1
|
Gibaut QM, Li C, Cheng A, Moranguinho I, Mori LP, Valente ST. FUBP3 enhances HIV-1 transcriptional activity and regulates immune response pathways in T cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102525. [PMID: 40248217 PMCID: PMC12005928 DOI: 10.1016/j.omtn.2025.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/21/2025] [Indexed: 04/19/2025]
Abstract
Far-upstream element-binding protein 3 (FUBP3) was identified at actively transcribing HIV promoters through chromatin affinity purification and mass spectrometry. Known for regulating cellular processes such as transcription and translation by binding to DNAs and RNAs, FUBP3's role in HIV transcriptional regulation was previously unrecognized. This study reveals that FUBP3 enhances HIV-1 transcriptional activation by interacting with Tat and trans-activation response (TAR)-RNA, critical for boosting viral transcription through recruitment of activating factors that promote RNA polymerase II (RNAPII) elongation. Transcriptomic analysis, chromatin immunoprecipitation, and biochemical assays demonstrated that FUBP3 associates with and stabilizes TAR-RNA, in a Tat-dependent manner, and enhances Tat steady-state levels via interaction with Tat's basic domain. Suppressing FUBP3 decreased HIV-1 transcription and altered expression of host genes linked to T cell activation and inflammation, underscoring its broad regulatory impact. Additionally, FUBP3 was enriched at active promoters, confirming its role in transcriptional regulation at specific genomic locations. These findings highlight FUBP3's critical role in the HIV-1 life cycle and suggest its potential as a therapeutic target in HIV-1 infection. Additionally, this study expands our understanding of FUBP3's functions in oncogenic and inflammatory pathways.
Collapse
Affiliation(s)
- Quentin M.R. Gibaut
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Chuan Li
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Anqi Cheng
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Ines Moranguinho
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Luisa P. Mori
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Susana T. Valente
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| |
Collapse
|
2
|
Geens B, Goossens S, Li J, Van de Peer Y, Vanden Broeck J. Untangling the gordian knot: The intertwining interactions between developmental hormone signaling and epigenetic mechanisms in insects. Mol Cell Endocrinol 2024; 585:112178. [PMID: 38342134 DOI: 10.1016/j.mce.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Hormones control developmental and physiological processes, often by regulating the expression of multiple genes simultaneously or sequentially. Crosstalk between hormones and epigenetics is pivotal to dynamically coordinate this process. Hormonal signals can guide the addition and removal of epigenetic marks, steering gene expression. Conversely, DNA methylation, histone modifications and non-coding RNAs can modulate regional chromatin structure and accessibility and regulate the expression of numerous (hormone-related) genes. Here, we provide a review of the interplay between the classical insect hormones, ecdysteroids and juvenile hormones, and epigenetics. We summarize the mode-of-action and roles of these hormones in post-embryonic development, and provide a general overview of epigenetic mechanisms. We then highlight recent advances on the interactions between these hormonal pathways and epigenetics, and their involvement in development. Furthermore, we give an overview of several 'omics techniques employed in the field. Finally, we discuss which questions remain unanswered and possible avenues for future research.
Collapse
Affiliation(s)
- Bart Geens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Stijn Goossens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
3
|
MacKenzie TMG, Cisneros R, Maynard RD, Snyder MP. Reverse-ChIP Techniques for Identifying Locus-Specific Proteomes: A Key Tool in Unlocking the Cancer Regulome. Cells 2023; 12:1860. [PMID: 37508524 PMCID: PMC10377898 DOI: 10.3390/cells12141860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
A phenotypic hallmark of cancer is aberrant transcriptional regulation. Transcriptional regulation is controlled by a complicated array of molecular factors, including the presence of transcription factors, the deposition of histone post-translational modifications, and long-range DNA interactions. Determining the molecular identity and function of these various factors is necessary to understand specific aspects of cancer biology and reveal potential therapeutic targets. Regulation of the genome by specific factors is typically studied using chromatin immunoprecipitation followed by sequencing (ChIP-Seq) that identifies genome-wide binding interactions through the use of factor-specific antibodies. A long-standing goal in many laboratories has been the development of a 'reverse-ChIP' approach to identify unknown binding partners at loci of interest. A variety of strategies have been employed to enable the selective biochemical purification of sequence-defined chromatin regions, including single-copy loci, and the subsequent analytical detection of associated proteins. This review covers mass spectrometry techniques that enable quantitative proteomics before providing a survey of approaches toward the development of strategies for the purification of sequence-specific chromatin as a 'reverse-ChIP' technique. A fully realized reverse-ChIP technique holds great potential for identifying cancer-specific targets and the development of personalized therapeutic regimens.
Collapse
Affiliation(s)
| | - Rocío Cisneros
- Sarafan ChEM-H/IMA Postbaccalaureate Fellow in Target Discovery, Stanford University, Stanford, CA 94305, USA
| | - Rajan D Maynard
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| | - Michael P Snyder
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Li C, Mori LP, Lyu S, Bronson R, Getzler AJ, Pipkin ME, Valente ST. The chaperone protein p32 stabilizes HIV-1 Tat and strengthens the p-TEFb/RNAPII/TAR complex promoting HIV transcription elongation. Proc Natl Acad Sci U S A 2023; 120:e2217476120. [PMID: 36584296 PMCID: PMC9910500 DOI: 10.1073/pnas.2217476120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/31/2022] Open
Abstract
HIV gene expression is modulated by the combinatorial activity of the HIV transcriptional activator, Tat, host transcription factors, and chromatin remodeling complexes. To identify host factors regulating HIV transcription, we used specific single-guide RNAs and endonuclease-deficient Cas9 to perform chromatin affinity purification of the integrated HIV promoter followed by mass spectrometry. The scaffold protein, p32, also called ASF/SF2 splicing factor-associated protein, was identified among the top enriched factors present in actively transcribing HIV promoters but absent in silenced ones. Chromatin immunoprecipitation analysis confirmed the presence of p32 on active HIV promoters and its enhanced recruitment by Tat. HIV uses Tat to efficiently recruit positive transcription elongation factor b (p-TEFb) (CDK9/CCNT1) to TAR, an RNA secondary structure that forms from the first 59 bp of HIV transcripts, to enhance RNAPII transcriptional elongation. The RNA interference of p32 significantly reduced HIV transcription in primary CD4+T cells and in HIV chronically infected cells, independently of either HIV splicing or p32 anti-splicing activity. Conversely, overexpression of p32 specifically increased Tat-dependent HIV transcription. p32 was found to directly interact with Tat's basic domain enhancing Tat stability and half-life. Conversely, p32 associates with Tat via N- and C-terminal domains. Likely due its scaffold properties, p32 also promoted Tat association with TAR, p-TEFb, and RNAPII enhancing Tat-dependent HIV transcription. In sum, we identified p32 as a host factor that interacts with and stabilizes Tat protein, promotes Tat-dependent transcriptional regulation, and may be explored for HIV-targeted transcriptional inhibition.
Collapse
Affiliation(s)
- Chuan Li
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
| | - Luisa P. Mori
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL33458
| | - Shuang Lyu
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
| | - Ronald Bronson
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
| | - Adam J. Getzler
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL33458
| | - Matthew E. Pipkin
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL33458
| | - Susana T. Valente
- Department of Immunology and Microbiology, University of Florida Scripps Biomedical Research, Jupiter, FL33458
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL33458
| |
Collapse
|
5
|
Ne E, Crespo R, Izquierdo-Lara R, Rao S, Koçer S, Górska A, van Staveren T, Kan TW, van de Vijver D, Dekkers D, Rokx C, Moulos P, Hatzis P, Palstra RJ, Demmers J, Mahmoudi T. Catchet-MS identifies IKZF1-targeting thalidomide analogues as novel HIV-1 latency reversal agents. Nucleic Acids Res 2022; 50:5577-5598. [PMID: 35640596 PMCID: PMC9177988 DOI: 10.1093/nar/gkac407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/11/2022] [Accepted: 05/24/2022] [Indexed: 12/27/2022] Open
Abstract
A major pharmacological strategy toward HIV cure aims to reverse latency in infected cells as a first step leading to their elimination. While the unbiased identification of molecular targets physically associated with the latent HIV-1 provirus would be highly valuable to unravel the molecular determinants of HIV-1 transcriptional repression and latency reversal, due to technical limitations, this has been challenging. Here we use a dCas9 targeted chromatin and histone enrichment strategy coupled to mass spectrometry (Catchet-MS) to probe the differential protein composition of the latent and activated HIV-1 5′LTR. Catchet-MS identified known and novel latent 5′LTR-associated host factors. Among these, IKZF1 is a novel HIV-1 transcriptional repressor, required for Polycomb Repressive Complex 2 recruitment to the LTR. We find the clinically advanced thalidomide analogue iberdomide, and the FDA approved analogues lenalidomide and pomalidomide, to be novel LRAs. We demonstrate that, by targeting IKZF1 for degradation, these compounds reverse HIV-1 latency in CD4+ T-cells isolated from virally suppressed people living with HIV-1 and that they are able to synergize with other known LRAs.
Collapse
Affiliation(s)
- Enrico Ne
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Raquel Crespo
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Ray Izquierdo-Lara
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Shringar Rao
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Selin Koçer
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Alicja Górska
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Thomas van Staveren
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Tsung Wai Kan
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands.,Department of Pathology, Erasmus University Medical Center, The Netherlands.,Department of Urology, Erasmus University Medical Center, The Netherlands
| | - David van de Vijver
- Department of Viroscience, Erasmus University Medical Center, The Netherlands
| | - Dick Dekkers
- Proteomics Center, Erasmus University Medical Center, Ee679a PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rg-530, PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Panagiotis Moulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Robert-Jan Palstra
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands.,Department of Pathology, Erasmus University Medical Center, The Netherlands.,Department of Urology, Erasmus University Medical Center, The Netherlands
| | - Jeroen Demmers
- Proteomics Center, Erasmus University Medical Center, Ee679a PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands.,Department of Pathology, Erasmus University Medical Center, The Netherlands.,Department of Urology, Erasmus University Medical Center, The Netherlands
| |
Collapse
|
6
|
Fujita H, Fujita T, Fujii H. Locus-Specific Genomic DNA Purification Using the CRISPR System: Methods and Applications. CRISPR J 2021; 4:290-300. [PMID: 33876963 DOI: 10.1089/crispr.2020.0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A multitude of molecular interactions with chromatin governs various chromosomal functions in cells. Insights into the molecular compositions at specific genomic regions are pivotal to deepen our understanding of regulatory mechanisms and the pathogenesis of disorders caused by the abnormal regulation of genes. The locus-specific purification of genomic DNA using the clustered regularly interspaced short palindromic repeats (CRISPR) system enables the isolation of target genomic regions for identification of bound interacting molecules. This CRISPR-based DNA purification method has many applications. In this study, we present an overview of the CRISPR-based DNA purification methodologies as well as recent applications.
Collapse
Affiliation(s)
- Hirotaka Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| |
Collapse
|
7
|
Knaupp AS, Mohenska M, Larcombe MR, Ford E, Lim SM, Wong K, Chen J, Firas J, Huang C, Liu X, Nguyen T, Sun YBY, Holmes ML, Tripathi P, Pflueger J, Rossello FJ, Schröder J, Davidson KC, Nefzger CM, Das PP, Haigh JJ, Lister R, Schittenhelm RB, Polo JM. TINC- A Method to Dissect Regulatory Complexes at Single-Locus Resolution- Reveals an Extensive Protein Complex at the Nanog Promoter. Stem Cell Reports 2020; 15:1246-1259. [PMID: 33296673 PMCID: PMC7724517 DOI: 10.1016/j.stemcr.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
Cellular identity is ultimately dictated by the interaction of transcription factors with regulatory elements (REs) to control gene expression. Advances in epigenome profiling techniques have significantly increased our understanding of cell-specific utilization of REs. However, it remains difficult to dissect the majority of factors that interact with these REs due to the lack of appropriate techniques. Therefore, we developed TINC: TALE-mediated isolation of nuclear chromatin. Using this new method, we interrogated the protein complex formed at the Nanog promoter in embryonic stem cells (ESCs) and identified many known and previously unknown interactors, including RCOR2. Further interrogation of the role of RCOR2 in ESCs revealed its involvement in the repression of lineage genes and the fine-tuning of pluripotency genes. Consequently, using the Nanog promoter as a paradigm, we demonstrated the power of TINC to provide insight into the molecular makeup of specific transcriptional complexes at individual REs as well as into cellular identity control in general. TINC allows the isolation of a specific locus for molecular analyses TINC identified hundreds of proteins at the Nanog promoter RCOR2 is a component of the pluripotency network in embryonic stem cells RCOR2 is required for efficient differentiation
Collapse
Affiliation(s)
- Anja S Knaupp
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Monika Mohenska
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Michael R Larcombe
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ethan Ford
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Sue Mei Lim
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kayla Wong
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Joseph Chen
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jaber Firas
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Cheng Huang
- Monash Proteomics and Metabolomics Facility, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Xiaodong Liu
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Trung Nguyen
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Yu B Y Sun
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Melissa L Holmes
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Pratibha Tripathi
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Jahnvi Pflueger
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Fernando J Rossello
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jan Schröder
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kathryn C Davidson
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Christian M Nefzger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Partha P Das
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
| | - Jody J Haigh
- Australian Centre for Blood Diseases, Monash University, Clayton, VIC 3004, Australia; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada; Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
8
|
Waldrip ZJ, Jenjaroenpun P, DeYoung O, Nookaew I, Taverna SD, Raney KD, Tackett AJ. Genome-wide Cas9 binding specificity in Saccharomyces cerevisiae. PeerJ 2020; 8:e9442. [PMID: 32821531 PMCID: PMC7395602 DOI: 10.7717/peerj.9442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/08/2020] [Indexed: 12/26/2022] Open
Abstract
The CRISPR system has become heavily utilized in biomedical research as a tool for genomic editing as well as for site-specific chromosomal localization of specific proteins. For example, we developed a CRISPR-based methodology for enriching a specific genomic locus of interest for proteomic analysis in Saccharomyces cerevisiae, which utilized a guide RNA-targeted, catalytically dead Cas9 (dCas9) as an affinity reagent. To more comprehensively evaluate the genomic specificity of using dCas9 as a site-specific tool for chromosomal studies, we performed dCas9-mediated locus enrichment followed by next-generation sequencing on a genome-wide scale. As a test locus, we used the ARS305 origin of replication on chromosome III in S. cerevisiae. We found that enrichment of this site is highly specific, with virtually no off-target enrichment of unique genomic sequences. The high specificity of genomic localization and enrichment suggests that dCas9-mediated technologies have promising potential for site-specific chromosomal studies in organisms with relatively small genomes such as yeasts.
Collapse
Affiliation(s)
- Zachary J Waldrip
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Oktawia DeYoung
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Sean D Taverna
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| |
Collapse
|
9
|
Huang Y, Xiang Y, Xie Z, Cai Y, Yang Q, Huang H, Chen Z, Xiao Z, He Q. Mass spectrometry-based proteomic capture of proteins bound to the MACC1 promoter in colon cancer. Clin Exp Metastasis 2020; 37:477-487. [PMID: 32613480 DOI: 10.1007/s10585-020-10045-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/07/2020] [Indexed: 12/20/2022]
Abstract
MACC1 (metastasis associated in colon cancer 1) is a key driver that induces metastasis in colon cancer. However, the mechanisms by which MACC1 expression is transcriptionally regulated and the factors enriched at the MACC1 promoter remain largely unknown. The binding of proteins to specific DNA sites in the genome is a major determinant of genomic maintenance and the regulation of specific genes. The study herein utilized two methods to study the binding proteins of the MACC1 promoter region in colon cancer. Specifically, we adopted CRISPR-based chromatin affinity purification with mass spectrometry (CRISPR-ChAP-MS) and a biotin-streptavidin pulldown assay coupled with MS to identify the specific proteome bound to the MACC1 promoter in two colon cell lines with different metastatic potential. A total of 24 proteins were identified by CRISPR-ChAP-MS as binding to the MACC1 promoter, among which c-JUN was validated by ChIP-PCR. A total of 739 binding protein candidates were identified by biotin-streptavidin pulldown assays coupled with MS, of which HNF4G and PAX6 were validated and compared for their binding to the same promoter sites in the two cell lines. Our studies suggest distinctive proteomic factors associated with the MACC1 promoter in colon cells with different metastatic potential. The dynamic regulatory factors accumulated at the promoter of MACC1 may provide novel insights into the regulatory mechanisms of MACC1 transcription.
Collapse
Affiliation(s)
- Yahui Huang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,School of Basic Medical Sciences, Central South University, Changsha, Hunan, People's Republic of China.,Department of Pathology, Xuchang Central Hospital, Henan University of Science and Technology, Xuchang, Henan, People's Republic of China
| | - Yi Xiang
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhongpeng Xie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,School of Basic Medical Sciences, Central South University, Changsha, Hunan, People's Republic of China.,Department of Pathology, Hainan General Hospital, Haikou, Hainan, People's Republic of China
| | - Yuxiang Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,School of Basic Medical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Qiongzhi Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,School of Basic Medical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Huichao Huang
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhuchu Chen
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhefeng Xiao
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| | - Qiongqiong He
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China. .,School of Basic Medical Sciences, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
10
|
Purification and enrichment of specific chromatin loci. Nat Methods 2020; 17:380-389. [PMID: 32152500 DOI: 10.1038/s41592-020-0765-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
Understanding how chromatin is regulated is essential to fully grasp genome biology, and establishing the locus-specific protein composition is a major step toward this goal. Here we explain why the isolation and analysis of a specific chromatin segment are technically challenging, independently of the method. We then describe the published strategies and discuss their advantages and limitations. We conclude by discussing why significant technology developments are required to unambiguously describe the composition of small single loci.
Collapse
|
11
|
Storey AJ, Hardman RE, Byrum SD, Mackintosh SG, Edmondson RD, Wahls WP, Tackett AJ, Lewis JA. Accurate and Sensitive Quantitation of the Dynamic Heat Shock Proteome Using Tandem Mass Tags. J Proteome Res 2020; 19:1183-1195. [PMID: 32027144 DOI: 10.1021/acs.jproteome.9b00704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cells respond to environmental perturbations and insults through modulating protein abundance and function. However, the majority of studies have focused on changes in RNA abundance because quantitative transcriptomics has historically been more facile than quantitative proteomics. Modern Orbitrap mass spectrometers now provide sensitive and deep proteome coverage, allowing direct, global quantification of not only protein abundance but also post-translational modifications (PTMs) that regulate protein activity. We implemented and validated using the well-characterized heat shock response of budding yeast, a tandem mass tagging (TMT), triple-stage mass spectrometry (MS3) strategy to measure global changes in the proteome during the yeast heat shock response over nine time points. We report that basic-pH, ultra-high performance liquid chromatography (UPLC) fractionation of tryptic peptides yields superfractions of minimal redundancy, a crucial requirement for deep coverage and quantification by subsequent LC-MS3. We quantified 2275 proteins across three biological replicates and found that differential expression peaked near 90 min following heat shock (with 868 differentially expressed proteins at 5% false discovery rate). The sensitivity of the approach also allowed us to detect changes in the relative abundance of ubiquitination and phosphorylation PTMs over time. Remarkably, relative quantification of post-translationally modified peptides revealed striking evidence of regulation of the heat shock response by protein PTMs. These data demonstrate that the high precision of TMT-MS3 enables peptide-level quantification of samples, which can reveal important regulation of protein abundance and regulatory PTMs under various experimental conditions.
Collapse
Affiliation(s)
- Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Rebecca E Hardman
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States.,Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Rick D Edmondson
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Jeffrey A Lewis
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
12
|
Jensen IS, Yuan J, He J, Lin L, Sander B, Golas MM. The FlpTRAP system for purification of specific, endogenous chromatin regions. Anal Biochem 2019; 587:113418. [PMID: 31520595 DOI: 10.1016/j.ab.2019.113418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 10/26/2022]
Abstract
The repressor element 1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) binds to repressor element 1/neuron-restrictive silencer element (RE1/NRSE) sites in the genome and recruits effector proteins to repress its target genes. Here, we developed the FlpTRAP system to isolate endogenously assembled DNA-protein complexes such as the REST/NRSF complex. In the FlpTRAP system, we take advantage of the step-arrest variant of the Flp recombinase, FlpH305L, which, in the presence of Flp recognition target (FRT) DNA, accumulates as FRT DNA-protein adduct. The FlpTRAP system consists of three elements: (i) FlpH305L-containing cell extracts or isolates, (ii) a cell line engineered to harbor the DNA motif of interest flanked by FRT sites, and (iii) affinity selection steps to isolate the target chromatin. Specifically, 3×FLAG-tagged FlpH305L was expressed in insect cell cultures infected with baculovirus, and cell lysates were prepared. The lysate was used to capture the FRT-SNAP25 RE1/NRSE-FRT chromatin from a human medulloblastoma cell line, and the target RE1/NRSE chromatin was isolated by anti-FLAG immunoaffinity chromatography. Using electrophoretic mobility shift assays (EMSAs) and chromatin immunopurification (ChIP), we show that FlpH305L recognized and bound to the FRT sites. Overall, we suggest the FlpTRAP system as a tool to purify endogenous, specific chromatin loci from eukaryotic cells.
Collapse
Affiliation(s)
- Ida S Jensen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark
| | - Juan Yuan
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark
| | - Jin He
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark
| | - Bjoern Sander
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark
| | - Monika M Golas
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Building 1233, 8000, Aarhus C, Denmark.
| |
Collapse
|
13
|
Satterlee JS, Chadwick LH, Tyson FL, McAllister K, Beaver J, Birnbaum L, Volkow ND, Wilder EL, Anderson JM, Roy AL. The NIH Common Fund/Roadmap Epigenomics Program: Successes of a comprehensive consortium. SCIENCE ADVANCES 2019; 5:eaaw6507. [PMID: 31501771 PMCID: PMC6719411 DOI: 10.1126/sciadv.aaw6507] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/07/2019] [Indexed: 05/12/2023]
Abstract
The NIH Roadmap Epigenomics Program was launched to deliver reference epigenomic data from human tissues and cells, develop tools and methods for analyzing the epigenome, discover novel epigenetic marks, develop methods to manipulate the epigenome, and determine epigenetic contributions to diverse human diseases. Here, we comment on the outcomes from this program: the scientific contributions made possible by a consortium approach and the challenges, benefits, and lessons learned from this group science effort.
Collapse
Affiliation(s)
- John S. Satterlee
- Division of Neuroscience and Behavior, National Institutes of Health (NIH), 6001 Executive Blvd., Bethesda, MD 20892, USA
- National Institute on Drug Abuse, NIH, 6001 Executive Blvd., Bethesda, MD 20892, USA
| | - Lisa H. Chadwick
- National Institute on Drug Abuse, NIH, 6001 Executive Blvd., Bethesda, MD 20892, USA
| | - Frederick L. Tyson
- National Institute of Environmental Health Sciences, NIH, 111 TW Alexander Dr., Durham, NC 27709, USA
| | - Kim McAllister
- National Institute of Environmental Health Sciences, NIH, 111 TW Alexander Dr., Durham, NC 27709, USA
| | - Jill Beaver
- Office of Strategic Coordination, Office of the Director, NIH, 6001 Executive Blvd., Bethesda, MD 20892, USA
- Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, NIH, 1 Center Dr., Bethesda, MD 20892, USA
| | - Linda Birnbaum
- National Institute of Environmental Health Sciences, NIH, 111 TW Alexander Dr., Durham, NC 27709, USA
| | - Nora D. Volkow
- National Institute on Drug Abuse, NIH, 6001 Executive Blvd., Bethesda, MD 20892, USA
| | - Elizabeth L. Wilder
- Office of Strategic Coordination, Office of the Director, NIH, 6001 Executive Blvd., Bethesda, MD 20892, USA
- Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, NIH, 1 Center Dr., Bethesda, MD 20892, USA
| | - James M. Anderson
- Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, NIH, 1 Center Dr., Bethesda, MD 20892, USA
| | - Ananda L. Roy
- Office of Strategic Coordination, Office of the Director, NIH, 6001 Executive Blvd., Bethesda, MD 20892, USA
- Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, NIH, 1 Center Dr., Bethesda, MD 20892, USA
- Corresponding author.
| |
Collapse
|
14
|
Qiu W, Xu Z, Zhang M, Zhang D, Fan H, Li T, Wang Q, Liu P, Zhu Z, Du D, Tan M, Wen B, Liu Y. Determination of local chromatin interactions using a combined CRISPR and peroxidase APEX2 system. Nucleic Acids Res 2019; 47:e52. [PMID: 30805613 PMCID: PMC6511869 DOI: 10.1093/nar/gkz134] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/15/2019] [Accepted: 02/19/2019] [Indexed: 01/10/2023] Open
Abstract
The architecture and function of chromatin are largely regulated by local interacting molecules, such as transcription factors and noncoding RNAs. However, our understanding of these regulatory molecules at a given locus is limited because of technical difficulties. Here, we describe the use of Clustered Regularly Interspaced Short Palindromic Repeats and an engineered ascorbate peroxidase 2 (APEX2) system to investigate local chromatin interactions (CAPLOCUS). We showed that with specific small-guide RNA targets, CAPLOCUS could efficiently identify both repetitive genomic regions and single-copy genomic locus with high resolution. Genome-wide sequencing revealed known and potential long-range chromatin interactions for a specific single-copy locus. CAPLOCUS also identified telomere-associated RNAs. CAPLOCUS, followed by mass spectrometry, identified both known and novel telomere-associated proteins in their native states. Thus, CAPLOCUS may be a useful approach for studying local interacting molecules at any given chromosomal location.
Collapse
Affiliation(s)
- Wenqing Qiu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| | - Zhijiao Xu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| | - Min Zhang
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China, 201203
| | - Dandan Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| | - Hui Fan
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China, 200032
| | - Taotao Li
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| | - Qianfeng Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China, 200032
| | - Peiru Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| | - Zaihua Zhu
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China, 200040
| | - Duo Du
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China, 201203
| | - Bo Wen
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China, 200032
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China, 200032
| |
Collapse
|
15
|
Walters BJ, Cox BC. Approaches for the study of epigenetic modifications in the inner ear and related tissues. Hear Res 2019; 376:69-85. [PMID: 30679030 PMCID: PMC6456365 DOI: 10.1016/j.heares.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/12/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
Abstract
DNA methylation and histone modifications such as methylation, acetylation, and phosphorylation, are two types of epigenetic modifications that alter gene expression. These additions to DNA regulatory elements or to the tails of histones can be inherited or can also occur de novo. Since epigenetic modifications can have significant effects on various processes at both the cellular and organismal level, there has been a rapid increase in research on this topic throughout all fields of biology in recent years. However, epigenetic research is relativity new for the inner ear field, likely due to the limited number of cells present and their quiescent nature. Here, we provide an overview of methods used to detect DNA methylation and histone modifications with a focus on those that have been validated for use with limited cell numbers and a discussion of the strengths and limitations for each. We also provide examples for how these methods have been used to investigate the epigenetic landscape in the inner ear and related tissues.
Collapse
Affiliation(s)
- Bradley J Walters
- Departments of Neurobiology and Anatomical Sciences, and of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Brandon C Cox
- Departments of Pharmacology and Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA.
| |
Collapse
|
16
|
Kang SK, Chu XY, Tian T, Dong PF, Chen BX, Zhang HY. Why the c-Fos/c-Jun complex is extremely conserved: An in vitro evolution exploration by combining cDNA display and proximity ligation. FEBS Lett 2019; 593:1040-1049. [PMID: 31002393 DOI: 10.1002/1873-3468.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/31/2019] [Accepted: 04/10/2019] [Indexed: 11/08/2022]
Abstract
Transcriptional regulation involves a series of sophisticated protein-protein and protein-DNA interactions (PPI and PDI). Some transcriptional complexes, such as c-Fos/c-Jun and their binding DNA fragments, have been conserved over the past one billion years. Considering the thermodynamic principle for transcriptional complex formation, we hypothesized that the c-Fos/c-Jun complex may represent a thermodynamic summit in the evolutionary space. To test this, we invented a new method, termed One-Pot-seq, which combines cDNA display and proximity ligation to analyse PPI/PDI complexes simultaneously. We found that the wild-type c-Fos/c-Jun complex is indeed the most thermodynamically stable relative to various mutants of c-Fos/c-Jun and binding DNA fragments. Our method also provides a universal approach to detect transcriptional complexes and explore transcriptional regulation mechanisms.
Collapse
Affiliation(s)
- Shou-Kai Kang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xin-Yi Chu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Tian Tian
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Peng-Fei Dong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Bai-Xue Chen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Akone SH, Pham CD, Chen H, Ola ARB, Ntie-Kang F, Proksch P. Epigenetic modification, co-culture and genomic methods for natural product discovery. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2018-0118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Fungi and bacteria are encountered in many habitats where they live in complex communities interacting with one another mainly by producing secondary metabolites, which are organic compounds that are not directly involved in the normal growth, development, or reproduction of the organism. These organisms appear as a promising source for the discovery of novel bioactive natural products that may find their application in medicine. However, the production of secondary metabolites by those organisms when cultured axenically is limited as only a subset of biosynthetic genes is expressed under standard laboratory conditions leading to the search of new methods for the activation of the silent genes including epigenetic modification and co-cultivation. Biosynthetic gene clusters which produce secondary metabolites are known to be present in a heterochromatin state in which the transcription of constitutive genes is usually regulated by epigenetic modification including DNA methylation and histone deacetylation. Therefore, small-molecule epigenetic modifiers which promote changes in the structure of chromatin could control the expression of silent genes and may be rationally employed for the discovery of novel bioactive compounds. Co-cultivation, which is also known as mixed-fermentation, usually implies two or more microorganisms in the same medium in which the resulting competition is known to enhance the production of constitutively present compounds and/or to lead to the induction of cryptic metabolites that were not detected in axenic cultures of the considered axenic microorganism. Genomic strategies could help to identify biosynthetic gene clusters in fungal genomes and link them to their products by the means of novel algorithms as well as integrative pan-genomic approaches. Despite that all these techniques are still in their infancy, they appear as promising sources for the discovery of new bioactive compounds. This chapter presents recent ecological techniques for the discovery of new secondary metabolites that might find application in medicine.
Collapse
|
18
|
West KL, Byrum SD, Mackintosh SG, Edmondson RD, Taverna SD, Tackett AJ. Proteomic characterization of the arsenic response locus in S. cerevisiae. Epigenetics 2019; 14:130-145. [PMID: 30739529 PMCID: PMC6557609 DOI: 10.1080/15592294.2019.1580110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022] Open
Abstract
Arsenic exposure is a global health problem. Millions of people encounter arsenic through contaminated drinking water, consumption, and inhalation. The arsenic response locus in budding yeast is responsible for the detoxification of arsenic and its removal from the cell. This locus constitutes a conserved pathway ranging from prokaryotes to higher eukaryotes. The goal of this study was to identify how transcription from the arsenic response locus is regulated in an arsenic dependent manner. An affinity enrichment strategy called CRISPR-Chromatin Affinity Purification with Mass Spectrometry (CRISPR-ChAP-MS) was used, which provides for the proteomic characterization of a targeted locus. CRISPR-ChAP-MS was applied to the promoter regions of the activated arsenic response locus and uncovered 40 nuclear-annotated proteins showing enrichment. Functional assays identified the histone acetyltransferase SAGA and the chromatin remodelling complex SWI/SNF to be required for activation of the locus. Furthermore, SAGA and SWI/SNF were both found to specifically organize the chromatin structure at the arsenic response locus for activation of gene transcription. This study provides the first proteomic characterization of an arsenic response locus and key insight into the mechanisms of transcriptional activation that are necessary for detoxification of arsenic from the cell.
Collapse
Affiliation(s)
- Kirk L. West
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rick D. Edmondson
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sean D. Taverna
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children’s Research Institute, Little Rock, AR, USA
| |
Collapse
|
19
|
Xu X, Qi LS. A CRISPR–dCas Toolbox for Genetic Engineering and Synthetic Biology. J Mol Biol 2019; 431:34-47. [DOI: 10.1016/j.jmb.2018.06.037] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 12/21/2022]
|
20
|
Mauger F, Deleuze JF. Technological advances in studying epigenetics biomarkers of prognostic potential for clinical research. PROGNOSTIC EPIGENETICS 2019:45-83. [DOI: 10.1016/b978-0-12-814259-2.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Storey AJ, Wang HP, Protacio RU, Davidson MK, Tackett AJ, Wahls WP. Chromatin-mediated regulators of meiotic recombination revealed by proteomics of a recombination hotspot. Epigenetics Chromatin 2018; 11:64. [PMID: 30373637 PMCID: PMC6205778 DOI: 10.1186/s13072-018-0233-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/20/2018] [Indexed: 11/14/2022] Open
Abstract
Background Meiotic recombination hotspots control the frequency and distribution of Spo11 (Rec12)-initiated recombination in the genome. Recombination occurs within and is regulated in part by chromatin structure, but relatively few of the many chromatin remodeling factors and histone posttranslational modifications (PTMs) have been interrogated for a role in the process. Results We developed a chromatin affinity purification and mass spectrometry-based approach to identify proteins and histone PTMs that regulate recombination hotspots. Small (4.2 kbp) minichromosomes (MiniCs) bearing the fission yeast ade6-M26 hotspot or a basal recombination control were purified approximately 100,000-fold under native conditions from meiosis; then, associated proteins and histone PTMs were identified by mass spectrometry. Proteins and PTMs enriched at the hotspot included known regulators (Atf1, Pcr1, Mst2, Snf22, H3K14ac), validating the approach. The abundance of individual histones varied dynamically during meiotic progression in hotspot versus basal control MiniCs, as did a subset of 34 different histone PTMs, implicating these as potential regulators. Measurements of basal and hotspot recombination in null mutants confirmed that additional, hotspot-enriched proteins are bona fide regulators of hotspot activation within the genome. These chromatin-mediated regulators include histone H2A-H2B and H3-H4 chaperones (Nap1, Hip1/Hir1), subunits of the Ino80 complex (Arp5, Arp8), a DNA helicase/E3 ubiquitin ligase (Rrp2), components of a Swi2/Snf2 family remodeling complex (Swr1, Swc2), and a nucleosome evictor (Fft3/Fun30). Conclusions Overall, our findings indicate that a remarkably diverse collection of chromatin remodeling factors and histone PTMs participate in designating where meiotic recombination occurs in the genome, and they provide new insight into molecular mechanisms of the process. Electronic supplementary material The online version of this article (10.1186/s13072-018-0233-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA
| | - Hsin-Ping Wang
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA
| | - Reine U Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA
| | - Mari K Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA.
| |
Collapse
|
22
|
A distinct isoform of ZNF207 controls self-renewal and pluripotency of human embryonic stem cells. Nat Commun 2018; 9:4384. [PMID: 30349051 PMCID: PMC6197280 DOI: 10.1038/s41467-018-06908-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 09/21/2018] [Indexed: 01/08/2023] Open
Abstract
Self-renewal and pluripotency in human embryonic stem cells (hESCs) depends upon the function of a remarkably small number of master transcription factors (TFs) that include OCT4, SOX2, and NANOG. Endogenous factors that regulate and maintain the expression of master TFs in hESCs remain largely unknown and/or uncharacterized. Here, we use a genome-wide, proteomics approach to identify proteins associated with the OCT4 enhancer. We identify known OCT4 regulators, plus a subset of potential regulators including a zinc finger protein, ZNF207, that plays diverse roles during development. In hESCs, ZNF207 partners with master pluripotency TFs to govern self-renewal and pluripotency while simultaneously controlling commitment of cells towards ectoderm through direct regulation of neuronal TFs, including OTX2. The distinct roles of ZNF207 during differentiation occur via isoform switching. Thus, a distinct isoform of ZNF207 functions in hESCs at the nexus that balances pluripotency and differentiation to ectoderm.
Collapse
|
23
|
Brambilla M, Martani F, Bertacchi S, Vitangeli I, Branduardi P. The Saccharomyces cerevisiae
poly (A) binding protein (Pab1): Master regulator of mRNA metabolism and cell physiology. Yeast 2018; 36:23-34. [DOI: 10.1002/yea.3347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Marco Brambilla
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Francesca Martani
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Stefano Bertacchi
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Ilaria Vitangeli
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Piazza della Scienza 2 20126 Milan Italy
| |
Collapse
|
24
|
Ponrathnam T, Mishra RK. From chromosomes to genomes: new insights with emerging techniques. THE NUCLEUS 2018. [DOI: 10.1007/s13237-018-0242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
25
|
Liu X, Zhang Y, Chen Y, Li M, Shao Z, Zhang MQ, Xu J. CAPTURE: In Situ Analysis of Chromatin Composition of Endogenous Genomic Loci by Biotinylated dCas9. ACTA ACUST UNITED AC 2018; 123:e64. [PMID: 29927077 DOI: 10.1002/cpmb.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cis-regulatory elements (CREs) play a pivotal role in spatiotemporal control of tissue-specific gene expression, yet the molecular composition of the vast majority of CREs in native chromatin remains unknown. In this article, we describe the clustered regularly interspaced short palindromic repeats (CRISPR) affinity purification in situ of regulatory elements (CAPTURE) approach to simultaneously identify locus-specific chromatin-regulating protein complexes and long-range DNA interactions. Using an in vivo biotinylated nuclease-deficient Cas9 (dCas9) protein and programmable single guide RNAs (sgRNAs), this approach allows for high-resolution and locus-specific isolation of protein complexes and long-range chromatin looping associated with single copy CREs in mammalian cells. Unbiased analysis of the compositional structure of developmentally regulated or disease-associated CREs identifies new features of transcriptional regulation. Hence, CAPTURE provides a versatile platform to study genomic locus-regulating chromatin composition in a mammalian genome. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Xin Liu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yong Chen
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, Texas
| | - Mushan Li
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhen Shao
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, Texas
| | - Jian Xu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
26
|
Guillen-Ahlers H, Rao PK, Perumalla DS, Montoya MJ, Jadhav AYL, Shortreed MR, Smith LM, Olivier M. Adaptation of Hybridization Capture of Chromatin-associated Proteins for Proteomics to Mammalian Cells. J Vis Exp 2018. [PMID: 29912191 DOI: 10.3791/57140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The hybridization capture of chromatin-associated proteins for proteomics (HyCCAPP) technology was initially developed to uncover novel DNA-protein interactions in yeast. It allows analysis of a target region of interest without the need for prior knowledge about likely proteins bound to the target region. This, in theory, allows HyCCAPP to be used to analyze any genomic region of interest, and it provides sufficient flexibility to work in different cell systems. This method is not meant to study binding sites of known transcription factors, a task better suited for Chromatin Immunoprecipitation (ChIP) and ChIP-like methods. The strength of HyCCAPP lies in its ability to explore DNA regions for which there is limited or no knowledge about the proteins bound to it. It can also be a convenient method to avoid biases (present in ChIP-like methods) introduced by protein-based chromatin enrichment using antibodies. Potentially, HyCCAPP can be a powerful tool to uncover truly novel DNA-protein interactions. To date, the technology has been predominantly applied to yeast cells or to high copy repeat sequences in mammalian cells. In order to become the powerful tool we envision, HyCCAPP approaches need to be optimized to efficiently capture single-copy loci in mammalian cells. Here, we present our adaptation of the initial yeast HyCCAPP capture protocol to human cell lines, and show that single-copy chromatin regions can be efficiently isolated with this modified protocol.
Collapse
Affiliation(s)
- Hector Guillen-Ahlers
- Department of Genetics, Texas Biomedical Research Institute; Department of Internal Medicine-Molecular Medicine, Wake Forest University School of Medicine
| | - Prahlad K Rao
- Department of Genetics, Texas Biomedical Research Institute
| | | | | | | | | | | | - Michael Olivier
- Department of Genetics, Texas Biomedical Research Institute; Department of Internal Medicine-Molecular Medicine, Wake Forest University School of Medicine;
| |
Collapse
|
27
|
Pulecio J, Verma N, Mejía-Ramírez E, Huangfu D, Raya A. CRISPR/Cas9-Based Engineering of the Epigenome. Cell Stem Cell 2018; 21:431-447. [PMID: 28985525 DOI: 10.1016/j.stem.2017.09.006] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Determining causal relationships between distinct chromatin features and gene expression, and ultimately cell behavior, remains a major challenge. Recent developments in targetable epigenome-editing tools enable us to assign direct transcriptional and functional consequences to locus-specific chromatin modifications. This Protocol Review discusses the unprecedented opportunity that CRISPR/Cas9 technology offers for investigating and manipulating the epigenome to facilitate further understanding of stem cell biology and engineering of stem cells for therapeutic applications. We also provide technical considerations for standardization and further improvement of the CRISPR/Cas9-based tools to engineer the epigenome.
Collapse
Affiliation(s)
- Julian Pulecio
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd floor, Avenue Gran Via 199-203, Hospitalet de Llobregat, 08908 Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Nipun Verma
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA; Weill Graduate School of Medical Sciences at Cornell University/The Rockefeller University/Sloan Kettering Institute Tri-Institutional M.D.-Ph.D. Program, 1300 York Avenue, New York, NY 10065, USA
| | - Eva Mejía-Ramírez
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd floor, Avenue Gran Via 199-203, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd floor, Avenue Gran Via 199-203, Hospitalet de Llobregat, 08908 Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
28
|
Tsui C, Inouye C, Levy M, Lu A, Florens L, Washburn MP, Tjian R. dCas9-targeted locus-specific protein isolation method identifies histone gene regulators. Proc Natl Acad Sci U S A 2018; 115:E2734-E2741. [PMID: 29507191 PMCID: PMC5866577 DOI: 10.1073/pnas.1718844115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic gene regulation is a complex process, often coordinated by the action of tens to hundreds of proteins. Although previous biochemical studies have identified many components of the basal machinery and various ancillary factors involved in gene regulation, numerous gene-specific regulators remain undiscovered. To comprehensively survey the proteome directing gene expression at a specific genomic locus of interest, we developed an in vitro nuclease-deficient Cas9 (dCas9)-targeted chromatin-based purification strategy, called "CLASP" (Cas9 locus-associated proteome), to identify and functionally test associated gene-regulatory factors. Our CLASP method, coupled to mass spectrometry and functional screens, can be efficiently adapted for isolating associated regulatory factors in an unbiased manner targeting multiple genomic loci across different cell types. Here, we applied our method to isolate the Drosophila melanogaster histone cluster in S2 cells to identify several factors including Vig and Vig2, two proteins that bind and regulate core histone H2A and H3 mRNA via interaction with their 3' UTRs.
Collapse
Affiliation(s)
- Chiahao Tsui
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Carla Inouye
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Michaella Levy
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Andrew Lu
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California, Berkeley, CA 94720
| | | | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Robert Tjian
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California, Berkeley, CA 94720;
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
29
|
Jezek M, Jacques A, Jaiswal D, Green EM. Chromatin Immunoprecipitation (ChIP) of Histone Modifications from Saccharomyces cerevisiae. J Vis Exp 2017. [PMID: 29364237 DOI: 10.3791/57080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Histone post-translational modifications (PTMs), such as acetylation, methylation and phosphorylation, are dynamically regulated by a series of enzymes that add or remove these marks in response to signals received by the cell. These PTMS are key contributors to the regulation of processes such as gene expression control and DNA repair. Chromatin immunoprecipitation (chIP) has been an instrumental approach for dissecting the abundance and localization of many histone PTMs throughout the genome in response to diverse perturbations to the cell. Here, a versatile method for performing chIP of post-translationally modified histones from the budding yeast Saccharomyces cerevisiae (S. cerevisiae) is described. This method relies on crosslinking of proteins and DNA using formaldehyde treatment of yeast cultures, generation of yeast lysates by bead beating, solubilization of chromatin fragments by micrococcal nuclease, and immunoprecipitation of histone-DNA complexes. DNA associated with the histone mark of interest is purified and subjected to quantitative PCR analysis to evaluate its enrichment at multiple loci throughout the genome. Representative experiments probing the localization of the histone marks H3K4me2 and H4K16ac in wildtype and mutant yeast are discussed to demonstrate data analysis and interpretation. This method is suitable for a variety of histone PTMs and can be performed with different mutant strains or in the presence of diverse environmental stresses, making it an excellent tool for investigating changes in chromatin dynamics under different conditions.
Collapse
Affiliation(s)
- Meagan Jezek
- Department of Biological Sciences, University of Maryland
| | - Alison Jacques
- Department of Biological Sciences, University of Maryland
| | | | - Erin M Green
- Department of Biological Sciences, University of Maryland;
| |
Collapse
|
30
|
Wang P, Byrum S, Fowler FC, Pal S, Tackett AJ, Tyler JK. Proteomic identification of histone post-translational modifications and proteins enriched at a DNA double-strand break. Nucleic Acids Res 2017; 45:10923-10940. [PMID: 29036368 PMCID: PMC5737490 DOI: 10.1093/nar/gkx844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/13/2017] [Indexed: 11/13/2022] Open
Abstract
Here, we use ChAP-MS (chromatin affinity purification with mass spectrometry), for the affinity purification of a sequence-specific single-copy endogenous chromosomal locus containing a DNA double-strand break (DSB). We found multiple new histone post-translational modifications enriched on chromatin bearing a DSB from budding yeast. One of these, methylation of histone H3 on lysine 125, has not previously been reported. Among over 100 novel proteins enriched at a DSB were the phosphatase Sit4, the RNA pol II degradation factor Def1, the mRNA export protein Yra1 and the HECT E3 ligase Tom1. Each of these proteins was required for resistance to radiomimetics, and many were required for resistance to heat, which we show here to cause a defect in DSB repair in yeast. Yra1 and Def1 were required for DSB repair per se, while Sit4 was required for rapid inactivation of the DNA damage checkpoint after DSB repair. Thus, our unbiased proteomics approach has led to the unexpected discovery of novel roles for these and other proteins in the DNA damage response.
Collapse
Affiliation(s)
- Pingping Wang
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY 10065, USA.,Genes and Development Graduate Program of the University of Texas MD Anderson Cancer Center, UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Stephanie Byrum
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Faith C Fowler
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY 10065, USA
| | - Sangita Pal
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY 10065, USA.,Genes and Development Graduate Program of the University of Texas MD Anderson Cancer Center, UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Alan J Tackett
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Jessica K Tyler
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY 10065, USA
| |
Collapse
|
31
|
Kameda-Smith MM, Manoranjan B, Bakhshinyan D, Adile AA, Venugopal C, Singh SK. Brain tumor initiating cells: with great technology will come greater understanding. FUTURE NEUROLOGY 2017. [DOI: 10.2217/fnl-2017-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The discovery of the brain tumor initiating cells resulted in a paradigm shift within the cancer research community to consider brain tumors as an outcome of developmental mechanisms gone awry. This review will guide the reader through the technological advances that hold the powerful potential to allow brain cancer researchers to develop an intimate understanding of the dynamic and complex mechanism governing brain tumor behavior.
Collapse
Affiliation(s)
- Michelle M Kameda-Smith
- Stem Cell & Cancer Research Institute (SCC-RI), McMaster University, Michael DeGroote Center for Learning & Discovery, Room 5061, 1200 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Division of Neurosurgery, Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Branavan Manoranjan
- Stem Cell & Cancer Research Institute (SCC-RI), McMaster University, Michael DeGroote Center for Learning & Discovery, Room 5061, 1200 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - David Bakhshinyan
- Stem Cell & Cancer Research Institute (SCC-RI), McMaster University, Michael DeGroote Center for Learning & Discovery, Room 5061, 1200 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Ashley A Adile
- Stem Cell & Cancer Research Institute (SCC-RI), McMaster University, Michael DeGroote Center for Learning & Discovery, Room 5061, 1200 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Chitra Venugopal
- Stem Cell & Cancer Research Institute (SCC-RI), McMaster University, Michael DeGroote Center for Learning & Discovery, Room 5061, 1200 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Sheila K Singh
- Stem Cell & Cancer Research Institute (SCC-RI), McMaster University, Michael DeGroote Center for Learning & Discovery, Room 5061, 1200 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Division of Neurosurgery, Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
32
|
Fujita T, Kitaura F, Yuno M, Suzuki Y, Sugano S, Fujii H. Locus-specific ChIP combined with NGS analysis reveals genomic regulatory regions that physically interact with the Pax5 promoter in a chicken B cell line. DNA Res 2017; 24:537-548. [PMID: 28586432 PMCID: PMC5737561 DOI: 10.1093/dnares/dsx023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/04/2017] [Indexed: 12/05/2022] Open
Abstract
Chromosomal interactions regulate genome functions, such as transcription, via dynamic chromosomal organization in the nucleus. In this study, we attempted to identify genomic regions that physically bind to the promoter region of the Pax5 gene, which encodes a master regulator for B cell lineage commitment, in a chicken B cell line, DT40, with the goal of obtaining mechanistic insight into transcriptional regulation through chromosomal interaction. We found that the Pax5 promoter bound to multiple genomic regions using locus-specific chromatin immunoprecipitation (locus-specific ChIP), a method for locus-specific isolation of target genomic regions, in combination with next-generation sequencing (NGS). Comparing chromosomal interactions in wild-type DT40 with those in a macrophage-like counterpart, we found that some of the identified chromosomal interactions were organized in a B cell-specific manner. In addition, deletion of a B cell-specific interacting genomic region in chromosome 11, which was marked by active enhancer histone modifications, resulted in moderate but significant down-regulation of Pax5 transcription. Together, these results suggested that Pax5 transcription in DT40 is regulated by B cell-specific inter-chromosomal interactions. Moreover, these analyses showed that locus-specific ChIP combined with NGS analysis is useful for non-biased identification of functional genomic regions that physically interact with a locus of interest.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan.,Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fusako Kitaura
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Miyuki Yuno
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.,Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.,Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan.,Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
33
|
Eubanks CG, Dayebgadoh G, Liu X, Washburn MP. Unravelling the biology of chromatin in health and cancer using proteomic approaches. Expert Rev Proteomics 2017; 14:905-915. [PMID: 28895440 DOI: 10.1080/14789450.2017.1374860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Chromatin remodeling complexes play important roles in the control of genome regulation in both normal and diseased states, and are therefore critical components for the regulation of epigenetic states in cells. Given the role epigenetics plays in cancer, for example, chromatin remodeling complexes are routinely targeted for therapeutic intervention. Areas covered: Protein mass spectrometry and proteomics are powerful technologies used to study and understand chromatin remodeling. While impressive progress has been made in this area, there remain significant challenges in the application of proteomic technologies to the study of chromatin remodeling. As parts of large multi-subunit complexes that can be heavily modified with dynamic post-translational modifications, challenges in the study of chromatin remodeling complexes include defining the content, determining the regulation, and studying the dynamics of the complexes under different cellular states. Expert commentary: Impwortant considerations in the study of chromatin remodeling complexes include the complexity of sample preparation, the choice of proteomic methods for the analysis of samples, and data analysis challenges. Continued research in these three areas promise to yield even greater insights into the biology of chromatin remodeling and epigenetics and the dynamics of these systems in human health and cancer.
Collapse
Affiliation(s)
| | | | - Xingyu Liu
- a Stowers Institute for Medical Research , Kansas City , MO , USA
| | - Michael P Washburn
- a Stowers Institute for Medical Research , Kansas City , MO , USA.,b Departments of Pathology & Laboratory Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| |
Collapse
|
34
|
Groehler A, Degner A, Tretyakova NY. Mass Spectrometry-Based Tools to Characterize DNA-Protein Cross-Linking by Bis-Electrophiles. Basic Clin Pharmacol Toxicol 2017; 121 Suppl 3:63-77. [PMID: 28032943 DOI: 10.1111/bcpt.12751] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022]
Abstract
DNA-protein cross-links (DPCs) are unusually bulky DNA adducts that form in cells as a result of exposure to endogenous and exogenous agents including reactive oxygen species, ultraviolet light, ionizing radiation, environmental agents (e.g. transition metals, formaldehyde, 1,2-dibromoethane, 1,3-butadiene) and common chemotherapeutic agents. Covalent DPCs are cytotoxic and mutagenic due to their ability to interfere with faithful DNA replication and to prevent accurate gene expression. Key to our understanding of the biological significance of DPC formation is identifying the proteins most susceptible to forming these unusually bulky and complex lesions and quantifying the extent of DNA-protein cross-linking in cells and tissues. Recent advances in bottom-up mass spectrometry-based proteomics have allowed for an unbiased assessment of the whole protein DPC adductome after in vitro and in vivo exposures to cross-linking agents. This MiniReview summarizes current and emerging methods for DPC isolation and analysis by mass spectrometry-based proteomics. We also highlight several examples of successful applications of these novel methodologies to studies of DPC lesions induced by bis-electrophiles such as formaldehyde, 1,2,3,4-diepoxybutane, nitrogen mustards and cisplatin.
Collapse
Affiliation(s)
- Arnold Groehler
- Department of Medicinal Chemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Amanda Degner
- Department of Medicinal Chemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
35
|
Janssen KA, Sidoli S, Garcia BA. Recent Achievements in Characterizing the Histone Code and Approaches to Integrating Epigenomics and Systems Biology. Methods Enzymol 2017; 586:359-378. [PMID: 28137571 DOI: 10.1016/bs.mie.2016.10.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Functional epigenetic regulation occurs by dynamic modification of chromatin, including genetic material (i.e., DNA methylation), histone proteins, and other nuclear proteins. Due to the highly complex nature of the histone code, mass spectrometry (MS) has become the leading technique in identification of single and combinatorial histone modifications. MS has now overcome antibody-based strategies due to its automation, high resolution, and accurate quantitation. Moreover, multiple approaches to analysis have been developed for global quantitation of posttranslational modifications (PTMs), including large-scale characterization of modification coexistence (middle-down and top-down proteomics), which is not currently possible with any other biochemical strategy. Recently, our group and others have simplified and increased the effectiveness of analyzing histone PTMs by improving multiple MS methods and data analysis tools. This review provides an overview of the major achievements in the analysis of histone PTMs using MS with a focus on the most recent improvements. We speculate that the workflow for histone analysis at its state of the art is highly reliable in terms of identification and quantitation accuracy, and it has the potential to become a routine method for systems biology thanks to the possibility of integrating histone MS results with genomics and proteomics datasets.
Collapse
Affiliation(s)
- K A Janssen
- Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - S Sidoli
- Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - B A Garcia
- Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
36
|
Unnikrishnan A, Guan YF, Huang Y, Beck D, Thoms JAI, Peirs S, Knezevic K, Ma S, de Walle IV, de Jong I, Ali Z, Zhong L, Raftery MJ, Taghon T, Larsson J, MacKenzie KL, Van Vlierberghe P, Wong JWH, Pimanda JE. A quantitative proteomics approach identifies ETV6 and IKZF1 as new regulators of an ERG-driven transcriptional network. Nucleic Acids Res 2016; 44:10644-10661. [PMID: 27604872 PMCID: PMC5159545 DOI: 10.1093/nar/gkw804] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/14/2022] Open
Abstract
Aberrant stem cell-like gene regulatory networks are a feature of leukaemogenesis. The ETS-related gene (ERG), an important regulator of normal haematopoiesis, is also highly expressed in T-ALL and acute myeloid leukaemia (AML). However, the transcriptional regulation of ERG in leukaemic cells remains poorly understood. In order to discover transcriptional regulators of ERG, we employed a quantitative mass spectrometry-based method to identify factors binding the 321 bp ERG +85 stem cell enhancer region in MOLT-4 T-ALL and KG-1 AML cells. Using this approach, we identified a number of known binders of the +85 enhancer in leukaemic cells along with previously unknown binders, including ETV6 and IKZF1. We confirmed that ETV6 and IKZF1 were also bound at the +85 enhancer in both leukaemic cells and in healthy human CD34+ haematopoietic stem and progenitor cells. Knockdown experiments confirmed that ETV6 and IKZF1 are transcriptional regulators not just of ERG, but also of a number of genes regulated by a densely interconnected network of seven transcription factors. At last, we show that ETV6 and IKZF1 expression levels are positively correlated with expression of a number of heptad genes in AML and high expression of all nine genes confers poorer overall prognosis.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Cell Line, Tumor
- Consensus Sequence
- Enhancer Elements, Genetic
- Gene Expression Regulation, Leukemic
- Gene Regulatory Networks
- Humans
- Ikaros Transcription Factor/physiology
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Prognosis
- Proportional Hazards Models
- Protein Binding
- Proteome
- Proteomics
- Proto-Oncogene Proteins c-ets/physiology
- Repressor Proteins/physiology
- Transcription, Genetic
- Transcriptional Regulator ERG/physiology
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- Ashwin Unnikrishnan
- Adult Cancer Program, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, 2052, Australia
| | - Yi F Guan
- Adult Cancer Program, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, 2052, Australia
| | - Yizhou Huang
- Adult Cancer Program, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, 2052, Australia
| | - Dominik Beck
- Adult Cancer Program, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, 2052, Australia
- Center for Medical Genetics, Ghent University, De Pintelaan 185 9000 Ghent, Belgium
| | - Julie A I Thoms
- Adult Cancer Program, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, 2052, Australia
| | - Sofie Peirs
- Centre for Health Technologies and the School of Software, University of Technology, Sydney, 2007, Australia
| | - Kathy Knezevic
- Adult Cancer Program, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, 2052, Australia
| | - Shiyong Ma
- Adult Cancer Program, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, 2052, Australia
| | - Inge V de Walle
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, De Pintelaan 185 9000 Ghent, Belgium
| | - Ineke de Jong
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, SE-221 00, Lund, Sweden
| | - Zara Ali
- Children's Cancer Institute Australia, Sydney, New South Wales, 2052 Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Tom Taghon
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, De Pintelaan 185 9000 Ghent, Belgium
| | - Jonas Larsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, SE-221 00, Lund, Sweden
| | - Karen L MacKenzie
- Children's Cancer Institute Australia, Sydney, New South Wales, 2052 Australia
| | - Pieter Van Vlierberghe
- Centre for Health Technologies and the School of Software, University of Technology, Sydney, 2007, Australia
| | - Jason W H Wong
- Adult Cancer Program, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, 2052, Australia
| | - John E Pimanda
- Adult Cancer Program, Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, 2052, Australia
- Department of Haematology, Prince of Wales Hospital, Sydney, 2031, Australia
| |
Collapse
|
37
|
Guven M, Barnouin K, Snijders AP, Karran P. Photosensitized UVA-Induced Cross-Linking between Human DNA Repair and Replication Proteins and DNA Revealed by Proteomic Analysis. J Proteome Res 2016; 15:4612-4623. [PMID: 27654267 PMCID: PMC5154610 DOI: 10.1021/acs.jproteome.6b00717] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Indexed: 11/29/2022]
Abstract
Long wavelength ultraviolet radiation (UVA, 320-400 nm) interacts with chromophores present in human cells to induce reactive oxygen species (ROS) that damage both DNA and proteins. ROS levels are amplified, and the damaging effects of UVA are exacerbated if the cells are irradiated in the presence of UVA photosensitizers such as 6-thioguanine (6-TG), a strong UVA chromophore that is extensively incorporated into the DNA of dividing cells, or the fluoroquinolone antibiotic ciprofloxacin. Both DNA-embedded 6-TG and ciprofloxacin combine synergistically with UVA to generate high levels of ROS. Importantly, the extensive protein damage induced by these photosensitizer+UVA combinations inhibits DNA repair. DNA is maintained in intimate contact with the proteins that effect its replication, transcription, and repair, and DNA-protein cross-links (DPCs) are a recognized reaction product of ROS. Cross-linking of DNA metabolizing proteins would compromise these processes by introducing physical blocks and by depleting active proteins. We describe a sensitive and statistically rigorous method to analyze DPCs in cultured human cells. Application of this proteomics-based analysis to cells treated with 6-TG+UVA and ciprofloxacin+UVA identified proteins involved in DNA repair, replication, and gene expression among those most vulnerable to cross-linking under oxidative conditions.
Collapse
Affiliation(s)
- Melisa Guven
- The
Francis Crick Institute, Clare Hall Laboratory, South Mimms, Herts EN6
3LD, U.K.
| | - Karin Barnouin
- The
Francis Crick Institute, Clare Hall Laboratory, South Mimms, Herts EN6
3LD, U.K.
| | - Ambrosius P. Snijders
- The
Francis Crick Institute, Clare Hall Laboratory, South Mimms, Herts EN6
3LD, U.K.
| | - Peter Karran
- The
Francis Crick Institute, Clare Hall Laboratory, South Mimms, Herts EN6
3LD, U.K.
| |
Collapse
|
38
|
Wierer M, Mann M. Proteomics to study DNA-bound and chromatin-associated gene regulatory complexes. Hum Mol Genet 2016; 25:R106-R114. [PMID: 27402878 PMCID: PMC5036873 DOI: 10.1093/hmg/ddw208] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/24/2016] [Indexed: 01/30/2023] Open
Abstract
High-resolution mass spectrometry (MS)-based proteomics is a powerful method for the identification of soluble protein complexes and large-scale affinity purification screens can decode entire protein interaction networks. In contrast, protein complexes residing on chromatin have been much more challenging, because they are difficult to purify and often of very low abundance. However, this is changing due to recent methodological and technological advances in proteomics. Proteins interacting with chromatin marks can directly be identified by pulldowns with synthesized histone tails containing posttranslational modifications (PTMs). Similarly, pulldowns with DNA baits harbouring single nucleotide polymorphisms or DNA modifications reveal the impact of those DNA alterations on the recruitment of transcription factors. Accurate quantitation – either isotope-based or label free – unambiguously pinpoints proteins that are significantly enriched over control pulldowns. In addition, protocols that combine classical chromatin immunoprecipitation (ChIP) methods with mass spectrometry (ChIP-MS) target gene regulatory complexes in their in-vivo context. Similar to classical ChIP, cells are crosslinked with formaldehyde and chromatin sheared by sonication or nuclease digested. ChIP-MS baits can be proteins in tagged or endogenous form, histone PTMs, or lncRNAs. Locus-specific ChIP-MS methods would allow direct purification of a single genomic locus and the proteins associated with it. There, loci can be targeted either by artificial DNA-binding sites and corresponding binding proteins or via proteins with sequence specificity such as TAL or nuclease deficient Cas9 in combination with a specific guide RNA. We predict that advances in MS technology will soon make such approaches generally applicable tools in epigenetics.
Collapse
Affiliation(s)
- Michael Wierer
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
39
|
Byrd AK, Zybailov BL, Maddukuri L, Gao J, Marecki JC, Jaiswal M, Bell MR, Griffin WC, Reed MR, Chib S, Mackintosh SG, MacNicol AM, Baldini G, Eoff RL, Raney KD. Evidence That G-quadruplex DNA Accumulates in the Cytoplasm and Participates in Stress Granule Assembly in Response to Oxidative Stress. J Biol Chem 2016; 291:18041-57. [PMID: 27369081 DOI: 10.1074/jbc.m116.718478] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 12/13/2022] Open
Abstract
Cells engage numerous signaling pathways in response to oxidative stress that together repair macromolecular damage or direct the cell toward apoptosis. As a result of DNA damage, mitochondrial DNA or nuclear DNA has been shown to enter the cytoplasm where it binds to "DNA sensors," which in turn initiate signaling cascades. Here we report data that support a novel signaling pathway in response to oxidative stress mediated by specific guanine-rich sequences that can fold into G-quadruplex DNA (G4DNA). In response to oxidative stress, we demonstrate that sequences capable of forming G4DNA appear at increasing levels in the cytoplasm and participate in assembly of stress granules. Identified proteins that bind to endogenous G4DNA in the cytoplasm are known to modulate mRNA translation and participate in stress granule formation. Consistent with these findings, stress granule formation is known to regulate mRNA translation during oxidative stress. We propose a signaling pathway whereby cells can rapidly respond to DNA damage caused by oxidative stress. Guanine-rich sequences that are excised from damaged genomic DNA are proposed to enter the cytoplasm where they can regulate translation through stress granule formation. This newly proposed role for G4DNA provides an additional molecular explanation for why such sequences are prevalent in the human genome.
Collapse
Affiliation(s)
- Alicia K Byrd
- From the Departments of Biochemistry and Molecular Biology and
| | - Boris L Zybailov
- From the Departments of Biochemistry and Molecular Biology and the University of Arkansas at Little Rock/University of Arkansas for Medical Sciences (UALR/UAMS) Joint Graduate Program in Bioinformatics, University of Arkansas at Little Rock, Little Rock, Arkansas 72204
| | - Leena Maddukuri
- From the Departments of Biochemistry and Molecular Biology and
| | - Jun Gao
- From the Departments of Biochemistry and Molecular Biology and
| | - John C Marecki
- From the Departments of Biochemistry and Molecular Biology and
| | - Mihir Jaiswal
- the University of Arkansas at Little Rock/University of Arkansas for Medical Sciences (UALR/UAMS) Joint Graduate Program in Bioinformatics, University of Arkansas at Little Rock, Little Rock, Arkansas 72204
| | - Matthew R Bell
- From the Departments of Biochemistry and Molecular Biology and
| | | | - Megan R Reed
- From the Departments of Biochemistry and Molecular Biology and
| | - Shubeena Chib
- From the Departments of Biochemistry and Molecular Biology and
| | - Samuel G Mackintosh
- From the Departments of Biochemistry and Molecular Biology and the Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 and
| | - Angus M MacNicol
- the Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 and Neurobiology and Developmental Sciences and
| | - Giulia Baldini
- From the Departments of Biochemistry and Molecular Biology and
| | - Robert L Eoff
- From the Departments of Biochemistry and Molecular Biology and the Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 and
| | - Kevin D Raney
- From the Departments of Biochemistry and Molecular Biology and the Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 and
| |
Collapse
|
40
|
Önder Ö, Sidoli S, Carroll M, Garcia BA. Progress in epigenetic histone modification analysis by mass spectrometry for clinical investigations. Expert Rev Proteomics 2016; 12:499-517. [PMID: 26400466 DOI: 10.1586/14789450.2015.1084231] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chromatin biology and epigenetics are scientific fields that are rapid expanding due to their fundamental role in understanding cell development, heritable characters and progression of diseases. Histone post-translational modifications (PTMs) are major regulators of the epigenetic machinery due to their ability to modulate gene expression, DNA repair and chromosome condensation. Large-scale strategies based on mass spectrometry have been impressively improved in the last decade, so that global changes of histone PTM abundances are quantifiable with nearly routine proteomics analyses and it is now possible to determine combinatorial patterns of modifications. Presented here is an overview of the most utilized and newly developed proteomics strategies for histone PTM characterization and a number of case studies where epigenetic mechanisms have been comprehensively characterized. Moreover, a number of current epigenetic therapies are illustrated, with an emphasis on cancer.
Collapse
Affiliation(s)
- Özlem Önder
- a 1 Division of Hematology and Oncology, Philadelphia, 19104, USA.,b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simone Sidoli
- b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Martin Carroll
- a 1 Division of Hematology and Oncology, Philadelphia, 19104, USA
| | - Benjamin A Garcia
- b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
41
|
Zhu Τ, Liang C, Li D, Tian M, Liu S, Gao G, Guan JS. Histone methyltransferase Ash1L mediates activity-dependent repression of neurexin-1α. Sci Rep 2016; 6:26597. [PMID: 27229316 PMCID: PMC4882582 DOI: 10.1038/srep26597] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/05/2016] [Indexed: 11/09/2022] Open
Abstract
Activity-dependent transcription is critical for the regulation of long-term synaptic plasticity and plastic rewiring in the brain. Here, we report that the transcription of neurexin1α (nrxn1α), a presynaptic adhesion molecule for synaptic formation, is regulated by transient neuronal activation. We showed that 10 minutes of firing at 50 Hz in neurons repressed the expression of nrxn1α for 24 hours in a primary cortical neuron culture through a transcriptional repression mechanism. By performing a screening assay using a synthetic zinc finger protein (ZFP) to pull down the proteins enriched near the nrxn1α promoter region in vivo, we identified that Ash1L, a histone methyltransferase, is enriched in the nrxn1α promoter. Neuronal activity triggered binding of Ash1L to the promoter and enriched the histone marker H3K36me2 at the nrxn1α promoter region. Knockout of Ash1L in mice completely abolished the activity-dependent repression of nrxn1α. Taken together, our results reveal that a novel process of activity-dependent transcriptional repression exists in neurons and that Ash1L mediates the long-term repression of nrxn1α, thus implicating an important role for epigenetic modification in brain functioning.
Collapse
Affiliation(s)
- Τao Zhu
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Center for Brain-Inspired Computing Research, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Chen Liang
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Center for Brain-Inspired Computing Research, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Dongdong Li
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Center for Brain-Inspired Computing Research, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Miaomiao Tian
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Center for Brain-Inspired Computing Research, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Sanxiong Liu
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Center for Brain-Inspired Computing Research, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Guanjun Gao
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Center for Brain-Inspired Computing Research, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Ji-Song Guan
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Center for Brain-Inspired Computing Research, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
Guillen-Ahlers H, Rao PK, Levenstein ME, Kennedy-Darling J, Perumalla DS, Jadhav AYL, Glenn JP, Ludwig-Kubinski A, Drigalenko E, Montoya MJ, Göring HH, Anderson CD, Scalf M, Gildersleeve HIS, Cole R, Greene AM, Oduro AK, Lazarova K, Cesnik AJ, Barfknecht J, Cirillo LA, Gasch AP, Shortreed MR, Smith LM, Olivier M. HyCCAPP as a tool to characterize promoter DNA-protein interactions in Saccharomyces cerevisiae. Genomics 2016; 107:267-73. [PMID: 27184763 DOI: 10.1016/j.ygeno.2016.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 11/30/2022]
Abstract
Currently available methods for interrogating DNA-protein interactions at individual genomic loci have significant limitations, and make it difficult to work with unmodified cells or examine single-copy regions without specific antibodies. In this study, we describe a physiological application of the Hybridization Capture of Chromatin-Associated Proteins for Proteomics (HyCCAPP) methodology we have developed. Both novel and known locus-specific DNA-protein interactions were identified at the ENO2 and GAL1 promoter regions of Saccharomyces cerevisiae, and revealed subgroups of proteins present in significantly different levels at the loci in cells grown on glucose versus galactose as the carbon source. Results were validated using chromatin immunoprecipitation. Overall, our analysis demonstrates that HyCCAPP is an effective and flexible technology that does not require specific antibodies nor prior knowledge of locally occurring DNA-protein interactions and can now be used to identify changes in protein interactions at target regions in the genome in response to physiological challenges.
Collapse
Affiliation(s)
- Hector Guillen-Ahlers
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Prahlad K Rao
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Mark E Levenstein
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | - Danu S Perumalla
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Avinash Y L Jadhav
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jeremy P Glenn
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Amy Ludwig-Kubinski
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Eugene Drigalenko
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Maria J Montoya
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Harald H Göring
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Corianna D Anderson
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | - Regina Cole
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Alexandra M Greene
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Akua K Oduro
- Department of Cell Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Katarina Lazarova
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anthony J Cesnik
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Jared Barfknecht
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lisa A Cirillo
- Department of Cell Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Audrey P Gasch
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | | | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Michael Olivier
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
43
|
Sc65-Null Mice Provide Evidence for a Novel Endoplasmic Reticulum Complex Regulating Collagen Lysyl Hydroxylation. PLoS Genet 2016; 12:e1006002. [PMID: 27119146 PMCID: PMC4847768 DOI: 10.1371/journal.pgen.1006002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/31/2016] [Indexed: 11/20/2022] Open
Abstract
Collagen is a major component of the extracellular matrix and its integrity is essential for connective tissue and organ function. The importance of proteins involved in intracellular collagen post-translational modification, folding and transport was recently highlighted from studies on recessive forms of osteogenesis imperfecta (OI). Here we describe the critical role of SC65 (Synaptonemal Complex 65, P3H4), a leprecan-family member, as part of an endoplasmic reticulum (ER) complex with prolyl 3-hydroxylase 3. This complex affects the activity of lysyl-hydroxylase 1 potentially through interactions with the enzyme and/or cyclophilin B. Loss of Sc65 in the mouse results in instability of this complex, altered collagen lysine hydroxylation and cross-linking leading to connective tissue defects that include low bone mass and skin fragility. This is the first indication of a prolyl-hydroxylase complex in the ER controlling lysyl-hydroxylase activity during collagen synthesis. Fibrillar collagens are major components of connective tissue extracellular matrix (ECM). Among them, type I collagen is the most abundant protein in the human body and a large constituent of bone, dermis, tendon and ligament ECMs; type I collagen is also present in the stroma of other organs including heart, lung and kidney where, when dysregulated, it significantly contributes to pathological fibrosis. Type I and other collagen molecules have triple-helical folding requirements and undergo numerous intracellular post-translational modifications in the endoplasmic reticulum (ER) and Golgi apparatus. We and others have shown that alterations/loss of specific collagen modifications can lead to severe congenital disease such as osteogenesis imperfecta (OI). Here, using a multidisciplinary approach, we describe functional studies of the SC65 protein (Synaptonemal Complex 65 or P3H4), a poorly characterized member of the Leprecan gene family of proteins. We provide evidence that SC65 is a critical component of an ER complex with prolyl 3-hydroxylase 3 (P3H3), lysyl-hydroxylase 1 (LH1), and potentially cyclophilin B (CYPB). Loss of Sc65 in the mouse results in instability of this complex, site-specific reduction in collagen lysine hydroxylation and connective tissue defects including osteopenia and skin fragility.
Collapse
|
44
|
Abstract
Hundreds of distinct chemical modifications to DNA and histone amino acids have been described. Regulation exerted by these so-called epigenetic marks is vital to normal development, stability of cell identity through mitosis, and nongenetic transmission of traits between generations through meiosis. Loss of this regulation contributes to many diseases. Evidence indicates epigenetic marks function in combinations, whereby a given modification has distinct effects on local genome control, depending on which additional modifications are locally present. This review summarizes emerging methods for assessing combinatorial epigenomic states, as well as challenges and opportunities for their refinement.
Collapse
Affiliation(s)
- Paul D. Soloway
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
45
|
Rafehi H, Khan AW, El-Osta A. Improving understanding of chromatin regulatory proteins and potential implications for drug discovery. Expert Rev Proteomics 2016; 13:435-45. [PMID: 26923902 DOI: 10.1586/14789450.2016.1159960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Many epigenetic-based therapeutics, including drugs such as histone deacetylase inhibitors, are now used in the clinic or are undergoing advanced clinical trials. The study of chromatin-modifying proteins has benefited from the rapid advances in high-throughput sequencing methods, the organized efforts of major consortiums and by individual groups to profile human epigenomes in diverse tissues and cell types. However, while such initiatives have carefully characterized healthy human tissue, disease epigenomes and drug-epigenome interactions remain very poorly understood. Reviewed here is how high-throughput sequencing improves our understanding of chromatin regulator proteins and the potential implications for the study of human disease and drug development and discovery.
Collapse
Affiliation(s)
- Haloom Rafehi
- a Epigenetics in Human Health and Disease Laboratory , Baker IDI Heart and Diabetes Institute , Melbourne , Victoria , Australia
| | - Abdul Waheed Khan
- a Epigenetics in Human Health and Disease Laboratory , Baker IDI Heart and Diabetes Institute , Melbourne , Victoria , Australia.,b Department of Pathology , The University of Melbourne , Parkville , Victoria , Australia
| | - Assam El-Osta
- a Epigenetics in Human Health and Disease Laboratory , Baker IDI Heart and Diabetes Institute , Melbourne , Victoria , Australia.,b Department of Pathology , The University of Melbourne , Parkville , Victoria , Australia.,c Faculty of Medicine , Monash University , Melbourne , Victoria , Australia
| |
Collapse
|
46
|
Noberini R, Sigismondo G, Bonaldi T. The contribution of mass spectrometry-based proteomics to understanding epigenetics. Epigenomics 2016; 8:429-45. [DOI: 10.2217/epi.15.108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chromatin is a macromolecular complex composed of DNA and histones that regulate gene expression and nuclear architecture. The concerted action of DNA methylation, histone post-translational modifications and chromatin-associated proteins control the epigenetic regulation of the genome, ultimately determining cell fate and the transcriptional outputs of differentiated cells. Deregulation of this complex machinery leads to disease states, and exploiting epigenetic drugs is becoming increasingly attractive for therapeutic intervention. Mass spectrometry (MS)-based proteomics emerged as a powerful tool complementary to genomic approaches for epigenetic research, allowing the unbiased and comprehensive analysis of histone post-translational modifications and the characterization of chromatin constituents and chromatin-associated proteins. Furthermore, MS holds great promise for epigenetic biomarker discovery and represents a useful tool for deconvolution of epigenetic drug targets. Here, we will provide an overview of the applications of MS-based proteomics in various areas of chromatin biology.
Collapse
Affiliation(s)
- Roberta Noberini
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, via Adamello 16, Milano, Italy
| | - Gianluca Sigismondo
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milano, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milano, Italy
| |
Collapse
|
47
|
Mohammed H, Taylor C, Brown GD, Papachristou EK, Carroll JS, D'Santos CS. Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) for analysis of chromatin complexes. Nat Protoc 2016; 11:316-26. [PMID: 26797456 DOI: 10.1038/nprot.2016.020] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid immunoprecipitation mass spectrometry of endogenous protein (RIME) is a method that allows the study of protein complexes, in particular chromatin and transcription factor complexes, in a rapid and robust manner by mass spectrometry (MS). The method can be used in parallel with chromatin immunoprecipitation-sequencing (ChIP-seq) experiments to provide information on both the cistrome and interactome for a given protein. The method uses formaldehyde fixation to stabilize protein complexes. By using antibodies against the endogenous target, the cross-linked complex is immunoprecipitated, rigorously washed, and then digested into peptides while avoiding antibody contamination (on-bead digestion). By using this method, MS identification of the target protein and several dozen interacting proteins is possible using a 100-min LC-MS/MS run. The protocol does not require substantial proteomics expertise, and it typically takes 2-3 d from the collection of material to results.
Collapse
Affiliation(s)
- Hisham Mohammed
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Christopher Taylor
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Gordon D Brown
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Clive S D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
48
|
Fujita T, Fujii H. Biochemical Analysis of Genome Functions Using Locus-Specific Chromatin Immunoprecipitation Technologies. GENE REGULATION AND SYSTEMS BIOLOGY 2016; 10:1-9. [PMID: 26819551 PMCID: PMC4718151 DOI: 10.4137/grsb.s32520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/08/2015] [Accepted: 10/18/2015] [Indexed: 01/07/2023]
Abstract
To isolate specific genomic regions that retain their molecular interactions, allowing direct identification of chromatin-bound molecules, we developed two locus-specific chromatin immunoprecipitation (locus-specific ChIP) technologies, insertional ChIP (iChIP) and engineered DNA-binding molecule-mediated ChIP (enChIP) using the clustered regularly interspaced short palindromic repeats (CRISPR) system or transcription activator-like (TAL) proteins. Essentially, a locus-specific ChIP consists of locus-tagging and affinity purification and can be combined with downstream analyses to identify molecules associated with the target genomic regions. In this review, we discuss the applications of locus-specific ChIP to analyze the genome functions, including transcription and epigenetic regulation.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hodaka Fujii
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
49
|
Greco TM, Guise AJ, Cristea IM. Determining the Composition and Stability of Protein Complexes Using an Integrated Label-Free and Stable Isotope Labeling Strategy. Methods Mol Biol 2016; 1410:39-63. [PMID: 26867737 PMCID: PMC4916643 DOI: 10.1007/978-1-4939-3524-6_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In biological systems, proteins catalyze the fundamental reactions that underlie all cellular functions, including metabolic processes and cell survival and death pathways. These biochemical reactions are rarely accomplished alone. Rather, they involve a concerted effect from many proteins that may operate in a directed signaling pathway and/or may physically associate in a complex to achieve a specific enzymatic activity. Therefore, defining the composition and regulation of protein complexes is critical for understanding cellular functions. In this chapter, we describe an approach that uses quantitative mass spectrometry (MS) to assess the specificity and the relative stability of protein interactions. Isolation of protein complexes from mammalian cells is performed by rapid immunoaffinity purification, and followed by in-solution digestion and high-resolution mass spectrometry analysis. We employ complementary quantitative MS workflows to assess the specificity of protein interactions using label-free MS and statistical analysis, and the relative stability of the interactions using a metabolic labeling technique. For each candidate protein interaction, scores from the two workflows can be correlated to minimize nonspecific background and profile protein complex composition and relative stability.
Collapse
Affiliation(s)
- Todd M Greco
- Department of Molecular Biology, Princeton University, 210 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Amanda J Guise
- Department of Molecular Biology, Princeton University, 210 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, 210 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA.
| |
Collapse
|
50
|
Laufer BI, Singh SM. Strategies for precision modulation of gene expression by epigenome editing: an overview. Epigenetics Chromatin 2015; 8:34. [PMID: 26388942 PMCID: PMC4574080 DOI: 10.1186/s13072-015-0023-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/19/2015] [Indexed: 01/27/2023] Open
Abstract
Genome editing technology has evolved rather quickly and become accessible to most researchers. It has resulted in far reaching implications and a number of novel designer systems including epigenome editing. Epigenome editing utilizes a combination of nuclease-null genome editing systems and effector domains to modulate gene expression. In particular, Zinc Finger, Transcription-Activator-Like Effector, and CRISPR/Cas9 have emerged as modular systems that can be modified to allow for precision manipulation of epigenetic marks without altering underlying DNA sequence. This review contains a comprehensive catalog of effector domains that can be used with components of genome editing systems to achieve epigenome editing. Ultimately, the evidence-based design of epigenome editing offers a novel improvement to the limited attenuation strategies. There is much potential for editing and/or correcting gene expression in somatic cells toward a new era of functional genomics and personalized medicine.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, ON Canada
| | - Shiva M Singh
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, ON Canada
| |
Collapse
|