1
|
Zhang J, Aishan N, Zheng Z, Ju S, He Q, Meng Q, Lin X, Lang J, Zhou J, Chen Y, Xie B, Cai Y, Ji F, Wang L. TET-mediated 5hmC in breast cancer: mechanism and clinical potential. Epigenetics 2025; 20:2473250. [PMID: 40014756 PMCID: PMC11869774 DOI: 10.1080/15592294.2025.2473250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025] Open
Abstract
Breast cancer is the most common cancer among women, with differences in clinical features due to its distinct molecular subtypes. Current studies have demonstrated that epigenetic modifications play a crucial role in regulating the progression of breast cancer. Among these mechanisms, DNA demethylation and its reverse process have been studied extensively for their roles in activating or silencing cancer related gene expression. Specifically, Ten-Eleven Translocation (TET) enzymes are involved in the conversion process from 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), which results in a significant difference in the global level of 5hmC in breast cancer compared with normal tissues. In this review, we summarize the functions of TET proteins and the regulated 5hmC levels in the pathogenesis of breast cancer. Discussions on the clinical values of 5hmC in early diagnosis and the prediction of prognosis are also mentioned.
Collapse
Affiliation(s)
- Jiahang Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Nadire Aishan
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Zhongqiu Zheng
- Department of Breast and Thyroid Surgery, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Siwei Ju
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Qina He
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Qingna Meng
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Xixi Lin
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Jiaheng Lang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Bojian Xie
- Department of Breast and Thyroid Surgery, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Yangjun Cai
- Department of Breast and Thyroid Surgery, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Feiyang Ji
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Aguilera M, Klinkebiel DL, Williams V, Rovatti J, Purizhansky B, Foster BA, Karpf AR, Kinney SRM. Altered Ten Eleven Translocation Methylcytosine Dioxygenase Expression and DNA Hydroxymethylation in a Mouse Model of Prostate Cancer. Prostate 2025. [PMID: 40350568 DOI: 10.1002/pros.24912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/14/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND DNA hydroxymethylation (5hmC) is known to be altered in human prostate cancer. An animal model is required to study the functional roles of the ten eleven translocation (TET) DNA dioxygenases and the 5hmC modification in prostate cancer development and progression. METHODS We characterized Tet expression, global genomic 5hmC, and genome-wide 5hmC patterns, and the transcriptome, in the TRansgenic Adenocarcinoma of Mouse Prostate (TRAMP) autochthonous model of prostate cancer. RESULTS We observed increased mRNA and protein levels of Tet1 in TRAMP samples, as compared to normal mouse prostate. Additionally, we found minimal expression of Tet2 mRNA overall, and Tet3 mRNA levels appeared similar in both sample types. However, TRAMP tumors expressed what appeared to be the inactive form of Tet3, versus the active form expressed in normal prostates. TRAMP tumors displayed global genomic hypohydroxymethylation (i.e., loss of 5hmC), and genome-wide analysis revealed widespread hypohydroxymethylation was interspersed with regions of locus-specific hyperhydroxymethylation (i.e., increased 5hmC). The differentially hydroxymethylated regions correlated with altered gene expression, and pathway analyses indicated that these genes often participate in oncogenic pathways. CONCLUSIONS Tet expression and 5hmC patterns are altered in the TRAMP model and closely match what has been observed in human prostate cancer, suggesting that TRAMP is a suitable model to study the role of Tets and 5hmC in prostate cancer development and progression.
Collapse
Affiliation(s)
- Matthew Aguilera
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, Massachusetts, USA
| | - David L Klinkebiel
- Department of Biochemistry and Cell Biology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Victoryn Williams
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, Massachusetts, USA
| | - Jeffrey Rovatti
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, Massachusetts, USA
| | - Benjamin Purizhansky
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Barbara A Foster
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Adam R Karpf
- Fred & Pamela Buffett Cancer Center, Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Shannon R M Kinney
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, Massachusetts, USA
| |
Collapse
|
3
|
Imran H, Lim S, Alam A, An J, Ko M, Lim S. Portable, Wireless Potentiostat Sensor for Ultra-Sensitive, Real-Time Detection of 5hmC in Genomic DNA Using Tree-Like Graphene. ACS NANO 2025; 19:15707-15723. [PMID: 40253717 DOI: 10.1021/acsnano.4c18646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Aberrant alterations in genomic 5-hydroxymethylcytosine (5hmC), an oxidation product of 5-methylcytosine (5mC) by Ten-eleven translocation (TET) enzymes, are frequently associated with cancers. Quick and precise 5hmC quantification is vital since it is a key biomarker for diagnosis, pathophysiology, and therapy. Here, we present a portable, wireless potentiostat sensor for real-time, ultrasensitive 5hmC-DNA sensing based on a tree-like graphene (teG)-modified screen-printed microelectrode. One-pot electrochemical exfoliation of pencil graphite enabled the cost-effective, eco-friendly, and scalable synthesis of teG, which exhibited high electrical conductivity, excellent electrochemical conductivity, low surface roughness, and high 5hmC-DNA adsorption, surpassing those of pencil graphite (pG) and graphene oxide (GO). The teG-modified gold electrodes exhibited exceptional sensitivity (6.15 × 10-6 mM-1 cm-2), selectivity, and reproducibility, with an ultralow detection limit of 12.6 fM for 5hmC-DNA. The sensor's performance was validated by quantifying 5hmC levels in genomic DNA from various biological specimens, including primary mouse tissues with altered TET function, mouse hepatocellular carcinoma, and human prostate cancer cell lines. To enhance practicality, a flexible, screen-printed microelectrode on mulberry paper was developed and integrated with a portable, wireless potentiostat powered by the Arduino Nano 33 IoT. Open-circuit potential (OCP)-based detection enabled label-free, real-time monitoring with wireless data transmission to an Android mobile application, successfully differentiating 5hmC levels between cancerous and noncancerous cells. These findings highlight teG's high surface area, superior charge transport, and scalability, positioning it as a promising platform for next-generation biosensing. The developed sensor provides a rapid, cost-effective, and highly sensitive tool for 5hmC quantification, with significant implications for early cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Habibulla Imran
- Graduate School of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sumin Lim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Asrar Alam
- Mycronic AB, Nytorpsvägen 9, Täby 183 53, Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, KTH Royal Institute of Technology, Teknikringen 56, Stockholm 10044, Sweden
| | - Jungeun An
- Department of Life Sciences, Jeonbuk National University, 567 Baekje-daero, Jeonju 54896, Republic of Korea
| | - Myunggon Ko
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sooman Lim
- Graduate School of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
4
|
Sufiyan S, Salam H, Ilyas S, Amin W, Arshad F, Fatima K, Naeem S, Laghari AA, Enam SA, Mughal N. Prognostic implications of DNA methylation machinery (DNMTs and TETs) expression in gliomas: correlations with tumor grading and patient survival. J Neurooncol 2025:10.1007/s11060-025-05032-x. [PMID: 40208514 DOI: 10.1007/s11060-025-05032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
PURPOSE DNA methylation is a crucial epigenetic modification that regulates gene expression and chromatin structure. Its dysregulation is linked to glioma progression and prognosis, particularly through alterations in methylation machinery. DNMTs and TETs play key roles in these processes, but their involvement in gliomagenesis remains complex, especially in the context of IDH mutations. This study examines the expression patterns of DNMT and TET family genes in gliomas to assess their prognostic significance and therapeutic potential. MATERIALS AND METHODS mRNA expression levels of DNMT1, DNMT3A, DNMT3B, DNMT3L, TET1, TET2, TET3, and TDG were analyzed in 75 glioma samples and 10 normal controls using real-time quantitative PCR (qPCR). Statistical analyses and graphical representation were performed using R (v3.3.2) and RStudio (v1.4.1717), with p-values < 0.05 considered significant. Findings were validated using publicly available databases, TCGA and CGGA. RESULTS Compared to normal controls, DNMTs and TETs were significantly downregulated in gliomas, with expression levels inversely correlated with histological grade. Survival analysis using the log-rank test demonstrated a significant association between lower TETs and DNMTs expression and an increased risk of mortality. However, multivariate Cox regression analysis indicated that DNMTs and TETs expression were not independent prognostic markers for patient survival, suggesting their impact may be influenced by other clinical and molecular factors. Validation through online databases (TCGA and CGGA) showed that TET family expression across histological grades was consistent with our samples, whereas TDG and DNMT family expression differed. CONCLUSION Our findings suggest that DNMTs and TETs may serve as therapeutic targets in glioma due to their downregulation and association with survival, with TET family members (TET1, TET2, and TET3) validated through online databases. However, their prognostic value is limited, as other clinical and molecular factors influence patient outcomes. The downregulation of DNMTs in our samples compared to online databases can be attributed to distinct epigenetic mechanisms: in IDH-mutant gliomas, DNMT suppression results from global hypermethylation (G-CIMP) due to 2-HG accumulation, which inhibits TET enzymes and disrupts DNA methylation homeostasis. In contrast, IDH-wildtype high-grade gliomas exhibit global hypomethylation, genomic instability, oncogenic signaling, and dedifferentiation, reducing the demand for active DNA methylation maintenance. These findings underscore the complex regulation of DNMTs and TETs in gliomas and their potential therapeutic implications.
Collapse
Affiliation(s)
- Sufiyan Sufiyan
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Hira Salam
- Department of Oral Pathology, Dr. Ishrat-ul-Ibad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Sahar Ilyas
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan
| | - Wajiha Amin
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Fatima Arshad
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, 75300, Pakistan
| | | | - Sana Naeem
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan
| | - Altaf Ali Laghari
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Syed Ather Enam
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan.
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan.
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi, Pakistan.
| | - Nouman Mughal
- Department of Biological & Biomedical Science, Aga Khan University Hospital, Karachi, Pakistan.
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
5
|
Hawking ZL, Allan JM. Landscape of TET2 Mutations: From Hematological Malignancies to Solid Tumors. Cancer Med 2025; 14:e70792. [PMID: 40116537 PMCID: PMC11926918 DOI: 10.1002/cam4.70792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/29/2025] [Accepted: 03/09/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND The ten-eleven translocation (TET) enzyme family is a key regulator of DNA methylation, responsible for the conversion of 5-methylcytosine to 5-hydroxymethylcytosine to promote locus-specific demethylation. Thus, it is not surprising that loss or attenuation of TET enzymes is implicated in genomic hypermethylation and transcriptional reprogramming that drives cancer development. Somatic mutations in TET2 are observed in the bone marrow of 5%-10% of healthy adults over 65 years of age, imparting a hematopoietic stem cell advantage and subsequent clonal hematopoiesis of indeterminate potential (CHIP), a condition which is associated with increased risk of myeloid malignancy. Somatic TET2 mutations are frequently reported in myeloid disorders, including myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Evidence suggests that TET2 mutations also affect prognosis in myeloid leukemia and other hematopoietic malignancies. However, there is a paucity of collated data on the frequency of TET2 mutations in solid human cancers. OBJECTIVES We review the published literature on TET2 mutation in human solid cancers and explore their frequency and impact on patient outcomes. RESULTS & CONCLUSIONS Somatic TET2 mutations are reported in numerous solid human cancers, including those arising in the skin, lung and prostate. Many of the somatic TET2 mutations reported in solid cancers are recurrent, suggesting functionality. There is also evidence to suggest that somatic TET2 mutations affect prognosis in solid human cancers.
Collapse
Affiliation(s)
- Zoë L. Hawking
- Newcastle University Centre for Cancer, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - James M. Allan
- Newcastle University Centre for Cancer, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
6
|
Palczewski MB, Kuschman HP, Hoffman BM, Kathiresan V, Yang H, Glynn SA, Wilson DL, Kool ET, Montfort WR, Chang J, Petenkaya A, Chronis C, Cundari TR, Sappa S, Islam K, McVicar DW, Fan Y, Chen Q, Meerzaman D, Sierk M, Thomas DD. Nitric oxide inhibits ten-eleven translocation DNA demethylases to regulate 5mC and 5hmC across the genome. Nat Commun 2025; 16:1732. [PMID: 39966373 PMCID: PMC11836389 DOI: 10.1038/s41467-025-56928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
DNA methylation at cytosine bases (5-methylcytosine, 5mC) is a heritable epigenetic mark regulating gene expression. While enzymes that metabolize 5mC are well-characterized, endogenous signaling molecules that regulate DNA methylation machinery have not been described. We report that physiological nitric oxide (NO) concentrations reversibly inhibit the DNA demethylases TET and ALKBH2 by binding to the mononuclear non-heme iron atom forming a dinitrosyliron complex (DNIC) and preventing cosubstrates from binding. In cancer cells treated with exogenous NO, or endogenously synthesizing NO, 5mC and 5-hydroxymethylcytosine (5hmC) increase, with no changes in DNA methyltransferase activity. 5mC is also significantly increased in NO-producing patient-derived xenograft tumors from mice. Genome-wide methylome analysis of cells chronically treated with NO (10 days) shows enrichment of 5mC and 5hmC at gene-regulatory loci, correlating with altered expression of NO-regulated tumor-associated genes. Regulation of DNA methylation is distinctly different from canonical NO signaling and represents a unique epigenetic role for NO.
Collapse
Affiliation(s)
- Marianne B Palczewski
- Department of Pharmaceutical Sciences, University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA
| | - Hannah Petraitis Kuschman
- Department of Pharmaceutical Sciences, University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA
| | - Brian M Hoffman
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Venkatesan Kathiresan
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Hao Yang
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Sharon A Glynn
- Discipline of Pathology, University of Galway, College of Medicine, Nursing and Health Sciences, School of Medicine, Galway, Ireland
| | - David L Wilson
- Department of Chemistry, Stanford University, School of Humanities and Sciences, Stanford, CA, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, School of Humanities and Sciences, Stanford, CA, USA
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Jenny Chang
- Dr. Mary and Neal Cancer Center at Houston Methodist, Weill Cornell Medical College, Houston, NY, USA
| | - Aydolun Petenkaya
- Department of Biomedical Engineering, University of Illinois Chicago, College of Engineering, Chicago, IL, USA
| | - Constantinos Chronis
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, College of Medicine, Chicago, IL, USA
| | - Thomas R Cundari
- Department of Chemistry, University of North Texas, Denton, TX, USA
| | - Sushma Sappa
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kabirul Islam
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel W McVicar
- Cancer Innovation Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Yu Fan
- National Cancer Institute, Center for Biomedical Informatics and Information Technology, Bethesda, USA
| | - Qingrong Chen
- National Cancer Institute, Center for Biomedical Informatics and Information Technology, Bethesda, USA
| | - Daoud Meerzaman
- Cancer Innovation Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Michael Sierk
- Cancer Innovation Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Douglas D Thomas
- Department of Pharmaceutical Sciences, University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA.
| |
Collapse
|
7
|
Lee PWT, Kobayashi M, Dohkai T, Takahashi I, Yoshida T, Harada H. 2-Oxoglutarate-dependent dioxygenases as oxygen sensors: their importance in health and disease. J Biochem 2025; 177:79-104. [PMID: 39679914 DOI: 10.1093/jb/mvae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Since low oxygen conditions below physiological levels, hypoxia, are associated with various diseases, it is crucial to understand the molecular basis behind cellular response to hypoxia. Hypoxia-inducible factors (HIFs) have been revealed to primarily orchestrate the hypoxic response at the transcription level and have continuously attracted great attention over the past three decades. In addition to these hypoxia-responsive effector proteins, 2-oxoglutarate-dependent dioxygenase (2-OGDD) superfamily including prolyl-4-hydroxylase domain-containing proteins (PHDs) and factor inhibiting HIF-1 (FIH-1) has attracted even greater attention in recent years as factors that act as direct oxygen sensors due to their necessity of oxygen for the regulation of the expression and activity of the regulatory subunit of HIFs. Herein, we present a detailed classification of 2-OGDD superfamily proteins, such as Jumonji C-domain-containing histone demethylases, ten-eleven translocation enzymes, AlkB family of DNA/RNA demethylases and lysyl hydroxylases, and discuss their specific functions and associations with various diseases. By introducing the multifaceted roles of 2-OGDD superfamily proteins in the hypoxic response, this review aims to summarize the accumulated knowledge about the complex mechanisms governing cellular adaptation to hypoxia in various physiological and pathophysiological contexts.
Collapse
Affiliation(s)
- Peter W T Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takakuni Dohkai
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Itsuki Takahashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takumi Yoshida
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Amissah HA, Combs SE, Shevtsov M. Tumor Dormancy and Reactivation: The Role of Heat Shock Proteins. Cells 2024; 13:1087. [PMID: 38994941 PMCID: PMC11240553 DOI: 10.3390/cells13131087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Tumors are a heterogeneous group of cell masses originating in various organs or tissues. The cellular composition of the tumor cell mass interacts in an intricate manner, influenced by humoral, genetic, molecular, and tumor microenvironment cues that dictate tumor growth or suppression. As a result, tumors undergo a period of a dormant state before their clinically discernible stage, which surpasses the clinical dormancy threshold. Moreover, as a genetically imprinted strategy, early-seeder cells, a distinct population of tumor cells, break off to dock nearby or extravasate into blood vessels to secondary tissues, where they form disseminated solitary dormant tumor cells with reversible capacity. Among the various mechanisms underlying the dormant tumor mass and dormant tumor cell formation, heat shock proteins (HSPs) might play one of the most important roles in how the dormancy program plays out. It is known that numerous aberrant cellular processes, such as malignant transformation, cancer cell stemness, tumor invasion, metastasis, angiogenesis, and signaling pathway maintenance, are influenced by the HSPs. An accumulating body of knowledge suggests that HSPs may be involved in the angiogenic switch, immune editing, and extracellular matrix (ECM) remodeling cascades, crucial genetically imprinted strategies important to the tumor dormancy initiation and dormancy maintenance program. In this review, we highlight the biological events that orchestrate the dormancy state and the body of work that has been conducted on the dynamics of HSPs in a tumor mass, as well as tumor cell dormancy and reactivation. Additionally, we propose a conceptual framework that could possibly underlie dormant tumor reactivation in metastatic relapse.
Collapse
Affiliation(s)
- Haneef Ahmed Amissah
- Institute of Life Sciences and Biomedicine, Department of Medical Biology and Medical Biology, FEFU Campus, Far Eastern Federal University, 690922 Vladivostok, Russia;
- Diagnostics Laboratory Department, Trauma and Specialist Hospital, CE-122-2486, Central Region, Winneba P.O. Box 326, Ghana
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
| | - Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| |
Collapse
|
9
|
Chen LY, Shen YA, Chu LH, Su PH, Wang HC, Weng YC, Lin SF, Wen KC, Liew PL, Lai HC. Active DNA Demethylase, TET1, Increases Oxidative Phosphorylation and Sensitizes Ovarian Cancer Stem Cells to Mitochondrial Complex I Inhibitor. Antioxidants (Basel) 2024; 13:735. [PMID: 38929174 PMCID: PMC11200674 DOI: 10.3390/antiox13060735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Ten-eleven translocation 1 (TET1) is a methylcytosine dioxygenase involved in active DNA demethylation. In our previous study, we demonstrated that TET1 reprogrammed the ovarian cancer epigenome, increased stem properties, and activated various regulatory networks, including metabolic networks. However, the role of TET1 in cancer metabolism remains poorly understood. Herein, we uncovered a demethylated metabolic gene network, especially oxidative phosphorylation (OXPHOS). Contrary to the concept of the Warburg effect in cancer cells, TET1 increased energy production mainly using OXPHOS rather than using glycolysis. Notably, TET1 increased the mitochondrial mass and DNA copy number. TET1 also activated mitochondrial biogenesis genes and adenosine triphosphate production. However, the reactive oxygen species levels were surprisingly decreased. In addition, TET1 increased the basal and maximal respiratory capacities. In an analysis of tricarboxylic acid cycle metabolites, TET1 increased the levels of α-ketoglutarate, which is a coenzyme of TET1 dioxygenase and may provide a positive feedback loop to modify the epigenomic landscape. TET1 also increased the mitochondrial complex I activity. Moreover, the mitochondrial complex I inhibitor, which had synergistic effects with the casein kinase 2 inhibitor, affected ovarian cancer growth. Altogether, TET1-reprogrammed ovarian cancer stem cells shifted the energy source to OXPHOS, which suggested that metabolic intervention might be a novel strategy for ovarian cancer treatment.
Collapse
Grants
- MOST 109-2314-B-038-052-MY3 Ministry of Science and Technology, Taiwan
- MOST 108-2314-B-038-096 Ministry of Science and Technology, Taiwan
- MOST 110-2314-B-038-060 Ministry of Science and Technology, Taiwan
- MOST 111-2314-B-038-108-MY3 Ministry of Science and Technology, Taiwan
- MOST 110- 471 2314-B-038-059 Ministry of Science and Technology, Taiwan
- MOST 110-2635-B-038-001 Ministry of Science and Technology, Taiwan
- MOST 109-2314-B-038-021-MY3 Ministry of Science and Technology, Taiwan
- 109TMU-SHH-20 Taipei Medical University-Shuang Ho Hospital, Taiwan
- TMU109-AE1-B22 Taipei Medical University, Taiwan
- MOST 109-2314-B-038-107-MY3 Ministry of Science and Technology, Taiwan
- MOST 111-2320-B-038-023-MY3 Ministry of Science and Technology, Taiwan
Collapse
Affiliation(s)
- Lin-Yu Chen
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (L.-Y.C.); (L.-H.C.); (K.-C.W.)
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ling-Hui Chu
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (L.-Y.C.); (L.-H.C.); (K.-C.W.)
| | - Po-Hsuan Su
- College of Health Technology, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan;
| | - Hui-Chen Wang
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yu-Chun Weng
- Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Shiou-Fu Lin
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
| | - Kuo-Chang Wen
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (L.-Y.C.); (L.-H.C.); (K.-C.W.)
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Phui-Ly Liew
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
| | - Hung-Cheng Lai
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (L.-Y.C.); (L.-H.C.); (K.-C.W.)
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
- Translational Epigenetics Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
10
|
Thomas D, Palczewski M, Kuschman H, Hoffman B, Yang H, Glynn S, Wilson D, Kool E, Montfort W, Chang J, Petenkaya A, Chronis C, Cundari T, Sappa S, Islam K, McVicar D, Fan Y, Chen Q, Meerzaman D, Sierk M. Nitric oxide inhibits ten-eleven translocation DNA demethylases to regulate 5mC and 5hmC across the genome. RESEARCH SQUARE 2024:rs.3.rs-4131804. [PMID: 38645113 PMCID: PMC11030528 DOI: 10.21203/rs.3.rs-4131804/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
DNA methylation at cytosine bases of eukaryotic DNA (5-methylcytosine, 5mC) is a heritable epigenetic mark that can regulate gene expression in health and disease. Enzymes that metabolize 5mC have been well-characterized, yet the discovery of endogenously produced signaling molecules that regulate DNA methyl-modifying machinery have not been described. Herein, we report that the free radical signaling molecule nitric oxide (NO) can directly inhibit the Fe(II)/2-OG-dependent DNA demethylases ten-eleven translocation (TET) and human AlkB homolog 2 (ALKBH2). Physiologic NO concentrations reversibly inhibited TET and ALKBH2 demethylase activity by binding to the mononuclear non-heme iron atom which formed a dinitrosyliron complex (DNIC) preventing cosubstrates (2-OG and O2) from binding. In cancer cells treated with exogenous NO, or cells endogenously synthesizing NO, there was a global increase in 5mC and 5-hydroxymethylcytosine (5hmC) in DNA, the substrates for TET, that could not be attributed to increased DNA methyltransferase activity. 5mC was also elevated in NO-producing cell-line-derived mouse xenograft and patient-derived xenograft tumors. Genome-wide DNA methylome analysis of cells chronically treated with NO (10 days) demonstrated enrichment of 5mC and 5hmC at gene-regulatory loci which correlated to changes in the expression of NO-regulated tumor-associated genes. Regulation of DNA methylation is distinctly different from canonical NO signaling and represents a novel epigenetic role for NO.
Collapse
Affiliation(s)
| | - Marianne Palczewski
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences
| | - Hannah Kuschman
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences
| | | | - Hao Yang
- Weinberg College of Arts and Sciences, Northwestern University, Department of Chemistry
| | - Sharon Glynn
- University of Galway, College of Medicine, Nursing and Health Sciences, School of Medicine, D. of Pathology
| | | | - Eric Kool
- Stanford University, Department of Chemistry, School of Humanities and Sciences
| | | | - Jenny Chang
- Houston Methodist, Department of Medicine and Oncology, Weill Cornell Medical College
| | - Aydolun Petenkaya
- University of Illinois Chicago, College of Medicine, Biochemistry and Molecular Genetics
| | - Constantinos Chronis
- University of Illinois Chicago, College of Medicine, Biochemistry and Molecular Genetics
| | | | - Sushma Sappa
- University of Pittsburgh, Department of Chemistry
| | | | - Daniel McVicar
- National Institutes of Health, National Cancer Institute, Center for Cancer Research
| | - Yu Fan
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| | - Qingrong Chen
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| | - Daoud Meerzaman
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| | - Michael Sierk
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| |
Collapse
|
11
|
Linowiecka K, Guz J, Dziaman T, Urbanowska-Domańska O, Zarakowska E, Szpila A, Szpotan J, Skalska-Bugała A, Mijewski P, Siomek-Górecka A, Różalski R, Gackowski D, Oliński R, Foksiński M. The level of active DNA demethylation compounds in leukocytes and urine samples as potential epigenetic biomarkers in breast cancer patients. Sci Rep 2024; 14:6481. [PMID: 38499584 PMCID: PMC10948817 DOI: 10.1038/s41598-024-56326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
The active DNA demethylation process, which involves TET proteins, can affect DNA methylation pattern. TET dependent demethylation results in DNA hypomethylation by oxidation 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) and its derivatives. Moreover, TETs' activity may be upregulated by ascorbate. Given that aberrant DNA methylation of genes implicated in breast carcinogenesis may be involved in tumor progression, we wanted to determine whether breast cancer patients exert changes in the active DNA demethylation process. The study included blood samples from breast cancer patients (n = 74) and healthy subjects (n = 71). We analyzed the expression of genes involved in the active demethylation process (qRT-PCR), and 5-mC and its derivatives level (2D-UPLC MS/MS). The ascorbate level was determined using UPLC-MS. Breast cancer patients had significantly higher TET3 expression level, lower 5-mC and 5-hmC DNA levels. TET3 was significantly increased in luminal B breast cancer patients with expression of hormone receptors. Moreover, the ascorbate level in the plasma of breast cancer patients was decreased with the accompanying increase of sodium-dependent vitamin C transporters (SLC23A1 and SLC23A2). The presented study indicates the role of TET3 in DNA demethylation in breast carcinogenesis.
Collapse
Affiliation(s)
- Kinga Linowiecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland.
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland.
| | - Jolanta Guz
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Tomasz Dziaman
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Olga Urbanowska-Domańska
- Department of Oncology, Professor Franciszek Lukaszczyk Oncology Centre, Romanowskiej 2, 85-796, Bydgoszcz, Poland
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Anna Szpila
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Justyna Szpotan
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| | - Aleksandra Skalska-Bugała
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Paweł Mijewski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Agnieszka Siomek-Górecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Rafał Różalski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Ryszard Oliński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Marek Foksiński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland.
| |
Collapse
|
12
|
Maekawa S, Takata R, Obara W. Molecular Mechanisms of Prostate Cancer Development in the Precision Medicine Era: A Comprehensive Review. Cancers (Basel) 2024; 16:523. [PMID: 38339274 PMCID: PMC10854717 DOI: 10.3390/cancers16030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The progression of prostate cancer (PCa) relies on the activation of the androgen receptor (AR) by androgens. Despite efforts to block this pathway through androgen deprivation therapy, resistance can occur through several mechanisms, including the abnormal activation of AR, resulting in castration-resistant PCa following the introduction of treatment. Mutations, amplifications, and splicing variants in AR-related genes have garnered attention in this regard. Furthermore, recent large-scale next-generation sequencing analysis has revealed the critical roles of AR and AR-related genes, as well as the DNA repair, PI3K, and cell cycle pathways, in the onset and progression of PCa. Moreover, research on epigenomics and microRNA has increasingly become popular; however, it has not translated into the development of effective therapeutic strategies. Additionally, treatments targeting homologous recombination repair mutations and the PI3K/Akt pathway have been developed and are increasingly accessible, and multiple clinical trials have investigated the efficacy of immune checkpoint inhibitors. In this comprehensive review, we outline the status of PCa research in genomics and briefly explore potential future developments in the field of epigenetic modifications and microRNAs.
Collapse
Affiliation(s)
- Shigekatsu Maekawa
- Department of Urology, Iwate Medical University, Iwate 028-3694, Japan; (R.T.); (W.O.)
| | | | | |
Collapse
|
13
|
Ghazimoradi MH, Pakravan K, Khalafizadeh A, Babashah S. TET1 regulates stem cell properties and cell cycle of Cancer stem cells in triple-negative breast cancer via DNA demethylation. Biochem Pharmacol 2024; 219:115913. [PMID: 37995981 DOI: 10.1016/j.bcp.2023.115913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
The role of cancer stem cells in metastasis, recurrence, and resistance to conventional therapies is significant. Addressing these cells could potentially decrease cancer reoccurrences and mortality rates. TET1, a crucial gene involved in stem cell self-renewal and potency, may also play a part in cancer stem cells, which warrants further research. To explore the role of TET1 in cancer stem cells, we conducted experiments involving loss and gain. We then analyzed factors such as migration, invasion, cell cycle, cell viability, mammosphere formation, and the CD44+/CD24- subpopulation of cancer cells. We also investigate the influence of TET1 on CCNB1, CDK1, and OCT4. Our study reveals that TET1 can regulate the phenotype of cancer stem cells via OCT4. Additionally, it can control the cell cycle by increasing CDK1 and CCNB1 levels. These findings suggest that targeting DNA methylation and TET1 could be an effective strategy to overcome obstacles posed by Cancer stem cells. Our research also indicates that TET1 can influence the phenotype of cancer stem cells and the cell cycle of breast cancer cells potentially through OCT4, CCNB1, and CDK1. This highlights the importance of TET1 in breast cancer cases and suggests a potential therapeutic approach through DNA methylation and modulation of TET1.
Collapse
Affiliation(s)
- Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Ali Khalafizadeh
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
14
|
Banerjee A, Bardhan A, Sarkar P, Datta C, Pal DK, Saha A, Ghosh A. Dysregulation of DNA epigenetic modulators during prostate carcinogenesis in an eastern Indian patient population: Prognostic implications. Pathol Res Pract 2024; 253:154970. [PMID: 38056136 DOI: 10.1016/j.prp.2023.154970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
The role of epigenetic alteration in prostate cancer pathogenesis was reported. We aimed to analyze dysregulation of DNA methylase (DNA methyl transferase/DNMT) and demethylase (ten eleven translocase/TET) and the associated interplay between them during prostate tumorigenesis. Promoter methylation and RNA/protein expression of selected DNMT and TETs were analysed in normal prostate, benign prostatic hyperplasia (BPH), and prostate cancer (PCa). Genomic 5-hydroxymethylcytosine (5hmC) level was detected and correlated with DNMT and TET proteins. Clinicopathological association of molecular data was done. Our data revealed a very low frequency of promoter methylation for DNMT1 (5-3% and high frequency for TET1 (22-38%), TET2 (68-90 %), and TET3 (43-32 %) in BPH and PCa. The promoter methylation of DNMT1 (p = 0.019) showed a significantly decreasing trend, while that of TET1 (p = 0.0005) and TET2 (p < 0.0001) showed an increasing trend from normal prostate to BPH to PCa, indicating their epigenetic dysregulation during prostate tumorigenesis. RNA/protein overexpression of DNMT1 and reduced expression of TET1 and TET2 in PCa compared to BPH were associated with the promoter methylation status of genes. The 5hmC level was significantly lower in PCa than in BPH and correlated negatively with DNMT1 but positively with TET1 and TET2 proteins, suggesting dysregulation of DNA methylase and de-methylase activities during prostate tumorigenesis. Lastly, tumors having methylated TET1 and TET2 promoters showed advanced clinicopathological features (a higher PSA level/Gleason score) and increased risk of bone metastasis. In conclusion, DNMT1 upregulation and epigenetic silencing of TET1 and TET2 was seen during PCa development. TET1 and TET2 promoter methylation has prognostic importance.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Abhishek Bardhan
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Purandar Sarkar
- Institute of Health Sciences, Presidency University, New Town, Kolkata, West Bengal, India
| | - Chhanda Datta
- Department of Pathology, IPGME&R, Kolkata, West Bengal, India
| | | | - Abhik Saha
- Institute of Health Sciences, Presidency University, New Town, Kolkata, West Bengal, India
| | - Amlan Ghosh
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
15
|
Saeed RF, Naz S, Awan UA, Gul S, Subhan F, Saeed S. Micronutrients Importance in Cancer Prevention-Vitamins. Cancer Treat Res 2024; 191:119-144. [PMID: 39133406 DOI: 10.1007/978-3-031-55622-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The effect of nutrition in the development and prognosis of cancer has received a lot of attention. Research shows taking vitamins, which are powerful antioxidants, can significantly lower the risk of cancers. Nutritional supplements suited to a patient's background, genetics, diet, tumour histology, and therapy may be beneficial in some cases. A poor diet may have a negative impact on immunity and treatment tolerance, decreasing the efficacy of chemotherapy in destroying malignant cells. Most cancer patients now take vitamins to supplement regular treatment and/or to decrease side effects from the medicine as well as the underlying ailment. This is a new development in recent decades, whereas taking nutritional supplements while receiving cancer treatment may increase the success of chemotherapy. To enhance the quality of life, lengthen the survival rate, and sustain immunotherapy compliance, additional study into the use of micronutrients in medical treatment is required for cancer patients. The main purpose of this book chapter was to highlight the role of vitamins in cancer and to establish a solid foundation for future research on this exciting topic. The possible impact of some vitamins in various malignancies such as colorectal, breast, prostate, lung, pancreatic, and stomach cancers are investigated.
Collapse
Affiliation(s)
- Rida Fatima Saeed
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan.
| | - Shumaila Naz
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Sana Gul
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Fazli Subhan
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | | |
Collapse
|
16
|
Salmerón-Bárcenas EG, Zacapala-Gómez AE, Torres-Rojas FI, Antonio-Véjar V, Ávila-López PA, Baños-Hernández CJ, Núñez-Martínez HN, Dircio-Maldonado R, Martínez-Carrillo DN, Ortiz-Ortiz J, Jiménez-Wences H. TET Enzymes and 5hmC Levels in Carcinogenesis and Progression of Breast Cancer: Potential Therapeutic Targets. Int J Mol Sci 2023; 25:272. [PMID: 38203443 PMCID: PMC10779134 DOI: 10.3390/ijms25010272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Breast Cancer (BC) was the most common female cancer in incidence and mortality worldwide in 2020. Similarly, BC was the top female cancer in the USA in 2022. Risk factors include earlier age at menarche, oral contraceptive use, hormone replacement therapy, high body mass index, and mutations in BRCA1/2 genes, among others. BC is classified into Luminal A, Luminal B, HER2-like, and Basal-like subtypes. These BC subtypes present differences in gene expression signatures, which can impact clinical behavior, treatment response, aggressiveness, metastasis, and survival of patients. Therefore, it is necessary to understand the epigenetic molecular mechanism of transcriptional regulation in BC, such as DNA demethylation. Ten-Eleven Translocation (TET) enzymes catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) on DNA, which in turn inhibits or promotes the gene expression. Interestingly, the expression of TET enzymes as well as the levels of the 5hmC epigenetic mark are altered in several types of human cancers, including BC. Several studies have demonstrated that TET enzymes and 5hmC play a key role in the regulation of gene expression in BC, directly (dependent or independent of DNA de-methylation) or indirectly (via interaction with other proteins such as transcription factors). In this review, we describe our recent understanding of the regulatory and physiological function of the TET enzymes, as well as their potential role as biomarkers in BC biology.
Collapse
Affiliation(s)
- Eric Genaro Salmerón-Bárcenas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México C.P. 07360, Mexico; (E.G.S.-B.); (P.A.Á.-L.)
| | - Ana Elvira Zacapala-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (A.E.Z.-G.); (F.I.T.-R.); (V.A.-V.); (J.O.-O.)
| | - Francisco Israel Torres-Rojas
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (A.E.Z.-G.); (F.I.T.-R.); (V.A.-V.); (J.O.-O.)
| | - Verónica Antonio-Véjar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (A.E.Z.-G.); (F.I.T.-R.); (V.A.-V.); (J.O.-O.)
| | - Pedro Antonio Ávila-López
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México C.P. 07360, Mexico; (E.G.S.-B.); (P.A.Á.-L.)
| | - Christian Johana Baños-Hernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara C. P. 44340, Jalisco, Mexico;
| | - Hober Nelson Núñez-Martínez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México C. P. 04510, Mexico;
| | - Roberto Dircio-Maldonado
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (R.D.-M.); (D.N.M.-C.)
| | - Dinorah Nashely Martínez-Carrillo
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (R.D.-M.); (D.N.M.-C.)
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (A.E.Z.-G.); (F.I.T.-R.); (V.A.-V.); (J.O.-O.)
| | - Hilda Jiménez-Wences
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico; (R.D.-M.); (D.N.M.-C.)
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo C. P. 39090, Guerrero, Mexico
| |
Collapse
|
17
|
Ismail JN, Mantash S, Hallal M, Jabado N, Khoueiry P, Shirinian M. Phenotypic and transcriptomic impact of expressing mammalian TET2 in the Drosophila melanogaster model. Epigenetics 2023; 18:2192375. [PMID: 36989121 PMCID: PMC10072067 DOI: 10.1080/15592294.2023.2192375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Ten-Eleven Translocation (TET) proteins have recently come to light as important epigenetic regulators conserved in multicellular organisms. TET knockdown studies in rodents have highlighted the critical role of these proteins for proper brain development and function. Mutations in mammalian mTET proteins and mTET2 specifically are frequent and deregulated in leukaemia and glioma respectively. Accordingly, we examined the role of mTET2 in tumorigenesis in larval haemocytes and adult heads in Drosophila melanogaster. Our findings showed that expression of mutant and wild type mTET2 resulted in general phenotypic defects in adult flies and accumulation of abdominal melanotic masses. Notably, flies with mTET2-R43G mutation at the N-terminus of mTET2 exhibited locomotor and circadian behavioural deficits, as well as reduced lifespan. Flies with mTET2-R1261C mutation in the catalytic domain, a common mutation in acute myeloid leukaemia (AML), displayed alterations affecting haemocyte haemostasis. Using transcriptomic approach, we identified upregulated immune genes in fly heads that were not exclusive to TET2 mutants but also found in wild type mTET2 flies. Furthermore, inhibiting expression of genes that were found to be deregulated in mTET2 mutants, such as those involved in immune pathways, autophagy, and transcriptional regulation, led to a rescue in fly survival, behaviour, and hemocyte number. This study identifies the transcriptomic profile of wild type mTET2 versus mTET2 mutants (catalytic versus non-catalytic) with indications of TET2 role in normal central nervous system (CNS) function and innate immunity.
Collapse
Affiliation(s)
- Joy N Ismail
- Department of Experimental pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sarah Mantash
- Department of Experimental pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mohammad Hallal
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Biomedical Engineering Program, American University of Beirut, Beirut, Lebanon
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Pierre Khoueiry
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Pillar Genomics Institute, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Margret Shirinian
- Department of Experimental pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
18
|
Lee SW, Frankston CM, Kim J. Epigenome editing in cancer: Advances and challenges for potential therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:191-230. [PMID: 38359969 DOI: 10.1016/bs.ircmb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Cancers are diseases caused by genetic and non-genetic environmental factors. Epigenetic alterations, some attributed to non-genetic factors, can lead to cancer development. Epigenetic changes can occur in tumor suppressors or oncogenes, or they may contribute to global cell state changes, making cells abnormal. Recent advances in gene editing technology show potential for cancer treatment. Herein, we will discuss our current knowledge of epigenetic alterations occurring in cancer and epigenetic editing technologies that can be applied to developing therapeutic options.
Collapse
Affiliation(s)
- Seung-Won Lee
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Connor Mitchell Frankston
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Biomedical Engineering Graduate Program, Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jungsun Kim
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States; Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
19
|
Kim H, Jung I, Lee CH, An J, Ko M. Development of Novel Epigenetic Anti-Cancer Therapy Targeting TET Proteins. Int J Mol Sci 2023; 24:16375. [PMID: 38003566 PMCID: PMC10671484 DOI: 10.3390/ijms242216375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Epigenetic dysregulation, particularly alterations in DNA methylation and hydroxymethylation, plays a pivotal role in cancer initiation and progression. Ten-eleven translocation (TET) proteins catalyze the successive oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further oxidized methylcytosines in DNA, thereby serving as central modulators of DNA methylation-demethylation dynamics. TET loss of function is causally related to neoplastic transformation across various cell types while its genetic or pharmacological activation exhibits anti-cancer effects, making TET proteins promising targets for epigenetic cancer therapy. Here, we developed a robust cell-based screening system to identify novel TET activators and evaluated their potential as anti-cancer agents. Using a carefully curated library of 4533 compounds provided by the National Cancer Institute, Bethesda, MD, USA, we identified mitoxantrone as a potent TET agonist. Through rigorous validation employing various assays, including immunohistochemistry and dot blot studies, we demonstrated that mitoxantrone significantly elevated 5hmC levels. Notably, this elevation manifested only in wild-type (WT) but not TET-deficient mouse embryonic fibroblasts, primary bone marrow-derived macrophages, and leukemia cell lines. Furthermore, mitoxantrone-induced cell death in leukemia cell lines occurred in a TET-dependent manner, indicating the critical role of TET proteins in mediating its anti-cancer effects. Our findings highlight mitoxantrone's potential to induce tumor cell death via a novel mechanism involving the restoration of TET activity, paving the way for targeted epigenetic therapies in cancer treatment.
Collapse
Affiliation(s)
- Hyejin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; (H.K.); (I.J.)
| | - Inkyung Jung
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; (H.K.); (I.J.)
| | - Chan Hyeong Lee
- Department of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Jungeun An
- Department of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Myunggon Ko
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; (H.K.); (I.J.)
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| |
Collapse
|
20
|
Feng Y, Wang K, Qin M, Zhuang Q, Chen Z. MiR-183-5p promotes migration and invasion of prostate cancer by targeting TET1. BMC Urol 2023; 23:116. [PMID: 37430206 DOI: 10.1186/s12894-023-01286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/01/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the common malignant tumors worldwide. MiR-183-5p has been reported involved in the initiation of human PCa, this study aimed to investigate whether miR-183-5p affects the development of prostate cancer. METHODS In this study, we analyzed the expression of miR-183-5p in PCa patients and its correlation with clinicopathological parameters based on TCGA data portal. CCK-8, migration assay and invasion and wound-healing assay were performed to detect proliferation, migration and invasion in PCa cells. RESULTS We found the expression of miR-183-5p was significantly increased in PCa tissues, and high expression of miR-183 was positively associated with poor prognosis of PCa patients. Over-expression of miR-183-5p promoted the migration, invasion capacities of PCa cells, whereas knockdown of miR-183-5p showed reversed function. Furthermore, luciferase reporter assay showed TET1 was identified as a direct target of miR-183-5p, which was negatively correlation with miR-183-5p expression level. Importantly, rescue experiments demonstrated TET1 over-expression could reverse miR-183-5p mimic induced-acceleration of PCa malignant progression. CONCLUSION Our results indicated that miR-183-5p could act as a tumor promoter in PCa and it accelerated the malignant progression of PCa by directly targeting and down-regulating TET1.
Collapse
Affiliation(s)
- Yuehua Feng
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Kai Wang
- Department of Urology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minchao Qin
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Qianfeng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Zhen Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
21
|
Chen Z, Zhou K, Xue J, Small A, Xiao G, Nguyen LXT, Zhang Z, Prince E, Weng H, Huang H, Zhao Z, Qing Y, Shen C, Li W, Han L, Tan B, Su R, Qin H, Li Y, Wu D, Gu Z, Ngo VN, He X, Chao J, Leung K, Wang K, Dong L, Qin X, Cai Z, Sheng Y, Chen Y, Wu X, Zhang B, Shi Y, Marcucci G, Qian Z, Xu M, Müschen M, Chen J, Deng X. Phosphorylation stabilized TET1 acts as an oncoprotein and therapeutic target in B cell acute lymphoblastic leukemia. Sci Transl Med 2023; 15:eabq8513. [PMID: 36989375 PMCID: PMC11163962 DOI: 10.1126/scitranslmed.abq8513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Abstract
Although the overall survival rate of B cell acute lymphoblastic leukemia (B-ALL) in childhood is more than 80%, it is merely 30% in refractory/relapsed and adult patients with B-ALL. This demonstrates a need for improved therapy targeting this subgroup of B-ALL. Here, we show that the ten-eleven translocation 1 (TET1) protein, a dioxygenase involved in DNA demethylation, is overexpressed and plays a crucial oncogenic role independent of its catalytic activity in B-ALL. Consistent with its oncogenic role in B-ALL, overexpression of TET1 alone in normal precursor B cells is sufficient to transform the cells and cause B-ALL in mice within 3 to 4 months. We found that TET1 protein is stabilized and overexpressed because of its phosphorylation mediated by protein kinase C epsilon (PRKCE) and ATM serine/threonine kinase (ATM), which are also overexpressed in B-ALL. Mechanistically, TET1 recruits STAT5B to the promoters of CD72 and JCHAIN and promotes their transcription, which in turn promotes B-ALL development. Destabilization of TET1 protein by treatment with PKC or ATM inhibitors (staurosporine or AZD0156; both tested in clinical trials), or by pharmacological targeting of STAT5B, greatly decreases B-ALL cell viability and inhibits B-ALL progression in vitro and in vivo. The combination of AZD0156 with staurosporine or vincristine exhibits a synergistic effect on inhibition of refractory/relapsed B-ALL cell survival and leukemia progression in PDX models. Collectively, our study reveals an oncogenic role of the phosphorylated TET1 protein in B-ALL independent of its catalytic activity and highlights the therapeutic potential of targeting TET1 signaling for the treatment of refractory/relapsed B-ALL.
Collapse
Affiliation(s)
- Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Keren Zhou
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jianhuang Xue
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Andrew Small
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Gang Xiao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Le Xuan Truong Nguyen
- Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Gehr Family Center for Leukemia Research, City of Hope Medical Center and Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Zheng Zhang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Emily Prince
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Hengyou Weng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Guangzhou Laboratory, Guangzhou, Guangdong 510005, China
| | - Huilin Huang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Zhicong Zhao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Li Han
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Brandon Tan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Hanjun Qin
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Yangchan Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Department of Radiation Oncology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Dong Wu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Zhaohui Gu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Vu N. Ngo
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xin He
- Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jianfei Chao
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Keith Leung
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Kitty Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xi Qin
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Zhenming Cai
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, Nanjing Medical University, Nanjing 211166, China
| | - Yue Sheng
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, FL 32611, USA
- Department of Hematology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yu Chen
- Molecular Instrumentation Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Bin Zhang
- Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Gehr Family Center for Leukemia Research, City of Hope Medical Center and Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Yanhong Shi
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guido Marcucci
- Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Gehr Family Center for Leukemia Research, City of Hope Medical Center and Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Zhijian Qian
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, FL 32611, USA
| | - Mingjiang Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Markus Müschen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
- Gehr Family Center for Leukemia Research, City of Hope Medical Center and Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| |
Collapse
|
22
|
Ghamlouche F, Yehya A, Zeid Y, Fakhereddine H, Fawaz J, Liu YN, Al-Sayegh M, Abou-Kheir W. MicroRNAs as clinical tools for diagnosis, prognosis, and therapy in prostate cancer. Transl Oncol 2023; 28:101613. [PMID: 36608541 PMCID: PMC9827391 DOI: 10.1016/j.tranon.2022.101613] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed cancers among men worldwide. Despite the presence of accumulated clinical strategies for PCa management, limited prognostic/sensitive biomarkers are available to follow up on disease occurrence and progression. MicroRNAs (miRNAs) are small non-coding RNAs that control gene expression through post-transcriptional regulation of their complementary target messenger RNA (mRNA). MiRNAs modulate fundamental biological processes and play crucial roles in the pathology of various diseases, including PCa. Multiple evidence proved an aberrant miRNA expression profile in PCa, which is actively involved in the carcinogenic process. The robust and pleiotropic impact of miRNAs on PCa suggests them as potential candidates to help more understand the molecular landscape of the disease, which is likely to provide tools for early diagnosis and prognosis as well as additional therapeutic strategies to manage prostate tumors. Here, we emphasize the most consistently reported dysregulated miRNAs and highlight the contribution of their altered downstream targets with PCa hallmarks. Also, we report the potential effectiveness of using miRNAs as diagnostic/prognostic biomarkers in PCa and the high-throughput profiling technologies that are being used in their detection. Another key aspect to be discussed in this review is the promising implication of miRNAs molecules as therapeutic tools and targets for fighting PCa.
Collapse
Affiliation(s)
- Fatima Ghamlouche
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Amani Yehya
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Yousef Zeid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hiam Fakhereddine
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jhonny Fawaz
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Yen-Nien Liu
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi 2460, United Arab Emirates.
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon.
| |
Collapse
|
23
|
Baghel VS, Shinde S, Sinha V, Dixit V, Tiwari AK, Saxena S, Vishvakarma NK, Shukla D, Bhatt P. Inhibitors targeting epigenetic modifications in cancer. TRANSCRIPTION AND TRANSLATION IN HEALTH AND DISEASE 2023:287-324. [DOI: 10.1016/b978-0-323-99521-4.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
Jin S, Chen L, Wu J, Chen M, Wang H, Hu H, Yu L, Zeng S. MiR-183-5p promotes renal cell carcinoma metastasis by targeting TET1. Int J Immunopathol Pharmacol 2023; 37:3946320231184997. [PMID: 37584255 PMCID: PMC10434988 DOI: 10.1177/03946320231184997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/12/2023] [Indexed: 08/17/2023] Open
Abstract
Ten-eleven translocation 1 (TET1) is a member of the DNA demethylase family that regulates the methylation level of the genome. Dysregulation of TET1 in renal cell carcinoma (RCC) may be associated with RCC progression, but the mechanism of TET1 down-regulation in RCC is not yet known. MiR-183-5p is up-regulated in various tumor tissues and acts as an oncogene. We used Transwell and wound healing assays to test cell invasion and migration. To investigate DNA methylation, we used dot blot, which indicates TET1 enzyme activity. We verified the binding of miR-183-5p and TET1 3'-UTR (untranslated region) using dual-luciferase reporter assay. Our study demonstrated, for the first time, that miR-183-5p can directly repress TET1 expression in RCC. We observed a significant decrease in TET1 expression in RCC specimens, as reported in the literature, and a significant decrease in the concentration of 5hmC in RCC. By aligning the microRNA with a database and using the luciferase reporter gene method, we found that miR-183-5p can inhibit luciferase activity by binding to 453-459 bp of TET1 3'-UTR, leading to inhibition of TET1 expression. Furthermore, down-regulation of TET1 inhibited miR-200c expression and promoted RCC cell invasion and migration. Our findings suggest that in RCC, increased expression of miR-183-5p inhibits the expression of TET1, which in turn inhibits the expression of miR-200c and E-cadherin, both of which are associated with cell adhesion. This leads to the promotion of cell invasion and migration.
Collapse
Affiliation(s)
- Shengnan Jin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Lu Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jiayi Wu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Mengjiao Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Hua Wang
- Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Peng KL, Vasudevan HN, Lockney DT, Baum R, Hendrickson RC, Raleigh DR, Schmitt AM. Miat and interacting protein Metadherin maintain a stem-like niche to promote medulloblastoma tumorigenesis and treatment resistance. Proc Natl Acad Sci U S A 2022; 119:e2203738119. [PMID: 36067288 PMCID: PMC9478675 DOI: 10.1073/pnas.2203738119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play essential roles in the development and progression of many cancers. However, the contributions of lncRNAs to medulloblastoma (MB) remain poorly understood. Here, we identify Miat as an lncRNA enriched in the sonic hedgehog group of MB that is required for maintenance of a treatment-resistant stem-like phenotype in the disease. Loss of Miat results in the differentiation of tumor-initiating, stem-like MB cells and enforces the differentiation of tumorigenic stem-like MB cells into a nontumorigenic state. Miat expression in stem-like MB cells also facilitates treatment resistance by down-regulating p53 signaling and impairing radiation-induced cell death, which can be reversed by therapeutic inhibition of Miat using antisense oligonucleotides. Mechanistically, the RNA binding protein Metadherin (Mtdh), previously linked to resistance to cytotoxic therapy in cancer, binds to Miat in stem-like MB cells. Like the loss of Miat, the loss of Mtdh reduces tumorigenicity and increases sensitivity to radiation-induced death in stem-like MB cells. Moreover, Miat and Mtdh function to regulate the biogenesis of several microRNAs and facilitate tumorigenesis and treatment resistance. Taken together, these data reveal an essential role for the lncRNA Miat in sustaining a treatment-resistant pool of tumorigenic stem-like MB cells.
Collapse
Affiliation(s)
- Kai-Lin Peng
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Harish N. Vasudevan
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
- Department of Radiation Oncology, University of California San Francisco, CA, 94143
| | - Dennis T. Lockney
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Rachel Baum
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Ronald C. Hendrickson
- Microchemistry and Proteomics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - David R. Raleigh
- Department of Radiation Oncology, University of California San Francisco, CA, 94143
- Department of Neurological Surgery, University of California San Francisco, CA, 94143
| | - Adam M. Schmitt
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| |
Collapse
|
26
|
Elawdan KA, Farouk S, Aref S, Shoaib H, El-Razik MA, Abbas NH, Younis M, Alshambky AA, Khalil H. Association of vitamin B12/ferritin deficiency in cancer patients with methylomic changes at promotors of TET methylcytosine dioxygenases. Biomark Med 2022; 16:959-970. [PMID: 36052661 DOI: 10.2217/bmm-2022-0158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To investigate potential DNA methylation in methylcytosine dioxygenases and correlation of TET genes with vitamin B12/ferritin levels in cancer patients. Materials & methods: 200 blood samples were obtained from both cancer patients and healthy individuals. Results: The expression of DNMT1, DNMT3a and DNMT3b was increased in patients with low vitamin B12 and ferritin levels, while the expression of MTR, TET1 and TET3 significantly decreased. DNA methylation analysis in patients with deficient vitamin B12/ferritin levels showed methylomic changes within the location 318/CG and 385/CG in the promoter region of TET1 and TET3, respectively. Conclusion: Vitamin B12/ferritin deficiency contributes to DNA methylation progress in cancer patients.
Collapse
Affiliation(s)
- Khaled A Elawdan
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Sabah Farouk
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Salah Aref
- Department of Clinical Pathology, Faculty of medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Hamada Shoaib
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Mohamed A El-Razik
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Nasser H Abbas
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Mohamed Younis
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| | - Abeer A Alshambky
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt.,Biochemistry Department, Animal Health Research Institute, Cairo, 33374856, Egypt
| | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
27
|
Arroyo M, Hastert FD, Zhadan A, Schelter F, Zimbelmann S, Rausch C, Ludwig AK, Carell T, Cardoso MC. Isoform-specific and ubiquitination dependent recruitment of Tet1 to replicating heterochromatin modulates methylcytosine oxidation. Nat Commun 2022; 13:5173. [PMID: 36056023 PMCID: PMC9440122 DOI: 10.1038/s41467-022-32799-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/15/2022] [Indexed: 01/26/2023] Open
Abstract
Oxidation of the epigenetic DNA mark 5-methylcytosine by Tet dioxygenases is an established route to diversify the epigenetic information, modulate gene expression and overall cellular (patho-)physiology. Here, we demonstrate that Tet1 and its short isoform Tet1s exhibit distinct nuclear localization during DNA replication resulting in aberrant cytosine modification levels in human and mouse cells. We show that Tet1 is tethered away from heterochromatin via its zinc finger domain, which is missing in Tet1s allowing its targeting to these regions. We find that Tet1s interacts with and is ubiquitinated by CRL4(VprBP). The ubiquitinated Tet1s is then recognized by Uhrf1 and recruited to late replicating heterochromatin. This leads to spreading of 5-methylcytosine oxidation to heterochromatin regions, LINE 1 activation and chromatin decondensation. In summary, we elucidate a dual regulation mechanism of Tet1, contributing to the understanding of how epigenetic information can be diversified by spatio-temporal directed Tet1 catalytic activity.
Collapse
Affiliation(s)
- María Arroyo
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Florian D. Hastert
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany ,grid.425396.f0000 0001 1019 0926Section AIDS and newly emerging pathogens, Paul Ehrlich Institute, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Andreas Zhadan
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Florian Schelter
- grid.5252.00000 0004 1936 973XDepartment of Chemistry, Ludwig Maximilians University, Butenandstr. 5-13, 81377 Munich, Germany
| | - Susanne Zimbelmann
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Cathia Rausch
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany ,grid.16008.3f0000 0001 2295 9843Present Address: Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Anne K. Ludwig
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany ,grid.5253.10000 0001 0328 4908Present Address: Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Thomas Carell
- grid.5252.00000 0004 1936 973XDepartment of Chemistry, Ludwig Maximilians University, Butenandstr. 5-13, 81377 Munich, Germany
| | - M. Cristina Cardoso
- grid.6546.10000 0001 0940 1669Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| |
Collapse
|
28
|
Yu M, Jia Y, Ma Z, Ji D, Wang C, Liang Y, Zhang Q, Yi H, Zeng L. Structural insight into ASH1L PHD finger recognizing methylated histone H3K4 and promoting cell growth in prostate cancer. Front Oncol 2022; 12:906807. [PMID: 36033518 PMCID: PMC9399681 DOI: 10.3389/fonc.2022.906807] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
ASH1L is a member of the Trithorax-group protein and acts as a histone methyltransferase for gene transcription activation. It is known that ASH1L modulates H3K4me3 and H3K36me2/3 at its gene targets, but its specific mechanism of histone recognition is insufficiently understood. In this study, we found that the ASH1L plant homeodomain (PHD) finger interacts with mono-, di-, and trimethylated states of H3K4 peptides with comparable affinities, indicating that ASH1L PHD non-selectively binds to all three methylation states of H3K4. We solved nuclear magnetic resonance structures picturing the ASH1L PHD finger binding to the dimethylated H3K4 peptide and found that a narrow binding groove and residue composition in the methylated-lysine binding pocket restricts the necessary interaction with the dimethyl-ammonium moiety of K4. In addition, we found that the ASH1L protein is overexpressed in castrate-resistant prostate cancer (PCa) PC3 and DU145 cells in comparison to PCa LNCaP cells. The knockdown of ASH1L modulated gene expression and cellular pathways involved in apoptosis and cell cycle regulation and consequently induced cell cycle arrest, cell apoptosis, and reduced colony-forming abilities in PC3 and DU145 cells. The overexpression of the C-terminal core of ASH1L but not the PHD deletion mutant increased the overall H3K36me2 level but had no effect on the H3K4me2/3 level. Overall, our study identifies the ASH1L PHD finger as the first native reader that non-selectively recognizes the three methylation states of H3K4. Additionally, ASH1L is required for the deregulation of cell cycle and survival in PCas.
Collapse
Affiliation(s)
- Miaomiao Yu
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Yanjie Jia
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital, Jilin University, Changchun, China
| | - Donglei Ji
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Yingying Liang
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Qiang Zhang
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital, Jilin University, Changchun, China
- *Correspondence: Huanfa Yi, ; Lei Zeng,
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- *Correspondence: Huanfa Yi, ; Lei Zeng,
| |
Collapse
|
29
|
Aberrant high expression of the TET1 gene in Hirschsprung's disease. Pediatr Neonatol 2022; 63:348-354. [PMID: 35650007 DOI: 10.1016/j.pedneo.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/17/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The pathogenesis of Hirschsprung's disease (HSCR) remains unclear but might involve genes participating in neural crest development. Gene methylation controls the expression of many genes and is involved in the development and migration of neural crest cells, but the involvement of demethylation in HSCR is unknown. This study aimed to investigate the expression of ten-eleven translocation methylcytosine dioxygenase 1 (TET1) (a demethylation protein) in patients with HSCR. METHODS This is a retrospective study of surgical specimens from paediatric patients with and without HSCR (e.g., intussusception and incarcerated hernia) obtained from 07/2015 to 08/2017. TET1 expression was determined by qRT-PCR, western blotting, and immunohistochemistry. The levels of 5-hydroxymethylcytosine were determined by the dot blot assay. RESULTS The specimens of 35 patients with HSCR and 25 controls were collected. The median TET1 mRNA expression values were 1.028 [HSCR-stenotic (S)], 0.908 [HSCR-dilated (D)], and 0.467 (control) (HSCR-S vs. control: P = 0.002; HSCR-D vs. control: P = 0.008; HSCR-S vs. HSCR-D: P = 0.44). TET1 protein levels followed a similar pattern. The intensity of immunostaining identified higher expression of TET1 in HSCR colon tissues compared with control tissues. The 5-hmC levels in HSCR stenotic segment samples were significantly higher than those in controls. CONCLUSION The expression of TET1 is higher in paediatric patients with HSCR than in controls. DNA demethylation initiated by TET1 may be related to HSCR, which demonstrates that TET1 may play a role in the development of HSCR.
Collapse
|
30
|
Qi J, Cui D, Wu QN, Zhao Q, Chen ZH, Li L, Birchmeier W, Yu Y, Tao R. Targeting Wnt/β-Catenin Signaling by TET1/FOXO4 Inhibits Metastatic Spreading and Self-Renewal of Cancer Stem Cells in Gastric Cancer. Cancers (Basel) 2022; 14:3232. [PMID: 35805009 PMCID: PMC9264907 DOI: 10.3390/cancers14133232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/19/2022] Open
Abstract
Metastasis is the main cause of death for patients suffering gastric cancer. Epithelial-mesenchymal transition (EMT) and cancer stem cells (CSC) are critical attributes of metastasis, both of which are regulated tightly by DNA methylation and Wnt/β-catenin signaling. Here, we studied the functions of DNA dioxygenase TET1 in regulating Wnt signaling and in gastric cancer metastasis. Knocking-down and overexpressing TET1 in gastric cancer cells promoted and inhibited metastatic spreading to the liver in immune-deficient mice, respectively. TET1 showed inhibitory effects on metastasis-related features -EMT and CSC, which were reversed by interfering with Wnt/β-catenin signaling. RNA-sequencing identified FOXO4 as a direct transactivating target of TET1. FOXO4 directly interacted with β-catenin and recruited it in the cytoplasm, so as to inhibit β-catenin-mediated transcription of Wnt target genes, including CSC marker EpCAM. Moreover, modulation of FOXO4 could reverse the effects of TET1 manipulation on EMT and self-renewal of CSCs. The analysis with clinical samples confirmed the value of FOXO4 as an independent prognostic predictor of patients' overall survival. Taken together, regulation of Wnt signaling by TET1/FOXO4 is essential for metastasis-associated cellular properties, and targeting TET1/FOXO4/β-catenin pathway may serve as promising therapeutics in the prevention and treatment of gastric cancer metastasis.
Collapse
Affiliation(s)
- Jingjing Qi
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China; (J.Q.); (D.C.); (L.L.)
- Tumor Epigenetics Laboratory, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - Di Cui
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China; (J.Q.); (D.C.); (L.L.)
- Cancer Center, Department of Gastroenterology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Qi-Nian Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Q.-N.W.); (Q.Z.)
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Q.-N.W.); (Q.Z.)
| | - Zhan-Hong Chen
- Department of Oncology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China;
| | - Lianjie Li
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China; (J.Q.); (D.C.); (L.L.)
| | - Walter Birchmeier
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany;
| | - Yong Yu
- Tumor Epigenetics Laboratory, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - Ran Tao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China; (J.Q.); (D.C.); (L.L.)
- Cancer Center, Department of Gastroenterology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, China
| |
Collapse
|
31
|
Li J, Hong T, Wei Y, Guo L, Lee M, Yang H, Class C, Yang Y, Wang X, He H, Siwko S, You MJ, Zhou Y, Garcia-Manero G, Huang Y. Aberrant DNA hydroxymethylation reshapes transcription factor binding in myeloid neoplasms. Clin Epigenetics 2022; 14:81. [PMID: 35765052 PMCID: PMC9241241 DOI: 10.1186/s13148-022-01297-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/05/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic abnormalities in DNA hydroxymethylation (5hmC) have been detected in patients with myeloid neoplasms, suggesting that 5hmC might act as a valuable epigenetic mark to reflect the disease status of myeloid neoplasms. Here, we report systematic genome-wide mapping of the DNA hydroxymethylomes in over 70 patients with myeloid neoplasms. Our integrative analysis leads to the identification of distinct 5hmC signatures that can sensitively discriminate patients from healthy individuals. At the molecular level, we unveiled dynamic 5hmC changes within key transcription factor (e.g., the CEBP family) binding motifs that are essential for hematopoiesis and myeloid lineage specification. 5hmC redistribution was found to alter the genome-wide binding of CEBP-α, thereby reprogramming transcriptional outputs to affect leukemia cell survival and stemness. Taken together, we provide a comprehensive 5hmC atlas representative of myeloid neoplasms, which sets the stage for future exploration on the epigenetic etiology of hematological malignancies. Mechanistically, our study further furnishes important insights into how abnormal 5hmC distribution in patients directly interrupts the binding of transcription factors to reshape transcriptional landscapes and aggravate leukemogenesis.
Collapse
Affiliation(s)
- Jia Li
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Room 404, 2121. W. Holcombe Blvd, Houston, TX, 77030, USA.
| | - Tingting Hong
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Room 404, 2121. W. Holcombe Blvd, Houston, TX, 77030, USA
| | - Yue Wei
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lei Guo
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Room 404, 2121. W. Holcombe Blvd, Houston, TX, 77030, USA
| | - Minjung Lee
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Room 404, 2121. W. Holcombe Blvd, Houston, TX, 77030, USA
| | - Hui Yang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Caleb Class
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Yaling Yang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoqiong Wang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hua He
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Stefan Siwko
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - M James You
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Room 404, 2121. W. Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
32
|
Joshi K, Liu S, Breslin S J P, Zhang J. Mechanisms that regulate the activities of TET proteins. Cell Mol Life Sci 2022; 79:363. [PMID: 35705880 DOI: 10.1007/s00018-022-04396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/08/2023]
Abstract
The ten-eleven translocation (TET) family of dioxygenases consists of three members, TET1, TET2, and TET3. All three TET enzymes have Fe+2 and α-ketoglutarate (α-KG)-dependent dioxygenase activities, catalyzing the 1st step of DNA demethylation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), and further oxidize 5hmC to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Gene knockout studies demonstrated that all three TET proteins are involved in the regulation of fetal organ generation during embryonic development and normal tissue generation postnatally. TET proteins play such roles by regulating the expression of key differentiation and fate-determining genes via (1) enzymatic activity-dependent DNA methylation of the promoters and enhancers of target genes; and (2) enzymatic activity-independent regulation of histone modification. Interacting partner proteins and post-translational regulatory mechanisms regulate the activities of TET proteins. Mutations and dysregulation of TET proteins are involved in the pathogenesis of human diseases, specifically cancers. Here, we summarize the research on the interaction partners and post-translational modifications of TET proteins. We also discuss the molecular mechanisms by which these partner proteins and modifications regulate TET functioning and target gene expression. Such information will help in the design of medications useful for targeted therapy of TET-mutant-related diseases.
Collapse
Affiliation(s)
- Kanak Joshi
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Shanhui Liu
- School of Life Sciences, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Peter Breslin S J
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
33
|
Alzahayqa M, Jamous A, Khatib AAH, Salah Z. TET1 Isoforms Have Distinct Expression Pattern, Localization and Regulation in Breast Cancer. Front Oncol 2022; 12:848544. [PMID: 35646706 PMCID: PMC9133332 DOI: 10.3389/fonc.2022.848544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/08/2022] [Indexed: 12/22/2022] Open
Abstract
TET1 regulates gene expression by demethylating their regulatory sequences through the conversion of 5-methylcytosine to 5-hyroxymethylcytosine. TET1 plays important roles in tissue homeostasis. In breast cancer, TET1 was shown to play controversial roles. Moreover, TET1 has at least two isoforms (long and short) that have distinct expression pattern and apparently different functions in tissue development and disease including breast cancer. We hypothesized that TET1 isoforms have different expression patterns, localization and regulation in different types of breast cancer. To prove our hypothesis, we studied the expression of TET1 isoforms in basal and luminal breast cancer cell lines, as well as in basal and luminal breast cancer animal models. We also studied the effect of different hormones on the expression of the two isoforms. Moreover, we assessed the distribution of the isoforms between the cytoplasm and nucleus. Finally, we overexpressed the full length in a breast cancer cell line and tested its effect on cancer cell behavior. In this study, we demonstrate that while Estrogen and GnRH downregulate the expression of long TET1, they lead to upregulation of short TET1 expression. In addition, we uncovered that luminal cells show higher expression level of the long isoform. We also show that while all TET1 isoforms are almost depleted in a basal breast cancer animal model, the expression of the short isoform is induced in luminal breast cancer model. The short form is expressed mainly in the cytoplasm while the long isoform is expressed mainly in the nucleus. Finally, we show that long TET1 overexpression suppresses cell oncogenic phenotypes. In conclusion, our data suggest that TET1 isoforms have distinct expression pattern, localization and regulation in breast cancer and that long TET1 suppresses oncogenic phenotypes, and that further studies are necessary to elucidate the functional roles of different TET1 isoforms in breast cancer.
Collapse
Affiliation(s)
| | - Abrar Jamous
- Department of Molecular Biology and Biochemistry, Al Quds University, Jerusalem, Palestine
| | - Areej A H Khatib
- Women Health Research Unit, McGill University Health Center, Montreal, QC, Canada
| | - Zaidoun Salah
- Molecular Genetics and Genetic Toxicology Program, Arab American University, Ramallah, Palestine
| |
Collapse
|
34
|
Bhat KS, Byun S, Alam A, Ko M, An J, Lim S. A fast and label-free detection of hydroxymethylated DNA using a nozzle-jet printed AuNPs@Ti 3C 2 MXene-based electrochemical sensor. Talanta 2022; 244:123421. [PMID: 35397322 DOI: 10.1016/j.talanta.2022.123421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/24/2022] [Accepted: 03/27/2022] [Indexed: 12/18/2022]
Abstract
5-hydroxymethylcytosine (5hmC) is a key epigenetic mark in the mammalian genome that has been proposed as a promising cancer biomarker with diagnostic and prognostic potentials. A new type of two-dimensional (2D) material called MXene includes transition metal carbides and nitrides and possesses unique physico-chemical properties suitable for diverse applications, including electrochemical sensors. Here, we report a new nozzle-jet printed electrochemical sensor using gold nanoparticles (AuNPs)@Ti3C2 MXene nanocomposite for the real-time and label-free detection of 5hmC in the genome. We utilized Ti3C2 MXene as a platform to immobilize AuNPs, which have been shown to exhibit different affinity interactions toward 5-methylcytosine (5 mC) and 5hmC, and thus produce distinct electrochemical responses. To fabricate the electrode, a highly conductive and adhesive silver ink was prepared to generate a silver line onto polyethylene terephthalate (PET) substrate using nozzle-jet printing, followed by deposition of AuNPs@Ti3C2 MXene ink at one end via dropcasting. Analyses of morphology and chemical composition showed that all steps of the sensor fabrication were successful. The fabricated sensor coupled with cyclic voltammetry showed excellent performance in distinguishing 5 mC- or 5hmC-enriched cellular genomic DNAs. As a proof-of-concept investigation, we confirmed that our sensor readily and consistently detected 5hmC diminution in multiple tumors, compared to the paired normal tissues. Thus, our simple and cost-effective sensing strategy using printable AuNPs@Ti3C2 MXene ink holds promise for a wide range of practical applications in epigenetic studies as well as clinical settings.
Collapse
Affiliation(s)
- Kiesar Sideeq Bhat
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Bioresources, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Seongjun Byun
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Asrar Alam
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Myunggon Ko
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jungeun An
- Department of Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sooman Lim
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
35
|
Laurent A, Madigou T, Bizot M, Turpin M, Palierne G, Mahé E, Guimard S, Métivier R, Avner S, Le Péron C, Salbert G. TET2-mediated epigenetic reprogramming of breast cancer cells impairs lysosome biogenesis. Life Sci Alliance 2022; 5:5/7/e202101283. [PMID: 35351824 PMCID: PMC8963717 DOI: 10.26508/lsa.202101283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
TET2-mediated oxidation of 5-methylcytosine establishes an antiviral state and contributes to MYC-dependent down-regulation of genes involved in lysosome biogenesis and function in breast cancer cells. Methylation and demethylation of cytosines in DNA are believed to act as keystones of cell-specific gene expression by controlling the chromatin structure and accessibility to transcription factors. Cancer cells have their own transcriptional programs, and we sought to alter such a cancer-specific program by enforcing expression of the catalytic domain (CD) of the methylcytosine dioxygenase TET2 in breast cancer cells. The TET2 CD decreased the tumorigenic potential of cancer cells through both activation and repression of a repertoire of genes that, interestingly, differed in part from the one observed upon treatment with the hypomethylating agent decitabine. In addition to promoting the establishment of an antiviral state, TET2 activated 5mC turnover at thousands of MYC-binding motifs and down-regulated a panel of known MYC-repressed genes involved in lysosome biogenesis and function. Thus, an extensive cross-talk between TET2 and the oncogenic transcription factor MYC establishes a lysosomal storage disease–like state that contributes to an exacerbated sensitivity to autophagy inducers.
Collapse
Affiliation(s)
- Audrey Laurent
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Thierry Madigou
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Maud Bizot
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Marion Turpin
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Gaëlle Palierne
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Elise Mahé
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Sarah Guimard
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Raphaël Métivier
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Stéphane Avner
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Christine Le Péron
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| | - Gilles Salbert
- Université Rennes 1, CNRS UMR6290, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, Rennes, France
| |
Collapse
|
36
|
López J, Añazco-Guenkova AM, Monteagudo-García Ó, Blanco S. Epigenetic and Epitranscriptomic Control in Prostate Cancer. Genes (Basel) 2022; 13:genes13020378. [PMID: 35205419 PMCID: PMC8872343 DOI: 10.3390/genes13020378] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
The initiation of prostate cancer has been long associated with DNA copy-number alterations, the loss of specific chromosomal regions and gene fusions, and driver mutations, especially those of the Androgen Receptor. Non-mutational events, particularly DNA and RNA epigenetic dysregulation, are emerging as key players in tumorigenesis. In this review we summarize the molecular changes linked to epigenetic and epitranscriptomic dysregulation in prostate cancer and the role that alterations to DNA and RNA modifications play in the initiation and progression of prostate cancer.
Collapse
Affiliation(s)
- Judith López
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)—University of Salamanca, 37007 Salamanca, Spain; (J.L.); (A.M.A.-G.); (Ó.M.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Ana M. Añazco-Guenkova
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)—University of Salamanca, 37007 Salamanca, Spain; (J.L.); (A.M.A.-G.); (Ó.M.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Óscar Monteagudo-García
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)—University of Salamanca, 37007 Salamanca, Spain; (J.L.); (A.M.A.-G.); (Ó.M.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Sandra Blanco
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)—University of Salamanca, 37007 Salamanca, Spain; (J.L.); (A.M.A.-G.); (Ó.M.-G.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Correspondence:
| |
Collapse
|
37
|
Pradeepa, Suresh V, Singh VK, Nayak KB, Senapati S, Chakraborty S. EVI1 promotes metastasis by downregulating TIMP2 in metastatic colon and breast cancer cells. Int J Biochem Cell Biol 2022; 142:106118. [PMID: 34800694 DOI: 10.1016/j.biocel.2021.106118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/30/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Ecotropic viral integration site-1 (EVI1) is an oncogenic zinc finger transcription factor whose expression is frequently upregulated in a variety of cancers, including both myeloid malignancies and solid tumors. Previously, our group has shown that EVI1 knockdown minimizes the metastatic potential of colon cancer cells compared to that of control cells. In this study, to identify the potential targets that regulate cancer metastasis, control and EVI1 knockdown colon cancer cells were subjected to microarray. Differential gene expression analysis revealed significant downregulation of tissue inhibitor of matrix metalloproteinase-2 (TIMP2) in EVI1 expressing cells. EVI1 knockdown increased TIMP2 protein expression levels and reduced wound healing and migration capacity in metastatic cells. Mechanistically, the TIMP2 promoter harbors potential binding sites for EVI1; EVI1 binds to TIMP2 promoter and represses its expression, as observed using ChIP and luciferase assay, respectively. TIMP2 is an important metastasis suppressor gene; however, its function is suppressed in many cancers through hypermethylation. Thus, demethylation could prove to be a potential alternative to reactivate TIMP2 functional activity. Immunoprecipitation analysis showed that DNA-methyltransferase 1 (DNMT1), which plays a vital role in maintaining the genome methylation pattern during DNA replication and repair, interacts with EVI1 to promote TIMP2 silencing. Treating cancer cells in vitro with a known demethylation agent, 5-aza-2'-deoxycytidine (Aza-D), restored the optimal TIMP2 expression without altering EVI1 binding efficiency and reduced relative wound healing potential of cancer cells. Animal studies showed that Aza-D treated cells injected through the intravenous route exhibited reduced liver and skin metastasis when compared to non-treated cells. Furthermore, Aza-D treatment in mice delayed the metastasis progression compared to the vehicle treated group. Thus, the present study provides an insight into the therapeutic applications of demethylating agents to reduce cancer metastasis in models with EVI1 overexpressing tumors.
Collapse
Affiliation(s)
- Pradeepa
- Cancer Biology Group, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Voddu Suresh
- Tumor Microenvironment and Animal Models Group, Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India
| | - Vivek Kumar Singh
- Cancer Biology Group, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Kasturi Bala Nayak
- Cancer Biology Group, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Group, Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India
| | - Soumen Chakraborty
- Cancer Biology Group, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India.
| |
Collapse
|
38
|
Xu L, Zhou Y, Chen L, Bissessur AS, Chen J, Mao M, Ju S, Chen L, Chen C, Li Z, Zhang X, Chen F, Cao F, Wang L, Wang Q. Deoxyribonucleic Acid 5-Hydroxymethylation in Cell-Free Deoxyribonucleic Acid, a Novel Cancer Biomarker in the Era of Precision Medicine. Front Cell Dev Biol 2021; 9:744990. [PMID: 34957093 PMCID: PMC8703110 DOI: 10.3389/fcell.2021.744990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Aberrant methylation has been regarded as a hallmark of cancer. 5-hydroxymethylcytosine (5hmC) is recently identified as the ten-eleven translocase (ten-eleven translocase)-mediated oxidized form of 5-methylcytosine, which plays a substantial role in DNA demethylation. Cell-free DNA has been introduced as a promising tool in the liquid biopsy of cancer. There are increasing evidence indicating that 5hmC in cell-free DNA play an active role during carcinogenesis. However, it remains unclear whether 5hmC could surpass classical markers in cancer detection, treatment, and prognosis. Here, we systematically reviewed the recent advances in the clinic and basic research of DNA 5-hydroxymethylation in cancer, especially in cell-free DNA. We further discuss the mechanisms underlying aberrant 5hmC patterns and carcinogenesis. Synergistically, 5-hydroxymethylation may act as a promising biomarker, unleashing great potential in early cancer detection, prognosis, and therapeutic strategies in precision oncology.
Collapse
Affiliation(s)
- Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Yixin Zhou
- Department of Thyroid and Breast Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Luqiao, China
| | - Lijie Chen
- Department of Thyroid and Breast Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Luqiao, China
| | - Abdul Saad Bissessur
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Jida Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Siwei Ju
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaoqin Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Fei Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Feilin Cao
- Department of Thyroid and Breast Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Luqiao, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qinchuan Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Xu B, Wang H, Tan L. Dysregulated TET Family Genes and Aberrant 5mC Oxidation in Breast Cancer: Causes and Consequences. Cancers (Basel) 2021; 13:cancers13236039. [PMID: 34885145 PMCID: PMC8657367 DOI: 10.3390/cancers13236039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Both genetic and epigenetic mechanisms contribute to the pathogenesis of breast cancer. Since Tahiliani et al. identified TET1 as the first methyl-cytosine dioxygenase in 2009, accumulating evidence has shown that aberrant 5mC oxidation and dysregulated TET family genes are associated with diseases, including breast cancer. In this review we provide an overview on the diagnosis and prognosis values of aberrant 5mC oxidation in breast cancer and emphasize the causes and consequences of such epigenetic alterations. Abstract DNA methylation (5-methylcytosine, 5mC) was once viewed as a stable epigenetic modification until Rao and colleagues identified Ten-eleven translocation 1 (TET1) as the first 5mC dioxygenase in 2009. TET family genes (including TET1, TET2, and TET3) encode proteins that can catalyze 5mC oxidation and consequently modulate DNA methylation, not only regulating embryonic development and cellular differentiation, but also playing critical roles in various physiological and pathophysiological processes. Soon after the discovery of TET family 5mC dioxygenases, aberrant 5mC oxidation and dysregulation of TET family genes have been reported in breast cancer as well as other malignancies. The impacts of aberrant 5mC oxidation and dysregulated TET family genes on the different aspects (so-called cancer hallmarks) of breast cancer have also been extensively investigated in the past decade. In this review, we summarize current understanding of the causes and consequences of aberrant 5mC oxidation in the pathogenesis of breast cancer. The challenges and future perspectives of this field are also discussed.
Collapse
Affiliation(s)
- Bo Xu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China;
| | - Hao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Correspondence: (H.W.); (L.T.); Tel.: +86-21-54237876 (L.T.)
| | - Li Tan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China;
- Correspondence: (H.W.); (L.T.); Tel.: +86-21-54237876 (L.T.)
| |
Collapse
|
40
|
Schagdarsurengin U, Luo C, Slanina H, Sheridan D, Füssel S, Böğürcü-Seidel N, Gattenloehner S, Baretton GB, Hofbauer LC, Wagenlehner F, Dansranjav T. Tracing TET1 expression in prostate cancer: discovery of malignant cells with a distinct oncogenic signature. Clin Epigenetics 2021; 13:211. [PMID: 34844636 PMCID: PMC8630881 DOI: 10.1186/s13148-021-01201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Ten–eleven translocation methylcytosine dioxygenase 1 (TET1) is involved in DNA demethylation and transcriptional regulation, plays a key role in the maintenance of stem cell pluripotency, and is dysregulated in malignant cells. The identification of cancer stem cells (CSCs) driving tumor growth and metastasis is the primary objective of biomarker discovery in aggressive prostate cancer (PCa). In this context, we analyzed TET1 expression in PCa.
Methods A large-scale immunohistochemical analysis of TET1 was performed in normal prostate (NOR) and PCa using conventional slides (50 PCa specimens) and tissue microarrays (669 NOR and 1371 PCa tissue cores from 371 PCa specimens). Western blotting, RT-qPCR, and 450 K methylation array analyses were performed on PCa cell lines. Genome-wide correlation, gene regulatory network, and functional genomics studies were performed using publicly available data sources and bioinformatics tools. Results In NOR, TET1 was exclusively expressed in normal cytokeratin 903 (CK903)–positive basal cells. In PCa, TET1 was frequently detected in alpha-methylacyl-CoA racemase (AMACR)–positive tumor cell clusters and was detectable at all tumor stages and Gleason scores. Pearson’s correlation analyses of PCa revealed 626 TET1-coactivated genes (r > 0.5) primarily encoding chromatin remodeling and mitotic factors. Moreover, signaling pathways regulating antiviral processes (62 zinc finger, ZNF, antiviral proteins) and the pluripotency of stem cells were activated. A significant proportion of detected genes exhibited TET1-correlated promoter hypomethylation. There were 161 genes encoding transcription factors (TFs), of which 133 were ZNF-TFs with promoter binding sites in TET1 and in the vast majority of TET1-coactivated genes. Conclusions TET1-expressing cells are an integral part of PCa and may represent CSCs with oncogenic potential. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01201-7.
Collapse
Affiliation(s)
- U Schagdarsurengin
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany.,Working Group Epigenetics of Urogenital System, Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany
| | - C Luo
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany
| | - H Slanina
- Institute of Medical Virology, Justus-Liebig-University Giessen, Giessen, Germany
| | - D Sheridan
- Institute of Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - S Füssel
- Department of Urology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - N Böğürcü-Seidel
- Institute of Neuropathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - S Gattenloehner
- Institute of Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - G B Baretton
- Institute of Pathology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - L C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and University Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - F Wagenlehner
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany
| | - T Dansranjav
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
41
|
Loss of ten-eleven translocation 1 (TET1) expression as a diagnostic and prognostic biomarker of endometrial carcinoma. PLoS One 2021; 16:e0259330. [PMID: 34731191 PMCID: PMC8565757 DOI: 10.1371/journal.pone.0259330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Endometrial carcinoma (EC) is the most common gynecological cancer. However, there is currently no routinely used biomarker for differential diagnosis of malignant and premalignant endometrial lesions. Ten-eleven translocation (TET) proteins, especially TET1, were found to play a significant role in DNA demethylation, via conversion of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC). TET1, 5-mC, and 5-hmC expression profiles in endometrial carcinogenesis are currently unclear. We conducted a hospital-based retrospective review of the immunohistochemical expression of TET1, 5-mC, and 5-hmC in 181 endometrial samples. A “high” TET1 and 5-hmC expression score was observed in all cases of normal endometrium (100.0% and 100.0%, respectively) and in most samples of endometrial hyperplasia without atypia (90.9% and 78.8%, respectively) and atypical hyperplasia (90.6% and 93.8%, respectively), but a “high” score was found in only less than half of the EC samples (48.8% and 46.5%, respectively). The TET1 and 5-hmC expression scores were significantly higher in normal endometrium and premalignant endometrial lesions than in ECs (p < 0.001). A “high” 5-mC expression score was observed more frequently for ECs (81.4%) than for normal endometrium (40.0%), endometrial hyperplasia without atypia (51.5%), and atypical hyperplasia (53.1%) (p < 0.001). We also found that TET1 mRNA expression was lower in ECs compared to normal tissues (p = 0.0037). TET1 immunohistochemistry (IHC) scores were highly proportional to the TET1 mRNA levels and we summarize that the TET1 IHC scoring can be used for biomarker determinations. Most importantly, a higher TET1 score in EC cases was associated with a good overall survival (OS) rate, with a hazard ratio (HR) of 0.31 for death (95% confidence interval: 0.11–0.84). Our findings suggest that TET1, 5-mC, and 5-hmC expression is a potential histopathology biomarker for the differential diagnosis of malignant and premalignant endometrial lesions. TET1 is also a potential prognostic marker for EC.
Collapse
|
42
|
Sideeq Bhat K, Kim H, Alam A, Ko M, An J, Lim S. Rapid and Label-Free Detection of 5-Hydroxymethylcytosine in Genomic DNA Using an Au/ZnO Nanorods Hybrid Nanostructure-Based Electrochemical Sensor. Adv Healthc Mater 2021; 10:e2101193. [PMID: 34558229 DOI: 10.1002/adhm.202101193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/08/2021] [Indexed: 02/06/2023]
Abstract
Ten-eleven-translocation (TET) proteins modify DNA methylation by oxidizing 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Loss of 5hmC, a widely accepted epigenetic hallmark of cancers, is proposed as a biomarker for early cancer diagnosis and prognosis. Thus, precise quantification of 5hmC holds great potential for diverse clinical applications. DNAs containing 5mC or 5hmC display different adsorption affinity toward the gold surface, thus producing different electrochemical responses. Here a novel, label-free electrochemical sensor based on gold nanoparticles (Au NPs)/zinc oxide nanorods (ZnO NRs) nanostructure for the facile and real-time detection of 5hmC-enriched DNAs is reported. The hybrid structure is fabricated by the vertical hydrothermal growth of ZnO NRs onto indium tin oxide glass substrate, followed by the decoration of ZnO NRs with Au NPs via sputtering. Successful fabrication is confirmed by analyzing the morphology and chemical composition of the sensor. By coupling the fabricated sensor with cyclic voltammetry, its functionality in distinguishing genomic DNAs containing different levels of 5hmC is validated. Notably, the sensor device successfully and consistently detects 5hmC loss in primary hepatocellular carcinoma, compared to the normal tissues. Thus, the novel sensing strategy to assess DNA hydroxymethylation will likely find broad applications in early cancer diagnosis and prognosis evaluation.
Collapse
Affiliation(s)
- Kiesar Sideeq Bhat
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyejin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Asrar Alam
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Myunggon Ko
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jungeun An
- Department of Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sooman Lim
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
43
|
Lyu R, Zhu X, Shen Y, Xiong L, Liu L, Liu H, Wu F, Argueta C, Tan L. Tumour suppressor TET2 safeguards enhancers from aberrant DNA methylation and epigenetic reprogramming in ERα-positive breast cancer cells. Epigenetics 2021; 17:1180-1194. [PMID: 34689714 DOI: 10.1080/15592294.2021.1997405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Aberrant DNA methylation is an epigenetic hallmark of malignant tumours. The DNA methylation level is regulated by not only DNA methyltransferases (DNMTs) but also Ten-Eleven Translocation (TET) family proteins. However, the exact role of TET genes in breast cancer remains controversial. Here, we uncover that the ERα-positive breast cancer patients with high TET2 mRNA expression had better overall survival rates. Consistently, knockout of TET2 promotes the tumorigenesis of ERα-positive MCF7 breast cancer cells. Mechanistically, TET2 loss leads to aberrant DNA methylation (gain of 5mC) at a large proportion of enhancers, accompanied by significant reduction in H3K4me1 and H3K27ac enrichment. By analysing the epigenetically reprogrammed enhancers, we identify oestrogen responsive element (ERE) as one of the enriched motifs of transcriptional factors. Importantly, TET2 loss impairs 17beta-oestradiol (E2)-induced transcription of the epigenetically reprogrammed EREs-associated genes through attenuating the binding of ERα. Taken together, these findings shed light on our understanding of the epigenetic mechanisms underlying the enhancer reprogramming during breast cancer pathogenesis.
Collapse
Affiliation(s)
- Ruitu Lyu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xuguo Zhu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yinghui Shen
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lijun Xiong
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lu Liu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hang Liu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Feizhen Wu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Christian Argueta
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Li Tan
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Liu W, Wu G, Xiong F, Chen Y. Advances in the DNA methylation hydroxylase TET1. Biomark Res 2021; 9:76. [PMID: 34656178 PMCID: PMC8520278 DOI: 10.1186/s40364-021-00331-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/03/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The ten-eleven translocation 1 (TET1) protein is a 5-methylcytosine hydroxylase that belongs to the TET protein family of human α-ketoglutarate oxygenases. TET1 recognizes and binds to regions of high genomic 5'-CpG-3' dinucleotide density, such as CpG islands, initiates the DNA demethylation program, and maintains DNA methylation and demethylation balance to maintain genomic methylation homeostasis and achieve epigenetic regulation. This article reviews the recent research progress of TET1 in the mechanism of demethylation, stem cells and immunity, various malignant tumours and other clinical diseases. CONCLUSION TET1 acts as a key factor mediating demethylation, the mechanism of which still remains to be investigated in detail. TET1 is also critical in maintaining the differentiation pluripotency of embryonic stem cells and plays anti- or oncogenic roles in combination with different signalling pathways in different tumours. In certain tumours, its role is still controversial. In addition, the noncatalytic activity of TET1 has gradually attracted attention and has become a new direction of research in recent years.
Collapse
Affiliation(s)
- Wenzheng Liu
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Guanhua Wu
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Fei Xiong
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yongjun Chen
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
45
|
Zhang Q, Liu F, Chen W, Miao H, Liang H, Liao Z, Zhang Z, Zhang B. The role of RNA m 5C modification in cancer metastasis. Int J Biol Sci 2021; 17:3369-3380. [PMID: 34512153 PMCID: PMC8416729 DOI: 10.7150/ijbs.61439] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
Epigenetic modification plays a crucial regulatory role in the biological processes of eukaryotic cells. The recent characterization of DNA and RNA methylation is still ongoing. Tumor metastasis has long been an unconquerable feature in the fight against cancer. As an inevitable component of the epigenetic regulatory network, 5-methylcytosine is associated with multifarious cellular processes and systemic diseases, including cell migration and cancer metastasis. Recently, gratifying progress has been achieved in determining the molecular interactions between m5C writers (DNMTs and NSUNs), demethylases (TETs), readers (YTHDF2, ALYREF and YBX1) and RNAs. However, the underlying mechanism of RNA m5C methylation in cell mobility and metastasis remains unclear. The functions of m5C writers and readers are believed to regulate gene expression at the post-transcription level and are involved in cellular metabolism and movement. In this review, we emphatically summarize the recent updates on m5C components and related regulatory networks. The content will be focused on writers and readers of the RNA m5C modification and potential mechanisms in diseases. We will discuss relevant upstream and downstream interacting molecules and their associations with cell migration and metastasis.
Collapse
Affiliation(s)
- Qiaofeng Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei 430030, China.,Hubei key laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei 430030, China.,Hubei key laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei 430030, China.,Hubei key laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongrui Miao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei 430030, China.,Hubei key laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei 430030, China.,Hubei key laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei 430030, China.,Hubei key laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei 430030, China.,Hubei key laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.,Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei 430030, China.,Hubei key laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
46
|
Conteduca V, Hess J, Yamada Y, Ku SY, Beltran H. Epigenetics in prostate cancer: clinical implications. Transl Androl Urol 2021; 10:3104-3116. [PMID: 34430414 PMCID: PMC8350251 DOI: 10.21037/tau-20-1339] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Epigenetic alterations, including changes in DNA methylation, histone modifications and nucleosome remodeling, result in abnormal gene expression patterns that contribute to prostate tumor initiation and continue to evolve during the course of disease progression. Epigenetic modifications are responsible for silencing tumor-suppressor genes, activating oncogenic drivers, and driving therapy resistance and thus have emerged as promising targets for antineoplastic therapy in prostate cancer. In this review, we discuss the role of epigenetics in prostate cancer with a particular emphasis on clinical implications. We review how epigenetic regulators crosstalk with critical biological pathways, including androgen receptor signaling, and how these interactions dynamically control prostate cancer transcriptional profiles. Because of their potentially reversible nature, restoration of a "normal" epigenome could provide a basis for innovative therapeutic strategies in prostate cancer. We highlight how particular epigenetic alterations are emerging as potential diagnostic and prognostic biomarkers and/or targets for the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Vincenza Conteduca
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori "Dino Amadori" (IRST) IRCCS, Meldola, Italy
| | - Judy Hess
- Weill Cornell Medicine, New York, NY, USA
| | - Yasutaka Yamada
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sheng-Yu Ku
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Himisha Beltran
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Mikkelsen SU, Gillberg L, Lykkesfeldt J, Grønbæk K. The role of vitamin C in epigenetic cancer therapy. Free Radic Biol Med 2021; 170:179-193. [PMID: 33789122 DOI: 10.1016/j.freeradbiomed.2021.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022]
Abstract
The role of vitamin C in the treatment of cancer has been subject to controversy for decades. Within the past 10 years, mechanistic insight into the importance of vitamin C in epigenetic regulation has provided a new rationale for its potential anti-cancer effects. At physiological concentrations, vitamin C is a potent antioxidant and thereby co-factor for a range of enzymes including the Fe(II)- and α-ketoglutarate-dependent dioxygenases that represent some of the most important epigenetic regulators; the ten-eleven translocation (TET) methylcytosine dioxygenases and the Jumonji-C domain-containing histone demethylases. Epigenetic deregulation is a hallmark of many cancers and reduced activity of these enzymes or somatic loss-of-function mutations in the genes encoding them, are observed in many cancer types. The present review outlines the growing literature on the role of vitamin C in epigenetic therapy of cancer. In the vast majority of in vitro, animal and clinical studies included in this review, vitamin C showed ability across cancer types to increase the hydroxylation of 5-methylcytosine to 5-hydroxymethylcytosine catalyzed by the TET enzymes - the first step in DNA demethylation. Most consistently, vitamin C in combination with the class of epigenetic drugs, DNA methyltransferase inhibitors, has demonstrated efficacy in the treatment of hematological malignancies in both preclinical and the limited number of available clinical studies. Yet, the pertinent question of what is the optimal dose of vitamin C in cancer studies remains to be answered. High-quality randomized placebo-controlled trials are needed to determine whether supplementation with vitamin C may benefit subgroups of patients with (pre-)cancer.
Collapse
Affiliation(s)
- Stine Ulrik Mikkelsen
- Department of Hematology, Rigshospitalet, Juliane Maries Vej 10, 2100, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, Building 2, 3rd Floor, 2200, Copenhagen, Denmark
| | - Linn Gillberg
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Jens Lykkesfeldt
- Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, 1st Floor, 1870, Frederiksberg, Denmark
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Juliane Maries Vej 10, 2100, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, Building 2, 3rd Floor, 2200, Copenhagen, Denmark; DanStem, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
48
|
Marney CB, Anderson ES, Adnan M, Peng KL, Hu Y, Weinhold N, Schmitt AM. p53-intact cancers escape tumor suppression through loss of long noncoding RNA Dino. Cell Rep 2021; 35:109329. [PMID: 34192538 PMCID: PMC8287872 DOI: 10.1016/j.celrep.2021.109329] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/15/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
Many long noncoding RNA (lncRNA) genes exist near cancer-associated loci, yet evidence connecting lncRNA functions to recurrent genetic alterations in cancer are lacking. Here, we report that DINO, the lncRNA transcribed from the cancer-associated DINO/CDKN1A locus, suppresses tumor formation independent of p21, the protein encoded at the locus. Loss of one or two alleles of Dino impairs p53 signaling and apoptosis, resulting in a haplo-insufficient tumor suppressor phenotype in genetically defined mouse models of tumorigenesis. A discrete region of the DINO/CDKN1A locus is recurrently hypermethylated in human cancers, silencing DINO but not CDKN1A, the gene encoding p21. Hypermethylation silences DINO, impairs p53 signaling pathway in trans, and is mutually exclusive with TP53 alterations, indicating that DINO and TP53 comprise a common tumor suppressor module. Therefore, DINO encodes a lncRNA essential for tumor suppression that is recurrently silenced in human cancers as a mechanism to escape p53-dependent tumor suppression.
Collapse
Affiliation(s)
- Christina B Marney
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Erik S Anderson
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Mutayyaba Adnan
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Kai-Lin Peng
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Ya Hu
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Nils Weinhold
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Adam M Schmitt
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA.
| |
Collapse
|
49
|
The Roles of DNA Demethylases in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:ph14070628. [PMID: 34209564 PMCID: PMC8308559 DOI: 10.3390/ph14070628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancers (TNBCs) are very heterogenous, molecularly diverse, and are characterized by a high propensity to relapse or metastasize. Clinically, TNBC remains a diagnosis of exclusion by the lack of hormone receptors (Estrogen Receptor (ER) and Progesterone Receptor (PR)) as well as the absence of overexpression and/or amplification of HER2. DNA methylation plays an important role in breast cancer carcinogenesis and TNBCs have a distinct DNA methylation profile characterized by marked hypomethylation and lower gains of methylations compared to all other subtypes. DNA methylation is regulated by the balance of DNA methylases (DNMTs) and DNA demethylases (TETs). Here, we review the roles of TETs as context-dependent tumor-suppressor genes and/or oncogenes in solid tumors, and we discuss the current understandings of the oncogenic role of TET1 and its therapeutic implications in TNBCs.
Collapse
|
50
|
Yuan Y, Liu C, Chen X, Sun Y, Xiong M, Fan Y, Petersen RB, Chen H, Huang K, Zheng L. Vitamin C Inhibits the Metabolic Changes Induced by Tet1 Insufficiency Under High Fat Diet Stress. Mol Nutr Food Res 2021; 65:e2100417. [PMID: 34129274 DOI: 10.1002/mnfr.202100417] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/05/2021] [Indexed: 12/19/2022]
Abstract
SCOPE DNA methylation contributes to obesity, but the role of the DNA demethylase ten-eleven translocation protein 1 (Tet1) in obesity remains unclear. Vitamin C is a cofactor for the Tet family of proteins, but whether vitamin C can be used to treat obesity via Tet1 awaits clarification. METHODS AND RESULTS Tet1+/+ and Tet1+/- mice are fed a high fat diet (HFD). Higher weight gain and more severe hepatic steatosis, accompanied by reduced 5-hydromethylcytosine (5hmC) levels, are found in the white adipose tissue and liver of Tet1+/- mice. Accumulated lipids are observed in palmitic acid or oleic acid treated primary hepatocytes derived from Tet1+/- mice, which are rescued by Tet1 overexpression or vitamin C treatment. Bisulfite sequencing reveals higher DNA methylation levels on lipolysis related genes in the liver of Tet1+/- mice. Notably, oral intake of vitamin C normalizes DNA methylation levels, promotes lipolysis, and decreases obesity in HFD-fed Tet1+/- mice. CONCLUSIONS The results reveal a novel function of Tet1 in obesity and provide a new mechanism for the beneficial role of vitamin C in metabolic diseases through enhanced Tet1 activity.
Collapse
Affiliation(s)
- Yangmian Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xingrui Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuyan Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mingrui Xiong
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Fan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI, 48858, USA
| | - Hong Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| |
Collapse
|