1
|
Wu X, Luo Y, Liu L, Han C, Liu Y, Zhang Z. Single-Cell RNA-seq Reveals Increased and Activated Post-Capillary Venule Endothelial Cells in Erythrodermic Psoriasis. Inflammation 2025:10.1007/s10753-024-02216-x. [PMID: 39786459 DOI: 10.1007/s10753-024-02216-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
Erythrodermic psoriasis (EP) is a life-threatening variant of psoriasis. In this study, we contrasted the vascular endothelial cells (ECs) in EP lesions against those in psoriasis vulgaris and healthy controls. Utilizing single-cell RNA sequencing, immunofluorescence, and flow cytometry on human and mouse samples, we observed a marked increase and activation of EP ECs, which upregulated genes relative to angiogenesis, leukocyte adhesion and antigen presentation. This was particularly evident in the subpopulation post-capillary venules (PCV), especially the cluster from EP. Cell-cell communication studies revealed intensified interactions between PCV and leukocytes, mediated by SELE and ICAM1, predominantly in EP. Trajectory analysis suggested differentiation direction of venules-PCV-CAP. 1 with a concomitant reduction in NF2R2 expression. Elevated and activated PCVs were found in EP patient biopsies and mouse models. These findings underscore the significance of PCV in EP pathogenesis, presenting new therapeutic avenues for this debilitating disease.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Department of Dermatology, The University of Hong Kong-Shenzhen Hospital, Guangdong Province, Shenzhen, People's Republic of China
| | - Yun Luo
- Department of Dermatology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Guangdong Province, Shenzhen, People's Republic of China
| | - Leying Liu
- Department of Dermatology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Guangdong Province, Shenzhen, People's Republic of China
| | - Changxu Han
- Department of Dermatology, The University of Hong Kong-Shenzhen Hospital, Guangdong Province, Shenzhen, People's Republic of China
| | - Yuhua Liu
- Department of Dermatology, The University of Hong Kong-Shenzhen Hospital, Guangdong Province, Shenzhen, People's Republic of China
- Department of Dermatology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong Province, Shenzhen, People's Republic of China
| | - Zhenying Zhang
- Department of Dermatology, The University of Hong Kong-Shenzhen Hospital, Guangdong Province, Shenzhen, People's Republic of China.
| |
Collapse
|
2
|
Lu D, Liu R, Zhou Y, Zhang Z, Jiang X, Xu J, Su A, Hu Z. FOXO3a-dependent up-regulation of HSP90 alleviates cisplatin-induced apoptosis by activating FUNDC1-mediated mitophagy in hypoxic osteosarcoma cells. Cell Signal 2023; 101:110500. [PMID: 36270475 DOI: 10.1016/j.cellsig.2022.110500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/20/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
Hypoxia-induced decrease in cisplatin (CDDP) sensitivity in human osteosarcoma (OS) is a significant obstacle to effective chemotherapy. Recently, mitophagy has been shown to be associated with CDDP sensitivity. However, whether it regulates hypoxia-induced decreases in CDDP sensitivity in OS and the underlying mechanisms remain unknown. In this study, we found that hypoxia activated mitophagy and suppressed mitophagy with specific inhibitors, mitochondrial division inhibitor-1 (Mdivi-1) or lysosome inhibitor chloroquine (CQ), which inhibited CDDP-induced apoptosis in hypoxic U-2OS and MG-63 cells. In addition, hypoxia upregulated the phosphorylation level of FUN14 domain-containing protein 1 (FUNDC1), whereas the activation of mitophagy and decreased CDDP sensitivity were inhibited by transfection with FUNDC1 small interfering RNA (siRNA). Hypoxia treatment also led to the up-regulation of heat shock protein 90 (HSP90), whereas HSP90 siRNA inhibited FUNDC1-mediated activation of mitophagy and decreased CDDP sensitivity. Furthermore, activation of Unc-51 like autophagy activating kinase 1 (Ulk1) was found in U-2OS and MG-63 cells after induction of hypoxia. Overexpression of Ulk1 prevented the inhibitory effect of HSP90 siRNA on the activation of FUNDC1 and mitophagy and decreased CDDP sensitivity in hypoxic U-2OS and MG-63 cells. Finally, hypoxia induced the activation of forkhead box transcription factor 3a (FOXO3a), whereas FOXO3a siRNA inhibited hypoxia-induced HSP90 up-regulation, Ulk1 activation, and FUNDC1-mediated activation of mitophagy, and decreased CDDP sensitivity in U-2OS and MG-63 cells. Using a chromatin immunoprecipitation (ChIP) assay, we confirmed that FOXO3a binds to the HSP90 promoter region. In conclusion, our findings suggest that hypoxia alleviates CDDP-induced apoptosis by activating mitophagy through the FOXO3a/HSP90/Ulk1/FUNDC1 signaling pathway in OS cells.
Collapse
Affiliation(s)
- Dian Lu
- Children's Health Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210003, China
| | - Rui Liu
- The Second Clinical School of Nanjing Medical University, Nanjing 210011, China
| | - Yuting Zhou
- The Second Clinical School of Nanjing Medical University, Nanjing 210011, China
| | - Zhenbo Zhang
- The Second Clinical School of Nanjing Medical University, Nanjing 210011, China
| | - Xiuqin Jiang
- Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210003, China
| | - Jinjin Xu
- Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210003, China
| | - Airong Su
- Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210003, China
| | - Zhenzhen Hu
- Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210003, China.
| |
Collapse
|
3
|
Hu Y, Li R, Jin J, Wang Y, Ma R. Quercetin improves pancreatic cancer chemo-sensitivity by regulating oxidative-inflammatory networks. J Food Biochem 2022; 46:e14453. [PMID: 36181395 DOI: 10.1111/jfbc.14453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
Chemotherapy is the main method for controlling pancreatic cancer metastasis but the prevalent chemotherapy resistance limits its utilization. The response of oxidation and inflammation often promotes pancreatic cancer progression and chemo-resistance. It is critical to explore the potential natural products with few side effects to control inflammatory responses and understand the related mechanisms. Quercetin is a flavonoid widely found in numerous vegetables, fruits, and foods and is thought to have antioxidant and anti-inflammatory properties, which may be associated with improvement of chemotherapy sensitivity during pancreatic cancer treatment. Quercetin may sensitize pancreatic cancer cells to the chemotherapeutic agents, including bromodomain and extraterminal domain inhibitors (BETI), daunorubicin, gemcitabine, sulforaphane, doxorubicin, and tumor necrosis factor-related signaling apoptosis-inducing ligand (TRAIL). Meanwhile, during the chemo-resistance therapy, many signaling molecules are involved with toll-like receptor 4 (TLR4)-mediated oxidative and inflammatory pathway. The effects of quercetin on other oxidative and inflammatory pathways were also explored. Quercetin may exert antitumor activity during the prevention of pancreatic cancer progression by regulating oxidative and inflammatory networks, which can promote immune escape of cancer cells by inducing immunosuppressive cytokines. Studying these patterns will help us to better understand the functional role of quercetin in the improvement of pancreatic cancer chemo-sensitivity. PRACTICAL APPLICATIONS: Chemotherapy is the major way for treating pancreatic cancer metastasis but the prevalent chemotherapy resistance caused by oxidative and inflammatory responses limits its utilization. It is necessary to explore the potential natural products with few side effects to prevent the oxidative and inflammatory responses. Quercetin is a flavonoid widely found in numerous vegetables, fruits, and foods and is thought to have antioxidant and anti-inflammatory properties, which may be associated with improvement of chemotherapy sensitivity of pancreatic cancer treatment by sensitizing pancreatic cancer cells to various chemotherapeutic agents via the regulation of oxidative and inflammatory networks. Studying these patterns will help us to better understand the functional role of quercetin in the improvement of pancreatic cancer chemo-sensitivity.
Collapse
Affiliation(s)
- Yaoyuan Hu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junyi Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yihui Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Ma
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Li X, Bu F, Ma S, Cananzi F, Zhao Y, Xiao M, Min L, Luo C. The Janus-faced role of TRPM2-S in retroperitoneal liposarcoma via increasing ROS levels. Cell Commun Signal 2022; 20:128. [PMID: 36008839 PMCID: PMC9404563 DOI: 10.1186/s12964-022-00873-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Retroperitoneal liposarcoma (RPLS) is a specific soft tissue sarcoma with a high recurrence rate. The short isoform of transient receptor potential cation channel subfamily M member 2 (TRPM2-S) plays an important role in the regulation of reactive oxygen species (ROS). However, the association between TRPM2-S and RPLS and its underlying mechanisms remains unclear. METHODS The expression of both TRPM2-S and TRPM2-L in RPLS tissues was verified by kimmunohistochemistry (IHC). The regulation on Ca2+ influx by TRPM2-S was evaluated by Fluo-4 AM staining. The effect of TRPM2-S on cell proliferation and apoptosis was tested by 5-Ethynyl-2'-deoxyuridine (EdU) staining and Flow cytometry respectively. The level of cellular ROS was assessed by the DCFH-DA probe. Different concentrations of H2O2 were used to provide oxidative stress on RPLS cells. The underlying mechanisms were further explored by Western blotting. RESULTS The IHC assays showed that TRPM2-S, but not TRPM2-L, was prognostic in RPLS. Low TRPM2-S level was associated with poor disease-free survival (DFS). Calcium influx signal intensity was significantly decreased under TRPM2-S overexpression, which resulted in a decrease in the levels of FOXO3a and PTEN. Correspondingly, the levels of pERK, pAKT, pP65, pGSK-3β, Bcl-2, and β-catenin were upregulated, and cellular ROS was gently increased under TRPM2-S overexpression. Moreover, TRPM2-S slightly promoted cell proliferation and inhibited apoptosis of RPLS cell lines under normoxia, but largely increased apoptosis rates under oxidative stress. The cleaved caspase3 was significantly upregulated by TRPM2-S overexpression under oxidative stress. N-Acetyl-L-cysteine (NAC), a small molecule antioxidant, could largely rescue RPLS cells from the apoptosis induced by H2O2. CONCLUSION TRPM2-S exerts Janus-faced effects in RPLS by increasing the ROS levels via inhibition on FOXO3a, which promotes cell proliferation under normoxia but induces apoptosis under oxidative stress. Video abstract.
Collapse
Affiliation(s)
- Xiangji Li
- Department of Retroperitoneal Tumor Surgery, Peking University International Hospital, Peking University Eighth School of Clinical Medicine, Beijing, 102206, People's Republic of China
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China
| | - Fanqin Bu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China
| | - Shixiang Ma
- Department of Retroperitoneal Tumor Surgery, Peking University International Hospital, Peking University Eighth School of Clinical Medicine, Beijing, 102206, People's Republic of China
| | - Ferdinando Cananzi
- Department of Biomedical Sciences, Humanitas University, 20089, Milan, Italy
| | - Yu Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China
| | - Mengmeng Xiao
- Department of Retroperitoneal Tumor Surgery, Peking University International Hospital, Peking University Eighth School of Clinical Medicine, Beijing, 102206, People's Republic of China.
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China.
| | - Chenghua Luo
- Department of Retroperitoneal Tumor Surgery, Peking University International Hospital, Peking University Eighth School of Clinical Medicine, Beijing, 102206, People's Republic of China.
| |
Collapse
|
5
|
Lv W, Wu Z, Lin Y, Jiang Y, Chen X, Zhu P, Wang S. Effect of circRNA_FOXO3 rs12196996 polymorphism and FOXO3 rs2232365 polymorphism on survival rate and severity of intensive care unit-acquired sepsis. Bioengineered 2022; 13:4821-4831. [PMID: 35156517 PMCID: PMC8974086 DOI: 10.1080/21655979.2022.2034567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expression of circRNA_FOXO3 was found to be positively associated with the expression of Forkhead Box O3 (FOXO3), which is targeted and regulated by miR-23a. Polymorphisms in rs12196996 and rs2232365 have been reported in various diseases. In this study, we recruited intensive care unit (ICU)-acquired sepsis patients and grouped them according to their genotypes of rs12196996 and rs2232365. Quantitative real-time PCR was performed to analyze the expression of circRNA_FOXO3, FOXO3 mRNA, and miR-23a. ELISA was carried out to evaluate the abundance of cytokines and luciferase assay was used to explore the inhibitory role of miR-23a on circRNA_FOXO3 and FOXO3. Accordingly, we found that rs12196996 GG and rs2232365 AA were significantly correlated with prolonged survival of ICU-acquired sepsis patients. Rs12196996 GG and rs2232365 AA were also correlated with increased level of miR-23a, IL-10 and decreased level of TNF, IL-2, IFN, IL-6 and IL-1β in the peripheral blood cell samples of patients with ICU-acquired sepsis. The luciferase activity of wild-type (WT) circRNA_FOXO3 and FOXO3 were severely reduced by miR-23a. MiR-23a precursors could effectively suppress the expression of circRNA_FOXO3 and FOXO3 in the cells. Moreover, LPS-induced cell viability loss and dysregulation of cytokines were effectively restored by the knockdown of FOXO3 or circRNA_FOXO3 siRNA in the cells. This study revealed that the minor allele of rs12196996 polymorphism and rs2232365 polymorphism collaboratively contributed to the increased survival and suppressed severity of ICU-acquired sepsis.
Collapse
Affiliation(s)
- Wang Lv
- Department of Emergency, Wenzhou People’s Hospital, Wenzhou, Zhejiang, China
| | - Zhang Wu
- Department of Emergency, Wenzhou People’s Hospital, Wenzhou, Zhejiang, China
| | - Yue Lin
- Department of Emergency, Wenzhou People’s Hospital, Wenzhou, Zhejiang, China
| | - Yingying Jiang
- Department of Emergency, Wenzhou People’s Hospital, Wenzhou, Zhejiang, China
| | - Xinguo Chen
- Department of Emergency, Wenzhou People’s Hospital, Wenzhou, Zhejiang, China
| | - Peng Zhu
- Department of Emergency, Wenzhou People’s Hospital, Wenzhou, Zhejiang, China
| | - Shengnan Wang
- Department of Rheumatology and Immunology, Wenzhou People’s Hospital, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Attenuate Oxygen-Glucose Deprivation/Reperfusion-Induced Microglial Pyroptosis by Promoting FOXO3a-Dependent Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6219715. [PMID: 34765084 PMCID: PMC8577931 DOI: 10.1155/2021/6219715] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Background Mesenchymal stem cell-derived exosomes (MSC-exos) have been recognized as a promising therapeutic strategy for neonatal hypoxic-ischemic brain damage (HIBD). Recently, microglial pyroptosis was shown to play a vital role in the progression of neonatal HIBD. However, whether MSC-exos improve HIBD by regulating microglial pyroptosis remains unknown. Methods Exosomes were isolated from human umbilical cord mesenchymal stem cells (huMSCs) and identified by transmission electron microscopy (TEM), western blot, and nanoparticle tracking analysis (NTA). BV-2 cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to induce microglial ischemia/reperfusion (I/R) in vitro. CCK-8, ELISA, western blot, and Hoechst 33342/PI double staining were performed to detect the pyroptosis of BV-2 cells. Conditioned medium (CM) from BV-2 cells exposed to different treatments was used to investigate its effect on neuronal injury. Moreover, 3-methyladenine (3-MA) and mitochondrial division inhibitor-1 (mdi-1) were used to verify the involvement of mitophagy in the protection of MSC-exos against OGD/R-induced pyroptosis in BV-2 cells. Finally, FOXO3a siRNA was used to investigate the involvement of FOXO3a in MSC-exo-induced mitophagy and pyroptosis inhibition. Results Exosomes from huMSCs were successfully extracted. In OGD/R-exposed BV-2 cells, MSC-exos increased cell viability and decreased the expression of NLRP3, cleaved caspase-1, and GSDMD-N as well as the release of IL-1β and IL-18. Compared with CM from OGD/R-exposed BV-2 cells treated with PBS, CM from OGD/R-exposed BV-2 cells treated with MSC-exos significantly increased the viability of SH-SY5Y cells and decreased LDH release. MSC-exos also increased the expression of TOM20 and COX IV in OGD/R-exposed BV-2 cells. Additionally, 3-MA and mdi-1 attenuated the inhibition of pyroptosis with MSC-exo treatment. Furthermore, FOXO3a siRNA partially abolished the neuroprotective effect of MSC-exos and attenuated mitophagy and pyroptosis inhibition induced by MSC-exo treatment. Conclusions Our findings demonstrated that MSC-exos increased FOXO3a expression to enhance mitophagy, therefore protecting microglia from I/R-induced pyroptosis and alleviating subsequent neuronal injury.
Collapse
|
7
|
Chen H, Tran D, Yang HC, Nylander S, Birnbaum Y, Ye Y. Dapagliflozin and Ticagrelor Have Additive Effects on the Attenuation of the Activation of the NLRP3 Inflammasome and the Progression of Diabetic Cardiomyopathy: an AMPK-mTOR Interplay. Cardiovasc Drugs Ther 2020; 34:443-461. [PMID: 32335797 DOI: 10.1007/s10557-020-06978-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Ticagrelor, a P2Y12 receptor antagonist, and dapagliflozin, a sodium-glucose-cotransporter-2 inhibitor, suppress the activation of the NLRP3 inflammasome. The anti-inflammatory effects of dapagliflozin depend on AMPK activation. Also, ticagrelor can activate AMPK. We assessed whether dapagliflozin and ticagrelor have additive effects in attenuating the progression of diabetic cardiomyopathy in T2DM mice. METHODS Eight-week-old BTBR and wild-type mice received no drug, dapagliflozin (1.5 mg/kg/day), ticagrelor (100 mg/kg/day), or their combination for 12 weeks. Heart function was evaluated by echocardiography and heart tissue samples were assessed for fibrosis, apoptosis, qRT-PCR, and immunoblotting. RESULTS Both drugs attenuated the progression of diabetic cardiomyopathy as evident by improvements in left ventricular end-systolic and end-diastolic volumes and left ventricular ejection fraction, which were further improved by the combination. Both drugs attenuated the activation of the NOD-like receptor 3 (NLRP3) inflammasome and fibrosis. The effect of the combination was significantly greater than each drug alone on myocardial tissue necrotic factorα (TNFα) and interleukin-6 (IL-6) levels, suggesting additive effects. The combination had also a greater effect on ASC, collagen-1, and collagen-3 mRNA levels than each drug alone. While both drugs activated adenosine mono-phosphate kinase (AMPK), only dapagliflozin activated mTOR and increased RICTOR levels. Moreover, only dapagliflozin decreased myocardial BNP and Caspase-1 mRNA levels, and the effects of dapagliflozin on NLRP3 and collagen-3 mRNA levels were significantly greater than those of ticagrelor. CONCLUSIONS Both dapagliflozin and ticagrelor attenuated the progression of diabetic cardiomyopathy, the activation of the NLRP3 inflammasome, and fibrosis in BTBR mice with additive effects of the combination. While both dapagliflozin and ticagrelor activated AMPK, only dapagliflozin activated mTOR complex 2 (mTORC2) in hearts of BTBR mice.
Collapse
Affiliation(s)
- Huan Chen
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, BSB 648, Galveston, TX, 77555, USA
- Department of Acupuncture, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Da Tran
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Sven Nylander
- Biopharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Yochai Birnbaum
- The Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yumei Ye
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, BSB 648, Galveston, TX, 77555, USA.
| |
Collapse
|
8
|
Li Z, Yi N, Chen R, Meng Y, Wang Y, Liu H, Cao W, Hu Y, Gu Y, Tong C, Lu M, Li L, Peng L. miR-29b-3p protects cardiomyocytes against endotoxin-induced apoptosis and inflammatory response through targeting FOXO3A. Cell Signal 2020; 74:109716. [PMID: 32707074 DOI: 10.1016/j.cellsig.2020.109716] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Cardiac dysfunction represents a main component of death induced by sepsis in critical care units. And microRNAs (miRNAs) have been reported as important modulators or biomarkers of sepsis. However, the molecular detail of miRNAs involved in septic cardiac dysfunction remains unclear. Here we showed that endotoxin (lipopolysaccharide, LPS) significantly down-regulated expression of miR-29b-3p in heart. Increased expression of miR-29b-3p by lentivirus improved cardiac function and attenuated damage of cardiac induced by LPS in mice. Furthermore, overexpression or knockdown of miR-29b-3p showed its crucial roles on regulation of apoptosis and production of pro-inflammatory cytokines in NRCMs through directly targeting FOXO3A. miR-29b-3p ameliorates inflammatory damage likely via reducing activation of MAPKs and nuclear-translocation of NF-κB to block LPS-activated NF-κB signaling. Notably, miR-29b is also down-regulated in septic patients' plasma compared with normal subjects, indicating a potential clinical relevance of miR-29b. Taken together, our findings demonstrate that upregulation of miR-29b-3p can attenuate myocardial injury induced by sepsis via regulating FOXO3A, which provide a potential therapy target for interference of septic cardiac dysfunction.
Collapse
Affiliation(s)
- Zhigang Li
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China
| | - Na Yi
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China
| | - Rou Chen
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yilei Meng
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China
| | - Yumei Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Huan Liu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China
| | - Wenze Cao
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China
| | - Yi Hu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China
| | - Yanqiong Gu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Chang Tong
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Min Lu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China.
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
9
|
Zhang Z, Huang C, Wang P, Gao J, Liu X, Li Y, Yan S, Shi Y. HIF‑1α affects trophoblastic apoptosis involved in the onset of preeclampsia by regulating FOXO3a under hypoxic conditions. Mol Med Rep 2020; 21:2484-2492. [PMID: 32323858 PMCID: PMC7185296 DOI: 10.3892/mmr.2020.11050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/07/2020] [Indexed: 12/25/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific syndrome that has severe implications on perinatal mortality and morbidity. Excessive apoptosis of trophoblasts induced by hypoxia may be associated with the development of PE, but the exact pathogenesis is unknown. Forkhead box O transcription factor 3a (FOXO3a) is activated under hypoxic conditions. Furthermore, hypoxia-inducible factor-1α (HIF-1α) is sensitive to variations in partial oxygen pressure. Thus, the aims of the present study were to investigate the expression levels of HIF-1α and FOXO3a in placental samples of early onset severe PE, and their effect on trophoblastic apoptosis under hypoxic conditions. Cobalt chloride was used to establish the hypoxic model. The present study examined the expression levels of HIF-1α and FOXO3a in the placental tissues and HTR8/SVneo cells under hypoxic conditions. It was found that HIF-1α and FOXO3a were highly expressed in placental tissues of patients with PE and in HTR8/SVneo cells under hypoxic conditions. Furthermore, knockdown of FOXO3a using a specific small interfering RNA (siRNA) decreased apoptosis in HTR8/SVneo cells. Moreover, it was found that after knockdown of HIF-1α using siRNA, FOXO3a expression and the apoptotic rate were reduced in HTR8/SVneo cells. Therefore, the present results indicated that the elevated expression of HIF-1α increased trophoblastic apoptosis by regulating FOXO3a, which may be involved in the pathogenesis of PE.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chenxi Huang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ping Wang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Junjun Gao
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xin Liu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yingying Li
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shujun Yan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ying Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
10
|
Hou ZS, Wen HS, Li JF, He F, Li Y, Qi X. Environmental hypoxia causes growth retardation, osteoclast differentiation and calcium dyshomeostasis in juvenile rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135272. [PMID: 31841926 DOI: 10.1016/j.scitotenv.2019.135272] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Hypoxia generally refers to a dissolved oxygen (DO) level that is less than 2-3 mg/L. With ongoing global warming and environment pollution, environmental or geological studies showed hypoxia frequently occurs in global aquatic systems including ocean, river, estuaries and coasts. A preliminary study was performed to evaluate hypoxia tolerant of rainbow trout (Oncorhynchus mykiss) with parameters of mortality, behavior, endocrine and metabolite, identifying three DO levels including normoxia (Ctrl, 7.0 mg/L), non-lethal hypoxia (NH, 4.5 mg/L) and lethal hypoxia (LH, 3.0 mg/L). Furthermore, trout was treated by Ctrl, NH and LH for six hours to mimic the acute hypoxia in wild and/or farming conditions. A significantly higher mortality was observed in LH group. Trout of NH and LH showed stressful responses with unnormal swimming, increased serum cortisol and up-regulated gill hif1α transcription. Despite trout of NH and LH increased the oxygen delivery abilities by increasing the serum hemoglobin levels, the anerobic metabolism were inevitably observed with increased lactate. This study also showed a prolonged influence of NH and LH on growth after 30-days' recovery. Based on RNA-Seq data, different expression genes (DEGs) associated with stress, apoptosis, antioxidant, chaperone, growth, calcium and vitamin D metabolism were identified. Enrichment analysis showed DEGs were clustered in osteoclast differentiation, apoptosis and intracellular signaling transduction pathways. Results further showed NH and LH significantly decreased bone calcium content and disrupted the growth hormone-insulin-like growth factor (GH-IGF) axis. Our study might contribute to a better understanding of the effects of hypoxia on rainbow trout.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China.
| | - Ji-Fang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Feng He
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, PR China
| |
Collapse
|
11
|
Zhou X, Liu J, Yang S, Su Y, Meng Z, Hu Y. Ketamine ameliorates hypoxia-induced endothelial injury in human umbilical vein endothelial cells. Clinics (Sao Paulo) 2020; 75:e1865. [PMID: 32935825 PMCID: PMC7470431 DOI: 10.6061/clinics/2020/e1865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/19/2020] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES Hypoxia leads to endothelial cell inflammation, apoptosis, and damage, which plays an important role in the complications associated with ischemic cardiovascular disease. As an oxidoreductase, p66Shc plays an important role in the regulation of reactive oxygen species (ROS) production and apoptosis. Ketamine is widely used in clinics. This study was designed to assess the potential protective effect of ketamine against hypoxia-induced injury in human umbilical vein endothelial cells (HUVECs). Moreover, we explored the potential mechanism by which ketamine protected against hypoxia-induced endothelial injury. METHODS The protective effects of ketamine against hypoxia-induced injury was assessed using cell viability and adhesion assays, quantitative polymerase chain reaction, and western blotting. RESULTS Our data showed that hypoxia reduced HUVEC viability, increased the adhesion between HUVECs and monocytes, and upregulated the expression of endothelial adhesion molecules at the protein and mRNA levels. Moreover, hypoxia increased ROS accumulation and upregulated p66Shc expression. Furthermore, hypoxia downregulated sirt1 expression in HUVECs. Alternatively, ketamine was shown to reverse the hypoxia-mediated reduction of cell viability and increase in the adhesion between HUVECs and monocytes, ameliorate hypoxia-induced ROS accumulation, and suppress p66Shc expression. Moreover, EX527, a sirt1 inhibitor, reversed the protective effects of ketamine against the hypoxia-mediated reduction of cell viability and increase in adhesion between HUVECs and monocytes. CONCLUSION Ketamine reduces hypoxia-induced p66Shc expression and attenuates ROS accumulation via upregulating sirt1 in HUVECs, thus attenuating hypoxia-induced endothelial cell inflammation and apoptosis.
Collapse
Affiliation(s)
- Xiaohui Zhou
- Department of Endocrinology, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, 198 Hongqi Road, Huzhou 31300, Zhejiang, People's Republic of China
| | - Jing Liu
- Department of Anesthesia, Huzhou Maternal & Child Health Care Hospital, Huzhou 313000, Zhejiang, China
| | - Siyi Yang
- Affiliated Central Hospital, HuZhou University, Emergency Department of Huzhou Central Hospital, 198 Hongqi Road, Huzhou 31300, Zhejiang, People's Republic of China
| | - Yanguang Su
- Anesthesiology Department, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, 198 Hongqi Road, Huzhou 31300, Zhejiang, People's Republic of China
| | - Zhipeng Meng
- Anesthesiology Department, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, 198 Hongqi Road, Huzhou 31300, Zhejiang, People's Republic of China
- *Corresponding authors. E-mails: /
| | - Yuqin Hu
- Anesthesiology Department, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, 198 Hongqi Road, Huzhou 31300, Zhejiang, People's Republic of China
- *Corresponding authors. E-mails: /
| |
Collapse
|
12
|
Li Z, Zhu H, Liu C, Wang Y, Wang D, Liu H, Cao W, Hu Y, Lin Q, Tong C, Lu M, Sachinidis A, Li L, Peng L. GSK-3β inhibition protects the rat heart from the lipopolysaccharide-induced inflammation injury via suppressing FOXO3A activity. J Cell Mol Med 2019; 23:7796-7809. [PMID: 31503410 PMCID: PMC6815822 DOI: 10.1111/jcmm.14656] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 12/25/2022] Open
Abstract
Sepsis-induced cardiac dysfunction represents a main cause of death in intensive care units. Previous studies have indicated that GSK-3β is involved in the modulation of sepsis. However, the signalling details of GSK-3β regulation in endotoxin lipopolysaccharide (LPS)-induced septic myocardial dysfunction are still unclear. Here, based on the rat septic myocardial injury model, we found that LPS could induce GSK-3β phosphorylation at its active site (Y216) and up-regulate FOXO3A level in primary cardiomyocytes. The FOXO3A expression was significantly reduced by GSK-3β inhibitors and further reversed through β-catenin knock-down. This pharmacological inhibition of GSK-3β attenuated the LPS-induced cell injury via mediating β-catenin signalling, which could be abolished by FOXO3A activation. In vivo, GSK-3β suppression consistently improved cardiac function and relieved heart injury induced by LPS. In addition, the increase in inflammatory cytokines in LPS-induced model was also blocked by inhibition of GSK-3β, which curbed both ERK and NF-κB pathways, and suppressed cardiomyocyte apoptosis via activating the AMP-activated protein kinase (AMPK). Our results demonstrate that GSK-3β inhibition attenuates myocardial injury induced by endotoxin that mediates the activation of FOXO3A, which suggests a potential target for the therapy of septic cardiac dysfunction.
Collapse
Affiliation(s)
- Zhigang Li
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Huifang Zhu
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Chang Liu
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yumei Wang
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Duo Wang
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Huan Liu
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Wenze Cao
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yi Hu
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Qin Lin
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Chang Tong
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Min Lu
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine, Cologne (CMMC)University of CologneCologneGermany
| | - Li Li
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Luying Peng
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
13
|
Yin F, Feng F, Wang L, Wang X, Li Z, Cao Y. SREBP-1 inhibitor Betulin enhances the antitumor effect of Sorafenib on hepatocellular carcinoma via restricting cellular glycolytic activity. Cell Death Dis 2019; 10:672. [PMID: 31511501 PMCID: PMC6739379 DOI: 10.1038/s41419-019-1884-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Lipid metabolism that correlates tightly to the glucose metabolic regulation in malignant cells includes hepatocellular carcinoma (HCC) cells. The transcription factor Sterol Regulatory Element Binding Protein 1 (SREBP-1), a regulator of fatty acid synthesis, has been shown to pivotally regulate the proliferation and metastasis of HCC cells. However, the intrinsic mechanism by which SREBP-1 regulates the survival of HCC cells remains unclear. In this study, among HCC patients who had dismal responses to Sorafenib, a high SREBP-1 level was found in the tumors and correlated to poor survival. This observation suggested the negative role of SREBP-1 in clinical HCC prognosis. Our mechanistical studies reveal that the inhibition of SREBP-1 via its inhibitor Betulin suppresses cellular glucose metabolism. In addition to the reduced glycolytic activity, a thwarted metastatic potential was observed in HCC cells upon Betulin administration. Moreover, our data show that SREBP-1 inhibition facilitated the antitumor effects of Sorafenib on HCC cells and xenograft tumors.
Collapse
Affiliation(s)
- Fan Yin
- Department of Oncology, the Second Medical Centre & National Clinical Research Center of Geriatric Disease, Chinese PLA General Hospital, 100853, Beijing, People's Republic of China.
| | - Fan Feng
- Center for Clinical Laboratory, the Fifth Medical Centre, Chinese PLA General Hospital, 100039, Beijing, People's Republic of China
| | - Lei Wang
- Department of Gastroenterology, the First Medical Centre, Chinese PLA General Hospital, 100843, Beijing, People's Republic of China
| | - Xiaoning Wang
- Department of Blood Transfusion, the First Hospital of Jilin University, Changchun, 130021, Jilin Province, People's Republic of China
| | - Zongwei Li
- Department of Gastroenterology, the First Medical Centre, Chinese PLA General Hospital, 100843, Beijing, People's Republic of China
| | - Yu Cao
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, 33612, Tampa, FL, USA.
| |
Collapse
|
14
|
Wang YL, Wang LZ, Sun JD, Li XR, Wang Z, Sun LR. [Effect of ultraviolet irradiation on the proliferation of acute promyelocytic leukemia cells under hypoxic conditions and related mechanisms]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:491-496. [PMID: 31104669 PMCID: PMC7389421 DOI: 10.7499/j.issn.1008-8830.2019.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To study the effect of 280 nm-LED ultraviolet irradiation on the proliferation of acute promyelocytic leukemia (APL) HL-60 cells under hypoxic conditions and related mechanism. METHODS HL-60 cells in the logarithmic growth phase were selected and divided into control, hypoxia, ultraviolet and hypoxia+ultraviolet groups. The cells in the hypoxia group were treated with cobalt chloride (with a final concentration of 150 μmol/L), those in the ultraviolet group were irradiated by 280 nm-LED ultraviolet with an energy intensity of 30 J/m2, and those in the hypoxia+ultraviolet group were treated with cobalt chloride and then irradiated by 280 nm-LED ultraviolet. After 48 hours of treatment, the cells were placed under an invert microscope to observe cell morphology. CCK-8 assay was used to measure the inhibition rate of cell proliferation. Annexin V-FITC/PI double staining flow cytometry was used to evaluate cell apoptosis. Quantitative real-time PCR was used to measure the mRNA expression of Bcl-2. Each experiment above was repeated three times independently. RESULTS Compared with the control group, the experimental groups showed shrinkage, decreased brightness, and disordered arrangement of cells, and the number of cells decreased over the time of culture. There were significant differences in the inhibition rate of cell proliferation and cell apoptosis rate among the groups (P<0.01), and the hypoxia+ultraviolet group showed the strongest inhibition of cell proliferation and induction of cell apoptosis, followed by the ultraviolet group and the hypoxia group. Compared with the control group, the other three groups had a gradual reduction in the mRNA expression of Bcl-2, and the hypoxia+ultraviolet group had a significantly greater reduction than the hypoxia and ultraviolet groups (P<0.01). CONCLUSIONS Both hypoxia and ultraviolet irradiation can inhibit the proliferation of HL-60 cells and induce cell apoptosis, and ultraviolet irradiation has a better effect on proliferation inhibition and cell apoptosis under hypoxic conditions than under normoxic conditions, possibly by downregulating the mRNA expression of Bcl-2.
Collapse
Affiliation(s)
- Yi-Lin Wang
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China.
| | | | | | | | | | | |
Collapse
|