1
|
Lin J, Zhang J, Ma L, Fang H, Ma R, Groneck C, Filippova GN, Deng X, Kinoshita C, Young JE, Ma W, Disteche CM, Berletch JB. KDM6A facilitates Xist upregulation at the onset of X inactivation. Biol Sex Differ 2025; 16:1. [PMID: 39754175 PMCID: PMC11699772 DOI: 10.1186/s13293-024-00683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions. One of these genes is the highly conserved gene Kdm6a, which encodes a histone demethylase that removes methyl groups at H3K27 to facilitate gene expression. KDM6A mutations have been implicated in congenital disorders such as Kabuki Syndrome, as well as in sex differences in development and cancer. METHODS Kdm6a was knocked out (KO) using CRISPR/Cas9 gene editing in hybrid female mouse embryonic stem (ES) cells derived either from a 129 × Mus castaneus (cast) cross or a BL6 x cast cross. In one of the lines a transcriptional stop signal inserted in Tsix results in completely skewed X silencing upon differentiation. The effects of both homozygous and heterozygous Kdm6a KO on Xist expression during the onset of XCI were measured by RT-PCR and RNA-FISH. Changes in gene expression and in H3K27me3 enrichment were investigated using allele-specific RNA-seq and Cut&Run, respectively. KDM6A binding to the Xist gene was characterized by Cut&Run. RESULTS We observed impaired upregulation of Xist and reduced coating of the Xi during early stages of differentiation in Kdm6a KO cells, both homozygous and heterozygous, suggesting a threshold effect of KDM6A. This was associated with aberrant overexpression of genes from the Xi after differentiation, indicating loss of X inactivation potency. Consistent with KDM6A having a direct role in Xist regulation, we found that the histone demethylase binds to the Xist promoter and KO cells show an increase in H3K27me3 at Xist, consistent with reduced expression. CONCLUSIONS These results reveal a novel female-specific role for the X-linked histone demethylase, KDM6A in the initiation of XCI through histone demethylase-dependent activation of Xist during early differentiation. X chromosome inactivation is a female-specific mechanism that evolved to balance sex-linked gene dosage between females (XX) and males (XY) by silencing one X chromosome in females. X inactivation begins with the upregulation of the long noncoding RNA Xist on the future inactive X chromosome. While most genes become silenced on the inactive X chromosome some genes escape inactivation and thus have higher expression in females compared to males, suggesting that escape genes may have female-specific functions. One such gene encodes the histone demethylase KDM6A which function is to turn on gene expression by removing repressive histone modifications. In this study, we investigated the role of KDM6A in the regulation of Xist expression during the onset of X inactivation. We found that KDM6A binds to the Xist gene to remove repressive histone marks and facilitate its expression in early development. Indeed, depletion of KDM6A prevents upregulation of Xist due to abnormal persistence of repressive histone modifications. In turn, this results in aberrant overexpression of genes from the inactive X chromosome. Our findings point to a novel mechanism of Xist regulation during the initiation of X inactivation, which may lead to new avenues of treatment to alleviate congenital disorders such as Kabuki syndrome and sex-biased immune disorders where X-linked gene dosage is perturbed.
Collapse
Affiliation(s)
- Josephine Lin
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Jinli Zhang
- Department of Statistics, University of California Riverside, Riverside, CA, 92521, USA
| | - Li Ma
- Department of Microbiology, Immunology & Cell Biology, University of West Virginia, Morgantown, WV, 26506, USA
| | - He Fang
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Rui Ma
- Department of Statistics, University of California Riverside, Riverside, CA, 92521, USA
| | - Camille Groneck
- Department of Biochemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Galina N Filippova
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Xinxian Deng
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Jessica E Young
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Wenxiu Ma
- Department of Statistics, University of California Riverside, Riverside, CA, 92521, USA.
| | - Christine M Disteche
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
| | - Joel B Berletch
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
2
|
Luchsinger-Morcelle SJ, Gribnau J, Mira-Bontenbal H. Orchestrating Asymmetric Expression: Mechanisms behind Xist Regulation. EPIGENOMES 2024; 8:6. [PMID: 38390897 PMCID: PMC10885031 DOI: 10.3390/epigenomes8010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Compensation for the gene dosage disequilibrium between sex chromosomes in mammals is achieved in female cells by repressing one of its X chromosomes through a process called X chromosome inactivation (XCI), exemplifying the control of gene expression by epigenetic mechanisms. A critical player in this mechanism is Xist, a long, non-coding RNA upregulated from a single X chromosome during early embryonic development in female cells. Over the past few decades, many factors involved at different levels in the regulation of Xist have been discovered. In this review, we hierarchically describe and analyze the different layers of Xist regulation operating concurrently and intricately interacting with each other to achieve asymmetric and monoallelic upregulation of Xist in murine female cells. We categorize these into five different classes: DNA elements, transcription factors, other regulatory proteins, long non-coding RNAs, and the chromatin and topological landscape surrounding Xist.
Collapse
Affiliation(s)
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Hegias Mira-Bontenbal
- Department of Developmental Biology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
3
|
Ravid Lustig L, Sampath Kumar A, Schwämmle T, Dunkel I, Noviello G, Limberg E, Weigert R, Pacini G, Buschow R, Ghauri A, Stötzel M, Wittler L, Meissner A, Schulz EG. GATA transcription factors drive initial Xist upregulation after fertilization through direct activation of long-range enhancers. Nat Cell Biol 2023; 25:1704-1715. [PMID: 37932452 PMCID: PMC10635832 DOI: 10.1038/s41556-023-01266-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/22/2023] [Indexed: 11/08/2023]
Abstract
X-chromosome inactivation (XCI) balances gene expression between the sexes in female mammals. Shortly after fertilization, upregulation of Xist RNA from one X chromosome initiates XCI, leading to chromosome-wide gene silencing. XCI is maintained in all cell types, except the germ line and the pluripotent state where XCI is reversed. The mechanisms triggering Xist upregulation have remained elusive. Here we identify GATA transcription factors as potent activators of Xist. Through a pooled CRISPR activation screen in murine embryonic stem cells, we demonstrate that GATA1, as well as other GATA transcription factors can drive ectopic Xist expression. Moreover, we describe GATA-responsive regulatory elements in the Xist locus bound by different GATA factors. Finally, we show that GATA factors are essential for XCI induction in mouse preimplantation embryos. Deletion of GATA1/4/6 or GATA-responsive Xist enhancers in mouse zygotes effectively prevents Xist upregulation. We propose that the activity or complete absence of various GATA family members controls initial Xist upregulation, XCI maintenance in extra-embryonic lineages and XCI reversal in the epiblast.
Collapse
Affiliation(s)
- Liat Ravid Lustig
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Till Schwämmle
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ilona Dunkel
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Gemma Noviello
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Elodie Limberg
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Raha Weigert
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Guido Pacini
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - René Buschow
- Microscopy and Cryo-Electron Microscopy, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Afrah Ghauri
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maximilian Stötzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Transgenic Unit, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Edda G Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
4
|
Lin J, Zhang J, Ma L, Fang H, Ma R, Groneck C, Filippova GN, Deng X, Ma W, Disteche CM, Berletch JB. KDM6A facilitates Xist upregulation at the onset of X inactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553617. [PMID: 37645756 PMCID: PMC10462084 DOI: 10.1101/2023.08.16.553617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions. One of these genes is the highly conserved gene Kdm6a , which encodes a histone demethylase that removes methyl groups at H3K27 to facilitate gene expression. Here, we investigate the role of KDM6A in the regulation of Xist . We observed impaired upregulation of Xist during early stages of differentiation in hybrid mouse ES cells following CRISPR/Cas9 knockout of Kdm6a . This is associated with reduced Xist RNA coating of the Xi, suggesting diminished XCI potency. Indeed, Kdm6a knockout results in aberrant overexpression of genes from the Xi after differentiation. KDM6A binds to the Xist promoter and knockout cells show an increase in H3K27me3 at Xist . These results indicate that KDM6A plays a role in the initiation of XCI through histone demethylase-dependent activation of Xist during early differentiation.
Collapse
|
5
|
Schwämmle T, Schulz EG. Regulatory principles and mechanisms governing the onset of random X-chromosome inactivation. Curr Opin Genet Dev 2023; 81:102063. [PMID: 37356341 PMCID: PMC10465972 DOI: 10.1016/j.gde.2023.102063] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/27/2023]
Abstract
X-chromosome inactivation (XCI) has evolved in mammals to compensate for the difference in X-chromosomal dosage between the sexes. In placental mammals, XCI is initiated during early embryonic development through upregulation of the long noncoding RNA Xist from one randomly chosen X chromosome in each female cell. The Xist locus must thus integrate both X-linked and developmental trans-regulatory factors in a dosage-dependent manner. Furthermore, the two alleles must coordinate to ensure inactivation of exactly one X chromosome per cell. In this review, we summarize the regulatory principles that govern the onset of XCI. We go on to provide an overview over the factors that have been implicated in Xist regulation and discuss recent advances in our understanding of how Xist's cis-regulatory landscape integrates information in a precise fashion.
Collapse
Affiliation(s)
- Till Schwämmle
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany. https://twitter.com/@TSchwammle
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
6
|
Liu X, Zhang H, Zhang S, Mao W, Liu L, Deng C, Hu CH. Olanzapine-induced decreases of FGF21 in brown adipose tissue via histone modulations drive UCP1-dependent thermogenetic impairment. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110692. [PMID: 36509252 DOI: 10.1016/j.pnpbp.2022.110692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Long-term olanzapine treatment has been associated with serious metabolism disorders, such as abnormal body weight gain, hyperglycemia, and dyslipidemia. Recently, accumulated evidence points to a link between the metabolic disorders caused by olanzapine and thermogenetic impairment. Fibroblast growth factor 21 (FGF21), a pleiotropic protein, is a potent stimulator of thermogenesis in brown adipose tissue (BAT). However, the relationship between autocrine FGF21 in BAT and thermogenetic impairment induced by olanzapine has not been investigated. In this study, C57BL/6 mice and C3H10T1/2 (a brown adipocyte cell line) were used to investigate the role of FGF21 in modulating thermogenetic impairments caused by olanzapine. Our data found a fall in BAT temperature, with a decrease in the protein levels of uncoupling protein 1 (UCP1) and FGF21 in olanzapine-treatment mice. Olanzapine-induced deficits of mitochondrial activity and the expression of UCP1 and related thermogenetic factors could be improved by FGF21-overexpression in brown adipocytes. Furthermore, ChIP-sequencing showed the H3K9me3 modification in Fgf21 was dramatically increased in BAT of mice with olanzapine treatment. Lysine-specific demethylase 4a (KDM4a), a histone demethylase responsible for site-specific erasure of H3K9me3, was decreased in olanzapine-treated C3H10T1/2 cells, whereas FGF21 and UCP1 expression and thermogenesis were upregulated in KMD2a-overexpressing brown adipocyte. We concluded that FGF21 was a crucial regulator mediating UCP1-dependent thermogenetic impairments by olanzapine-modulating histone methylations. Our results also provide novel insights into identifying a new therapeutic target for treating metabolic side effects caused by the antipsychotic drug.
Collapse
Affiliation(s)
- Xuemei Liu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Haotian Zhang
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Shimei Zhang
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Wenxing Mao
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China; Chongqing Institute for Food and Drug Control, NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing 401121, PR China
| | - Lu Liu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Chao Deng
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia; Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong 2522, NSW, Australia
| | - Chang-Hua Hu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
7
|
Reply to Galupa et al: Discussing the role of Lppnx in the complexity of the X controlling element, Xce. Proc Natl Acad Sci U S A 2023; 120:e2219685120. [PMID: 36749726 PMCID: PMC9962993 DOI: 10.1073/pnas.2219685120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
8
|
Abstract
X chromosome inactivation (XCI) is the process of silencing one of the X chromosomes in cells of the female mammal which ensures dosage compensation between the sexes. Although theoretically random in somatic tissues, the choice of which X chromosome is chosen to be inactivated can be biased in mice by genetic element(s) associated with the so-called X-controlling element (Xce). Although the Xce was first described and genetically localized nearly 40 y ago, its mode of action remains elusive. In the approach presented here, we identify a single long noncoding RNA (lncRNA) within the Xce locus, Lppnx, which may be the driving factor in the choice of which X chromosome will be inactivated in the developing female mouse embryo. Comparing weak and strong Xce alleles we show that Lppnx modulates the expression of Xist lncRNA, one of the key factors in XCI, by controlling the occupancy of pluripotency factors at Intron1 of Xist. This effect is counteracted by enhanced binding of Rex1 in DxPas34, another key element in XCI regulating the activity of Tsix lncRNA, the main antagonist of Xist, in the strong but not in the weak Xce allele. These results suggest that the different susceptibility for XCI observed in weak and strong Xce alleles results from differential transcription factor binding of Xist Intron 1 and DxPas34, and that Lppnx represents a decisive factor in explaining the action of the Xce.
Collapse
|
9
|
Gjaltema RAF, Schwämmle T, Kautz P, Robson M, Schöpflin R, Ravid Lustig L, Brandenburg L, Dunkel I, Vechiatto C, Ntini E, Mutzel V, Schmiedel V, Marsico A, Mundlos S, Schulz EG. Distal and proximal cis-regulatory elements sense X chromosome dosage and developmental state at the Xist locus. Mol Cell 2022; 82:190-208.e17. [PMID: 34932975 DOI: 10.1016/j.molcel.2021.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Developmental genes such as Xist, which initiates X chromosome inactivation, are controlled by complex cis-regulatory landscapes, which decode multiple signals to establish specific spatiotemporal expression patterns. Xist integrates information on X chromosome dosage and developmental stage to trigger X inactivation in the epiblast specifically in female embryos. Through a pooled CRISPR screen in differentiating mouse embryonic stem cells, we identify functional enhancer elements of Xist at the onset of random X inactivation. Chromatin profiling reveals that X-dosage controls the promoter-proximal region, while differentiation cues activate several distal enhancers. The strongest distal element lies in an enhancer cluster associated with a previously unannotated Xist-enhancing regulatory transcript, which we named Xert. Developmental cues and X-dosage are thus decoded by distinct regulatory regions, which cooperate to ensure female-specific Xist upregulation at the correct developmental time. With this study, we start to disentangle how multiple, functionally distinct regulatory elements interact to generate complex expression patterns in mammals.
Collapse
Affiliation(s)
- Rutger A F Gjaltema
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Till Schwämmle
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Pauline Kautz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Michael Robson
- Development and Disease Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh EH4 2XU, Edinburgh, UK
| | - Robert Schöpflin
- Development and Disease Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Liat Ravid Lustig
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Lennart Brandenburg
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Ilona Dunkel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Carolina Vechiatto
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Evgenia Ntini
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Verena Mutzel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Vera Schmiedel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Annalisa Marsico
- Computational Health Center, Helmholtz Center München, 85764 Neuherberg, Germany
| | - Stefan Mundlos
- Development and Disease Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
10
|
Talon I, Janiszewski A, Theeuwes B, Lefevre T, Song J, Bervoets G, Vanheer L, De Geest N, Poovathingal S, Allsop R, Marine JC, Rambow F, Voet T, Pasque V. Enhanced chromatin accessibility contributes to X chromosome dosage compensation in mammals. Genome Biol 2021; 22:302. [PMID: 34724962 PMCID: PMC8558763 DOI: 10.1186/s13059-021-02518-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/13/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Precise gene dosage of the X chromosomes is critical for normal development and cellular function. In mice, XX female somatic cells show transcriptional X chromosome upregulation of their single active X chromosome, while the other X chromosome is inactive. Moreover, the inactive X chromosome is reactivated during development in the inner cell mass and in germ cells through X chromosome reactivation, which can be studied in vitro by reprogramming of somatic cells to pluripotency. How chromatin processes and gene regulatory networks evolved to regulate X chromosome dosage in the somatic state and during X chromosome reactivation remains unclear. RESULTS Using genome-wide approaches, allele-specific ATAC-seq and single-cell RNA-seq, in female embryonic fibroblasts and during reprogramming to pluripotency, we show that chromatin accessibility on the upregulated mammalian active X chromosome is increased compared to autosomes. We further show that increased accessibility on the active X chromosome is erased by reprogramming, accompanied by erasure of transcriptional X chromosome upregulation and the loss of increased transcriptional burst frequency. In addition, we characterize gene regulatory networks during reprogramming and X chromosome reactivation, revealing changes in regulatory states. Our data show that ZFP42/REX1, a pluripotency-associated gene that evolved specifically in placental mammals, targets multiple X-linked genes, suggesting an evolutionary link between ZFP42/REX1, X chromosome reactivation, and pluripotency. CONCLUSIONS Our data reveal the existence of intrinsic compensatory mechanisms that involve modulation of chromatin accessibility to counteract X-to-Autosome gene dosage imbalances caused by evolutionary or in vitro X chromosome loss and X chromosome inactivation in mammalian cells.
Collapse
Affiliation(s)
- Irene Talon
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| | - Adrian Janiszewski
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| | - Bart Theeuwes
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| | - Thomas Lefevre
- Laboratory of Reproductive Genomics, Centre for Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Juan Song
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| | - Greet Bervoets
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
- Department of Oncology, Laboratory for Molecular Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lotte Vanheer
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| | - Natalie De Geest
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| | - Suresh Poovathingal
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Ryan Allsop
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| | - Jean-Christophe Marine
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
- Department of Oncology, Laboratory for Molecular Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Florian Rambow
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Thierry Voet
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Laboratory of Reproductive Genomics, Centre for Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Vincent Pasque
- Department of Development and Regeneration, Laboratory of Cellular Reprogramming and Epigenetic Regulation, KU Leuven – University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), 3000 Leuven, Belgium
- Leuven Stem Cell Institute (SCIL), 3000 Leuven, Belgium
| |
Collapse
|
11
|
Panda A, Zylicz JJ, Pasque V. New Insights into X-Chromosome Reactivation during Reprogramming to Pluripotency. Cells 2020; 9:E2706. [PMID: 33348832 PMCID: PMC7766869 DOI: 10.3390/cells9122706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Dosage compensation between the sexes results in one X chromosome being inactivated during female mammalian development. Chromosome-wide transcriptional silencing from the inactive X chromosome (Xi) in mammalian cells is erased in a process termed X-chromosome reactivation (XCR), which has emerged as a paradigm for studying the reversal of chromatin silencing. XCR is linked with germline development and induction of naive pluripotency in the epiblast, and also takes place upon reprogramming somatic cells to induced pluripotency. XCR depends on silencing of the long non-coding RNA (lncRNA) X inactive specific transcript (Xist) and is linked with the erasure of chromatin silencing. Over the past years, the advent of transcriptomics and epigenomics has provided new insights into the transcriptional and chromatin dynamics with which XCR takes place. However, multiple questions remain unanswered about how chromatin and transcription related processes enable XCR. Here, we review recent work on establishing the transcriptional and chromatin kinetics of XCR, as well as discuss a model by which transcription factors mediate XCR not only via Xist repression, but also by direct targeting of X-linked genes.
Collapse
Affiliation(s)
- Amitesh Panda
- Laboratory of Cellular Reprogramming and Epigenetic Regulation, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven-University of Leuven, 3000 Leuven, Belgium;
| | - Jan J. Zylicz
- The Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Vincent Pasque
- Laboratory of Cellular Reprogramming and Epigenetic Regulation, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven-University of Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
12
|
Galupa R, Nora EP, Worsley-Hunt R, Picard C, Gard C, van Bemmel JG, Servant N, Zhan Y, El Marjou F, Johanneau C, Diabangouaya P, Le Saux A, Lameiras S, Pipoli da Fonseca J, Loos F, Gribnau J, Baulande S, Ohler U, Giorgetti L, Heard E. A Conserved Noncoding Locus Regulates Random Monoallelic Xist Expression across a Topological Boundary. Mol Cell 2020; 77:352-367.e8. [PMID: 31759823 PMCID: PMC6964159 DOI: 10.1016/j.molcel.2019.10.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/08/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022]
Abstract
cis-Regulatory communication is crucial in mammalian development and is thought to be restricted by the spatial partitioning of the genome in topologically associating domains (TADs). Here, we discovered that the Xist locus is regulated by sequences in the neighboring TAD. In particular, the promoter of the noncoding RNA Linx (LinxP) acts as a long-range silencer and influences the choice of X chromosome to be inactivated. This is independent of Linx transcription and independent of any effect on Tsix, the antisense regulator of Xist that shares the same TAD as Linx. Unlike Tsix, LinxP is well conserved across mammals, suggesting an ancestral mechanism for random monoallelic Xist regulation. When introduced in the same TAD as Xist, LinxP switches from a silencer to an enhancer. Our study uncovers an unsuspected regulatory axis for X chromosome inactivation and a class of cis-regulatory effects that may exploit TAD partitioning to modulate developmental decisions.
Collapse
Affiliation(s)
- Rafael Galupa
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Elphège Pierre Nora
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Rebecca Worsley-Hunt
- Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christel Picard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Chris Gard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Joke Gerarda van Bemmel
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Nicolas Servant
- Bioinformatics, Biostatistics, Epidemiology and Computational Systems Unit, Institut Curie, PSL Research University, INSERM U900, Paris, France; MINES ParisTech, PSL Research University, Centre for Computational Biology (CBIO), Paris, France
| | - Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland
| | | | | | - Patricia Diabangouaya
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Agnès Le Saux
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Sonia Lameiras
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | | | - Friedemann Loos
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Biology, Humboldt University, Berlin, Germany
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Edith Heard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France; Collège de France, Paris, France.
| |
Collapse
|
13
|
Salama EA, Adbeltawab RE, El Tayebi HM. XIST and TSIX: Novel Cancer Immune Biomarkers in PD-L1-Overexpressing Breast Cancer Patients. Front Oncol 2020; 9:1459. [PMID: 31998636 PMCID: PMC6966712 DOI: 10.3389/fonc.2019.01459] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Escaping antitumor immunity is a hallmark in cancer progression. Programmed cell death protein 1 (PD-1) is an immune checkpoint receptor responsible for the maintenance of immune tolerance; PD-1 ligand (PD-L1) is overexpressed in tumor cells, simplifying their escape from the immune system through T-cell function suppression. Notwithstanding that cancer antigen (CA)125, carcinoembryonic antigen (CEA), CA15-3, and alpha-fetoprotein (AFP) are among conventional breast cancer diagnostic biomarkers, their lack of sensitivity and specificity resides among their major limitations. Furthermore, human epidermal growth factor receptor (HER)2 and interleukin (IL)-6-demonstrated as breast cancer immune biomarkers-still possess limitations, for instance, technical detection problems and stability problems, which necessitate the discovery of novel, stable non-invasive cancer immune biomarkers. XIST and TSIX are two long non-coding (lnc)RNAs possessing a role in X chromosome inactivation (XCI) as well as in breast cancer (BC). In the present study, they were investigated as stable non-invasive breast cancer immune biomarkers. The study demonstrated that PD-L1 was overexpressed in the different molecular subtypes of breast cancer patients as well as in MDA-MB-231 cells. Furthermore, lncRNAs XIST and TSIX were markedly increased in the tissues, lymph nodes, and different body fluids of breast cancer patients compared to controls. In addition, XIST and TSIX were differentially expressed in subtypes of BC patients, and their levels were correlated to PD-L1 expression level. In conclusion, this correlative study has shed light on the role of both lncRNAs XIST and TSIX as potential non-invasive BC immune biomarkers reflecting the evaded immune system of the patient and overcoming the instability problem of common BC biomarkers.
Collapse
Affiliation(s)
- Esraa A. Salama
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Reda E. Adbeltawab
- Department of Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hend M. El Tayebi
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
14
|
Janiszewski A, Talon I, Chappell J, Collombet S, Song J, De Geest N, To SK, Bervoets G, Marin-Bejar O, Provenzano C, Vanheer L, Marine JC, Rambow F, Pasque V. Dynamic reversal of random X-Chromosome inactivation during iPSC reprogramming. Genome Res 2019; 29:1659-1672. [PMID: 31515287 PMCID: PMC6771397 DOI: 10.1101/gr.249706.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022]
Abstract
Induction and reversal of chromatin silencing is critical for successful development, tissue homeostasis, and the derivation of induced pluripotent stem cells (iPSCs). X-Chromosome inactivation (XCI) and reactivation (XCR) in female cells represent chromosome-wide transitions between active and inactive chromatin states. Although XCI has long been studied, providing important insights into gene regulation, the dynamics and mechanisms underlying the reversal of stable chromatin silencing of X-linked genes are much less understood. Here, we use allele-specific transcriptomics to study XCR during mouse iPSC reprogramming in order to elucidate the timing and mechanisms of chromosome-wide reversal of gene silencing. We show that XCR is hierarchical, with subsets of genes reactivating early, late, and very late during reprogramming. Early genes are activated before the onset of late pluripotency genes activation. Early genes are located genomically closer to genes that escape XCI, unlike genes reactivating late. Early genes also show increased pluripotency transcription factor (TF) binding. We also reveal that histone deacetylases (HDACs) restrict XCR in reprogramming intermediates and that the severe hypoacetylation state of the inactive X Chromosome (Xi) persists until late reprogramming stages. Altogether, these results reveal the timing of transcriptional activation of monoallelically repressed genes during iPSC reprogramming, and suggest that allelic activation involves the combined action of chromatin topology, pluripotency TFs, and chromatin regulators. These findings are important for our understanding of gene silencing, maintenance of cell identity, reprogramming, and disease.
Collapse
Affiliation(s)
- Adrian Janiszewski
- KU Leuven-University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, B-3000 Leuven, Belgium
| | - Irene Talon
- KU Leuven-University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, B-3000 Leuven, Belgium
| | - Joel Chappell
- KU Leuven-University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, B-3000 Leuven, Belgium
| | - Samuel Collombet
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Juan Song
- KU Leuven-University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, B-3000 Leuven, Belgium
| | - Natalie De Geest
- KU Leuven-University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, B-3000 Leuven, Belgium
| | - San Kit To
- KU Leuven-University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, B-3000 Leuven, Belgium
| | - Greet Bervoets
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium.,Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Oskar Marin-Bejar
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium.,Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Caterina Provenzano
- KU Leuven-University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, B-3000 Leuven, Belgium
| | - Lotte Vanheer
- KU Leuven-University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, B-3000 Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium.,Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium.,Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Vincent Pasque
- KU Leuven-University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, B-3000 Leuven, Belgium
| |
Collapse
|
15
|
Talon I, Janiszewski A, Chappell J, Vanheer L, Pasque V. Recent Advances in Understanding the Reversal of Gene Silencing During X Chromosome Reactivation. Front Cell Dev Biol 2019; 7:169. [PMID: 31552244 PMCID: PMC6733891 DOI: 10.3389/fcell.2019.00169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022] Open
Abstract
Dosage compensation between XX female and XY male cells is achieved by a process known as X chromosome inactivation (XCI) in mammals. XCI is initiated early during development in female cells and is subsequently stably maintained in most somatic cells. Despite its stability, the robust transcriptional silencing of XCI is reversible, in the embryo and also in a number of reprogramming settings. Although XCI has been intensively studied, the dynamics, factors, and mechanisms of X chromosome reactivation (XCR) remain largely unknown. In this review, we discuss how new sequencing technologies and reprogramming approaches have enabled recent advances that revealed the timing of transcriptional activation during XCR. We also discuss the factors and chromatin features that might be important to understand the dynamics and mechanisms of the erasure of transcriptional gene silencing on the inactive X chromosome (Xi).
Collapse
Affiliation(s)
| | | | | | | | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Zhang J, Gao X, Yang J, Fan X, Wang W, Liang Y, Fan L, Han H, Xu X, Tang F, Bao S, Liu P, Li X. Xist Intron 1 Repression by Transcriptional-Activator-Like Effectors Designer Transcriptional Factor Improves Somatic Cell Reprogramming in Mice. Stem Cells 2019; 37:599-608. [PMID: 30353613 DOI: 10.1002/stem.2928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/06/2018] [Accepted: 08/18/2018] [Indexed: 11/11/2022]
Abstract
Xist is the master regulator of X chromosome inactivation. In order to further understand the Xist locus in the reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) and in somatic cell nuclear transfer (SCNT), we tested transcription-activator-like effectors-based designer transcriptional factors (dTFs), which were specific to numerous regions at the Xist locus. We report that the selected dTF repressor 6 (R6) binding the intron 1 of Xist, which caused higher H3K9me3 followed by X chromosome opening and repression of X-linked genes in mouse embryonic fibroblasts, rather than affecting Xist expression, substantially improved the iPSC generation and the SCNT preimplantation embryo development. Conversely, the dTF activator targeting the same genomic region of R6 decreased iPSC formation and blocked SCNT-embryo development. These results thus uncover the critical requirement for the Xist locus in epigenetic resetting, which is not directly related to Xist transcription. This may provide a unique route to improving the reprogramming. Stem Cells 2019;37:599-608.
Collapse
Affiliation(s)
- Jindun Zhang
- Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, Hohhot, People's Republic of China.,Wellcome Trust Sanger Institute, Cambridge, United Kingdom.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, People's Republic of China
| | - Xuefei Gao
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Jian Yang
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Xiaoying Fan
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, People's Republic of China.,College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Wei Wang
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Yanfeng Liang
- Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, Hohhot, People's Republic of China
| | - Lihong Fan
- Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, Hohhot, People's Republic of China
| | - Hongmei Han
- Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, Hohhot, People's Republic of China
| | - Xiaorong Xu
- Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, Hohhot, People's Republic of China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, People's Republic of China.,College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Siqin Bao
- Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, Hohhot, People's Republic of China
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Xihe Li
- Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, Hohhot, People's Republic of China.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, People's Republic of China
| |
Collapse
|
17
|
Sousa EJ, Stuart HT, Bates LE, Ghorbani M, Nichols J, Dietmann S, Silva JCR. Exit from Naive Pluripotency Induces a Transient X Chromosome Inactivation-like State in Males. Cell Stem Cell 2018; 22:919-928.e6. [PMID: 29804891 PMCID: PMC5989057 DOI: 10.1016/j.stem.2018.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/21/2017] [Accepted: 05/01/2018] [Indexed: 02/06/2023]
Abstract
A hallmark of naive pluripotency is the presence of two active X chromosomes in females. It is not clear whether prevention of X chromosome inactivation (XCI) is mediated by gene networks that preserve the naive state. Here, we show that robust naive pluripotent stem cell (nPSC) self-renewal represses expression of Xist, the master regulator of XCI. We found that nPSCs accumulate Xist on the male X chromosome and on both female X chromosomes as they become NANOG negative at the onset of differentiation. This is accompanied by the appearance of a repressive chromatin signature and partial X-linked gene silencing, suggesting a transient and rapid XCI-like state in male nPSCs. In the embryo, Xist is transiently expressed in males and in females from both X chromosomes at the onset of naive epiblast differentiation. In conclusion, we propose that XCI initiation is gender independent and triggered by destabilization of naive identity, suggesting that gender-specific mechanisms follow, rather than precede, XCI initiation.
Collapse
Affiliation(s)
- Elsa J Sousa
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Hannah T Stuart
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Lawrence E Bates
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | - Jennifer Nichols
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Sabine Dietmann
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - José C R Silva
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| |
Collapse
|
18
|
Carrel L, Brown CJ. When the Lyon(ized chromosome) roars: ongoing expression from an inactive X chromosome. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160355. [PMID: 28947654 PMCID: PMC5627157 DOI: 10.1098/rstb.2016.0355] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/21/2022] Open
Abstract
A tribute to Mary Lyon was held in October 2016. Many remarked about Lyon's foresight regarding many intricacies of the X-chromosome inactivation process. One such example is that a year after her original 1961 hypothesis she proposed that genes with Y homologues should escape from X inactivation to achieve dosage compensation between males and females. Fifty-five years later we have learned many details about these escapees that we attempt to summarize in this review, with a particular focus on recent findings. We now know that escapees are not rare, particularly on the human X, and that most lack functionally equivalent Y homologues, leading to their increasingly recognized role in sexually dimorphic traits. Newer sequencing technologies have expanded profiling of primary tissues that will better enable connections to sex-biased disorders as well as provide additional insights into the X-inactivation process. Chromosome organization, nuclear location and chromatin environments distinguish escapees from other X-inactivated genes. Nevertheless, several big questions remain, including what dictates their distinct epigenetic environment, the underlying basis of species differences in escapee regulation, how different classes of escapees are distinguished, and the roles that local sequences and chromosome ultrastructure play in escapee regulation.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- Laura Carrel
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, 500 University Drive, Mail code H171, Hershey, PA 17033, USA
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada BC V6T 1Z3
| |
Collapse
|
19
|
Mohammed H, Hernando-Herraez I, Savino A, Scialdone A, Macaulay I, Mulas C, Chandra T, Voet T, Dean W, Nichols J, Marioni JC, Reik W. Single-Cell Landscape of Transcriptional Heterogeneity and Cell Fate Decisions during Mouse Early Gastrulation. Cell Rep 2017; 20:1215-1228. [PMID: 28768204 PMCID: PMC5554778 DOI: 10.1016/j.celrep.2017.07.009] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 06/07/2017] [Accepted: 07/06/2017] [Indexed: 01/08/2023] Open
Abstract
The mouse inner cell mass (ICM) segregates into the epiblast and primitive endoderm (PrE) lineages coincident with implantation of the embryo. The epiblast subsequently undergoes considerable expansion of cell numbers prior to gastrulation. To investigate underlying regulatory principles, we performed systematic single-cell RNA sequencing (seq) of conceptuses from E3.5 to E6.5. The epiblast shows reactivation and subsequent inactivation of the X chromosome, with Zfp57 expression associated with reactivation and inactivation together with other candidate regulators. At E6.5, the transition from epiblast to primitive streak is linked with decreased expression of polycomb subunits, suggesting a key regulatory role. Notably, our analyses suggest elevated transcriptional noise at E3.5 and within the non-committed epiblast at E6.5, coinciding with exit from pluripotency. By contrast, E6.5 primitive streak cells became highly synchronized and exhibit a shortened G1 cell-cycle phase, consistent with accelerated proliferation. Our study systematically charts transcriptional noise and uncovers molecular processes associated with early lineage decisions.
Collapse
Affiliation(s)
- Hisham Mohammed
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Aurora Savino
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Antonio Scialdone
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK
| | - Iain Macaulay
- Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK
| | - Carla Mulas
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
| | - Tamir Chandra
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Thierry Voet
- Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK; Department of Human Genetics, Human Genome Laboratory, KU Leuven, 3000 Leuven, Belgium
| | - Wendy Dean
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK.
| | - John C Marioni
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 ORE, UK.
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
20
|
Postlmayr A, Wutz A. Insights into the Establishment of Chromatin States in Pluripotent Cells from Studies of X Inactivation. J Mol Biol 2017; 429:1521-1531. [PMID: 28315662 DOI: 10.1016/j.jmb.2017.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 11/20/2022]
Abstract
Animal development entails the sequential and coordinated specialization of cells. During cell differentiation, transcription factors, cell signaling pathways, and chromatin-associated protein complexes cooperate in regulating the expression of a large number of genes. Here, we review the present understanding of the establishment of chromatin states by focusing on X chromosome inactivation (XCI) as a model for facultative heterochromatin formation in female embryonic cells. The inactive X chromosome is large enough to be investigated by biochemical and microscopy techniques. In addition, the ability to compare the inactivated chromatin to the active X in male cells enables us to differentiate events specific to gene silencing during XCI from gene regulatory effects from changing pathways in the same cell. Findings in XCI are useful as blueprints for investigation of the action of epigenetic pathways in differentiation and lineage commitment. We summarize recent studies that have identified factors that are critical for chromosome-wide gene repression in XCI, and we discuss their implications for epigenetic regulation in pluripotent cells of the early embryo.
Collapse
Affiliation(s)
- Andreas Postlmayr
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland; Life Science Zurich Graduate School, Molecular Life Sciences Program, University of Zurich, 8049 Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
21
|
Ma JE, Lang QQ, Qiu FF, Zhang L, Li XG, Luo W, Wang J, Wang X, Lin XR, Liu WS, Nie QH, Zhang XQ. Negative Glucocorticoid Response-Like Element from the First Intron of the Chicken Growth Hormone Gene Represses Gene Expression in the Rat Pituitary Tumor Cell Line. Int J Mol Sci 2016; 17:ijms17111863. [PMID: 27834851 PMCID: PMC5133863 DOI: 10.3390/ijms17111863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 12/29/2022] Open
Abstract
The effects of introns, especially the first intron, on the regulation of gene expression remains unclear. Therefore, the objective of the present study was to investigate the transcriptional regulatory function of intron 1 on the chicken growth hormone (cGH) gene in the rat pituitary tumor cell line (GH4-C1). Transient transfection using first-intron-inserted cGH complete coding sequences (CDSs) and non-intron-inserted cGH CDS plasmids, quantitative RT-PCR (qRT-PCR) and western blot assays were used to detect the expression of cGH. The reporter gene assay was also used to investigate the effect of a series of fragments in the first intron of cGH on gene expression in GH4-C1. All of the results revealed that a 200-bp fragment located in the +485/+684 region of intron 1 was essential for repressing the expression of cGH. Further informatics analysis showed that there was a cluster of 13 transcriptional factor binding sites (TFBSs) in the +485/+684 region of the cGH intron 1. Disruption of a glucocorticoid response-like element (the 19-nucleotide sequence 5'-AGGCTTGACAGTGACCTCC-3') containing a T-box motif (TGACCT) located within this DNA fragment increased the expression of the reporter gene in GH4-C1. In addition, an electrophoretic mobility shift assay (EMSA) revealed a glucocorticoid receptor (GR) protein of rat binding to the glucocorticoid response-like element. Together, these results indicate that there is a negative glucocorticoid response-like element (nGRE) located in the +591/+609 region within the first intron of cGH, which is essential for the down-regulation of cGH expression.
Collapse
Affiliation(s)
- Jing-E Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qian-Qian Lang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Feng-Fang Qiu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Li Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiang-Guang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Juan Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xing Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Ran Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Wen-Sheng Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qing-Hua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Quan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
22
|
Xist and Tsix Transcription Dynamics Is Regulated by the X-to-Autosome Ratio and Semistable Transcriptional States. Mol Cell Biol 2016; 36:2656-2667. [PMID: 27528619 PMCID: PMC5064214 DOI: 10.1128/mcb.00183-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/20/2016] [Indexed: 12/15/2022] Open
Abstract
In female mammals, X chromosome inactivation (XCI) is a key process in the control of gene dosage compensation between X-linked genes and autosomes. Xist and Tsix, two overlapping antisense-transcribed noncoding genes, are central elements of the X inactivation center (Xic) regulating XCI. Xist upregulation results in the coating of the entire X chromosome by Xist RNA in cis, whereas Tsix transcription acts as a negative regulator of Xist. Here, we generated Xist and Tsix reporter mouse embryonic stem (ES) cell lines to study the genetic and dynamic regulation of these genes upon differentiation. Our results revealed mutually antagonistic roles for Tsix on Xist and vice versa and indicate the presence of semistable transcriptional states of the Xic locus predicting the outcome of XCI. These transcriptional states are instructed by the X-to-autosome ratio, directed by regulators of XCI, and can be modulated by tissue culture conditions.
Collapse
|
23
|
Ordered chromatin changes and human X chromosome reactivation by cell fusion-mediated pluripotent reprogramming. Nat Commun 2016; 7:12354. [PMID: 27507283 PMCID: PMC4987517 DOI: 10.1038/ncomms12354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/24/2016] [Indexed: 12/17/2022] Open
Abstract
Erasure of epigenetic memory is required to convert somatic cells towards pluripotency. Reactivation of the inactive X chromosome (Xi) has been used to model epigenetic reprogramming in mouse, but human studies are hampered by Xi epigenetic instability and difficulties in tracking partially reprogrammed iPSCs. Here we use cell fusion to examine the earliest events in the reprogramming-induced Xi reactivation of human female fibroblasts. We show that a rapid and widespread loss of Xi-associated H3K27me3 and XIST occurs in fused cells and precedes the bi-allelic expression of selected Xi-genes by many heterokaryons (30–50%). After cell division, RNA-FISH and RNA-seq analyses confirm that Xi reactivation remains partial and that induction of human pluripotency-specific XACT transcripts is rare (1%). These data effectively separate pre- and post-mitotic events in reprogramming-induced Xi reactivation and reveal a complex hierarchy of epigenetic changes that are required to reactivate the genes on the human Xi chromosome. Reactivation of the inactive X chromosome (Xi) has modelled epigenetic reprogramming in mouse. Here, by using cell fusion between human female fibroblasts and mouse embryonic stem cells, the authors show a complex hierarchy of epigenetic changes that are required to reactivate the genes on the human Xi chromosome.
Collapse
|
24
|
Goodrich L, Panning B, Leung KN. Activators and repressors: A balancing act for X-inactivation. Semin Cell Dev Biol 2016; 56:3-8. [DOI: 10.1016/j.semcdb.2016.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
|
25
|
Casanova M, Liyakat Ali TM, Rougeulle C. Enlightening the contribution of the dark matter to the X chromosome inactivation process in mammals. Semin Cell Dev Biol 2016; 56:48-57. [PMID: 27174438 DOI: 10.1016/j.semcdb.2016.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 02/07/2023]
Abstract
X-chromosome inactivation (XCI) in mammals represents an exceptional example of transcriptional co-regulation occurring at the level of an entire chromosome. XCI is considered as a means to compensate for gene dosage imbalance between sexes, yet the largest part of the chromosome is composed of repeated elements of different nature and origins. Here we consider XCI from a repeat point of view, interrogating the mechanisms for inactivating X chromosome-derived repeated sequences and discussing the contribution of repetitive elements to the silencing process itself and to its evolution.
Collapse
Affiliation(s)
- Miguel Casanova
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Université Paris Diderot, Paris, France
| | | | - Claire Rougeulle
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Université Paris Diderot, Paris, France.
| |
Collapse
|
26
|
Payer B. Developmental regulation of X-chromosome inactivation. Semin Cell Dev Biol 2016; 56:88-99. [PMID: 27112543 DOI: 10.1016/j.semcdb.2016.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 12/01/2022]
Abstract
With the emergence of sex-determination by sex chromosomes, which differ in composition and number between males and females, appeared the need to equalize X-chromosomal gene dosage between the sexes. Mammals have devised the strategy of X-chromosome inactivation (XCI), in which one of the two X-chromosomes is rendered transcriptionally silent in females. In the mouse, the best-studied model organism with respect to XCI, this inactivation process occurs in different forms, imprinted and random, interspersed by periods of X-chromosome reactivation (XCR), which is needed to switch between the different modes of XCI. In this review, I describe the recent advances with respect to the developmental control of XCI and XCR and in particular their link to differentiation and pluripotency. Furthermore, I review the mechanisms, which influence the timing and choice, with which one of the two X-chromosomes is chosen for inactivation during random XCI. This has an impact on how females are mosaics with regard to which X-chromosome is active in different cells, which has implications on the severity of diseases caused by X-linked mutations.
Collapse
Affiliation(s)
- Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology and Universitat Pompeu Fabra (UPF), Dr. Aiguader, 88, Barcelona 08003, Spain.
| |
Collapse
|
27
|
How Many Non-coding RNAs Does It Take to Compensate Male/Female Genetic Imbalance? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:33-49. [PMID: 26659486 DOI: 10.1007/978-94-017-7417-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genetic sex determination in mammals relies on dimorphic sex chromosomes that confer phenotypic/physiologic differences between males and females. In this heterogametic system, X and Y chromosomes diverged from an ancestral pair of autosomes, creating a genetic disequilibrium between XX females and XY males. Dosage compensation mechanisms alleviate intrinsic gene dosage imbalance, leading to equal expression levels of most X-linked genes in the two sexes. In therian mammals, this is achieved through inactivation of one of the two X chromosomes in females. Failure to undergo X-chromosome inactivation (XCI) results in developmental arrest and death. Although fundamental for survival, a surprising loose conservation in the mechanisms to achieve XCI during development in therian lineage has been, and continues, to be uncovered. XCI involves the concerted action of non-coding RNAs (ncRNAs), including the well-known Xist RNA, and has thus become a classical paradigm to study the mode of action of this particular class of transcripts. In this chapter, we will describe the processes coping with sex chromosome genetic imbalance and how ncRNAs underlie dosage compensation mechanisms and influence male-female differences in mammals. Moreover, we will discuss how ncRNAs have been tinkered with during therian evolution to adapt XCI mechanistic to species-specific constraints.
Collapse
|
28
|
Ohhata T, Matsumoto M, Leeb M, Shibata S, Sakai S, Kitagawa K, Niida H, Kitagawa M, Wutz A. Histone H3 Lysine 36 Trimethylation Is Established over the Xist Promoter by Antisense Tsix Transcription and Contributes to Repressing Xist Expression. Mol Cell Biol 2015; 35:3909-20. [PMID: 26370508 PMCID: PMC4609750 DOI: 10.1128/mcb.00561-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/10/2015] [Accepted: 09/04/2015] [Indexed: 12/18/2022] Open
Abstract
One of the two X chromosomes in female mammals is inactivated by the noncoding Xist RNA. In mice, X chromosome inactivation (XCI) is regulated by the antisense RNA Tsix, which represses Xist on the active X chromosome. In the absence of Tsix, PRC2-mediated histone H3 lysine 27 trimethylation (H3K27me3) is established over the Xist promoter. Simultaneous disruption of Tsix and PRC2 leads to derepression of Xist and in turn silencing of the single X chromosome in male embryonic stem cells. Here, we identified histone H3 lysine 36 trimethylation (H3K36me3) as a modification that is recruited by Tsix cotranscriptionally and extends over the Xist promoter. Reduction of H3K36me3 by expression of a mutated histone H3.3 with a substitution of methionine for lysine at position 36 causes a significant derepression of Xist. Moreover, depletion of the H3K36 methylase Setd2 leads to upregulation of Xist, suggesting H3K36me3 as a modification that contributes to the mechanism of Tsix function in regulating XCI. Furthermore, we found that reduction of H3K36me3 does not facilitate an increase in H3K27me3 over the Xist promoter, indicating that additional mechanisms exist by which Tsix blocks PRC2 recruitment to the Xist promoter.
Collapse
Affiliation(s)
- Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan WT and MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Mika Matsumoto
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Martin Leeb
- WT and MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Shinwa Shibata
- Department of Stem Cell Biology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kyoko Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Anton Wutz
- WT and MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom Institute of Molecular Health Sciences, ETH, Zurich, Switzerland
| |
Collapse
|
29
|
Amakawa Y, Sakata Y, Hoki Y, Arata S, Shioda S, Fukagawa T, Sasaki H, Sado T. A new Xist allele driven by a constitutively active promoter is dominated by Xist locus environment and exhibits the parent-of-origin effects. Development 2015; 142:4299-308. [PMID: 26511926 DOI: 10.1242/dev.128819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/21/2015] [Indexed: 01/09/2023]
Abstract
The dosage difference of X-linked genes between the sexes in mammals is compensated for by genetic inactivation of one of the X chromosomes in XX females. A noncoding RNA transcribed from the Xist gene at the onset of X chromosome inactivation coats the X chromosome in cis and induces chromosome-wide heterochromatinization. Here, we report a new Xist allele (Xist(CAG)) driven by a CAG promoter, which is known to be constitutively active in many types of cells. The paternal transmission of Xist(CAG) resulted in the preferential inactivation of the targeted paternal X (Xp) not only in the extra-embryonic but also the embryonic lineage, whereas maternal transmission ended with embryonic lethality at the early postimplantation stage with a phenotype that resembled mutant embryos carrying a maternal deficiency in Tsix, an antisense negative regulator of Xist, in both sexes. Interestingly, we found that the upregulation of Xist(CAG) in preimplantation embryos temporally differed depending on its parental origin: its expression started at the 4- to 8-cell stages when paternally inherited, and Xist(CAG) was upregulated at the blastocyst stage when maternally inherited. This might indicate that the Xist locus on Xp is permissive to transcription, but the Xist locus on the maternal X (Xm) is not. We extrapolated from these findings that the maternal Xist allele might manifest a chromatin structure inaccessible by transcription factors relative to the paternal allele. This might underlie the mechanism for the maternal repression of Xist at the early cleavage stage when Tsix expression has not yet occurred on Xm.
Collapse
Affiliation(s)
- Yuko Amakawa
- Division of Molecular Genetics, National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima 411-8540, Japan
| | - Yuka Sakata
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu-University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan Department of Advanced Bioscience, Graduate School of Agriculture, Kinki University, 3327-204, Nakamachi, Nara 631-8505, Japan
| | - Yuko Hoki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu-University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoru Arata
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Seiji Shioda
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Tatsuo Fukagawa
- Division of Molecular Genetics, National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima 411-8540, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu-University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Sado
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu-University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan Department of Advanced Bioscience, Graduate School of Agriculture, Kinki University, 3327-204, Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
30
|
Sarkar MK, Gayen S, Kumar S, Maclary E, Buttigieg E, Hinten M, Kumari A, Harris C, Sado T, Kalantry S. An Xist-activating antisense RNA required for X-chromosome inactivation. Nat Commun 2015; 6:8564. [PMID: 26477563 PMCID: PMC4616153 DOI: 10.1038/ncomms9564] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/07/2015] [Indexed: 01/06/2023] Open
Abstract
The transcriptional imbalance due to the difference in the number of X chromosomes between male and female mammals is remedied through X-chromosome inactivation, the epigenetic transcriptional silencing of one of the two X chromosomes in females. The X-linked Xist long non-coding RNA functions as an X inactivation master regulator; Xist is selectively upregulated from the prospective inactive X chromosome and is required in cis for X inactivation. Here we discover an Xist antisense long non-coding RNA, XistAR (XistActivating RNA), which is encoded within exon 1 of the mouse Xist gene and is transcribed only from the inactive X chromosome. Selective truncation of XistAR, while sparing the overlapping Xist RNA, leads to a deficiency in Xist RNA expression in cis during the initiation of X inactivation. Thus, the Xist gene carries within its coding sequence an antisense RNA that drives Xist expression. The X-chromosome linked long non-coding RNA, Xist, is a master regulator of the X inactivation. Here, the authors report that XistAR, an Xist anti-sense long non-coding RNA encoded within the mouse Xist gene and transcribed only from the inactive X chromosome, regulates Xist expression.
Collapse
Affiliation(s)
- Mrinal K Sarkar
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Srimonta Gayen
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Surinder Kumar
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Emily Maclary
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Emily Buttigieg
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Michael Hinten
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Archana Kumari
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Clair Harris
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Takashi Sado
- Department of Advanced Bioscience, Graduate School of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
31
|
Abstract
X chromosome inactivation (XCI) is the dosage compensation mechanism that evolved in female mammals to correct the genetic imbalance of X-linked genes between sexes. X chromosome inactivation occurs in early development when one of the two X chromosomes of females is nearly-completely silenced. Differentiating Embryonic Stem cells (ESC) are regarded as a useful tool to study XCI, since they recapitulate many events occurring during early development. In this review we aim to summarise the advances in the field and to discuss the close connection between cell differentiation and X chromosome inactivation, with a particular focus on mouse ESCs.
Collapse
Affiliation(s)
- Greta Pintacuda
- />Department of Biochemistry, University of Oxford, Oxford, OX1 3QU UK
| | - Andrea Cerase
- />EMBL Mouse Biology Unit, Monterotondo, 00015 RM Italy
| |
Collapse
|
32
|
Abstract
Female mammalian cells compensate dosage of X-linked gene expression through the inactivation of one of their two X chromosomes. X chromosome inactivation (XCI) in eutherians is dependent on the non-coding RNA Xist that is up-regulated from the future inactive X chromosome, coating it and recruiting factors involved in silencing and altering its chromatin state. Xist lies within the X-inactivation center (Xic), a region on the X that is required for XCI, and is regulated in cis by elements on the X chromosome and in trans by diffusible factors. In this review, we summarize the latest results in cis- and trans-regulation of the Xic. We discuss how the organization of the Xic in topologically associating domains is important for XCI (cis-regulation) and how proteins in the pluripotent state and upon development or differentiation of embryonic stem cells control proper inactivation of one X chromosome (trans-regulation).
Collapse
|
33
|
Galupa R, Heard E. X-chromosome inactivation: new insights into cis and trans regulation. Curr Opin Genet Dev 2015; 31:57-66. [PMID: 26004255 DOI: 10.1016/j.gde.2015.04.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/02/2015] [Indexed: 12/19/2022]
Abstract
X-chromosome inactivation (XCI) is a developmentally associated process that evolved in mammals to enable gene dosage compensation between XX and XY individuals. In placental mammals, it is triggered by the long noncoding RNA Xist, which is produced from a complex regulatory locus, the X-inactivation centre (Xic). Recent insights into the regulatory landscape of the Xic, including its partitioning into topological associating domains (TADs) and its genetic dissection, have important implications for the monoallelic regulation of Xist. Here, we present some of the latest studies on X inactivation with a special focus on the regulation of Xist, its various functions and the putative role of chromosome conformation in regulating the dynamics of this locus during development and differentiation.
Collapse
Affiliation(s)
- Rafael Galupa
- Mammalian Developmental Epigenetics Group, Institut Curie, PSL University, CNRS UMR3215, INSERM U934, 26, rue d'Ulm, 75005 Paris, France
| | - Edith Heard
- Mammalian Developmental Epigenetics Group, Institut Curie, PSL University, CNRS UMR3215, INSERM U934, 26, rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
34
|
Gayen S, Maclary E, Buttigieg E, Hinten M, Kalantry S. A Primary Role for the Tsix lncRNA in Maintaining Random X-Chromosome Inactivation. Cell Rep 2015; 11:1251-65. [PMID: 25981039 DOI: 10.1016/j.celrep.2015.04.039] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/27/2015] [Accepted: 04/18/2015] [Indexed: 11/30/2022] Open
Abstract
Differentiating pluripotent epiblast cells in eutherians undergo random X-inactivation, which equalizes X-linked gene expression between the sexes by silencing one of the two X-chromosomes in females. Tsix RNA is believed to orchestrate the initiation of X-inactivation, influencing the choice of which X remains active by preventing expression of the antisense Xist RNA, which is required to silence the inactive-X. Here we profile X-chromosome activity in Tsix-mutant (X(ΔTsix)) mouse embryonic epiblasts, epiblast stem cells, and embryonic stem cells. Unexpectedly, we find that Xist is stably repressed on the X(ΔTsix) in both sexes in undifferentiated epiblast cells in vivo and in vitro, resulting in stochastic X-inactivation in females despite Tsix-heterozygosity. Tsix is instead required to silence Xist on the active-X as epiblast cells differentiate in both males and females. Thus, Tsix is not required at the onset of random X-inactivation; instead, it protects the active-X from ectopic silencing once X-inactivation has commenced.
Collapse
Affiliation(s)
- Srimonta Gayen
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Emily Maclary
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Emily Buttigieg
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Michael Hinten
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| |
Collapse
|
35
|
Barakat TS, Gribnau J. Generation of knockout alleles by RFLP based BAC targeting of polymorphic embryonic stem cells. Methods Mol Biol 2015; 1227:143-80. [PMID: 25239745 DOI: 10.1007/978-1-4939-1652-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The isolation of germ line competent mouse Embryonic Stem (ES) cells and the ability to modify the genome by homologous recombination has revolutionized life science research. Since its initial discovery, several approaches have been introduced to increase the efficiency of homologous recombination, including the use of isogenic DNA for the generation of targeting constructs, and the use of Bacterial Artificial Chromosomes (BACs). BACs have the advantage of combining long stretches of homologous DNA, thereby increasing targeting efficiencies, with the possibilities delivered by BAC recombineering approaches, which provide the researcher with almost unlimited possibilities to efficiently edit the genome in a controlled fashion. Despite these advantages of BAC targeting approaches, a widespread use has been hampered, mainly because of the difficulties in identifying BAC-targeted knockout alleles by conventional methods like Southern Blotting. Recently, we introduced a novel BAC targeting strategy, in which Restriction Fragment Length Polymorphisms (RFLPs) are targeted in polymorphic mouse ES cells, enabling an efficient and easy PCR-based readout to identify properly targeted alleles. Here we provide a detailed protocol for the generation of targeting constructs, targeting of ES cells, and convenient PCR-based analysis of targeted clones, which enable the user to generate knockout ES cells of almost every gene in the mouse genome within a 2-month period.
Collapse
Affiliation(s)
- Tahsin Stefan Barakat
- Department of Reproduction and Development, Erasmus MC, University Medical Center, Room Ee 09-71, PO Box 2040, 3000 CA, Rotterdam, The Netherlands,
| | | |
Collapse
|
36
|
Dowell KG, Simons AK, Bai H, Kell B, Wang ZZ, Yun K, Hibbs MA. Novel insights into embryonic stem cell self-renewal revealed through comparative human and mouse systems biology networks. Stem Cells 2014; 32:1161-72. [PMID: 24307629 DOI: 10.1002/stem.1612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/11/2013] [Indexed: 12/25/2022]
Abstract
Embryonic stem cells (ESCs), characterized by their ability to both self-renew and differentiate into multiple cell lineages, are a powerful model for biomedical research and developmental biology. Human and mouse ESCs share many features, yet have distinctive aspects, including fundamental differences in the signaling pathways and cell cycle controls that support self-renewal. Here, we explore the molecular basis of human ESC self-renewal using Bayesian network machine learning to integrate cell-type-specific, high-throughput data for gene function discovery. We integrated high-throughput ESC data from 83 human studies (~1.8 million data points collected under 1,100 conditions) and 62 mouse studies (~2.4 million data points collected under 1,085 conditions) into separate human and mouse predictive networks focused on ESC self-renewal to analyze shared and distinct functional relationships among protein-coding gene orthologs. Computational evaluations show that these networks are highly accurate, literature validation confirms their biological relevance, and reverse transcriptase polymerase chain reaction (RT-PCR) validation supports our predictions. Our results reflect the importance of key regulatory genes known to be strongly associated with self-renewal and pluripotency in both species (e.g., POU5F1, SOX2, and NANOG), identify metabolic differences between species (e.g., threonine metabolism), clarify differences between human and mouse ESC developmental signaling pathways (e.g., leukemia inhibitory factor (LIF)-activated JAK/STAT in mouse; NODAL/ACTIVIN-A-activated fibroblast growth factor in human), and reveal many novel genes and pathways predicted to be functionally associated with self-renewal in each species. These interactive networks are available online at www.StemSight.org for stem cell researchers to develop new hypotheses, discover potential mechanisms involving sparsely annotated genes, and prioritize genes of interest for experimental validation.
Collapse
Affiliation(s)
- Karen G Dowell
- The Jackson Laboratory, Bar Harbor, Maine, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Briggs SF, Reijo Pera RA. X chromosome inactivation: recent advances and a look forward. Curr Opin Genet Dev 2014; 28:78-82. [PMID: 25461454 PMCID: PMC4339055 DOI: 10.1016/j.gde.2014.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/28/2014] [Accepted: 09/16/2014] [Indexed: 12/21/2022]
Abstract
X chromosome inactivation, the transcriptional inactivation of one X chromosome in somatic cells of female mammals, has revealed important advances in our understanding of development, epigenetic control, and RNA biology. Most of this knowledge comes from extensive studies in the mouse; however, there are some significant differences when compared to human biology. This is especially true in pluripotent cell types and, over the past few years, a significant amount of work has been dedicated to understanding these differences. This review focuses specifically on recent advances in the mechanism of Xist spreading, the role of Xist in cancer, the effects of reprogramming on X chromosome inactivation in human induced pluripotent stem cells, and new tools for studying X chromosome inactivation.
Collapse
Affiliation(s)
- Sharon F Briggs
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA, USA
| | - Renee A Reijo Pera
- Department of Cell Biology and Neurosciences, Montana State University, 207 Montana Hall, Bozeman, MT 59711-2460, USA; Department of Chemistry and Biochemistry, Montana State University, 207 Montana Hall, Bozeman, MT 59711-2460, USA.
| |
Collapse
|
38
|
Payer B, Lee JT. Coupling of X-chromosome reactivation with the pluripotent stem cell state. RNA Biol 2014; 11:798-807. [PMID: 25137047 DOI: 10.4161/rna.29779] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
X-chromosome inactivation (XCI) in female mammals is a dramatic example of epigenetic gene regulation, which entails the silencing of an entire chromosome through a wide range of mechanisms involving noncoding RNAs, chromatin-modifications, and DNA-methylation. While XCI is associated with the differentiated cell state, it is reversed by X-chromosome reactivation (XCR) ex vivo in pluripotent stem cells and in vivo in the early mouse embryo and the germline. Critical in the regulation of XCI vs. XCR is the X-inactivation center, a multigene locus on the X-chromosome harboring several long noncoding RNA genes including, most prominently, Xist and Tsix. These genes, which sit at the top of the XCI hierarchy, are by themselves controlled by pluripotency factors, coupling XCR with the naïve pluripotent stem cell state. In this point-of-view article we review the latest findings regarding this intricate relationship between cell differentiation state and epigenetic control of the X-chromosome. In particular, we discuss the emerging picture of complex multifactorial regulatory mechanisms, ensuring both a fine-tuned and robust X-reactivation process.
Collapse
Affiliation(s)
- Bernhard Payer
- Howard Hughes Medical Institute; Department of Molecular Biology; Massachusetts General Hospital; Department of Genetics; Harvard Medical School; Boston, MA USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute; Department of Molecular Biology; Massachusetts General Hospital; Department of Genetics; Harvard Medical School; Boston, MA USA
| |
Collapse
|
39
|
Abstract
In mammals, the process of X-chromosome inactivation ensures equivalent levels of X-linked gene expression between males and females through the silencing of one of the two X chromosomes in female cells. The process is established early in development and is initiated by a unique locus, which produces a long noncoding RNA, Xist. The Xist transcript triggers gene silencing in cis by coating the future inactive X chromosome. It also induces a cascade of chromatin changes, including posttranslational histone modifications and DNA methylation, and leads to the stable repression of all X-linked genes throughout development and adult life. We review here recent progress in our understanding of the molecular mechanisms involved in the initiation of Xist expression, the propagation of the Xist RNA along the chromosome, and the cis-elements and trans-acting factors involved in the maintenance of the repressed state. We also describe the diverse strategies used by nonplacental mammals for X-chromosome dosage compensation and highlight the common features and differences between eutherians and metatherians, in particular regarding the involvement of long noncoding RNAs.
Collapse
Affiliation(s)
- Anne-Valerie Gendrel
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, 75248 Paris, France;
| | | |
Collapse
|
40
|
Payer B, Rosenberg M, Yamaji M, Yabuta Y, Koyanagi-Aoi M, Hayashi K, Yamanaka S, Saitou M, Lee JT. Tsix RNA and the germline factor, PRDM14, link X reactivation and stem cell reprogramming. Mol Cell 2013; 52:805-18. [PMID: 24268575 DOI: 10.1016/j.molcel.2013.10.023] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 09/05/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
Abstract
Transitions between pluripotent and differentiated states are marked by dramatic epigenetic changes. Cellular differentiation is tightly linked to X chromosome inactivation (XCI), whereas reprogramming to induced pluripotent stem cells (iPSCs) is associated with X chromosome reactivation (XCR). XCR reverses the silent state of the inactive X, occurring in mouse blastocysts and germ cells. In spite of its importance, little is known about underlying mechanisms. Here, we examine the role of the long noncoding Tsix RNA and the germline factor, PRDM14. In blastocysts, XCR is perturbed by mutation of either Tsix or Prdm14. In iPSCs, XCR is disrupted only by PRDM14 deficiency, which also affects iPSC derivation and maintenance. We show that Tsix and PRDM14 directly link XCR to pluripotency: first, PRDM14 represses Rnf12 by recruiting polycomb repressive complex 2; second, Tsix enables PRDM14 to bind Xist. Thus, our study provides functional and mechanistic links between cellular and X chromosome reprogramming.
Collapse
Affiliation(s)
- Bernhard Payer
- Howard Hughes Medical Institute, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael Rosenberg
- Howard Hughes Medical Institute, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Masashi Yamaji
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukihiro Yabuta
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Michiyo Koyanagi-Aoi
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin Yoshida, Sakyo-ku, Kyoto 606-8507, Japan
| | - Katsuhiko Hayashi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin Yoshida, Sakyo-ku, Kyoto 606-8507, Japan; JST, PRESTO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin Yoshida, Sakyo-ku, Kyoto 606-8507, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin Yoshida, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jeannie T Lee
- Howard Hughes Medical Institute, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|