of Animal & Veterinary Science, Changsha, 410131, PR China
| | - Jianbo Zuo
- Hunan Institute of Animal & Veterinary Science, Changsha, 410131, PR China
| | - Yinglin Peng
- Hunan Institute of Animal & Veterinary Science, Changsha, 410131, PR China.
| |
Collapse
|
24
|
Kim JS, Lee SG, Min K, Kwon TK, Kim HJ, Nam JO. Eupatilin inhibits adipogenesis through suppression of PPARγ activity in 3T3-L1 cells. Biomed Pharmacother 2018; 103:135-139. [PMID: 29649628 DOI: 10.1016/j.biopha.2018.03.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 01/18/2023] Open
Abstract
Eupatilin (5,7-dihydroxy-3',4',6-trimethoxyflavone) is a flavonoid compound from Artemisia species that possesses beneficial biological activities such as anti-cancer, anti-oxidation, and anti-inflammatory activities. However, an anti-adipogenic effect has not yet been reported. In this study, we found that eupatilin significantly inhibited the adipogenesis of 3T3-L1 adipocytes. Eupatilin decreased intracellular lipid accumulation and suppressed the expression level of key adipogenic regulators in 3T3-L1 adipocytes, including peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT-enhancer-binding protein alpha (C/EBPα), in a concentration-dependent manner. These results show that eupatilin significantly inhibits 3T3-L1 cell differentiation and suggest that it has potential as a novel anti-obesity therapy.
Collapse
Affiliation(s)
- Jin Soo Kim
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
| | - Seul Gi Lee
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
| | - Kyoungjin Min
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, South Korea
| | - Ha-Jeong Kim
- Department of Physiology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Tumor Heterogeneity and Network (THEN) Research Center, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Ju-Ock Nam
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea; Institute of Agricultural Science & Technology, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
25
|
Liu JT, Bain LJ. Arsenic Induces Members of the mmu-miR-466-669 Cluster Which Reduces NeuroD1 Expression. Toxicol Sci 2018; 162:64-78. [PMID: 29121352 PMCID: PMC6693399 DOI: 10.1093/toxsci/kfx241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Chronic arsenic exposure can result in adverse development effects including decreased intellectual function, reduced birth weight, and altered locomotor activity. Previous in vitro studies have shown that arsenic inhibits stem cell differentiation. MicroRNAs (miRNAs) are small noncoding RNAs that regulate multiple cellular processes including embryonic development and cell differentiation. The purpose of this study was to examine whether altered miRNA expression was a mechanism by which arsenic inhibited cellular differentiation. The pluripotent P19 mouse embryonal carcinoma cells were exposed to 0 or 0.5 μM sodium arsenite for 9 days during cell differentiation, and changes in miRNA expression was analyzed using microarrays. We found that the expression of several miRNAs important in cellular differentiation, such as miR-9 and miR-199 were decreased by 1.9- and 1.6-fold, respectively, following arsenic exposure, while miR-92a, miR-291a, and miR-709 were increased by 3-, 3.7-, and 1.6-fold, respectively. The members of the miR-466-669 cluster and its host gene, Scm-like with 4 Mbt domains 2 (Sfmbt2), were significantly induced by arsenic from 1.5- to 4-fold in a time-dependent manner. Multiple miRNA target prediction programs revealed that several neurogenic transcription factors appear to be targets of the cluster. When consensus anti-miRNAs targeting the miR-466-669 cluster were transfected into P19 cells, arsenic-exposed cells were able to more effectively differentiate. The consensus anti-miRNAs appeared to rescue the inhibitory effects of arsenic on cell differentiation due to an increased expression of NeuroD1. Taken together, we conclude that arsenic induces the miR-466-669 cluster, and that this induction acts to inhibit cellular differentiation in part due to a repression of NeuroD1.
Collapse
Affiliation(s)
| | - Lisa J Bain
- Environmental Toxicology Graduate Program
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634
| |
Collapse
|
26
|
Bland CL, Byrne-Hoffman CN, Fernandez A, Rellick SL, Deng W, Klinke DJ. Exosomes derived from B16F0 melanoma cells alter the transcriptome of cytotoxic T cells that impacts mitochondrial respiration. FEBS J 2018; 285:1033-1050. [PMID: 29399967 DOI: 10.1111/febs.14396] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/13/2017] [Accepted: 01/26/2018] [Indexed: 01/14/2023]
Abstract
While recent clinical studies demonstrate the promise of cancer immunotherapy, a barrier for broadening the clinical benefit is identifying how tumors locally suppress cytotoxic immunity. As an emerging mode of intercellular communication, exosomes secreted by malignant cells can deliver a complex payload of coding and noncoding RNA to cells within the tumor microenvironment. Here, we quantified the RNA payload within tumor-derived exosomes and the resulting dynamic transcriptomic response to cytotoxic T cells upon exosome delivery to better understand how tumor-derived exosomes can alter immune cell function. Exosomes derived from B16F0 melanoma cells were enriched for a subset of coding and noncoding RNAs that did not reflect the abundance in the parental cell. Upon exosome delivery, RNAseq revealed the dynamic changes in the transcriptome of CTLL2 cytotoxic T cells. In analyzing transiently coexpressed gene clusters, pathway enrichment suggested that the B16F0 exosomal payload altered mitochondrial respiration, which was confirmed independently, and upregulated genes associated with the Notch signaling pathway. Interestingly, exosomal miRNA appeared to have no systematic effect on downregulating target mRNA levels. DATABASES Gene expression data are available in the GEO database under the accession SuperSeries number GSE102951.
Collapse
Affiliation(s)
- Cassidy L Bland
- Department of Chemical and Biomedical Engineering and WVU Cancer Institute, West Virginia University, Morgantown, WV, USA
| | | | - Audry Fernandez
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Stephanie L Rellick
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Wentao Deng
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - David J Klinke
- Department of Chemical and Biomedical Engineering and WVU Cancer Institute, West Virginia University, Morgantown, WV, USA.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
27
|
Guo Y, Ni J, Chen S, Bai M, Lin J, Ding G, Zhang Y, Sun P, Jia Z, Huang S, Yang L, Zhang A. MicroRNA-709 Mediates Acute Tubular Injury through Effects on Mitochondrial Function. J Am Soc Nephrol 2018; 29:449-461. [PMID: 29042455 PMCID: PMC5791060 DOI: 10.1681/asn.2017040381] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/20/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction has important roles in the pathogenesis of AKI, yet therapeutic approaches to improve mitochondrial function remain limited. In this study, we investigated the pathogenic role of microRNA-709 (miR-709) in mediating mitochondrial impairment and tubular cell death in AKI. In a cisplatin-induced AKI mouse model and in biopsy samples of human AKI kidney tissue, miR-709 was significantly upregulated in the proximal tubular cells (PTCs). The expression of miR-709 in the renal PTCs of patients with AKI correlated with the severity of kidney injury. In cultured mouse PTCs, overexpression of miR-709 markedly induced mitochondrial dysfunction and cell apoptosis, and inhibition of miR-709 ameliorated cisplatin-induced mitochondrial dysfunction and cell injury. Further analyses showed that mitochondrial transcriptional factor A (TFAM) is a target gene of miR-709, and genetic restoration of TFAM attenuated mitochondrial dysfunction and cell injury induced by cisplatin or miR-709 overexpression in vitro Moreover, antagonizing miR-709 with an miR-709 antagomir dramatically attenuated cisplatin-induced kidney injury and mitochondrial dysfunction in mice. Collectively, our results suggest that miR-709 has an important role in mediating cisplatin-induced AKI via negative regulation of TFAM and subsequent mitochondrial dysfunction. These findings reveal a pathogenic role of miR-709 in acute tubular injury and suggest a novel target for the treatment of AKI.
Collapse
Affiliation(s)
- Yan Guo
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jiajia Ni
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Chen
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mi Bai
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; and
| | - Jiajuan Lin
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Pingping Sun
- Renal Division, Peking University First Hospital, Beijing, China
| | - Zhanjun Jia
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; and
| | - Songming Huang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Li Yang
- Renal Division, Peking University First Hospital, Beijing, China
| | - Aihua Zhang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China;
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; and
| |
Collapse
|
28
|
miR-214 promotes periodontal ligament stem cell osteoblastic differentiation by modulating Wnt/β‑catenin signaling. Mol Med Rep 2017; 16:9301-9308. [PMID: 29152645 PMCID: PMC5779983 DOI: 10.3892/mmr.2017.7821] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 03/30/2017] [Indexed: 12/12/2022] Open
Abstract
The canonical Wnt/β-catenin signaling is important in the differentiation of human mesenchymal stem cells into osteoblasts. Accumulating evidence suggests that the expression of β-catenin is, in part, regulated by specific microRNAs (miRNAs). The aim of the present study was to investigate the putative roles of miRNAs in osteoblast differentiation. Polymerase chain reaction (PCR) arrays were used to identify miRNAs that were differentially expressed between differentiated and non-differentiated periodontal ligament stem cells (PDLSCs), and reverse transcription-quantitative PCR (RT-qPCR) was used for validation. Since miR-214 was revealed to be significantly downregulated during PDLSC differentiation, its function was further investigated via silencing and overexpression. In addition, osteogenic differentiation of PDLSCs was evaluated at 10 and 21 days following induction, using Alizarin red staining and RT-qPCR analysis for mRNA expression levels of the osteogenic differentiation markers alkaline phosphatase (ALP), osteocalcin and bone sialoprotein. Furthermore, the potential target genes of miR-214 were investigated using a dual-luciferase reporter assay, RT-qPCR and western blot analysis, whereas a TOPflash/FOPflash reporter plasmid system followed by a luciferase assay was used to examine the effects of miR-214 on Wnt/β-catenin signaling. The present results demonstrated that miR-214 was significantly downregulated during the osteoblastic differentiation of PDLSCs. Notably, its overexpression inhibited PDLSC differentiation, whereas its knockdown promoted PDLSC differentiation, as revealed by alterations in mRNA expression of osteoblast-specific genes and ALP. In addition, miR-214 was demonstrated to directly interact with the 3′-untranslated region of the β-catenin gene CTNNB1, and suppressed Wnt/β-catenin signaling through the inhibition of β-catenin. The results of the present study suggested that miR-214 may participate in the regulation of the Wnt/β-catenin signaling pathway, and may have potential as a candidate target for the development of preventive or therapeutic agents for the treatment of patients with osteogenic disorders.
Collapse
|
29
|
Iacomino G, Siani A. Role of microRNAs in obesity and obesity-related diseases. GENES AND NUTRITION 2017; 12:23. [PMID: 28974990 PMCID: PMC5613467 DOI: 10.1186/s12263-017-0577-z] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/12/2017] [Indexed: 12/15/2022]
Abstract
In recent years, the link between regulatory microRNAs (miRNAs) and diseases has been the object of intensive research. miRNAs have emerged as key mediators of metabolic processes, playing crucial roles in maintaining/altering physiological processes, including energy balance and metabolic homeostasis. Altered miRNAs expression has been reported in association with obesity, both in animal and human studies. Dysregulation of miRNAs may affect the status and functions of different tissues and organs, including the adipose tissue, pancreas, liver, and muscle, possibly contributing to metabolic abnormalities associated with obesity and obesity-related diseases. More recently, the discovery of circulating miRNAs easily detectable in plasma and other body fluids has emphasized their potential as both endocrine signaling molecules and disease indicators. In this review, the status of current research on the role of miRNAs in obesity and related metabolic abnormalities is summarized and discussed.
Collapse
Affiliation(s)
- Giuseppe Iacomino
- Institute of Food Sciences, CNR, Via Roma, 64, 83100 Avellino, Italy
| | - Alfonso Siani
- Institute of Food Sciences, CNR, Via Roma, 64, 83100 Avellino, Italy
| |
Collapse
|
30
|
Lithium chloride's inhibition of 3T3-L1 cell differentiation by regulating the Wnt/β-catenin pathway and enhancing villin 2 expression. Food Sci Biotechnol 2016; 25:1147-1153. [PMID: 30263387 DOI: 10.1007/s10068-016-0183-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/04/2016] [Accepted: 05/15/2016] [Indexed: 10/21/2022] Open
Abstract
The aim of this study is to reveal the relation among villin 2, Wnt/β-catenin, and adipogenesis by adding appropriate lithium chloride (LiCl). The study comprises three parts: the selection of LiCl concentration, the effect of LiCl on adipocyte differentiation during and after differentiation induction. By comprehensively analyzing the results of the experiments, we proved that LiCl can inhibit adipocyte differentiation and enhance villin 2 and β-catenin expressions not only during differentiation induction but also after it. Moreover, villin 2 has a significant impact on β-catenin. We suggest that villin 2 may participate in Wnt/β-catenin signaling.
Collapse
|
31
|
Price NL, Fernández-Hernando C. miRNA regulation of white and brown adipose tissue differentiation and function. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2104-2110. [PMID: 26898181 DOI: 10.1016/j.bbalip.2016.02.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/12/2016] [Accepted: 02/13/2016] [Indexed: 01/06/2023]
Abstract
Obesity and metabolic disorders are a major health concern in all developed countries and a primary focus of current medical research is to improve our understanding treatment of metabolic diseases. One avenue of research that has attracted a great deal of recent interest focuses upon understanding the role of miRNAs in the development of metabolic diseases. miRNAs have been shown to be dysregulated in a number of different tissues under conditions of obesity and insulin resistance, and have been demonstrated to be important regulators of a number of critical metabolic functions, including insulin secretion in the pancreas, lipid and glucose metabolism in the liver, and nutrient signaling in the hypothalamus. In this review we will focus on the important role of miRNAs in regulating the differentiation and function of white and brown adipose tissue and the potential importance of this for maintaining metabolic function and treating metabolic diseases. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.
Collapse
Affiliation(s)
- Nathan L Price
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
32
|
Gene targets of mouse miR-709: regulation of distinct pools. Sci Rep 2016; 6:18958. [PMID: 26743462 PMCID: PMC4705522 DOI: 10.1038/srep18958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 12/01/2015] [Indexed: 12/03/2022] Open
Abstract
MicroRNA (miRNA) are short non-coding RNA molecules that regulate multiple cellular processes, including development, cell differentiation, proliferation and death. Nevertheless, little is known on whether miRNA control the same gene networks in different tissues. miR-709 is an abundant miRNA expressed ubiquitously. Through transcriptome analysis, we have identified targets of miR-709 in hepatocytes. miR-709 represses genes implicated in cytoskeleton organization, extracellular matrix attachment, and fatty acid metabolism. Remarkably, none of the previously identified targets in non-hepatic tissues are silenced by miR-709 in hepatocytes, even though several of these genes are abundantly expressed in liver. In addition, miR-709 is upregulated in hepatocellular carcinoma, suggesting it participates in the genetic reprogramming that takes place during cell division, when cytoskeleton remodeling requires substantial changes in gene expression. In summary, the present study shows that miR-709 does not repress the same pool of genes in separate cell types. These results underscore the need for validating gene targets in every tissue a miRNA is expressed.
Collapse
|
33
|
Kraus M, Greither T, Wenzel C, Bräuer-Hartmann D, Wabitsch M, Behre HM. Inhibition of adipogenic differentiation of human SGBS preadipocytes by androgen-regulated microRNA miR-375. Mol Cell Endocrinol 2015. [PMID: 26219823 DOI: 10.1016/j.mce.2015.07.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Late-onset hypogonadism (LOH), defined as a combination of low serum testosterone (T) levels in combination with clinical signs and symptoms of androgen deficiency in ageing men, is nowadays a well-characterized disease. Testosterone therapy in males affected by hypogonadism leads to a significant decrease of fat mass. In humans, the exact molecular mechanism of T effects on inhibition of adipogenesis is still unknown. We hypothesized that specific microRNAs could be regulated by androgens which might cause an inhibition of adipogenic differentiation. To confirm this hypothesis, human mesenchymal stem cells and a preadipocyte cell line were differentiated into mature adipocytes and in parallel treated with testosterone and dihydrotestosterone. The expression level of miR-375 was upregulated during adipogenic differentiation and downregulated after androgen treatment. Furthermore, we could show that after androgen treatment the decreased expression of miR-375 led to increased expression levels of adiponectin receptor 2 (ADIPOR2) compared to untreated adipocytes. Moreover, inhibition of miR-375 also mediated a decreased adipogenic differentiation and increased ADIPOR2 expression levels. In summary, we identified miR-375 as an androgen regulated microRNA, which could play an important role for understanding the mechanism of the increase in visceral fat mass and the associated insulin resistance caused by testosterone deficiency.
Collapse
Affiliation(s)
- Matthias Kraus
- Center for Reproductive Medicine and Andrology of the Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany
| | - Thomas Greither
- Center for Reproductive Medicine and Andrology of the Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany
| | - Carina Wenzel
- Center for Reproductive Medicine and Andrology of the Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany
| | - Daniela Bräuer-Hartmann
- Division of Hematology and Oncology, University of Leipzig, Johannisallee 32a, 04103 Leipzig, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Eythstr. 24, 89075 Ulm, Germany
| | - Hermann M Behre
- Center for Reproductive Medicine and Andrology of the Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany.
| |
Collapse
|
34
|
Song JL, Nigam P, Tektas SS, Selva E. microRNA regulation of Wnt signaling pathways in development and disease. Cell Signal 2015; 27:1380-91. [PMID: 25843779 PMCID: PMC4437805 DOI: 10.1016/j.cellsig.2015.03.018] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/24/2015] [Accepted: 03/24/2015] [Indexed: 12/19/2022]
Abstract
Wnt signaling pathways and microRNAs (miRNAs) are critical regulators of development. Aberrant Wnt signaling pathways and miRNA levels lead to developmental defects and diverse human pathologies including but not limited to cancer. Wnt signaling pathways regulate a plethora of cellular processes during embryonic development and maintain homeostasis of adult tissues. A majority of Wnt signaling components are regulated by miRNAs which are small noncoding RNAs that are expressed in both animals and plants. In animal cells, miRNAs fine tune gene expression by pairing primarily to the 3'untranslated region of protein coding mRNAs to repress target mRNA translation and/or induce target degradation. miRNA-mediated regulation of signaling transduction pathways is important in modulating dose-sensitive response of cells to signaling molecules. This review discusses components of the Wnt signaling pathways that are regulated by miRNAs in the context of development and diseases. A fundamental understanding of miRNA functions in Wnt signaling transduction pathways may yield new insight into crosstalks of regulatory mechanisms essential for development and disease pathophysiology leading to novel therapeutics.
Collapse
Affiliation(s)
- Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Priya Nigam
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Senel S Tektas
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Erica Selva
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
35
|
Liu T, Zhang X, Sha K, Liu X, Zhang L, Wang B. miR-709 up-regulated in hepatocellular carcinoma, promotes proliferation and invasion by targeting GPC5. Cell Prolif 2015; 48:330-7. [PMID: 25818666 DOI: 10.1111/cpr.12181] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/05/2014] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Hepatocellular carcinoma (HCC) is one of the most common cancers and is a significant leading cause of cancer-related deaths worldwide. Emerging evidence has shown that microRNAs (miRNAs) are associated with cancer development and progression. However, up to now little has been known concerning the role of miR-709 in HCC. MATERIALS AND METHODS Real-time RT-PCR was performed to detect expression of miR-709 in HCC cell lines and tissues. To further understand its role in HCC, we restored its expression in HepG2 cell line through transfection with miR-709 mimics or inhibitors. CCK-8 proliferation assay, migration assay and invasion assay were used to detect functional roles of miR-709. Luciferase assay and western blotting were performed to detect the target gene of miR-709. RESULTS We found that miR-709 was highly expressed in HCC tissues and in HCC cell lines by qRT-PCR. Re-expression of miR-709 in HCC cells remarkably promoted cell migration and invasiveness in vitro. Subsequent investigation revealed that glypican-5 (GPC5) was a direct and functional target of miR-709 in HCC cells where overexpression of miR-709 impaired GPC5-induced inhibition of proliferation and invasion. Finally, analysis of miR-709 and GPC5 levels in human HCC tissues revealed that miR-709 inversely correlated with GPC5 expression. CONCLUSIONS These results suggest that miR-709 may positively regulate invasion and metastasis of HCC through targeting GPC5.
Collapse
Affiliation(s)
- Tonggang Liu
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | | | | | | | | | | |
Collapse
|