1
|
Mo W, Deng L, Cheng Y, Ge S, Wang J. IGFBP7 regulates cell proliferation and migration through JAK/STAT pathway in gastric cancer and is regulated by DNA and RNA methylation. J Cell Mol Med 2024; 28:e70080. [PMID: 39351597 PMCID: PMC11443158 DOI: 10.1111/jcmm.70080] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/06/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024] Open
Abstract
New biomarkers for early diagnosis of gastric cancer (GC), the second leading cause of cancer-related death, are urgently needed. IGFBP7, known to play various roles in multiple tumours, is complexly regulated across diverse cancer types, as evidenced by our pancancer analysis. Bioinformatics analysis revealed that IGFBP7 expression was related to patient prognosis, tumour clinicopathological characteristics, tumour stemness, microsatellite instability and immune cell infiltration, as well as the expression of oncogenes and immune checkpoints. GSEA links IGFBP7 to several cancer-related pathways. IGFBP7 deficiency inhibited GC cell proliferation and migration in vitro. Furthermore, an in vivo nude mouse model revealed that IGFBP7 downregulation suppressed the tumorigenesis of GC cells. Western blotting analysis showed that the JAK1/2-specific inhibitor ruxolitinib could rescue alterations induced by IGFBP7 overexpression in GC cells. Additionally, our bioinformatics analysis and in vitro assays suggested that IGFBP7 is regulated by DNA methylation at the genetic level and that the RNA m6A demethylase FTO modulates it at the posttranscriptional level. This study emphasizes the clinical relevance of IGFBP7 in GC and its influence on cell proliferation and migration via the JAK/STAT signalling pathway. This study also highlights the regulation of IGFBP7 in GC by DNA and m6A RNA methylation.
Collapse
Affiliation(s)
- Weilie Mo
- Department of General SurgeryChangzhou No.7 People's HospitalChangzhouChina
- Department of General SurgeryChangzhou Geriatric Hospital affiliated to Soochow UniversityChangzhouChina
| | - Lijian Deng
- Department of OncologyChangzhou No.7 People's HospitalChangzhouChina
- Department of OncologyChangzhou Geriatric Hospital affiliated to Soochow UniversityChangzhouChina
| | - Yun Cheng
- Department of General SurgeryChangzhou No.7 People's HospitalChangzhouChina
- Department of General SurgeryChangzhou Geriatric Hospital affiliated to Soochow UniversityChangzhouChina
| | - Sen Ge
- Department of General SurgeryChangzhou No.7 People's HospitalChangzhouChina
- Department of General SurgeryChangzhou Geriatric Hospital affiliated to Soochow UniversityChangzhouChina
| | - Jin Wang
- School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
| |
Collapse
|
2
|
Negotei C, Colita A, Mitu I, Lupu AR, Lapadat ME, Popovici CE, Crainicu M, Stanca O, Berbec NM. A Review of FLT3 Kinase Inhibitors in AML. J Clin Med 2023; 12:6429. [PMID: 37892567 PMCID: PMC10607239 DOI: 10.3390/jcm12206429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Acute myeloid leukemia (AML) is a highly aggressive illness distinguished by the accumulation of abnormal hematopoietic precursors in both the bone marrow and peripheral blood. The prevalence of FLT3 gene mutations is high and escalates the probability of relapse and mortality. The survival rates for AML patients, particularly those over 65, are low. FLT3 mutation screening at diagnosis is mandatory, and FLT3 inhibitors are crucial in treating AML patients with mutations. There are two categories of FLT3 mutations: FLT3-ITD located in the juxtamembrane domain and FLT3-TKD in the tyrosine kinase domain. FLT3-ITD is the most common type, affecting nearly a quarter of patients, whereas FLT3-TKD only affects 6-8% of patients. FLT3 inhibitors are now crucial in treating AML patients with FLT3 mutations. When dealing with FLT3-mutated AML, the recommended course of treatment typically involves chemotherapy and midostaurin, followed by allogeneic hematopoietic cell transplantation (HCT) to maximize the likelihood of success. Maintenance therapy can lower the risk of relapse, and gilteritinib is a better option than salvage chemotherapy for relapsed or refractory cases. Clinical trials for new or combined therapies are the most effective approach. This review discusses treatment options for patients with FLT3-mutated AML, including induction chemotherapy and options for relapsed or refractory disease. Additional treatment options may become available as more studies are conducted based on the patient's condition and susceptibility.
Collapse
Affiliation(s)
- Cristina Negotei
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Clinic of Hematology, Coltea Clinical Hospital, 030171 Bucharest, Romania
| | - Andrei Colita
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Clinic of Hematology, Coltea Clinical Hospital, 030171 Bucharest, Romania
| | - Iuliana Mitu
- Clinic of Hematology, Coltea Clinical Hospital, 030171 Bucharest, Romania
| | - Anca Roxana Lupu
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mihai-Emilian Lapadat
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Clinic of Hematology, Coltea Clinical Hospital, 030171 Bucharest, Romania
| | - Constanta Elena Popovici
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Clinic of Hematology, Coltea Clinical Hospital, 030171 Bucharest, Romania
| | - Madalina Crainicu
- Clinic of Hematology, Coltea Clinical Hospital, 030171 Bucharest, Romania
| | - Oana Stanca
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Clinic of Hematology, Coltea Clinical Hospital, 030171 Bucharest, Romania
| | - Nicoleta Mariana Berbec
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Clinic of Hematology, Coltea Clinical Hospital, 030171 Bucharest, Romania
| |
Collapse
|
3
|
Wu X, Ji L, Shen Y, Chen L, Xu D, Dong F. Genomic characterization of Campylobacter isolates in Huzhou, China. PLoS One 2023; 18:e0289371. [PMID: 37590201 PMCID: PMC10434848 DOI: 10.1371/journal.pone.0289371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Campylobacter is a major foodborne pathogen that causes outbreaks and sporadic gastrointestinal disease, creating a serious disease burden. Campylobacter strains isolated from diarrhea cases (n = 11) and raw poultry meat products (n = 2) in Huzhou, including 11 Campylobacter jejuni and 2 Campylobacter coli strains, were subjected to virulence gene, drug resistance gene, genetic correlation, antibiotic resistance, and multilocus sequence typing (MLST) analyses. The 13 Campylobacter isolates were divided into 12 sequence types (STs), one of which was a new ST. The isolated strains contain multiple virulence-related genes. Drug sensitivity analysis showed that the resistance rate of the 13 isolates to nalidixic acid, ciprofloxacin, and tetracycline was 92.3%. Genome sequencing indicated that all 11 strains of C. jejuni carried the tet(O) and blaOXA resistance genes, and 2 strains of C. coli carried multiple drug resistance genes. Phylogenetic analysis based on core-genome single-nucleotide polymorphisms indicated that the 11 C. jejuni isolates from diarrhea patients and food sources are not closely phylogenetically related.
Collapse
Affiliation(s)
- Xiaofang Wu
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Lei Ji
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Yuehua Shen
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Liping Chen
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Deshun Xu
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| | - Fenfen Dong
- Huzhou Center for Disease Control and Prevention, Huzhou, Zhejiang, China
| |
Collapse
|
4
|
Li Y, Yang W, Patel RM, Casey EB, Denby E, Mendoza-Castrejon J, Rodriguez-Lopez P, Magee JA. FLT3ITD drives context-specific changes in cell identity and variable interferon dependence during AML initiation. Blood 2023; 141:1442-1456. [PMID: 36395068 PMCID: PMC10082380 DOI: 10.1182/blood.2022016889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Acute myeloid leukemia (AML) initiation requires multiple rate-limiting mutations to cooperatively reprogram progenitor cell identity. For example, FLT3 internal tandem duplication (FLT3ITD) mutations cooperate with a variety of different initiating mutations to reprogram myeloid progenitor fate. These initiating mutations often skew toward either pediatric or adult AML patient populations, though FLT3ITD itself occurs at similar frequencies in both age groups. This raises the question of whether FLT3ITD might induce distinct transcriptional programs and unmask distinct therapeutic vulnerabilities when paired with pediatric, as opposed to adult AML-initiating mutations. To explore this possibility, we compared AML evolution in mice that carried Flt3ITD/NUP98-HOXD13 (NHD13) or Flt3ITD/Runx1DEL mutation pairs, which are respectively most common in pediatric and adult AML. Single-cell analyses and epigenome profiling revealed distinct interactions between Flt3ITD and its cooperating mutations. Whereas Flt3ITD and Flt3ITD/Runx1DEL caused aberrant expansion of myeloid progenitors, Flt3ITD/NHD13 drove the emergence of a pre-AML population that did not resemble normal hematopoietic progenitors. Differences between Flt3ITD/Runx1DEL and Flt3ITD/NHD13 cooperative target gene expression extended to fully transformed AML as well. Flt3ITD/NHD13 cooperative target genes were enriched in human NUP98-translocated AML. Flt3ITD/NHD13 selectively hijacked type I interferon signaling to drive expansion of the pre-AML population. Blocking interferon signaling delayed AML initiation and extended survival. Thus, common AML driver mutations, such as FLT3ITD, can coopt different mechanisms of transformation in different genetic contexts. Furthermore, pediatric-biased NUP98 fusions convey actionable interferon dependence.
Collapse
Affiliation(s)
- Yanan Li
- Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Riddhi M. Patel
- Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Emily B. Casey
- Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Elisabeth Denby
- Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Jonny Mendoza-Castrejon
- Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Priscilla Rodriguez-Lopez
- Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey A. Magee
- Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
5
|
Meyer SE. Context is key for FLT3-ITD. Blood 2023; 141:1373-1374. [PMID: 36951883 PMCID: PMC10082369 DOI: 10.1182/blood.2022019135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
|
6
|
Bystrom R, Levis MJ. An Update on FLT3 in Acute Myeloid Leukemia: Pathophysiology and Therapeutic Landscape. Curr Oncol Rep 2023; 25:369-378. [PMID: 36808557 DOI: 10.1007/s11912-023-01389-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 02/21/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize the pathophysiology, clinical presentation, and management of acute myeloid leukemia (AML) with FMS-like tyrosine kinase-3 (FLT3) mutations. RECENT FINDINGS The recent European Leukemia Net (ELN2022) recommendations re-classified AML with FLT3 internal tandem duplications (FLT3-ITD) as intermediate risk regardless of Nucleophosmin 1 (NPM1) co-mutation or the FLT3 allelic ratio. Allogeneic hematopoietic cell transplantation (alloHCT) is now recommended for all eligible patients with FLT3-ITD AML. This review outlines the role of FLT3 inhibitors in induction and consolidation, as well as for post-alloHCT maintenance. It outlines the unique challenges and advantages of assessing FLT3 measurable residual disease (MRD) and discusses the pre-clinical basis for the combination of FLT3 and menin inhibitors. And, for the older or unfit patient ineligible for upfront intensive chemotherapy, it discusses the recent clinical trials incorporating FLT3 inhibitors into azacytidine- and venetoclax-based regimens. Finally, it proposes a rational sequential approach for integrating FLT3 inhibitors into less intensive regimens, with a focus on improved tolerability in the older and unfit patient population. The management of AML with FLT3 mutation remains a challenge in clinical practice. This review provides an update on the pathophysiology and therapeutic landscape of FLT3 AML, as well as a clinical management framework for managing the older or unfit patient ineligible for intensive chemotherapy.
Collapse
Affiliation(s)
- Rebecca Bystrom
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark J Levis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
7
|
Aini W, Xie L, Hu W, Tang Y, Peng H, Zhang G, Deng T. Exploration and identification of anoikis-related genes in polycythemia vera. Front Genet 2023; 14:1139351. [PMID: 36873934 PMCID: PMC9981965 DOI: 10.3389/fgene.2023.1139351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Background: Polycythemia Vera (PV) is a type of typical Myeloproliferative Neoplasms (MPNs) characterized with excessive erythropoiesis and thrombosis. Anoikis is a special programmed cell death mode induced by the adhesion disorder between cells and extracellular matrix (ECM) or adjacent cells facilitating cancer metastasis. However, few studies have focused on the role of anoikis in PV, especially on the development of PV. Methods: The microarray and RNA-seq results were screened from the Gene Expression Omnibus (GEO) database and the anoikis-related genes (ARGs) were downloaded from Genecards. The functional enrichment analysis of intersecting differentially expressed genes (DEGs) and protein-protein interaction (PPI) network analysis were performed to discover hub genes. The hub genes expression was tested in the training (GSE136335) and validation cohort (GSE145802), and RT-qPCR was performed to verify the gene expression in PV mice. Results: In the training GSE136335, a total of 1,195 DEGs was obtained from Myeloproliferative Neoplasm (MPN) patients compared with controls, among which 58 were anoikis-related DEGs. The significant enrichment of the apoptosis and cell adhesion pathways (i.e., cadherin binding) were shown in functional enrichment analysis. The PPI network was conducted to identify top five hub genes (CASP3, CYCS, HIF1A, IL1B, MCL1). The expression of CASP3 and IL1B were significantly upregulated both in validation cohort and PV mice and downregulated after treatment, suggesting that CASP3 and IL1B could be important indicators for disease surveillance. Conclusion: Our research revealed a relationship between anoikis and PV for the first time by combined analysis of gene level, protein interaction and functional enrichment, allowing novel insights into mechanisms of PV. Moreover, CASP3 and IL1B may become promising indicators of PV development and treatment.
Collapse
Affiliation(s)
- Wufuer Aini
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Limin Xie
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wanyu Hu
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yuan Tang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Institute of Molecular Hematopathy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, Hunan, China
| | - Guangsen Zhang
- Institute of Molecular Hematopathy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Andina N, Bonadies N, Allam R. Inflammasome Activation in Myeloid Malignancies—Friend or Foe? Front Cell Dev Biol 2022; 9:825611. [PMID: 35155452 PMCID: PMC8829542 DOI: 10.3389/fcell.2021.825611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
Myeloid malignancies including myelodysplastic syndromes, myeloproliferative neoplasms and acute myeloid leukemia are heterogeneous disorders originating from mutated hematopoietic stem and progenitor cells (HSPCs). Genetically, they are very heterogeneous and characterized by uncontrolled proliferation and/or blockage of differentiation of abnormal HSPCs. Recent studies suggest the involvement of inflammasome activation in disease initiation and clonal progression. Inflammasomes are cytosolic innate immune sensors that, upon activation, induce caspase-1 mediated processing of interleukin (IL) -1-cytokine members IL-1β and IL-18, as well as initiation of gasdermin D-dependent pyroptosis. Inflammasome activation leads to a pro-inflammatory microenvironment in the bone marrow, which drives proliferation and may induce clonal selection of mutated HSPCs. However, there are also contradictory data showing that inflammasome activation actually counteracts leukemogenesis. Overall, the beneficial or detrimental effect of inflammasome activation seems to be highly dependent on mutational, environmental, and immunological contexts and an improved understanding is fundamental to advance specific therapeutic targeting strategies. This review summarizes current knowledge about this dichotomous effect of inflammasome activation in myeloid malignancies and provides further perspectives on therapeutic targeting.
Collapse
Affiliation(s)
- Nicola Andina
- Department of Hematology and Central Hematology Laboratory, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Nicolas Bonadies
- Department of Hematology and Central Hematology Laboratory, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Ramanjaneyulu Allam
- Department of Hematology and Central Hematology Laboratory, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- *Correspondence: Ramanjaneyulu Allam,
| |
Collapse
|
9
|
Pacharne S, Dovey OM, Cooper JL, Gu M, Friedrich MJ, Rajan SS, Barenboim M, Collord G, Vijayabaskar MS, Ponstingl H, De Braekeleer E, Bautista R, Mazan M, Rad R, Tzelepis K, Wright P, Gozdecka M, Vassiliou GS. SETBP1 overexpression acts in the place of class-defining mutations to drive FLT3-ITD-mutant AML. Blood Adv 2021; 5:2412-2425. [PMID: 33956058 PMCID: PMC8114559 DOI: 10.1182/bloodadvances.2020003443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/25/2021] [Indexed: 12/23/2022] Open
Abstract
Advances in cancer genomics have revealed genomic classes of acute myeloid leukemia (AML) characterized by class-defining mutations, such as chimeric fusion genes or in genes such as NPM1, MLL, and CEBPA. These class-defining mutations frequently synergize with internal tandem duplications in FLT3 (FLT3-ITDs) to drive leukemogenesis. However, ∼20% of FLT3-ITD-positive AMLs bare no class-defining mutations, and mechanisms of leukemic transformation in these cases are unknown. To identify pathways that drive FLT3-ITD mutant AML in the absence of class-defining mutations, we performed an insertional mutagenesis (IM) screening in Flt3-ITD mice, using Sleeping Beauty transposons. All mice developed acute leukemia (predominantly AML) after a median of 73 days. Analysis of transposon insertions in 38 samples from Flt3-ITD/IM leukemic mice identified recurrent integrations at 22 loci, including Setbp1 (20/38), Ets1 (11/38), Ash1l (8/38), Notch1 (8/38), Erg (7/38), and Runx1 (5/38). Insertions at Setbp1 led exclusively to AML and activated a transcriptional program similar, but not identical, to those of NPM1-mutant and MLL-rearranged AMLs. Guide RNA targeting of Setbp1 was highly detrimental to Flt3ITD/+/Setbp1IM+, but not to Flt3ITD/+/Npm1cA/+, AMLs. Also, analysis of RNA-sequencing data from hundreds of human AMLs revealed that SETBP1 expression is significantly higher in FLT3-ITD AMLs lacking class-defining mutations. These findings propose that SETBP1 overexpression collaborates with FLT3-ITD to drive a subtype of human AML. To identify genetic vulnerabilities of these AMLs, we performed genome-wide CRISPR-Cas9 screening in Flt3ITD/+/Setbp1IM+ AMLs and identified potential therapeutic targets, including Kdm1a, Brd3, Ezh2, and Hmgcr. Our study gives new insights into epigenetic pathways that can drive AMLs lacking class-defining mutations and proposes therapeutic approaches against such cases.
Collapse
Affiliation(s)
- Suruchi Pacharne
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Wellcome-Medical Research Center (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Oliver M Dovey
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Jonathan L Cooper
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Muxin Gu
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Wellcome-Medical Research Center (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Mathias J Friedrich
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Sandeep S Rajan
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- United Kingdom Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - Maxim Barenboim
- Department of Pediatrics and Children's Cancer Research Center, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Grace Collord
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Wellcome-Medical Research Center (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - M S Vijayabaskar
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Wellcome-Medical Research Center (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Hannes Ponstingl
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Etienne De Braekeleer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Wellcome-Medical Research Center (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ruben Bautista
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Milena Mazan
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Research and Development Department, Selvita S.A., Krakow, Poland
| | - Roland Rad
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; and
| | - Konstantinos Tzelepis
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Gurdon Institute
- Department of Pathology, and
| | | | - Malgorzata Gozdecka
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Wellcome-Medical Research Center (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - George S Vassiliou
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Wellcome-Medical Research Center (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Cambridge University Hospitals National Health Service (NHS) Trust, Cambridge, United Kingdom
| |
Collapse
|
10
|
Chen Y, Ding X, Wang S, Ding P, Xu Z, Li J, Wang M, Xiang R, Wang X, Wang H, Feng Q, Qiu J, Wang F, Huang Z, Zhang X, Tang G, Tang S. A single-cell atlas of mouse olfactory bulb chromatin accessibility. J Genet Genomics 2021; 48:147-162. [PMID: 33926839 DOI: 10.1016/j.jgg.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 10/21/2022]
Abstract
Olfaction, the sense of smell, is a fundamental trait crucial to many species. The olfactory bulb (OB) plays pivotal roles in processing and transmitting odor information from the environment to the brain. The cellular heterogeneity of the mouse OB has been studied using single-cell RNA sequencing. However, the epigenetic landscape of the mOB remains mostly unexplored. Herein, we apply single-cell assay for transposase-accessible chromatin sequencing to profile the genome-wide chromatin accessibility of 9,549 single cells from the mOB. Based on single-cell epigenetic signatures, mOB cells are classified into 21 clusters corresponding to 11 cell types. We identify distinct sets of putative regulatory elements specific to each cell cluster from which putative target genes and enriched potential functions are inferred. In addition, the transcription factor motifs enriched in each cell cluster are determined to indicate the developmental fate of each cell lineage. Our study provides a valuable epigenetic data set for the mOB at single-cell resolution, and the results can enhance our understanding of regulatory circuits and the therapeutic capacity of the OB at the single-cell level.
Collapse
Affiliation(s)
- Yin Chen
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Xiangning Ding
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Shiyou Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Peiwen Ding
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Zaoxu Xu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Jiankang Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Mingyue Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Rong Xiang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Xiaoling Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Haoyu Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Qikai Feng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Jiaying Qiu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Feiyue Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China; School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhen Huang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Xingliang Zhang
- Shenzhen Children's Hospital, Shenzhen 518083, China; Department of Pediatrics, the Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China.
| | - Gen Tang
- Shenzhen Children's Hospital, Shenzhen 518083, China.
| | - Shengping Tang
- Shenzhen Children's Hospital, Shenzhen 518083, China; Zunyi Medical University, Zunyi, Guizhou 563099, China; China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
11
|
Cortes-Selva D, Gibbs L, Maschek JA, Nascimento M, Van Ry T, Cox JE, Amiel E, Fairfax KC. Metabolic reprogramming of the myeloid lineage by Schistosoma mansoni infection persists independently of antigen exposure. PLoS Pathog 2021; 17:e1009198. [PMID: 33417618 PMCID: PMC7819610 DOI: 10.1371/journal.ppat.1009198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/21/2021] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Macrophages have a defined role in the pathogenesis of metabolic disease and cholesterol metabolism where alternative activation of macrophages is thought to be beneficial to both glucose and cholesterol metabolism during high fat diet induced disease. It is well established that helminth infection protects from metabolic disease, but the mechanisms underlying protection are not well understood. Here, we investigated the effects of Schistosoma mansoni infection and cytokine activation in the metabolic signatures of bone marrow derived macrophages using an approach that integrated transcriptomics, metabolomics, and lipidomics in a metabolic disease prone mouse model. We demonstrate that bone marrow derived macrophages (BMDM) from S. mansoni infected male ApoE-/- mice have dramatically increased mitochondrial respiration compared to those from uninfected mice. This change is associated with increased glucose and palmitate shuttling into TCA cycle intermediates, increased accumulation of free fatty acids, and decreased accumulation of cellular cholesterol esters, tri and diglycerides, and is dependent on mgll activity. Systemic injection of IL-4 complexes is unable to recapitulate either reductions in systemic glucose AUC or the re-programing of BMDM mitochondrial respiration seen in infected males. Importantly, the metabolic reprogramming of male myeloid cells is transferrable via bone marrow transplantation to an uninfected host, indicating maintenance of reprogramming in the absence of sustained antigen exposure. Finally, schistosome induced metabolic and bone marrow modulation is sex-dependent, with infection protecting male, but not female mice from glucose intolerance and obesity. Our findings identify a transferable, long-lasting sex-dependent reprograming of the metabolic signature of macrophages by helminth infection, providing key mechanistic insight into the factors regulating the beneficial roles of helminth infection in metabolic disease.
Collapse
Affiliation(s)
- Diana Cortes-Selva
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City Utah, United States of America.,Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette Indiana, United States of America
| | - Lisa Gibbs
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City Utah, United States of America
| | - J Alan Maschek
- Metabolomics, Proteomics and Mass Spectrometry Cores, University of Utah, Salt Lake City, Utah, United States of America.,Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Marcia Nascimento
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City Utah, United States of America
| | - Tyler Van Ry
- Metabolomics, Proteomics and Mass Spectrometry Cores, University of Utah, Salt Lake City, Utah, United States of America.,Department of Biochemistry, University of Utah, Salt Lake City Utah, United States of America
| | - James E Cox
- Metabolomics, Proteomics and Mass Spectrometry Cores, University of Utah, Salt Lake City, Utah, United States of America.,Department of Biochemistry, University of Utah, Salt Lake City Utah, United States of America
| | - Eyal Amiel
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont, United States of America
| | - Keke C Fairfax
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City Utah, United States of America.,Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette Indiana, United States of America
| |
Collapse
|
12
|
Abstract
Mouse models of human myeloid malignancies support the detailed and focused investigation of selected driver mutations and represent powerful tools in the study of these diseases. Carefully developed murine models can closely recapitulate human myeloid malignancies in vivo, enabling the interrogation of a number of aspects of these diseases including their preclinical course, interactions with the microenvironment, effects of pharmacological agents, and the role of non-cell-autonomous factors, as well as the synergy between co-occurring mutations. Importantly, advances in gene-editing technologies, particularly CRISPR-Cas9, have opened new avenues for the development and study of genetically modified mice and also enable the direct modification of mouse and human hematopoietic cells. In this review we provide a concise overview of some of the important mouse models that have advanced our understanding of myeloid leukemogenesis with an emphasis on models relevant to clonal hematopoiesis, myelodysplastic syndromes, and acute myeloid leukemia with a normal karyotype.
Collapse
Affiliation(s)
- Faisal Basheer
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - George Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
13
|
Li Y, Kong W, Yang W, Patel RM, Casey EB, Okeyo-Owuor T, White JM, Porter SN, Morris SA, Magee JA. Single-Cell Analysis of Neonatal HSC Ontogeny Reveals Gradual and Uncoordinated Transcriptional Reprogramming that Begins before Birth. Cell Stem Cell 2020; 27:732-747.e7. [PMID: 32822583 PMCID: PMC7655695 DOI: 10.1016/j.stem.2020.08.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 06/21/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
Fetal and adult hematopoietic stem cells (HSCs) have distinct proliferation rates, lineage biases, gene expression profiles, and gene dependencies. Although these differences are widely recognized, it is not clear how the transition from fetal to adult identity is coordinated. Here we show that murine HSCs and committed hematopoietic progenitor cells (HPCs) undergo a gradual, rather than precipitous, transition from fetal to adult transcriptional states. The transition begins prior to birth and is punctuated by a late prenatal spike in type I interferon signaling that promotes perinatal HPC expansion and sensitizes progenitors to the leukemogenic FLT3ITD mutation. Most other changes in gene expression and enhancer activation are imprecisely timed and poorly coordinated. Thus, heterochronic enhancer elements, and their associated transcripts, are activated independently of one another rather than as part of a robust network. This simplifies the regulatory programs that guide neonatal HSC/HPC ontogeny, but it creates heterogeneity within these populations.
Collapse
Affiliation(s)
- Yanan Li
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Wenjun Kong
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Riddhi M Patel
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Emily B Casey
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Theresa Okeyo-Owuor
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - J Michael White
- Department of Pathology and Immunobiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Shaina N Porter
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Samantha A Morris
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | - Jeffrey A Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
Cai Z, Aguilera F, Ramdas B, Daulatabad SV, Srivastava R, Kotzin JJ, Carroll M, Wertheim G, Williams A, Janga SC, Zhang C, Henao-Mejia J, Kapur R. Targeting Bim via a lncRNA Morrbid Regulates the Survival of Preleukemic and Leukemic Cells. Cell Rep 2020; 31:107816. [PMID: 32579941 PMCID: PMC7371151 DOI: 10.1016/j.celrep.2020.107816] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/30/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Inhibition of anti-apoptotic proteins BCL-2 and MCL-1 to release pro-apoptotic protein BIM and reactivate cell death could potentially be an efficient strategy for the treatment of leukemia. Here, we show that a lncRNA, MORRBID, a selective transcriptional repressor of BIM, is overexpressed in human acute myeloid leukemia (AML), which is associated with poor overall survival. In both human and animal models, MORRBID hyperactivation correlates with two recurrent AML drivers, TET2 and FLT3ITD. Mice with individual mutations of Tet2 or Flt3ITD develop features of chronic myelomonocytic leukemia (CMML) and myeloproliferative neoplasm (MPN), respectively, and combined presence results in AML. We observe increased levels of Morrbid in murine models of CMML, MPN, and AML. Functionally, loss of Morrbid in these models induces increased expression of Bim and cell death in immature and mature myeloid cells, which results in reduced infiltration of leukemic cells in tissues and prolongs the survival of AML mice.
Collapse
Affiliation(s)
- Zhigang Cai
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Fabiola Aguilera
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Baskar Ramdas
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Swapna Vidhur Daulatabad
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Rajneesh Srivastava
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Jonathan J Kotzin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martin Carroll
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gerald Wertheim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Sarath Chandra Janga
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Reuben Kapur
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
15
|
The Myc/Max/Mxd Network Is a Target of Mutated Flt3 Signaling in Hematopoietic Stem Cells in Flt3-ITD-Induced Myeloproliferative Disease. Stem Cells Int 2018; 2018:3286949. [PMID: 30420889 PMCID: PMC6215545 DOI: 10.1155/2018/3286949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/13/2018] [Indexed: 01/21/2023] Open
Abstract
Acute myeloid leukemia (AML) has poor prognosis due to various mutations, e.g., in the FLT3 gene. Therefore, it is important to identify pathways regulated by the activated Flt3 receptor for the discovery of new therapeutic targets. The Myc network of oncogenes and tumor suppressor genes is involved in mechanisms regulating proliferation and survival of cells, including that of the hematopoietic system. In this study, we evaluated the expression of the Myc oncogenes and Mxd antagonists in hematopoietic stem cell and myeloid progenitor populations in the Flt3-ITD-knockin myeloproliferative mouse model. Our data shows that the expression of Myc network genes is changed in Flt3-ITD mice compared with the wild type. Mycn is increased in multipotent progenitors and in the pre-GM compartment of myeloid progenitors in the ITD mice while the expression of several genes in the tumor suppressor Mxd family, including Mxd1, Mxd2, and Mxd4, is concomitantly downregulated, as well as the expression of the Mxd-related gene Mnt and the transcriptional activator Miz-1. LSKCD150+CD48− hematopoietic long-term stem cells are decreased in the Flt3-ITD cells while multipotent progenitors are increased. Of note, PKC412-mediated inhibition of Flt3-ITD signaling results in downregulation of cMyc and upregulation of the Myc antagonists Mxd1, Mxd2, and Mxd4. Our data provides new mechanistic insights into downstream alterations upon aberrant Flt3 signaling and rationale for combination therapies for tyrosine kinase inhibitors with Myc antagonists in treating AML.
Collapse
|
16
|
Zriwil A, Böiers C, Kristiansen TA, Wittmann L, Yuan J, Nerlov C, Sitnicka E, Jacobsen SEW. Direct role of FLT3 in regulation of early lymphoid progenitors. Br J Haematol 2018; 183:588-600. [PMID: 30596405 PMCID: PMC6492191 DOI: 10.1111/bjh.15578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/21/2018] [Indexed: 02/01/2023]
Abstract
Given that FLT3 expression is highly restricted on lymphoid progenitors, it is possible that the established role of FLT3 in the regulation of B and T lymphopoiesis reflects its high expression and role in regulation of lymphoid-primed multipotent progenitors (LMPPs) or common lymphoid progenitors (CLPs). We generated a Flt3 conditional knock-out (Flt3fl/fl) mouse model to address the direct role of FLT3 in regulation of lymphoid-restricted progenitors, subsequent to turning on Rag1 expression, as well as potentially ontogeny-specific roles in B and T lymphopoiesis. Our studies establish a prominent and direct role of FLT3, independently of the established role of FLT3 in regulation of LMPPs and CLPs, in regulation of fetal as well as adult early B cell progenitors, and the early thymic progenitors (ETPs) in adult mice but not in the fetus. Our findings highlight the potential benefit of targeting poor prognosis acute B-cell progenitor leukaemia and ETP leukaemia with recurrent FLT3 mutations using clinical FLT3 inhibitors.
Collapse
Affiliation(s)
- Alya Zriwil
- Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden.,Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Charlotta Böiers
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Trine A Kristiansen
- Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lilian Wittmann
- Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden.,Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Joan Yuan
- Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Claus Nerlov
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Ewa Sitnicka
- Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden.,Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sten E W Jacobsen
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Wallenberg Institute for Regenerative Medicine, Department of Cell and Molecular Biology, Center for Haematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
17
|
Booth CAG, Barkas N, Neo WH, Boukarabila H, Soilleux EJ, Giotopoulos G, Farnoud N, Giustacchini A, Ashley N, Carrelha J, Jamieson L, Atkinson D, Bouriez-Jones T, Prinjha RK, Milne TA, Teachey DT, Papaemmanuil E, Huntly BJP, Jacobsen SEW, Mead AJ. Ezh2 and Runx1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors. Cancer Cell 2018; 33:274-291.e8. [PMID: 29438697 DOI: 10.1016/j.ccell.2018.01.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/13/2017] [Accepted: 01/08/2018] [Indexed: 02/08/2023]
Abstract
Lympho-myeloid restricted early thymic progenitors (ETPs) are postulated to be the cell of origin for ETP leukemias, a therapy-resistant leukemia associated with frequent co-occurrence of EZH2 and RUNX1 inactivating mutations, and constitutively activating signaling pathway mutations. In a mouse model, we demonstrate that Ezh2 and Runx1 inactivation targeted to early lymphoid progenitors causes a marked expansion of pre-leukemic ETPs, showing transcriptional signatures characteristic of ETP leukemia. Addition of a RAS-signaling pathway mutation (Flt3-ITD) results in an aggressive leukemia co-expressing myeloid and lymphoid genes, which can be established and propagated in vivo by the expanded ETPs. Both mouse and human ETP leukemias show sensitivity to BET inhibition in vitro and in vivo, which reverses aberrant gene expression induced by Ezh2 inactivation.
Collapse
Affiliation(s)
- Christopher A G Booth
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Nikolaos Barkas
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Wen Hao Neo
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Hanane Boukarabila
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Elizabeth J Soilleux
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - George Giotopoulos
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Noushin Farnoud
- Center for Molecular Oncology, Center for Heme Malignancies and Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alice Giustacchini
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Neil Ashley
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Joana Carrelha
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Lauren Jamieson
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Deborah Atkinson
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Tiphaine Bouriez-Jones
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Rab K Prinjha
- Epigenetics DPU, Oncology and Immuno-Inflammation Therapy Area Units, GlaxoSmithKline, Stevenage, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - David T Teachey
- Division of Oncology, Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elli Papaemmanuil
- Center for Molecular Oncology, Center for Heme Malignancies and Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Brian J P Huntly
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Sten Eirik W Jacobsen
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Adam J Mead
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; NIHR Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LE, UK.
| |
Collapse
|
18
|
Safaei S, Baradaran B, Hagh MF, Alivand MR, Talebi M, Gharibi T, Solali S. Double sword role of EZH2 in leukemia. Biomed Pharmacother 2018; 98:626-635. [DOI: 10.1016/j.biopha.2017.12.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
|
19
|
Dovey OM, Cooper JL, Mupo A, Grove CS, Lynn C, Conte N, Andrews RM, Pacharne S, Tzelepis K, Vijayabaskar MS, Green P, Rad R, Arends M, Wright P, Yusa K, Bradley A, Varela I, Vassiliou GS. Molecular synergy underlies the co-occurrence patterns and phenotype of NPM1-mutant acute myeloid leukemia. Blood 2017; 130:1911-1922. [PMID: 28835438 PMCID: PMC5672315 DOI: 10.1182/blood-2017-01-760595] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/23/2017] [Indexed: 02/06/2023] Open
Abstract
NPM1 mutations define the commonest subgroup of acute myeloid leukemia (AML) and frequently co-occur with FLT3 internal tandem duplications (ITD) or, less commonly, NRAS or KRAS mutations. Co-occurrence of mutant NPM1 with FLT3-ITD carries a significantly worse prognosis than NPM1-RAS combinations. To understand the molecular basis of these observations, we compare the effects of the 2 combinations on hematopoiesis and leukemogenesis in knock-in mice. Early effects of these mutations on hematopoiesis show that compound Npm1cA/+;NrasG12D/+ or Npm1cA;Flt3ITD share a number of features: Hox gene overexpression, enhanced self-renewal, expansion of hematopoietic progenitors, and myeloid differentiation bias. However, Npm1cA;Flt3ITD mutants displayed significantly higher peripheral leukocyte counts, early depletion of common lymphoid progenitors, and a monocytic bias in comparison with the granulocytic bias in Npm1cA/+;NrasG12D/+ mutants. Underlying this was a striking molecular synergy manifested as a dramatically altered gene expression profile in Npm1cA;Flt3ITD , but not Npm1cA/+;NrasG12D/+ , progenitors compared with wild-type. Both double-mutant models developed high-penetrance AML, although latency was significantly longer with Npm1cA/+;NrasG12D/+ During AML evolution, both models acquired additional copies of the mutant Flt3 or Nras alleles, but only Npm1cA/+;NrasG12D/+ mice showed acquisition of other human AML mutations, including IDH1 R132Q. We also find, using primary Cas9-expressing AMLs, that Hoxa genes and selected interactors or downstream targets are required for survival of both types of double-mutant AML. Our results show that molecular complementarity underlies the higher frequency and significantly worse prognosis associated with NPM1c/FLT3-ITD vs NPM1/NRAS-G12D-mutant AML and functionally confirm the role of HOXA genes in NPM1c-driven AML.
Collapse
Affiliation(s)
- Oliver M Dovey
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Jonathan L Cooper
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Annalisa Mupo
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Carolyn S Grove
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Australia
- PathWest Division of Clinical Pathology, Queen Elizabeth II Medical Centre, Nedlands, Australia
| | - Claire Lynn
- Leukemia and Stem Cell Biology Group, Division of Cancer Studies, Department of Haematological Medicine, King's College London, London, United Kingdom
| | - Nathalie Conte
- Sample Phenotype Ontology Team, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Robert M Andrews
- Institute of Translation, Innovation, Methodology, and Engagement, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Suruchi Pacharne
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Konstantinos Tzelepis
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - M S Vijayabaskar
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Paul Green
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Roland Rad
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Mark Arends
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Penny Wright
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom; and
| | - Kosuke Yusa
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Allan Bradley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria, Santander, Spain
| | - George S Vassiliou
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom; and
| |
Collapse
|
20
|
Mead AJ, Neo WH, Barkas N, Matsuoka S, Giustacchini A, Facchini R, Thongjuea S, Jamieson L, Booth CAG, Fordham N, Di Genua C, Atkinson D, Chowdhury O, Repapi E, Gray N, Kharazi S, Clark SA, Bouriez T, Woll P, Suda T, Nerlov C, Jacobsen SEW. Niche-mediated depletion of the normal hematopoietic stem cell reservoir by Flt3-ITD-induced myeloproliferation. J Exp Med 2017; 214:2005-2021. [PMID: 28637883 PMCID: PMC5502426 DOI: 10.1084/jem.20161418] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/17/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022] Open
Abstract
Although previous studies suggested that the expression of FMS-like tyrosine kinase 3 (Flt3) initiates downstream of mouse hematopoietic stem cells (HSCs), FLT3 internal tandem duplications (FLT3 ITDs) have recently been suggested to intrinsically suppress HSCs. Herein, single-cell interrogation found Flt3 mRNA expression to be absent in the large majority of phenotypic HSCs, with a strong negative correlation between Flt3 and HSC-associated gene expression. Flt3-ITD knock-in mice showed reduced numbers of phenotypic HSCs, with an even more severe loss of long-term repopulating HSCs, likely reflecting the presence of non-HSCs within the phenotypic HSC compartment. Competitive transplantation experiments established that Flt3-ITD compromises HSCs through an extrinsically mediated mechanism of disrupting HSC-supporting bone marrow stromal cells, with reduced numbers of endothelial and mesenchymal stromal cells showing increased inflammation-associated gene expression. Tumor necrosis factor (TNF), a cell-extrinsic potent negative regulator of HSCs, was overexpressed in bone marrow niche cells from FLT3-ITD mice, and anti-TNF treatment partially rescued the HSC phenotype. These findings, which establish that Flt3-ITD-driven myeloproliferation results in cell-extrinsic suppression of the normal HSC reservoir, are of relevance for several aspects of acute myeloid leukemia biology.
Collapse
Affiliation(s)
- Adam J Mead
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Wen Hao Neo
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nikolaos Barkas
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sahoko Matsuoka
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Alice Giustacchini
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Raffaella Facchini
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Supat Thongjuea
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Lauren Jamieson
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Christopher A G Booth
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicholas Fordham
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Cristina Di Genua
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Deborah Atkinson
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Onima Chowdhury
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Emmanouela Repapi
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicki Gray
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Shabnam Kharazi
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sally-Ann Clark
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tiphaine Bouriez
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Petter Woll
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Toshio Suda
- Cancer Science Institute, National University of Singapore, Singapore
| | - Claus Nerlov
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sten Eirik W Jacobsen
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cell and Molecular Biology, Wallenberg Institute for Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Porter SN, Magee JA. PRKCH regulates hematopoietic stem cell function and predicts poor prognosis in acute myeloid leukemia. Exp Hematol 2017; 53:43-47. [PMID: 28596089 DOI: 10.1016/j.exphem.2017.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 01/29/2023]
Abstract
Acute myeloid leukemia (AML) cells often co-opt normal hematopoietic stem cell (HSC) programs to drive neoplastic proliferation, and HSC-related gene expression signatures have been identified as biomarkers for poor prognosis in AML patients. We sought to identify new regulators of HSCs and AML cells from previously published HSC and leukemia stem cell (LSC) gene expression signatures. We identified PRKCH (protein kinase C eta) as a gene that is highly expressed in both mouse and human HSCs, as well as in LSCs from independent cohorts of AML patients. Prkch deletion in mice resulted in impaired HSC function. PRKCH was most highly expressed in undifferentiated (FAB M0) subtype AML, and high expression correlated with TP53 and RUNX1 mutations, high-risk cytogenetic features, and poor overall survival. Prkch deletion in an Flt3-ITD/Runx1 mutant mouse AML model did not extend survival. Thus, PRKCH is necessary for normal HSC function; its expression predicts poor survival in AML patients, but it is not required for AML to develop.
Collapse
Affiliation(s)
- Shaina N Porter
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey A Magee
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
22
|
Tsapogas P, Mooney CJ, Brown G, Rolink A. The Cytokine Flt3-Ligand in Normal and Malignant Hematopoiesis. Int J Mol Sci 2017; 18:E1115. [PMID: 28538663 PMCID: PMC5485939 DOI: 10.3390/ijms18061115] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/22/2022] Open
Abstract
The cytokine Fms-like tyrosine kinase 3 ligand (FL) is an important regulator of hematopoiesis. Its receptor, Flt3, is expressed on myeloid, lymphoid and dendritic cell progenitors and is considered an important growth and differentiation factor for several hematopoietic lineages. Activating mutations of Flt3 are frequently found in acute myeloid leukemia (AML) patients and associated with a poor clinical prognosis. In the present review we provide an overview of our current knowledge on the role of FL in the generation of blood cell lineages. We examine recent studies on Flt3 expression by hematopoietic stem cells and its potential instructive action at early stages of hematopoiesis. In addition, we review current findings on the role of mutated FLT3 in leukemia and the development of FLT3 inhibitors for therapeutic use to treat AML. The importance of mouse models in elucidating the role of Flt3-ligand in normal and malignant hematopoiesis is discussed.
Collapse
Affiliation(s)
- Panagiotis Tsapogas
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel 4058, Switzerland.
| | - Ciaran James Mooney
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edbgaston, Birmingham B15 2TT, UK.
| | - Geoffrey Brown
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edbgaston, Birmingham B15 2TT, UK.
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edbgaston, Birmingham B15 2TT, UK.
| | - Antonius Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel 4058, Switzerland.
| |
Collapse
|
23
|
Lagunas-Rangel FA, Chávez-Valencia V. FLT3–ITD and its current role in acute myeloid leukaemia. Med Oncol 2017; 34:114. [DOI: 10.1007/s12032-017-0970-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 04/25/2017] [Indexed: 01/20/2023]
|
24
|
Kilbey A, Terry A, Wotton S, Borland G, Zhang Q, Mackay N, McDonald A, Bell M, Wakelam MJO, Cameron ER, Neil JC. Runx1 Orchestrates Sphingolipid Metabolism and Glucocorticoid Resistance in Lymphomagenesis. J Cell Biochem 2017; 118:1432-1441. [PMID: 27869314 PMCID: PMC5408393 DOI: 10.1002/jcb.25802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
The three‐membered RUNX gene family includes RUNX1, a major mutational target in human leukemias, and displays hallmarks of both tumor suppressors and oncogenes. In mouse models, the Runx genes appear to act as conditional oncogenes, as ectopic expression is growth suppressive in normal cells but drives lymphoma development potently when combined with over‐expressed Myc or loss of p53. Clues to underlying mechanisms emerged previously from murine fibroblasts where ectopic expression of any of the Runx genes promotes survival through direct and indirect regulation of key enzymes in sphingolipid metabolism associated with a shift in the “sphingolipid rheostat” from ceramide to sphingosine‐1‐phosphate (S1P). Testing of this relationship in lymphoma cells was therefore a high priority. We find that ectopic expression of Runx1 in lymphoma cells consistently perturbs the sphingolipid rheostat, whereas an essential physiological role for Runx1 is revealed by reduced S1P levels in normal spleen after partial Cre‐mediated excision. Furthermore, we show that ectopic Runx1 expression confers increased resistance of lymphoma cells to glucocorticoid‐mediated apoptosis, and elucidate the mechanism of cross‐talk between glucocorticoid and sphingolipid metabolism through Sgpp1. Dexamethasone potently induces expression of Sgpp1 in T‐lymphoma cells and drives cell death which is reduced by partial knockdown of Sgpp1 with shRNA or direct transcriptional repression of Sgpp1 by ectopic Runx1. Together these data show that Runx1 plays a role in regulating the sphingolipid rheostat in normal development and that perturbation of this cell fate regulator contributes to Runx‐driven lymphomagenesis. J. Cell. Biochem. 118: 1432–1441, 2017. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A Kilbey
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - A Terry
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - S Wotton
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - G Borland
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Q Zhang
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, Cambridgeshire, United Kingdom
| | - N Mackay
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - A McDonald
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - M Bell
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - M J O Wakelam
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, Cambridgeshire, United Kingdom
| | - E R Cameron
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - J C Neil
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| |
Collapse
|
25
|
Neil JC, Gilroy K, Borland G, Hay J, Terry A, Kilbey A. The RUNX Genes as Conditional Oncogenes: Insights from Retroviral Targeting and Mouse Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:247-264. [PMID: 28299662 DOI: 10.1007/978-981-10-3233-2_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The observation that the Runx genes act as targets for transcriptional activation by retroviral insertion identified a new family of dominant oncogenes. However, it is now clear that Runx genes are 'conditional' oncogenes whose over-expression is growth inhibitory unless accompanied by another event such as concomitant over-expression of MYC or loss of p53 function. Remarkably, while the oncogenic activities of either MYC or RUNX over-expression are suppressed while p53 is intact, the combination of both neutralises p53 tumour suppression in vivo by as yet unknown mechanisms. Moreover, there is emerging evidence that endogenous, basal RUNX activity is important to maintain the viability and proliferation of MYC-driven lymphoma cells. There is also growing evidence that the human RUNX genes play a similar conditional oncogenic role and are selected for over-expression in end-stage cancers of multiple types. Paradoxically, reduced RUNX activity can also predispose to cell immortalisation and transformation, particularly by mutant Ras. These apparently conflicting observations may be reconciled in a stage-specific model of RUNX involvement in cancer. A question that has yet to be fully addressed is the extent to which the three Runx genes are functionally redundant in cancer promotion and suppression.
Collapse
Affiliation(s)
- James C Neil
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK.
| | - Kathryn Gilroy
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Gillian Borland
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Jodie Hay
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Anne Terry
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Anna Kilbey
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| |
Collapse
|
26
|
Porter SN, Cluster AS, Yang W, Busken KA, Patel RM, Ryoo J, Magee JA. Fetal and neonatal hematopoietic progenitors are functionally and transcriptionally resistant to Flt3-ITD mutations. eLife 2016; 5. [PMID: 27879203 PMCID: PMC5153248 DOI: 10.7554/elife.18882] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/21/2016] [Indexed: 12/24/2022] Open
Abstract
The FLT3 Internal Tandem Duplication (FLT3ITD) mutation is common in adult acute myeloid leukemia (AML) but rare in early childhood AML. It is not clear why this difference occurs. Here we show that Flt3ITD and cooperating Flt3ITD/Runx1 mutations cause hematopoietic stem cell depletion and myeloid progenitor expansion during adult but not fetal stages of murine development. In adult progenitors, FLT3ITD simultaneously induces self-renewal and myeloid commitment programs via STAT5-dependent and STAT5-independent mechanisms, respectively. While FLT3ITD can activate STAT5 signal transduction prior to birth, this signaling does not alter gene expression until hematopoietic progenitors transition from fetal to adult transcriptional states. Cooperative interactions between Flt3ITD and Runx1 mutations are also blunted in fetal/neonatal progenitors. Fetal/neonatal progenitors may therefore be protected from leukemic transformation because they are not competent to express FLT3ITD target genes. Changes in the transcriptional states of developing hematopoietic progenitors may generally shape the mutation spectra of human leukemias. DOI:http://dx.doi.org/10.7554/eLife.18882.001 Leukemias are a group of blood cancers that usually arise when immature blood cells gain one or more tumor-promoting genetic mutations. However, for reasons that are not clear, the mutations that cause leukemia are different in children and adults. For example, a mutation called FLT3ITD occurs relatively often in adult leukemia but is rare in infant leukemia. This raises the question of whether the blood cells of fetuses and babies are somehow protected from the effects of the mutation. Porter et al. have now compared the effects of the FLT3ITDmutation in blood cells from adult and fetal mice. In adult mice, the FLT3ITD mutation caused immature blood cells to turn different genes on and off. By contrast, the mutation had no effect on the activity of these genes in fetal mice. Furthermore, only the adult mutant cells showed changes that indicated the early stages of leukemia: the mutant blood cells of fetuses developed as normal. Porter et al. therefore concluded that the immature blood cells of fetuses are protected from the FLT3ITDmutation. To understand why fetal and adult blood cells respond differently to the FLT3ITDmutation, further experiments are needed to investigate how various genes regulate normal blood cell development. In addition, understanding why adult blood cells react to the FLT3ITDmutation might, in the future, lead to better treatment options for leukemia. DOI:http://dx.doi.org/10.7554/eLife.18882.002
Collapse
Affiliation(s)
- Shaina N Porter
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, United States
| | - Andrew S Cluster
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, United States
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, United States
| | - Kelsey A Busken
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, United States
| | - Riddhi M Patel
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, United States
| | - Jiyeon Ryoo
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, United States
| | - Jeffrey A Magee
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, United States.,Department of Genetics, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
27
|
Robertson AL, Avagyan S, Gansner JM, Zon LI. Understanding the regulation of vertebrate hematopoiesis and blood disorders - big lessons from a small fish. FEBS Lett 2016; 590:4016-4033. [PMID: 27616157 DOI: 10.1002/1873-3468.12415] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/22/2016] [Accepted: 09/07/2016] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem cells (HSCs) give rise to all differentiated blood cells. Understanding the mechanisms that regulate self-renewal and lineage specification of HSCs is key for developing treatments for many human diseases. Zebrafish have emerged as an excellent model for studying vertebrate hematopoiesis. This review will highlight the unique strengths of zebrafish and important findings that have emerged from studies of blood development and disorders using this system. We discuss recent advances in our understanding of hematopoiesis, including the origin of HSCs, molecular control of their development, and key signaling pathways involved in their regulation. We highlight significant findings from zebrafish models of blood disorders and discuss their application for investigating stem cell dysfunction in disease and for the development of new therapeutics.
Collapse
Affiliation(s)
- Anne L Robertson
- Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - Serine Avagyan
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, MA, USA
| | - John M Gansner
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Leonard I Zon
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Höckendorf U, Yabal M, Herold T, Munkhbaatar E, Rott S, Jilg S, Kauschinger J, Magnani G, Reisinger F, Heuser M, Kreipe H, Sotlar K, Engleitner T, Rad R, Weichert W, Peschel C, Ruland J, Heikenwalder M, Spiekermann K, Slotta-Huspenina J, Groß O, Jost PJ. RIPK3 Restricts Myeloid Leukemogenesis by Promoting Cell Death and Differentiation of Leukemia Initiating Cells. Cancer Cell 2016; 30:75-91. [PMID: 27411587 DOI: 10.1016/j.ccell.2016.06.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/04/2016] [Accepted: 06/01/2016] [Indexed: 01/08/2023]
Abstract
Since acute myeloid leukemia (AML) is characterized by the blockade of hematopoietic differentiation and cell death, we interrogated RIPK3 signaling in AML development. Genetic loss of Ripk3 converted murine FLT3-ITD-driven myeloproliferation into an overt AML by enhancing the accumulation of leukemia-initiating cells (LIC). Failed inflammasome activation and cell death mediated by tumor necrosis factor receptor caused this accumulation of LIC exemplified by accelerated leukemia onset in Il1r1(-/-), Pycard(-/-), and Tnfr1/2(-/-) mice. RIPK3 signaling was partly mediated by mixed lineage kinase domain-like. This link between suppression of RIPK3, failed interleukin-1β release, and blocked cell death was supported by significantly reduced RIPK3 in primary AML patient cohorts. Our data identify RIPK3 and the inflammasome as key tumor suppressors in AML.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Differentiation
- Down-Regulation
- Gene Expression Profiling/methods
- Gene Expression Regulation, Leukemic
- Humans
- Inflammasomes/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Neoplasms, Experimental
- Neoplastic Stem Cells/cytology
- Receptor-Interacting Protein Serine-Threonine Kinases/genetics
- Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
- Receptors, Tumor Necrosis Factor/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Ulrike Höckendorf
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Monica Yabal
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Tobias Herold
- Department of Internal Medicine 3, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), 81377 München, Germany
| | - Enkhtsetseg Munkhbaatar
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Stephanie Rott
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Stefanie Jilg
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Johanna Kauschinger
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Giovanni Magnani
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Florian Reisinger
- Institute of Virology, Helmholtz Zentrum München für Gesundheit und Umwelt (HMGU), 85764 Neuherberg, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Hans Kreipe
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Karl Sotlar
- Institute of Pathology, Ludwig-Maximilians-University (LMU), 80337 München, Germany
| | - Thomas Engleitner
- II. Medical Department for Gastroentreology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Roland Rad
- II. Medical Department for Gastroentreology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Wilko Weichert
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Institute of Pathology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Christian Peschel
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mathias Heikenwalder
- Institute of Virology, Helmholtz Zentrum München für Gesundheit und Umwelt (HMGU), 85764 Neuherberg, Germany; Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Karsten Spiekermann
- Department of Internal Medicine 3, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), 81377 München, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Julia Slotta-Huspenina
- Institute of Pathology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Olaf Groß
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| | - Philipp J Jost
- III. Medical Department for Hematology and Oncology, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
29
|
Potential Pitfalls of the Mx1-Cre System: Implications for Experimental Modeling of Normal and Malignant Hematopoiesis. Stem Cell Reports 2016; 7:11-8. [PMID: 27373927 PMCID: PMC4945592 DOI: 10.1016/j.stemcr.2016.06.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 12/18/2022] Open
Abstract
Conditional knockout mice are commonly used to study the function of specific genes in hematopoiesis. Different promoters that drive Cre expression have been utilized, with the interferon-inducible Mx1-Cre still being the most commonly used "deleter strain" in experimental hematology. However, different pitfalls associated with this system could lead to misinterpretation in functional studies. We present here two of these issues related to the use of Mx1-Cre: first, a high spontaneous recombination rate when applying commonly used techniques in experimental hematology, and second, undesired short-term consequences of the use of polyinosinic:polycytidylic acid, including changes in cellular phenotypes that, however, resolve within days. Our studies emphasize therefore that proper controls are crucial when modeling gene deletion using the Mx1-Cre transgene.
Collapse
|
30
|
Dovey OM, Chen B, Mupo A, Friedrich M, Grove CS, Cooper JL, Lee B, Varela I, Huang Y, Vassiliou GS. Identification of a germline F692L drug resistance variant in cis with Flt3-internal tandem duplication in knock-in mice. Haematologica 2016; 101:e328-31. [PMID: 27175030 PMCID: PMC4967582 DOI: 10.3324/haematol.2016.146159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Oliver M Dovey
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Bin Chen
- Department of Medical Genetics, School of Basic Medicine, Peking Union Medical College, Beijing, China State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China Department of Haematology, Cambridge University Hospitals NHS Trust, UK
| | - Annalisa Mupo
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Mathias Friedrich
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Carolyn S Grove
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Australia PathWest Division of Clinical Pathology, Queen Elizabeth II Medical Centre, Nedlands, Australia
| | - Jonathan L Cooper
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Benjamin Lee
- Takeda Pharmaceuticals International, Cambridge, MA, USA
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria, Santander, Spain
| | - Yue Huang
- Department of Medical Genetics, School of Basic Medicine, Peking Union Medical College, Beijing, China State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - George S Vassiliou
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK Department of Haematology, Cambridge University Hospitals NHS Trust, UK
| |
Collapse
|
31
|
Lineage-specific STAT5 target gene activation in hematopoietic progenitor cells predicts the FLT3(+)-mediated leukemic phenotype. Leukemia 2016; 30:1725-33. [PMID: 27046463 DOI: 10.1038/leu.2016.72] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/13/2016] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
Mutations that activate FMS-like tyrosine kinase 3 (FLT3) are frequent occurrences in acute myeloid leukemia. Two distinct types of mutations have been described: internal duplication of the juxtamembranous domain (ITD) and point mutations of the tyrosine kinase domain (TKD). Although both mutations lead to constitutive FLT3 signaling, only FLT3-ITD strongly activates signal transducer and activator of transcription 5 (STAT5). In a murine transplantation model, FLT3-ITD induces a myeloproliferative neoplasm, whereas FLT3-TKD leads to a lymphoid malignancy with significantly longer latency. Here we report that the presence of STAT5 is critical for the development of a myeloproliferative disease by FLT3-ITD in mice. Deletion of Stat5 in FLT3-ITD-induced leukemogenesis leads not only to a significantly longer survival (82 vs 27 days) of the diseased mice, but also to an immunophenotype switch with expansion of the lymphoid cell compartment. Interestingly, we were able to show differential STAT5 activation in FLT3-ITD(+) myeloid and lymphoid murine progenitors. STAT5 target genes such as Oncostatin M were highly expressed in FLT3-ITD(+) myeloid but not in FLT3-ITD(+) lymphoid progenitor cells. Strikingly, FLT3-TKD expression in combination with Oncostatin M is sufficient to reverse the phenotype to a myeloproliferative disease in FLT3-TKD mice. Thus, lineage-specific STAT5 activation in hematopoietic progenitor cells predicts the FLT3(+)-mediated leukemic phenotype in mice.
Collapse
|
32
|
Meyer SE, Qin T, Muench DE, Masuda K, Venkatasubramanian M, Orr E, Suarez L, Gore SD, Delwel R, Paietta E, Tallman MS, Fernandez H, Melnick A, Le Beau MM, Kogan S, Salomonis N, Figueroa ME, Grimes HL. DNMT3A Haploinsufficiency Transforms FLT3ITD Myeloproliferative Disease into a Rapid, Spontaneous, and Fully Penetrant Acute Myeloid Leukemia. Cancer Discov 2016; 6:501-15. [PMID: 27016502 DOI: 10.1158/2159-8290.cd-16-0008] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/24/2016] [Indexed: 11/16/2022]
Abstract
UNLABELLED Cytogenetically normal acute myeloid leukemia (CN-AML) represents nearly 50% of human AML. Co-occurring mutations in the de novo DNA methyltransferase DNMT3A and the FMS related tyrosine kinase 3 (FLT3) are common in CN-AML and confer a poorer prognosis. We demonstrate that mice with Flt3-internal tandem duplication (Flt3(ITD)) and inducible deletion of Dnmt3a spontaneously develop a rapidly lethal, completely penetrant, and transplantable AML of normal karyotype. AML cells retain a single Dnmt3a floxed allele, revealing the oncogenic potential of Dnmt3a haploinsufficiency. FLT3(ITD)/DNMT3A-mutant primary human and murine AML exhibit a similar pattern of global DNA methylation associated with changes in the expression of nearby genes. In the murine model, rescuing Dnmt3a expression was accompanied by DNA remethylation and loss of clonogenic potential, suggesting that Dnmt3a-mutant oncogenic effects are reversible. Dissection of the cellular architecture of the AML model using single-cell assays, including single-cell RNA sequencing, identified clonogenic subpopulations that express genes sensitive to the methylation of nearby genomic loci and responsive to DNMT3A levels. Thus, Dnmt3a haploinsufficiency transforms Flt3(ITD) myeloproliferative disease by modulating methylation-sensitive gene expression within a clonogenic AML subpopulation. SIGNIFICANCE DNMT3A haploinsufficiency results in reversible epigenetic alterations that transform FLT3(ITD)-mutant myeloproliferative neoplasm into AML. Cancer Discov; 6(5); 501-15. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 461.
Collapse
Affiliation(s)
- Sara E Meyer
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Tingting Qin
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - David E Muench
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kohei Masuda
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Emily Orr
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lauren Suarez
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven D Gore
- Division of Hematologic Malignancies, Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Ruud Delwel
- Department of Hematology, and Clinical Trial Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Elisabeth Paietta
- Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Martin S Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hugo Fernandez
- Blood and Marrow Transplantation, Moffitt Cancer Center, Oncologic Sciences, College of Medicine at University of South Florida, Tampa, Florida
| | - Ari Melnick
- Department of Medicine, Hematology/Oncology Division, Weill Cornell Medical College, New York, New York
| | - Michelle M Le Beau
- Section of Hematology/Oncology, and the Comprehensive Cancer Center, University of Chicago, Chicago, Illinois
| | - Scott Kogan
- Department of Laboratory Medicine and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Maria E Figueroa
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan.
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio. Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
33
|
Lau CM, Nish SA, Yogev N, Waisman A, Reiner SL, Reizis B. Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses. J Exp Med 2016; 213:415-31. [PMID: 26903243 PMCID: PMC4813676 DOI: 10.1084/jem.20150642] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 01/20/2016] [Indexed: 12/22/2022] Open
Abstract
Lau et al. show that the FLT3-ITD mutation directly affects dendritic cell development in preleukemic mice, indirectly modulating T cell homeostasis and supporting the expansion of regulatory T cells. A common genetic alteration in acute myeloid leukemia is the internal tandem duplication (ITD) in FLT3, the receptor for cytokine FLT3 ligand (FLT3L). Constitutively active FLT3-ITD promotes the expansion of transformed progenitors, but also has pleiotropic effects on hematopoiesis. We analyzed the effect of FLT3-ITD on dendritic cells (DCs), which express FLT3 and can be expanded by FLT3L administration. Pre-leukemic mice with the Flt3ITD knock-in allele manifested an expansion of classical DCs (cDCs) and plasmacytoid DCs. The expansion originated in DC progenitors, was cell intrinsic, and was further enhanced in Flt3ITD/ITD mice. The mutation caused the down-regulation of Flt3 on the surface of DCs and reduced their responsiveness to Flt3L. Both canonical Batf3-dependent CD8+ cDCs and noncanonical CD8+ cDCs were expanded and showed specific alterations in their expression profiles. Flt3ITD mice showed enhanced capacity to support T cell proliferation, including a cell-extrinsic expansion of regulatory T (T reg) cells. Accordingly, these mice restricted alloreactive T cell responses during graft-versus-host reaction, but failed to control autoimmunity without T reg cells. Thus, the FLT3-ITD mutation directly affects DC development, indirectly modulating T cell homeostasis and supporting T reg cell expansion. We hypothesize that this effect of FLT3-ITD might subvert immunosurveillance and promote leukemogenesis in a cell-extrinsic manner.
Collapse
Affiliation(s)
- Colleen M Lau
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016 Department of Medicine, New York University Langone Medical Center, New York, NY 10016 Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Simone A Nish
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Nir Yogev
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz 55131, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz 55131, Germany
| | - Steven L Reiner
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Boris Reizis
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016 Department of Medicine, New York University Langone Medical Center, New York, NY 10016 Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
34
|
Danis E, Yamauchi T, Echanique K, Zhang X, Haladyna JN, Riedel SS, Zhu N, Xie H, Orkin SH, Armstrong SA, Bernt KM, Neff T. Ezh2 Controls an Early Hematopoietic Program and Growth and Survival Signaling in Early T Cell Precursor Acute Lymphoblastic Leukemia. Cell Rep 2016; 14:1953-65. [PMID: 26904942 PMCID: PMC4790111 DOI: 10.1016/j.celrep.2016.01.064] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 11/25/2015] [Accepted: 01/20/2016] [Indexed: 01/08/2023] Open
Abstract
Early T cell precursor acute lymphoblastic leukemia (ETP-ALL) is an aggressive subtype of ALL distinguished by stem-cell-associated and myeloid transcriptional programs. Inactivating alterations of Polycomb repressive complex 2 components are frequent in human ETP-ALL, but their functional role is largely undefined. We have studied the involvement of Ezh2 in a murine model of NRASQ61K-driven leukemia that recapitulates phenotypic and transcriptional features of ETP-ALL. Homozygous inactivation of Ezh2 cooperated with oncogenic NRASQ61K to accelerate leukemia onset. Inactivation of Ezh2 accentuated expression of genes highly expressed in human ETP-ALL and in normal murine early thymic progenitors. Moreover, we found that Ezh2 contributes to the silencing of stem-cell- and early-progenitor-cell-associated genes. Loss of Ezh2 also resulted in increased activation of STAT3 by tyrosine 705 phosphorylation. Our data mechanistically link Ezh2 inactivation to stem-cell-associated transcriptional programs and increased growth/survival signaling, features that convey an adverse prognosis in patients.
Collapse
Affiliation(s)
- Etienne Danis
- Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplantation, University of Colorado Denver, Aurora, CO 80045, USA
| | - Taylor Yamauchi
- Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplantation, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kristen Echanique
- Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplantation, University of Colorado Denver, Aurora, CO 80045, USA
| | - Xi Zhang
- Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplantation, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jessica N Haladyna
- Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplantation, University of Colorado Denver, Aurora, CO 80045, USA
| | - Simone S Riedel
- Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplantation, University of Colorado Denver, Aurora, CO 80045, USA
| | - Nan Zhu
- Stem Cell Biology and Hematopoiesis Program, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - Huafeng Xie
- Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School and HHMI, Boston, MA 02115, USA
| | - Stuart H Orkin
- Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School and HHMI, Boston, MA 02115, USA
| | - Scott A Armstrong
- Cancer Biology and Genetics Program, Departments of Medicine and Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kathrin M Bernt
- Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplantation, University of Colorado Denver, Aurora, CO 80045, USA; Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO 80045, USA.
| | - Tobias Neff
- Department of Pediatrics, Section of Pediatric Hematology/Oncology/Bone Marrow Transplantation, University of Colorado Denver, Aurora, CO 80045, USA; Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
35
|
Hirade T, Abe M, Onishi C, Taketani T, Yamaguchi S, Fukuda S. Internal tandem duplication of FLT3 deregulates proliferation and differentiation and confers resistance to the FLT3 inhibitor AC220 by Up-regulating RUNX1 expression in hematopoietic cells. Int J Hematol 2016; 103:95-106. [PMID: 26590920 DOI: 10.1007/s12185-015-1908-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
Internal tandem duplication in the FLT3 gene (FLT3/ITD), which is found in patients with acute myeloid leukemia (AML), causes resistance to FLT3 inhibitors. We found that RUNX1, a transcription factor that regulates normal hematopoiesis, is up-regulated in patients with FLT3/ITD(+) AML. While RUNX1 can function as a tumor suppressor, recent data have shown that RUNX1 is required for AML cell survival. In the present study, we investigated the functional role of RUNX1 in FLT3/ITD signaling. FLT3/ITD induced growth factor-independent proliferation and impaired G-CSF mediated myeloid differentiation in 32D hematopoietic cells, coincident with up-regulation of RUNX1 expression. Silencing of RUNX1 expression significantly decreased proliferation and secondary colony formation, and partially abrogated the impaired myeloid differentiation of FLT3/ITD(+) 32D cells. Although the number of FLT3/ITD(+) 32D cells declined after incubation with the FLT3/ITD inhibitor AC220, the cells became refractory to AC220, concomitant with up-regulation of RUNX1. Silencing of RUNX1 abrogated the emergence and proliferation of AC220-resistant FLT3/ITD(+) 32D cells in the presence of AC220. Our data indicate that FLT3/ITD deregulates cell proliferation and differentiation and confers resistance to AC220 by up-regulating RUNX1 expression. These findings suggest an oncogenic role for RUNX1 in FLT3/ITD(+) cells and that inhibition of RUNX1 function represents a potential therapeutic strategy in patients with refractory FLT3/ITD(+) AML.
Collapse
Affiliation(s)
- Tomohiro Hirade
- Department of Pediatrics, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Mariko Abe
- Department of Pediatrics, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Chie Onishi
- Department of Oncology/Hematology, Shimane University School of Medicine, Izumo, Japan
| | - Takeshi Taketani
- Department of Pediatrics, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
- Division of Blood Transfusion, Shimane University School of Medicine, Izumo, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Seiji Fukuda
- Department of Pediatrics, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| |
Collapse
|
36
|
Velasco-Hernandez T, Tornero D, Cammenga J. Loss of HIF-1α accelerates murine FLT-3ITD-induced myeloproliferative neoplasia. Leukemia 2015; 29:2366-74. [DOI: 10.1038/leu.2015.156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/12/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023]
|
37
|
Heckl D, Kowalczyk MS, Yudovich D, Belizaire R, Puram RV, McConkey ME, Thielke A, Aster JC, Regev A, Ebert BL. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol 2014; 32:941-6. [PMID: 24952903 PMCID: PMC4160386 DOI: 10.1038/nbt.2951] [Citation(s) in RCA: 426] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/10/2014] [Indexed: 01/21/2023]
Abstract
Genome sequencing studies have shown that human malignancies often bear mutations in four or more driver genes, but it is difficult to recapitulate this degree of genetic complexity in mouse models using conventional breeding. Here we use the CRISPR-Cas9 system of genome editing to overcome this limitation. By delivering combinations of small guide RNAs (sgRNAs) and Cas9 with a lentiviral vector, we modified up to five genes in a single mouse hematopoietic stem cell (HSC), leading to clonal outgrowth and myeloid malignancy. We thereby generated models of acute myeloid leukemia (AML) with cooperating mutations in genes encoding epigenetic modifiers, transcription factors and mediators of cytokine signaling, recapitulating the combinations of mutations observed in patients. Our results suggest that lentivirus-delivered sgRNA:Cas9 genome editing should be useful to engineer a broad array of in vivo cancer models that better reflect the complexity of human disease.
Collapse
Affiliation(s)
- Dirk Heckl
- 1] Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. [2]
| | - Monika S Kowalczyk
- 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [2]
| | - David Yudovich
- 1] Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. [2]
| | - Roger Belizaire
- 1] Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. [2] Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rishi V Puram
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marie E McConkey
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anne Thielke
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aviv Regev
- 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [2] Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Benjamin L Ebert
- 1] Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
38
|
Beerman I, Seita J, Inlay MA, Weissman IL, Rossi DJ. Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell 2014; 15:37-50. [PMID: 24813857 DOI: 10.1016/j.stem.2014.04.016] [Citation(s) in RCA: 341] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 03/18/2014] [Accepted: 04/17/2014] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem cells (HSCs) maintain homeostasis and regenerate the blood system throughout life. It has been postulated that HSCs may be uniquely capable of preserving their genomic integrity in order to ensure lifelong function. To directly test this, we quantified DNA damage in HSCs and downstream progenitors from young and old mice, revealing that strand breaks significantly accrue in HSCs during aging. DNA damage accumulation in HSCs was associated with broad attenuation of DNA repair and response pathways that was dependent upon HSC quiescence. Accordingly, cycling fetal HSCs and adult HSCs driven into cycle upregulated these pathways leading to repair of strand breaks. Our results demonstrate that HSCs are not comprehensively geno-protected during aging. Rather, HSC quiescence and concomitant attenuation of DNA repair and response pathways underlies DNA damage accumulation in HSCs during aging. These results provide a potential mechanism through which premalignant mutations accrue in HSCs.
Collapse
Affiliation(s)
- Isabel Beerman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, MA 02116, USA
| | - Jun Seita
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Matthew A Inlay
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford CA 94305, USA.,Sue and Bill Gross Stem Cell Research Center, Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, MA 02116, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
39
|
Flk2/Flt3 promotes both myeloid and lymphoid development by expanding non-self-renewing multipotent hematopoietic progenitor cells. Exp Hematol 2013; 42:218-229.e4. [PMID: 24333663 DOI: 10.1016/j.exphem.2013.11.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/22/2013] [Accepted: 11/22/2013] [Indexed: 12/21/2022]
Abstract
Defining differentiation pathways is central to understanding the pathogenesis of hematopoietic disorders, including leukemia. The function of the receptor tyrosine kinase Flk2 (Flt3) in promoting myeloid development remains poorly defined, despite being commonly mutated in acute myeloid leukemia. We investigated the effect of Flk2 deficiency on myelopoiesis, focusing on specification of progenitors between HSC and mature cells. We provide evidence that Flk2 is critical for proliferative expansion of multipotent progenitors that are common precursors for all lymphoid and myeloid lineages, including megakaryocyte/erythroid (MegE) cells. Flk2 deficiency impaired the generation of both lymphoid and myeloid progenitors by abrogating propagation of their common upstream precursor. At steady state, downstream compensatory mechanisms masked the effect of Flk2 deficiency on mature myeloid output, whereas transplantation of purified progenitors revealed impaired generation of all mature lineages. Flk2 deficiency did not affect lineage choice, thus dissociating the role of Flk2 in promoting cell expansion and regulating cell fate. Surprisingly, despite impairing myeloid development, Flk2 deficiency afforded protection against myeloablative insult. This survival advantage was attributed to reduced cell cycling and proliferation of progenitors in Flk2-deficient mice. Our data support the existence of a common Flk2(+) intermediate for all hematopoietic lineages and provide insight into how activating Flk2 mutations promote hematopoietic malignancy by non-Flk2-expressing myeloid cells.
Collapse
|
40
|
Rau R, Magoon D, Greenblatt S, Li L, Annesley C, Duffield AS, Huso D, McIntyre E, Clohessy JG, Reschke M, Pandolfi PP, Small D, Brown P. NPMc+ cooperates with Flt3/ITD mutations to cause acute leukemia recapitulating human disease. Exp Hematol 2013; 42:101-13.e5. [PMID: 24184354 DOI: 10.1016/j.exphem.2013.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 11/30/2022]
Abstract
Cytoplasmic nucleophosmin (NPMc(+)) mutations and FMS-like tyrosine kinase 3 (FLT3) internal tandem duplication (ITD) mutations are two of the most common known molecular alterations in acute myeloid leukemia (AML); they frequently occur together, suggesting cooperative leukemogenesis. To explore the specific relationship between NPMc+ and FLT3/ITD in vivo, we crossed Flt3/ITD knock-in mice with transgenic NPMc+ mice. Mice with both mutations develop a transplantable leukemia of either myeloid or lymphoid lineage, definitively demonstrating cooperation between Flt3/ITD and NPMc+. In mice with myeloid leukemia, functionally significant loss of heterozygosity of the wild-type Flt3 allele is common, similar to what is observed in human FLT3/ITD+ AML, providing further in vivo evidence of the importance of loss of wild-type FLT3 in leukemic initiation and progression. Additionally, in vitro clonogenic assays reveal that the combination of Flt3/ITD and NPMc+ mutations causes a profound monocytic expansion, in excess of that seen with either mutation alone consistent with the predominance of myelomonocytic phenotype in human FLT3/ITD+/NPMc+ AML. This in vivo model of Flt3/ITD+/NPMc+ leukemia closely recapitulates human disease and will therefore serve as a tool for the investigation of the biology of this common disease entity.
Collapse
Affiliation(s)
- Rachel Rau
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | - Daniel Magoon
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Greenblatt
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Li Li
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Colleen Annesley
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy S Duffield
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Huso
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily McIntyre
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John G Clohessy
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Markus Reschke
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Pier Paolo Pandolfi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Donald Small
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick Brown
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|