1
|
Deshpande G, Das S, Roy AE, Ratnaparkhi GS. A face-off between Smaug and Caspar modulates primordial germ cell count and identity in Drosophila embryos. Fly (Austin) 2025; 19:2438473. [PMID: 39718186 DOI: 10.1080/19336934.2024.2438473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Proper formation and specification of Primordial Germ Cells (PGCs) is of special significance as they gradually transform into Germline Stem Cells (GSCs) that are ultimately responsible for generating the gametes. Intriguingly, not only the PGCs constitute the only immortal cell type but several specific determinants also underlying PGC specification such as Vasa, Nanos and Germ-cell-less are conserved through evolution. In Drosophila melanogaster, PGC formation and specification depends on two independent factors, the maternally deposited specialized cytoplasm (or germ plasm) enriched in germline determinants, and the mechanisms that execute the even partitioning of these determinants between the daughter cells. Prior work has shown that Oskar protein is necessary and sufficient to assemble the functional germ plasm, whereas centrosomes associated with the nuclei that invade the germ plasm are responsible for its equitable distribution. Our recent data suggests that Caspar, the Drosophila orthologue of human Fas-associated factor-1 (FAF1) is a novel regulator that modulates both mechanisms that underlie the determination of PGC fate. Consistently, early blastoderm embryos derived from females compromised for caspar display reduced levels of Oskar and defective centrosomes.
Collapse
Affiliation(s)
- Girish Deshpande
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Subhradip Das
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| | - Adheena Elsa Roy
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| |
Collapse
|
2
|
Liu H, Li H, Liu Y, Zhao H, Peng R. Toxic effects of microplastic and nanoplastic on the reproduction of teleost fish in aquatic environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62530-62548. [PMID: 39467868 DOI: 10.1007/s11356-024-35434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024]
Abstract
Microplastics and nanoplastics are widely present in aquatic environments and attract significant scholarly attention due to their toxicity, persistence, and ability to cross biological barriers, which pose substantial risks to various fish species. Microplastics and nanoplastics can enter fish through their digestive tract, gills and skin, causing oxidative damage to the body and adversely affecting their reproductive system. Given that fish constitute a crucial source of high-quality protein for humans, it is necessary to study the impact of microplastics on fish reproduction in order to assess the impact of pollutants on ecology, biodiversity conservation, environmental sustainability, and endocrine disruption. This review explores the reproductive consequences of microplastics and nanoplastics in fish, examining aspects such as fecundity, abnormal offspring, circadian rhythm, gonad index, spermatocyte development, oocyte development, sperm quality, ovarian development, and changes at the molecular and cellular level. These investigations hold significant importance in environmental toxicology.
Collapse
Affiliation(s)
- Huanpeng Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huiqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
3
|
Curnutte HA, Lan X, Sargen M, Ao Ieong SM, Campbell D, Kim H, Liao Y, Lazar SB, Trcek T. Proteins rather than mRNAs regulate nucleation and persistence of Oskar germ granules in Drosophila. Cell Rep 2023; 42:112723. [PMID: 37384531 PMCID: PMC10439980 DOI: 10.1016/j.celrep.2023.112723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
RNA granules are membraneless condensates that provide functional compartmentalization within cells. The mechanisms by which RNA granules form are under intense investigation. Here, we characterize the role of mRNAs and proteins in the formation of germ granules in Drosophila. Super-resolution microscopy reveals that the number, size, and distribution of germ granules is precisely controlled. Surprisingly, germ granule mRNAs are not required for the nucleation or the persistence of germ granules but instead control their size and composition. Using an RNAi screen, we determine that RNA regulators, helicases, and mitochondrial proteins regulate germ granule number and size, while the proteins of the endoplasmic reticulum, nuclear pore complex, and cytoskeleton control their distribution. Therefore, the protein-driven formation of Drosophila germ granules is mechanistically distinct from the RNA-dependent condensation observed for other RNA granules such as stress granules and P-bodies.
Collapse
Affiliation(s)
- Harrison A Curnutte
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Xinyue Lan
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Manuel Sargen
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Si Man Ao Ieong
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Dylan Campbell
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Hyosik Kim
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Yijun Liao
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Sarah Bailah Lazar
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Tatjana Trcek
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
4
|
Hakes AC, Gavis ER. Plasticity of Drosophila germ granules during germ cell development. PLoS Biol 2023; 21:e3002069. [PMID: 37053289 PMCID: PMC10128949 DOI: 10.1371/journal.pbio.3002069] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/25/2023] [Accepted: 03/07/2023] [Indexed: 04/15/2023] Open
Abstract
Compartmentalization of RNAs and proteins into membraneless structures called granules is a ubiquitous mechanism for organizing and regulating cohorts of RNAs. Germ granules are ribonucleoprotein (RNP) assemblies required for germline development across the animal kingdom, but their regulatory roles in germ cells are not fully understood. We show that after germ cell specification, Drosophila germ granules enlarge through fusion and this growth is accompanied by a shift in function. Whereas germ granules initially protect their constituent mRNAs from degradation, they subsequently target a subset of these mRNAs for degradation while maintaining protection of others. This functional shift occurs through the recruitment of decapping and degradation factors to the germ granules, which is promoted by decapping activators and renders these structures P body-like. Disrupting either the mRNA protection or degradation function results in germ cell migration defects. Our findings reveal plasticity in germ granule function that allows them to be repurposed at different stages of development to ensure population of the gonad by germ cells. Additionally, these results reveal an unexpected level of functional complexity whereby constituent RNAs within the same granule type can be differentially regulated.
Collapse
Affiliation(s)
- Anna C Hakes
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
5
|
Abstract
Cells are the smallest building blocks of all living eukaryotic organisms, usually ranging from a couple of micrometers (for example, platelets) to hundreds of micrometers (for example, neurons and oocytes) in size. In eukaryotic cells that are more than 100 µm in diameter, very often a self-organized large-scale movement of cytoplasmic contents, known as cytoplasmic streaming, occurs to compensate for the physical constraints of large cells. In this Review, we discuss cytoplasmic streaming in multiple cell types and the mechanisms driving this event. We particularly focus on the molecular motors responsible for cytoplasmic movements and the biological roles of cytoplasmic streaming in cells. Finally, we describe bulk intercellular flow that transports cytoplasmic materials to the oocyte from its sister germline cells to drive rapid oocyte growth.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA
| | - Vladimir I. Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA
| |
Collapse
|
6
|
Tao B, Hu H, Chen J, Chen L, Luo D, Sun Y, Ge F, Zhu Z, Trudeau VL, Hu W. Sinhcaf‐dependent histone deacetylation is essential for primordial germ cell specification. EMBO Rep 2022; 23:e54387. [PMID: 35532311 PMCID: PMC9171691 DOI: 10.15252/embr.202154387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
Primordial germ cells (PGCs) are the progenitor cells that give rise to sperm and eggs. Sinhcaf is a recently identified subunit of the Sin3 histone deacetylase complex (SIN3A-HDAC). Here, we provide evidence that Sinhcaf-dependent histone deacetylation is essential for germ plasm aggregation and primordial germ cell specification. Specifically, maternal-zygotic sinhcaf zebrafish mutants exhibit germ plasm aggregation defects, decreased PGC abundance and male-biased sex ratio, which can be rescued by re-expressing sinhcaf. Overexpression of sinhcaf results in excess PGCs and a female-biased sex ratio. Sinhcaf binds to the promoter region of kif26ab. Loss of sinhcaf epigenetically switches off kif26ab expression by increasing histone 3 acetylation in the promoter region. Injection of kif26ab mRNA could partially rescue the germ plasm aggregation defects in sinhcaf mutant embryos. Taken together, we demonstrate a role of Sinhcaf in germ plasm aggregation and PGC specialization that is mediated by regulating the histone acetylation status of the kif26ab promoter to activate its transcription. Our findings provide novel insights into the function and regulatory mechanisms of Sinhcaf-mediated histone deacetylation in PGC specification.
Collapse
Affiliation(s)
- Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Hongling Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Lu Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | | | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
- Qingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|
7
|
Valentino M, Ortega BM, Ulrich B, Doyle DA, Farnum ED, Joiner DA, Gavis ER, Niepielko MG. Computational modeling offers new insight into Drosophila germ granule development. Biophys J 2022; 121:1465-1482. [PMID: 35288123 PMCID: PMC9072583 DOI: 10.1016/j.bpj.2022.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/04/2022] [Accepted: 03/09/2022] [Indexed: 11/02/2022] Open
Abstract
The packaging of specific mRNAs into ribonucleoprotein granules called germ granules is required for germline proliferation and maintenance. During Drosophila germ granule development, mRNAs such as nanos (nos) and polar granule component (pgc) localize to germ granules through a stochastic seeding and self-recruitment process that generates homotypic clusters: aggregates containing multiple copies of a specific transcript. Germ granules vary in mRNA composition with respect to the different transcripts that they contain and their quantity. However, what influences germ granule mRNA composition during development is unclear. To gain insight into how germ granule mRNA heterogeneity arises, we created a computational model that simulates granule development. Although the model includes known mechanisms that were converted into mathematical representations, additional unreported mechanisms proved to be essential for modeling germ granule formation. The model was validated by predicting defects caused by changes in mRNA and protein abundance. Broader application of the model was demonstrated by quantifying nos and pgc localization efficacies and the contribution that an element within the nos 3' untranslated region has on clustering. For the first time, a mathematical representation of Drosophila germ granule formation is described, offering quantitative insight into how mRNA compositions arise while providing a new tool for guiding future studies.
Collapse
|
8
|
Meher PK, Rai A, Rao AR. mLoc-mRNA: predicting multiple sub-cellular localization of mRNAs using random forest algorithm coupled with feature selection via elastic net. BMC Bioinformatics 2021; 22:342. [PMID: 34167457 PMCID: PMC8223360 DOI: 10.1186/s12859-021-04264-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Localization of messenger RNAs (mRNAs) plays a crucial role in the growth and development of cells. Particularly, it plays a major role in regulating spatio-temporal gene expression. The in situ hybridization is a promising experimental technique used to determine the localization of mRNAs but it is costly and laborious. It is also a known fact that a single mRNA can be present in more than one location, whereas the existing computational tools are capable of predicting only a single location for such mRNAs. Thus, the development of high-end computational tool is required for reliable and timely prediction of multiple subcellular locations of mRNAs. Hence, we develop the present computational model to predict the multiple localizations of mRNAs. RESULTS The mRNA sequences from 9 different localizations were considered. Each sequence was first transformed to a numeric feature vector of size 5460, based on the k-mer features of sizes 1-6. Out of 5460 k-mer features, 1812 important features were selected by the Elastic Net statistical model. The Random Forest supervised learning algorithm was then employed for predicting the localizations with the selected features. Five-fold cross-validation accuracies of 70.87, 68.32, 68.36, 68.79, 96.46, 73.44, 70.94, 97.42 and 71.77% were obtained for the cytoplasm, cytosol, endoplasmic reticulum, exosome, mitochondrion, nucleus, pseudopodium, posterior and ribosome respectively. With an independent test set, accuracies of 65.33, 73.37, 75.86, 72.99, 94.26, 70.91, 65.53, 93.60 and 73.45% were obtained for the respective localizations. The developed approach also achieved higher accuracies than the existing localization prediction tools. CONCLUSIONS This study presents a novel computational tool for predicting the multiple localization of mRNAs. Based on the proposed approach, an online prediction server "mLoc-mRNA" is accessible at http://cabgrid.res.in:8080/mlocmrna/ . The developed approach is believed to supplement the existing tools and techniques for the localization prediction of mRNAs.
Collapse
Affiliation(s)
- Prabina Kumar Meher
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | | |
Collapse
|
9
|
Tikhomirova MA, Sheval EV. Formation of Biomolecular Condensates: Regulation of Embryogenesis at the Cellular Level. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Lasko P. Patterning the Drosophila embryo: A paradigm for RNA-based developmental genetic regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1610. [PMID: 32543002 PMCID: PMC7583483 DOI: 10.1002/wrna.1610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 12/16/2022]
Abstract
Embryonic anterior–posterior patterning is established in Drosophila melanogaster by maternally expressed genes. The mRNAs of several of these genes accumulate at either the anterior or posterior pole of the oocyte via a number of mechanisms. Many of these mRNAs are also under elaborate translational regulation. Asymmetric RNA localization coupled with spatially restricted translation ensures that their proteins are restricted to the position necessary for the developmental process that they drive. Bicoid (Bcd), the anterior determinant, and Oskar (Osk), the determinant for primordial germ cells and posterior patterning, have been studied particularly closely. In early embryos an anterior–posterior gradient of Bcd is established, activating transcription of different sets of zygotic genes depending on local Bcd concentration. At the posterior pole, Osk seeds formation of polar granules, ribonucleoprotein complexes that accumulate further mRNAs and proteins involved in posterior patterning and germ cell specification. After fertilization, polar granules associate with posterior nuclei and mature into nuclear germ granules. Osk accumulates in these granules, and either by itself or as part of the granules, stimulates germ cell division. This article is categorized under:RNA Export and Localization > RNA Localization Translation > Translation Regulation RNA in Disease and Development > RNA in Development
Collapse
Affiliation(s)
- Paul Lasko
- Department of Biology, McGill University, Montréal, Québec, Canada.,Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| |
Collapse
|
11
|
Trcek T, Douglas TE, Grosch M, Yin Y, Eagle WVI, Gavis ER, Shroff H, Rothenberg E, Lehmann R. Sequence-Independent Self-Assembly of Germ Granule mRNAs into Homotypic Clusters. Mol Cell 2020; 78:941-950.e12. [PMID: 32464092 DOI: 10.1016/j.molcel.2020.05.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/29/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
mRNAs enriched in membraneless condensates provide functional compartmentalization within cells. The mechanisms that recruit transcripts to condensates are under intense study; however, how mRNAs organize once they reach a granule remains poorly understood. Here, we report on a self-sorting mechanism by which multiple mRNAs derived from the same gene assemble into discrete homotypic clusters. We demonstrate that in vivo mRNA localization to granules and self-assembly within granules are governed by different mRNA features: localization is encoded by specific RNA regions, whereas self-assembly involves the entire mRNA, does not involve sequence-specific, ordered intermolecular RNA:RNA interactions, and is thus RNA sequence independent. We propose that the ability of mRNAs to self-sort into homotypic assemblies is an inherent property of an messenger ribonucleoprotein (mRNP) that is augmented under conditions that increase RNA concentration, such as upon enrichment in RNA-protein granules, a process that appears conserved in diverse cellular contexts and organisms.
Collapse
Affiliation(s)
- Tatjana Trcek
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY, USA.
| | - Tyler E Douglas
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY, USA
| | - Markus Grosch
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY, USA
| | - Yandong Yin
- Department of Biochemistry and Pharmacology, NYU School of Medicine, New York, NY, USA
| | - Whitby V I Eagle
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Hari Shroff
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, USA
| | - Eli Rothenberg
- Department of Biochemistry and Pharmacology, NYU School of Medicine, New York, NY, USA
| | - Ruth Lehmann
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Lu W, Lakonishok M, Liu R, Billington N, Rich A, Glotzer M, Sellers JR, Gelfand VI. Competition between kinesin-1 and myosin-V defines Drosophila posterior determination. eLife 2020; 9:54216. [PMID: 32057294 PMCID: PMC7112953 DOI: 10.7554/elife.54216] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/14/2020] [Indexed: 12/05/2022] Open
Abstract
Local accumulation of oskar (osk) mRNA in the Drosophila oocyte determines the posterior pole of the future embryo. Two major cytoskeletal components, microtubules and actin filaments, together with a microtubule motor, kinesin-1, and an actin motor, myosin-V, are essential for osk mRNA posterior localization. In this study, we use Staufen, an RNA-binding protein that colocalizes with osk mRNA, as a proxy for osk mRNA. We demonstrate that posterior localization of osk/Staufen is determined by competition between kinesin-1 and myosin-V. While kinesin-1 removes osk/Staufen from the cortex along microtubules, myosin-V anchors osk/Staufen at the cortex. Myosin-V wins over kinesin-1 at the posterior pole due to low microtubule density at this site, while kinesin-1 wins at anterior and lateral positions because they have high density of cortically-anchored microtubules. As a result, posterior determinants are removed from the anterior and lateral cortex but retained at the posterior pole. Thus, posterior determination of Drosophila oocytes is defined by kinesin-myosin competition, whose outcome is primarily determined by cortical microtubule density. One of the most fundamental steps of embryonic development is deciding which end of the body should be the head, and which should be the tail. Known as 'axis specification', this process depends on the location of genetic material called mRNAs. In fruit flies, for example, the tail-end of the embryo accumulates an mRNA called oskar. If this mRNA is missing, the embryo will not develop an abdomen. The build-up of oskar mRNA happens before the egg is even fertilized and depends on two types of scaffold proteins in the egg cell called microtubules and microfilaments. These scaffolds act like ‘train tracks’ in the cell and have associated protein motors, which work a bit like trains, carrying cargo as they travel up and down along the scaffolds. For microtubules, one of the motors is a protein called kinesin-1, whereas for microfilaments, the motors are called myosins. Most microtubules in the egg cell are pointing away from the membrane, while microfilament tracks form a dense network of randomly oriented filaments just underneath the membrane. It was already known that kinesin-1 and a myosin called myosin-V are important for localizing oskar mRNA to the posterior of the egg. However, it was not clear why the mRNA only builds up in that area. To find out, Lu et al. used a probe to track oskar mRNA, while genetically manipulating each of the motors so that their ability to transport cargo changed. Modulating the balance of activity between the two motors revealed that kinesin-1 and myosin-V engage in a tug-of-war inside the egg: myosin-V tries to keep oskar mRNA underneath the membrane of the cell, while kinesin-1 tries to pull it away from the membrane along microtubules. The winner of this molecular battle depends on the number of microtubule tracks available in the local area of the cell. In most parts of the cell, there are abundant microtubules, so kinesin-1 wins and pulls oskar mRNA away from the membrane. But at the posterior end of the cell there are fewer microtubules, so myosin-V wins, allowing oskar mRNA to localize in this area. Artificially 'shaving' some microtubules in a local area immediately changed the outcome of this tug-of-war creating a build-up of oskar mRNA in the 'shaved' patch. This is the first time a molecular tug-of-war has been shown in an egg cell, but in other types of cell, such as neurons and pigment cells, myosins compete with kinesins to position other molecular cargoes. Understanding these processes more clearly sheds light not only on embryo development, but also on cell biology in general.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Rong Liu
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Neil Billington
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Ashley Rich
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - James R Sellers
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
13
|
Fang J, Lerit DA. Drosophila pericentrin-like protein promotes the formation of primordial germ cells. Genesis 2019; 58:e23347. [PMID: 31774613 DOI: 10.1002/dvg.23347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/01/2019] [Accepted: 11/09/2019] [Indexed: 11/12/2022]
Abstract
Primordial germ cells (PGCs) are the precursors to the adult germline stem cells that are set aside early during embryogenesis and specified through the inheritance of the germ plasm, which contains the mRNAs and proteins that function as the germline fate determinants. In Drosophila melanogaster, formation of the PGCs requires the microtubule and actin cytoskeletal networks to actively segregate the germ plasm from the soma and physically construct the pole buds (PBs) that protrude from the posterior cortex. Of emerging importance is the central role of centrosomes in the coordination of microtubule dynamics and actin organization to promote PGC development. We previously identified a requirement for the centrosome protein Centrosomin (Cnn) in PGC formation. Cnn interacts directly with Pericentrin-like protein (PLP) to form a centrosome scaffold structure required for pericentriolar material recruitment and organization. In this study, we identify a role for PLP at several discrete steps during PGC development. We find PLP functions in segregating the germ plasm from the soma by regulating microtubule organization and centrosome separation. These activities further contribute to promoting PB protrusion and facilitating the distribution of germ plasm in proliferating PGCs.
Collapse
Affiliation(s)
- Junnan Fang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Dorothy A Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
14
|
Trcek T, Lehmann R. Germ granules in Drosophila. Traffic 2019; 20:650-660. [PMID: 31218815 PMCID: PMC6771631 DOI: 10.1111/tra.12674] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/26/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
Abstract
Germ granules are hallmarks of all germ cells. Early ultrastructural studies in Drosophila first described these membraneless granules in the oocyte and early embryo as filled with amorphous to fibrillar material mixed with RNA. Genetic studies identified key protein components and specific mRNAs that regulate germ cell‐specific functions. More recently these ultrastructural studies have been complemented by biophysical analysis describing germ granules as phase‐transitioned condensates. In this review, we provide an overview that connects the composition of germ granules with their function in controlling germ cell specification, formation and migration, and illuminate these mysterious condensates as the gatekeepers of the next generation.
Collapse
Affiliation(s)
- Tatjana Trcek
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York
| | - Ruth Lehmann
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York
| |
Collapse
|
15
|
Abstract
Microbial symbioses exhibit astounding adaptations, yet all symbionts face the problem of how to reliably associate with host offspring every generation. A common strategy is vertical transmission, in which symbionts are directly transmitted from the female to her offspring. The diversity of symbionts and vertical transmission mechanisms is as expansive as the diversity of eukaryotic host taxa that house them. However, there are several common themes among these mechanisms based on the degree to which symbionts associate with the host germline during transmission. In this review, we detail three distinct vertical transmission strategies, starting with associations that are transmitted from host somatic cells to offspring somatic cells, either due to lacking a germline or avoiding it. A second strategy involves somatically-localized symbionts that migrate into the germline during host development. The third strategy we discuss is one in which the symbiont maintains continuous association with the germline throughout development. Unexpectedly, the vast majority of documented vertically inherited symbionts rely on the second strategy: soma-to-germline migration. Given that not all eukaryotes contain a sequestered germline and instead produce offspring from somatic stem cell lineages, this soma-to-germline migration is discussed in the context of multicellular evolution. Lastly, as recent genomics data have revealed an abundance of horizontal gene transfer events from symbiotic and non-symbiotic bacteria to host genomes, we discuss their impact on eukaryotic host evolution.
Collapse
Affiliation(s)
- Shelbi L Russell
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States.
| | - Laura Chappell
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
16
|
Lu W, Lakonishok M, Serpinskaya AS, Kirchenbüechler D, Ling SC, Gelfand VI. Ooplasmic flow cooperates with transport and anchorage in Drosophila oocyte posterior determination. J Cell Biol 2018; 217:3497-3511. [PMID: 30037924 PMCID: PMC6168253 DOI: 10.1083/jcb.201709174] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/27/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022] Open
Abstract
The posterior determination of the Drosophila melanogaster embryo is defined by the posterior localization of oskar (osk) mRNA in the oocyte. Defects of its localization result in a lack of germ cells and failure of abdomen specification. A microtubule motor kinesin-1 is essential for osk mRNA posterior localization. Because kinesin-1 is required for two essential functions in the oocyte-transport along microtubules and cytoplasmic streaming-it is unclear how individual kinesin-1 activities contribute to the posterior determination. We examined Staufen, an RNA-binding protein that is colocalized with osk mRNA, as a proxy of posterior determination, and we used mutants that either inhibit kinesin-driven transport along microtubules or cytoplasmic streaming. We demonstrated that late-stage streaming is partially redundant with early-stage transport along microtubules for Staufen posterior localization. Additionally, an actin motor, myosin V, is required for the Staufen anchoring to the actin cortex. We propose a model whereby initial kinesin-driven transport, subsequent kinesin-driven streaming, and myosin V-based cortical retention cooperate in posterior determination.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Margot Lakonishok
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Anna S Serpinskaya
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - David Kirchenbüechler
- Center for Advanced Microscopy and the Nikon Imaging Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Shuo-Chien Ling
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Program in Neuroscience and Behavior Disorders, Duke-National University of Singapore Medical School, Singapore
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
17
|
Kistler KE, Trcek T, Hurd TR, Chen R, Liang FX, Sall J, Kato M, Lehmann R. Phase transitioned nuclear Oskar promotes cell division of Drosophila primordial germ cells. eLife 2018; 7:37949. [PMID: 30260314 PMCID: PMC6191285 DOI: 10.7554/elife.37949] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/09/2018] [Indexed: 12/25/2022] Open
Abstract
Germ granules are non-membranous ribonucleoprotein granules deemed the hubs for post-transcriptional gene regulation and functionally linked to germ cell fate across species. Little is known about the physical properties of germ granules and how these relate to germ cell function. Here we study two types of germ granules in the Drosophila embryo: cytoplasmic germ granules that instruct primordial germ cells (PGCs) formation and nuclear germ granules within early PGCs with unknown function. We show that cytoplasmic and nuclear germ granules are phase transitioned condensates nucleated by Oskar protein that display liquid as well as hydrogel-like properties. Focusing on nuclear granules, we find that Oskar drives their formation in heterologous cell systems. Multiple, independent Oskar protein domains synergize to promote granule phase separation. Deletion of Oskar’s nuclear localization sequence specifically ablates nuclear granules in cell systems. In the embryo, nuclear germ granules promote germ cell divisions thereby increasing PGC number for the next generation.
Collapse
Affiliation(s)
- Kathryn E Kistler
- Skirball Institute of Biomolecular Medicine, Howard Hughes Medical Institute, NYU School of Medicine, New York, United States.,Department of Molecular and Cellular Biology, University of Washington, Washington, United States
| | - Tatjana Trcek
- Skirball Institute of Biomolecular Medicine, Howard Hughes Medical Institute, NYU School of Medicine, New York, United States
| | - Thomas R Hurd
- Skirball Institute of Biomolecular Medicine, Howard Hughes Medical Institute, NYU School of Medicine, New York, United States.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ruoyu Chen
- Skirball Institute of Biomolecular Medicine, Howard Hughes Medical Institute, NYU School of Medicine, New York, United States
| | - Feng-Xia Liang
- Department of Cell Biology, NYU School of Medicine, New York, United States.,DART Microscopy Laboratory, NYU Langone Health, New York, United States
| | - Joseph Sall
- DART Microscopy Laboratory, NYU Langone Health, New York, United States
| | - Masato Kato
- Department of Biochemistry, University of Texas Southwestern Medical Center, Texas, United States
| | - Ruth Lehmann
- Skirball Institute of Biomolecular Medicine, Howard Hughes Medical Institute, NYU School of Medicine, New York, United States.,Department of Cell Biology, NYU School of Medicine, New York, United States
| |
Collapse
|
18
|
Stochastic Seeding Coupled with mRNA Self-Recruitment Generates Heterogeneous Drosophila Germ Granules. Curr Biol 2018; 28:1872-1881.e3. [PMID: 29861136 DOI: 10.1016/j.cub.2018.04.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/27/2018] [Accepted: 04/12/2018] [Indexed: 11/22/2022]
Abstract
The formation of ribonucleoprotein assemblies called germ granules is a conserved feature of germline development. In Drosophila, germ granules form at the posterior of the oocyte in a specialized cytoplasm called the germ plasm, which specifies germline fate during embryogenesis. mRNAs, including nanos (nos) and polar granule component (pgc), that function in germline development are localized to the germ plasm through their incorporation into germ granules, which deliver them to the primordial germ cells. Germ granules are nucleated by Oskar (Osk) protein and contain varying combinations and quantities of their constituent mRNAs, which are organized as spatially distinct, multi-copy homotypic clusters. The process that gives rise to such heterogeneous yet organized granules remains unknown. Here, we show that individual nos and pgc transcripts can populate the same nascent granule, and these first transcripts then act as seeds, recruiting additional like transcripts to form homotypic clusters. Within a granule, homotypic clusters grow independently of each other but depend on the simultaneous acquisition of additional Osk. Although granules can contain multiple clusters of a particular mRNA, granule mRNA content is dominated by cluster size. These results suggest that the accumulation of mRNAs in the germ plasm is controlled by the mRNAs themselves through their ability to form homotypic clusters; thus, RNA self-association drives germ granule mRNA localization. We propose that a stochastic seeding and self-recruitment mechanism enables granules to simultaneously incorporate many different mRNAs while ensuring that each becomes enriched to a functional threshold.
Collapse
|
19
|
Abstract
The last past decade has witnessed a revolution in our appreciation of transcriptome complexity and regulation. This remarkable expansion in our knowledge largely originates from the advent of high-throughput methodologies, and the consecutive discovery that up to 90% of eukaryotic genomes are transcribed, thus generating an unanticipated large range of noncoding RNAs (Hangauer et al., 15(4):112, 2014). Besides leading to the identification of new noncoding RNA species, transcriptome-wide studies have uncovered novel layers of posttranscriptional regulatory mechanisms controlling RNA processing, maturation or translation, and each contributing to the precise and dynamic regulation of gene expression. Remarkably, the development of systems-level studies has been accompanied by tremendous progress in the visualization of individual RNA molecules in single cells, such that it is now possible to image RNA species with a single-molecule resolution from birth to translation or decay. Monitoring quantitatively, with unprecedented spatiotemporal resolution, the fate of individual molecules has been key to understanding the molecular mechanisms underlying the different steps of RNA regulation. This has also revealed biologically relevant, intracellular and intercellular heterogeneities in RNA distribution or regulation. More recently, the convergence of imaging and high-throughput technologies has led to the emergence of spatially resolved transcriptomic techniques that provide a means to perform large-scale analyses while preserving spatial information. By generating transcriptome-wide data on single-cell RNA content, or even subcellular RNA distribution, these methodologies are opening avenues to a wide range of network-level studies at the cell and organ-level, and promise to strongly improve disease diagnostic and treatment.In this introductory chapter, we highlight how recently developed technologies aiming at detecting and visualizing RNA molecules have contributed to the emergence of entirely new research fields, and to dramatic progress in our understanding of gene expression regulation.
Collapse
Affiliation(s)
- Caroline Medioni
- Université Côte d'Azur, CNRS, Inserm, iBV, Parc Valrose, 06100, Nice, France
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, iBV, Parc Valrose, 06100, Nice, France.
| |
Collapse
|
20
|
DeHaan H, McCambridge A, Armstrong B, Cruse C, Solanki D, Trinidad JC, Arkov AL, Gao M. An in vivo proteomic analysis of the Me31B interactome in Drosophila germ granules. FEBS Lett 2017; 591:3536-3547. [PMID: 28945271 DOI: 10.1002/1873-3468.12854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 12/11/2022]
Abstract
Drosophila Me31B is a conserved protein of germ granules, ribonucleoprotein complexes essential for germ cell development. Me31B post-transcriptionally regulates mRNAs by interacting with other germ granule proteins. However, a Me31B interactome is lacking. Here, we use an in vivo proteomics approach to show that the Me31B interactome contains polypeptides from four functional groups: RNA regulatory proteins, glycolytic enzymes, cytoskeleton/motor proteins, and germ plasm components. We further show that Me31B likely colocalizes with the germ plasm components Tudor (Tud), Vasa, and Aubergine in the nuage and germ plasm and provide evidence that Me31B may directly bind to Tud in a symmetrically dimethylated arginine-dependent manner. Our study supports the role of Me31B in RNA regulation and suggests its novel roles in germ granule assembly and function.
Collapse
Affiliation(s)
- Hunter DeHaan
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | | | | | - Carlie Cruse
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Dhruv Solanki
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | | | - Alexey L Arkov
- Department of Biological Sciences, Murray State University, Murray, KY, USA
| | - Ming Gao
- Biology Department, Indiana University Northwest, Gary, IN, USA
| |
Collapse
|
21
|
Bilinski SM, Jaglarz MK, Tworzydlo W. The Pole (Germ) Plasm in Insect Oocytes. Results Probl Cell Differ 2017; 63:103-126. [PMID: 28779315 DOI: 10.1007/978-3-319-60855-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Animal germline cells are specified either through zygotic induction or cytoplasmic inheritance. Zygotic induction takes place in mid- or late embryogenesis and requires cell-to-cell signaling leading to the acquisition of germline fate de novo. In contrast, cytoplasmic inheritance involves formation of a specific, asymmetrically localized oocyte region, termed the germ (pole) plasm. This region contains maternally provided germline determinants (mRNAs, proteins) that are capable of inducing germline fate in a subset of embryonic cells. Recent data indicate that among insects, the zygotic induction represents an ancestral condition, while the cytoplasmic inheritance evolved at the base of Holometabola or in the last common ancestor of Holometabola and its sister taxon, Paraneoptera.In this chapter, we first describe subsequent stages of morphogenesis of the pole plasm and polar granules in the model organism, Drosophila melanogaster. Then, we present an overview of morphology and cytoarchitecture of the pole plasm in various holometabolan and paraneopteran insect species. Finally, we focus on phylogenetic hypotheses explaining the known distribution of two different strategies of germline specification among insects.
Collapse
Affiliation(s)
- Szczepan M Bilinski
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Mariusz K Jaglarz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
22
|
Hurd TR, Herrmann B, Sauerwald J, Sanny J, Grosch M, Lehmann R. Long Oskar Controls Mitochondrial Inheritance in Drosophila melanogaster. Dev Cell 2017; 39:560-571. [PMID: 27923120 DOI: 10.1016/j.devcel.2016.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/21/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022]
Abstract
Inherited mtDNA mutations cause severe human disease. In most species, mitochondria are inherited maternally through mechanisms that are poorly understood. Genes that specifically control the inheritance of mitochondria in the germline are unknown. Here, we show that the long isoform of the protein Oskar regulates the maternal inheritance of mitochondria in Drosophila melanogaster. We show that, during oogenesis, mitochondria accumulate at the oocyte posterior, concurrent with the bulk streaming and churning of the oocyte cytoplasm. Long Oskar traps and maintains mitochondria at the posterior at the site of primordial germ cell (PGC) formation through an actin-dependent mechanism. Mutating long oskar strongly reduces the number of mtDNA molecules inherited by PGCs. Therefore, Long Oskar ensures germline transmission of mitochondria to the next generation. These results provide molecular insight into how mitochondria are passed from mother to offspring, as well as how they are positioned and asymmetrically partitioned within polarized cells.
Collapse
Affiliation(s)
- Thomas Ryan Hurd
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Beate Herrmann
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Julia Sauerwald
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Justina Sanny
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Markus Grosch
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Ruth Lehmann
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
23
|
Gorgoń S, Wardas A, Krodkiewska M, Świątek P. Oogenesis in three species of Naidinae (Annelida, Clitellata) is extraovarian of the Stylaria type. ZOOLOGY 2017; 121:111-124. [DOI: 10.1016/j.zool.2016.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 01/27/2023]
|
24
|
Dehghani M, Lasko P. Multiple Functions of the DEAD-Box Helicase Vasa in Drosophila Oogenesis. Results Probl Cell Differ 2017; 63:127-147. [PMID: 28779316 DOI: 10.1007/978-3-319-60855-6_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The DEAD-box helicase Vasa (Vas) has been most extensively studied in the fruit fly, Drosophila melanogaster, and numerous roles for it in germline development have been discovered. Here, we summarize the present state of knowledge about processes during oogenesis that involve Vas, as well as functions of Vas as a maternal determinant of embryonic spatial patterning and germ cell specification. We review literature that implicates Vas in Piwi-interacting RNA (piRNA) biogenesis in germline cells and in regulating mitosis in germline stem cells (GSCs). We describe the functions of Vas in translational activation of two mRNAs, gurken (grk) and mei-P26, which encode proteins that are important regulators of developmental processes, as Grk specifies both the dorsal-ventral and the anterior-posterior axis of the embryo and Mei-P26 promotes GSC differentiation. The role of Vas in assembly of polar granules, ribonucleoprotein particles that accumulate in the posterior pole plasm of the oocyte and are essential for germ cell specification and posterior embryonic patterning, is also described.
Collapse
Affiliation(s)
- Mehrnoush Dehghani
- Department of Biology, McGill University, 3649 Promenade Sir William Osler, Montréal, Québec, Canada, H3G 0B1
| | - Paul Lasko
- Department of Biology, McGill University, 3649 Promenade Sir William Osler, Montréal, Québec, Canada, H3G 0B1.
| |
Collapse
|
25
|
Zheng J, Gao M, Huynh N, Tindell SJ, Vo HDL, McDonald WH, Arkov AL. In vivo mapping of a dynamic ribonucleoprotein granule interactome in early Drosophila embryos. FEBS Open Bio 2016; 6:1248-1256. [PMID: 28203524 PMCID: PMC5302063 DOI: 10.1002/2211-5463.12144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/21/2016] [Accepted: 10/03/2016] [Indexed: 12/22/2022] Open
Abstract
Macromolecular complexes and organelles play crucial roles within cells, but their native architectures are often unknown. Here, we use an evolutionarily conserved germline organelle, the germ granule, as a paradigm. In Drosophila embryos, we map one of its interactomes using a novel in vivo crosslinking approach that employs two interacting granule proteins and determines their common neighbor molecules. We identified an in vivo granule assembly of Tudor, Aubergine, motor and metabolic proteins, and RNA helicases, and provide evidence for direct interactions within this assembly using purified components. Our study indicates that germ granules contain efficient biochemical reactors involved in post‐transcriptional gene regulation.
Collapse
Affiliation(s)
- Jimiao Zheng
- Department of Biological Sciences Murray State University USA
| | - Ming Gao
- Biology Department Indiana University Northwest Gary IN USA
| | - Nhan Huynh
- Department of Biological Sciences Murray State University USA; Present address: University of Alberta Edmonton AB Canada
| | | | - Hieu D L Vo
- Department of Biological Sciences Murray State University USA
| | - W Hayes McDonald
- Department of Biochemistry Mass Spectrometry Research Center Vanderbilt University School of Medicine Nashville TN USA
| | - Alexey L Arkov
- Department of Biological Sciences Murray State University USA
| |
Collapse
|
26
|
Trcek T, Lionnet T, Shroff H, Lehmann R. mRNA quantification using single-molecule FISH in Drosophila embryos. Nat Protoc 2016; 12:1326-1348. [PMID: 28594816 DOI: 10.1038/nprot.2017.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Spatial information is critical to the interrogation of developmental and tissue-level regulation of gene expression. However, this information is usually lost when global mRNA levels from tissues are measured using reverse transcriptase PCR, microarray analysis or high-throughput sequencing. By contrast, single-molecule fluorescence in situ hybridization (smFISH) preserves the spatial information of the cellular mRNA content with subcellular resolution within tissues. Here we describe an smFISH protocol that allows for the quantification of single mRNAs in Drosophila embryos, using commercially available smFISH probes (e.g., short fluorescently labeled DNA oligonucleotides) in combination with wide-field epifluorescence, confocal or instant structured illumination microscopy (iSIM, a super-resolution imaging approach) and a spot-detection algorithm. Fixed Drosophila embryos are hybridized in solution with a mixture of smFISH probes, mounted onto coverslips and imaged in 3D. Individual fluorescently labeled mRNAs are then localized within tissues and counted using spot-detection software to generate quantitative, spatially resolved gene expression data sets. With minimum guidance, a graduate student can successfully implement this protocol. The smFISH procedure described here can be completed in 4-5 d.
Collapse
Affiliation(s)
- Tatjana Trcek
- Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| | - Timothée Lionnet
- Transcription Imaging Consortium, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Hari Shroff
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Ruth Lehmann
- Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York, USA
| |
Collapse
|
27
|
Abbaszadeh EK, Gavis ER. Fixed and live visualization of RNAs in Drosophila oocytes and embryos. Methods 2016; 98:34-41. [PMID: 26827935 PMCID: PMC4808400 DOI: 10.1016/j.ymeth.2016.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/23/2016] [Accepted: 01/27/2016] [Indexed: 12/21/2022] Open
Abstract
The ability to visualize RNA in situ is essential to dissect mechanisms for the temporal and spatial regulation of gene expression that drives development. Although considerable attention has been focused on transcriptional control, studies in model organisms like Drosophila have highlighted the importance of post-transcriptional mechanisms - most notably intracellular mRNA localization - in the formation and patterning of the body axes, specification of cell fates, and polarized cell functions. Our understanding of both types of regulation has been greatly advanced by technological innovations that enable a combination of highly quantitative and dynamic analysis of RNA. This review presents two methods, single molecule fluorescence in situ hybridization for high resolution quantitative RNA detection in fixed Drosophila oocytes and embryos and genetically encoded fluorescent RNA labeling for detection in live cells.
Collapse
Affiliation(s)
- Evan K Abbaszadeh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
28
|
Vourekas A, Alexiou P, Vrettos N, Maragkakis M, Mourelatos Z. Sequence-dependent but not sequence-specific piRNA adhesion traps mRNAs to the germ plasm. Nature 2016; 531:390-394. [PMID: 26950602 PMCID: PMC4795963 DOI: 10.1038/nature17150] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/13/2016] [Indexed: 11/09/2022]
Abstract
The conserved Piwi family of proteins and piwi-interacting RNAs (piRNAs) play a central role in genomic stability, which is inextricably tied with germ cell formation, by forming ribonucleoproteins (piRNPs) that silence transposable elements (TEs)1. In Drosophila melanogaster and other animals, primordial germ cell (PGC) specification in the developing embryo is driven by maternal mRNAs and proteins that assemble into specialized mRNPs localized in the germ (pole) plasm at the posterior of the oocyte2,3. Maternal piRNPs, especially those loaded on Aubergine (Aub), a Piwi protein, are transmitted to the germ plasm to initiate transposon silencing in the offspring germline4–7. Transport of mRNAs to the oocyte by midoogenesis is an active, microtubule-dependent process8; mRNAs necessary for PGC formation are enriched in the germ plasm at late oogenesis via a diffusion and entrapment mechanism, whose molecular identity remains unknown8,9. Aub is a central component of germ granule RNPs, which house mRNAs in the germ plasm10–12 and interactions between Aub and Tudor are essential for the formation of germ granules13–16. Here we show that Aub-loaded piRNAs use partial base pairing characteristic of Argonaute RNPs to bind mRNAs randomly, acting as an adhesive trap that captures mRNAs in the germ plasm, in a Tudor-dependent manner. Strikingly, germ plasm mRNAs in Drosophilids are generally longer and more abundant than other mRNAs, suggesting that they provide more target sites for piRNAs to promote their preferential tethering in germ granules. Thus complexes containing Tudor, Aub piRNPs and mRNAs couple piRNA inheritance with germline specification. Our findings reveal an unexpected function for Piwi ribonucleoprotein complexes in mRNA trapping that may be generally relevant to the function of animal germ granules.
Collapse
Affiliation(s)
- Anastassios Vourekas
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine; PENN Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Panagiotis Alexiou
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine; PENN Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Nicholas Vrettos
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine; PENN Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Manolis Maragkakis
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine; PENN Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine; PENN Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
29
|
Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C, Pernet MEJ, Le Goïc N, Quillien V, Mingant C, Epelboin Y, Corporeau C, Guyomarch J, Robbens J, Paul-Pont I, Soudant P, Huvet A. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc Natl Acad Sci U S A 2016; 113:2430-5. [PMID: 26831072 PMCID: PMC4780615 DOI: 10.1073/pnas.1519019113] [Citation(s) in RCA: 998] [Impact Index Per Article: 110.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plastics are persistent synthetic polymers that accumulate as waste in the marine environment. Microplastic (MP) particles are derived from the breakdown of larger debris or can enter the environment as microscopic fragments. Because filter-feeder organisms ingest MP while feeding, they are likely to be impacted by MP pollution. To assess the impact of polystyrene microspheres (micro-PS) on the physiology of the Pacific oyster, adult oysters were experimentally exposed to virgin micro-PS (2 and 6 µm in diameter; 0.023 mg·L(-1)) for 2 mo during a reproductive cycle. Effects were investigated on ecophysiological parameters; cellular, transcriptomic, and proteomic responses; fecundity; and offspring development. Oysters preferentially ingested the 6-µm micro-PS over the 2-µm-diameter particles. Consumption of microalgae and absorption efficiency were significantly higher in exposed oysters, suggesting compensatory and physical effects on both digestive parameters. After 2 mo, exposed oysters had significant decreases in oocyte number (-38%), diameter (-5%), and sperm velocity (-23%). The D-larval yield and larval development of offspring derived from exposed parents decreased by 41% and 18%, respectively, compared with control offspring. Dynamic energy budget modeling, supported by transcriptomic profiles, suggested a significant shift of energy allocation from reproduction to structural growth, and elevated maintenance costs in exposed oysters, which is thought to be caused by interference with energy uptake. Molecular signatures of endocrine disruption were also revealed, but no endocrine disruptors were found in the biological samples. This study provides evidence that micro-PS cause feeding modifications and reproductive disruption in oysters, with significant impacts on offspring.
Collapse
Affiliation(s)
- Rossana Sussarellu
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Marc Suquet
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Yoann Thomas
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Christophe Lambert
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Caroline Fabioux
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Marie Eve Julie Pernet
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Nelly Le Goïc
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Virgile Quillien
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Christian Mingant
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Yanouk Epelboin
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Charlotte Corporeau
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Julien Guyomarch
- Centre de Documentation de Recherche d'Expérimentations, 29218 Brest, France
| | - Johan Robbens
- Instituut poor Landbouw en Visserijonderzoek, 8400 Ostend, Belgium
| | - Ika Paul-Pont
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Philippe Soudant
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Arnaud Huvet
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France;
| |
Collapse
|
30
|
Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C, Pernet MEJ, Le Goïc N, Quillien V, Mingant C, Epelboin Y, Corporeau C, Guyomarch J, Robbens J, Paul-Pont I, Soudant P, Huvet A. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc Natl Acad Sci U S A 2016. [PMID: 26831072 DOI: 10.1073/pnas.1519019113/-/dcsupplemental] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Plastics are persistent synthetic polymers that accumulate as waste in the marine environment. Microplastic (MP) particles are derived from the breakdown of larger debris or can enter the environment as microscopic fragments. Because filter-feeder organisms ingest MP while feeding, they are likely to be impacted by MP pollution. To assess the impact of polystyrene microspheres (micro-PS) on the physiology of the Pacific oyster, adult oysters were experimentally exposed to virgin micro-PS (2 and 6 µm in diameter; 0.023 mg·L(-1)) for 2 mo during a reproductive cycle. Effects were investigated on ecophysiological parameters; cellular, transcriptomic, and proteomic responses; fecundity; and offspring development. Oysters preferentially ingested the 6-µm micro-PS over the 2-µm-diameter particles. Consumption of microalgae and absorption efficiency were significantly higher in exposed oysters, suggesting compensatory and physical effects on both digestive parameters. After 2 mo, exposed oysters had significant decreases in oocyte number (-38%), diameter (-5%), and sperm velocity (-23%). The D-larval yield and larval development of offspring derived from exposed parents decreased by 41% and 18%, respectively, compared with control offspring. Dynamic energy budget modeling, supported by transcriptomic profiles, suggested a significant shift of energy allocation from reproduction to structural growth, and elevated maintenance costs in exposed oysters, which is thought to be caused by interference with energy uptake. Molecular signatures of endocrine disruption were also revealed, but no endocrine disruptors were found in the biological samples. This study provides evidence that micro-PS cause feeding modifications and reproductive disruption in oysters, with significant impacts on offspring.
Collapse
Affiliation(s)
- Rossana Sussarellu
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Marc Suquet
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Yoann Thomas
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Christophe Lambert
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Caroline Fabioux
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Marie Eve Julie Pernet
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Nelly Le Goïc
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Virgile Quillien
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Christian Mingant
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Yanouk Epelboin
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Charlotte Corporeau
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Julien Guyomarch
- Centre de Documentation de Recherche d'Expérimentations, 29218 Brest, France
| | - Johan Robbens
- Instituut poor Landbouw en Visserijonderzoek, 8400 Ostend, Belgium
| | - Ika Paul-Pont
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Philippe Soudant
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France
| | - Arnaud Huvet
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 UBO-CNRS-Institute Français de Recherche pour l'Exploitation de la Mer-Institute de Recherche pour le Développement, 29280 Plouzané, France;
| |
Collapse
|
31
|
Abstract
Germ granules are the hallmark of all germ cells. These membrane-less, electron-dense structures were first observed over 100 years ago. Today, their role in regulating and processing transcripts critical for the establishment, maintenance, and protection of germ cells is well established, and pathways outlining the biochemical mechanisms and physical properties associated with their biogenesis are emerging.
Collapse
Affiliation(s)
- Ruth Lehmann
- Howard Hughes Medical Institute (HHMI), Department of Cell Biology, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, USA.
| |
Collapse
|
32
|
Abstract
Germ cells are the special cells in the body that undergo meiosis to generate gametes and subsequently entire new organisms after fertilization, a process that continues generation after generation. Recent studies have expanded our understanding of the factors and mechanisms that specify germ cell fate, including the partitioning of maternally supplied 'germ plasm', inheritance of epigenetic memory and expression of transcription factors crucial for primordial germ cell (PGC) development. Even after PGCs are specified, germline fate is labile and thus requires protective mechanisms, such as global transcriptional repression, chromatin state alteration and translation of only germline-appropriate transcripts. Findings from diverse species continue to provide insights into the shared and divergent needs of these special reproductive cells.
Collapse
Affiliation(s)
- Susan Strome
- Molecular, Cell &Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Dustin Updike
- Kathryn W. Davis Center for Regenerative Biology &Medicine, Mount Desert Island Biological Laboratory, Bar Harbor, Maine 04672, USA
| |
Collapse
|
33
|
Abstract
mRNA localisation coupled to translational regulation provides an important means of dictating when and where proteins function in a variety of model systems. This mechanism is particularly relevant in polarised or migrating cells. Although many of the models for how this is achieved were first proposed over 20 years ago, some of the molecular details are still poorly understood. Nevertheless, advanced imaging, biochemical and computational approaches have started to shed light on the cis-acting localisation signals and trans-acting factors that dictate the final destination of localised transcripts. In this Cell Science at a Glance article and accompanying poster, we provide an overview of mRNA localisation, from transcription to degradation, focusing on the microtubule-dependent active transport and anchoring mechanism, which we will use to explain the general paradigm. However, it is clear that there are diverse ways in which mRNAs become localised and target protein expression, and we highlight some of the similarities and differences between these mechanisms.
Collapse
Affiliation(s)
- Richard M Parton
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Alexander Davidson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Timothy T Weil
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
34
|
Little SC, Sinsimer KS, Lee JJ, Wieschaus EF, Gavis ER. Independent and coordinate trafficking of single Drosophila germ plasm mRNAs. Nat Cell Biol 2015; 17:558-68. [PMID: 25848747 PMCID: PMC4417036 DOI: 10.1038/ncb3143] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/20/2015] [Indexed: 11/24/2022]
Abstract
mRNA localization is a conserved mechanism for spatial control of protein synthesis, with key roles in generating cellular and developmental asymmetry. While different transcripts may be targeted to the same subcellular domain, the extent to which their localization is coordinated is unclear. Using quantitative single molecule imaging, we analyzed the assembly of Drosophila germ plasm mRNA granules inherited by nascent germ cells. We find that the germ cell-destined transcripts nanos, cyclin B, and polar granule component travel within the oocyte as ribonucleoprotein particles containing single mRNA molecules but co-assemble into multi-copy heterogeneous granules selectively at the posterior of the oocyte. The stoichiometry and dynamics of assembly indicate a defined stepwise sequence. Our data suggest that co-packaging of these transcripts ensures their effective segregation to germ cells. In contrast, compartmentalization of the germline determinant oskar mRNA into different granules limits its entry into germ cells. This exclusion is required for proper germline development.
Collapse
Affiliation(s)
- Shawn C Little
- 1] Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA [2] Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Kristina S Sinsimer
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jack J Lee
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Eric F Wieschaus
- 1] Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA [2] Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
35
|
Burn KM, Shimada Y, Ayers K, Vemuganti S, Lu F, Hudson AM, Cooley L. Somatic insulin signaling regulates a germline starvation response in Drosophila egg chambers. Dev Biol 2015; 398:206-17. [PMID: 25481758 PMCID: PMC4340711 DOI: 10.1016/j.ydbio.2014.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/17/2014] [Accepted: 11/22/2014] [Indexed: 12/31/2022]
Abstract
Egg chambers from starved Drosophila females contain large aggregates of processing (P) bodies and cortically enriched microtubules. As this response to starvation is rapidly reversed upon re-feeding females or culturing egg chambers with exogenous bovine insulin, we examined the role of endogenous insulin signaling in mediating the starvation response. We found that systemic Drosophila insulin-like peptides (dILPs) activate the insulin pathway in follicle cells, which then regulate both microtubule and P body organization in the underlying germline cells. This organization is modulated by the motor proteins Dynein and Kinesin. Dynein activity is required for microtubule and P body organization during starvation, while Kinesin activity is required during nutrient-rich conditions. Blocking the ability of egg chambers to form P body aggregates in response to starvation correlated with reduced progeny survival. These data suggest a potential mechanism to maximize fecundity even during periods of poor nutrient availability, by mounting a protective response in immature egg chambers.
Collapse
Affiliation(s)
- K Mahala Burn
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Yuko Shimada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Seinou-tou D301, Tennoudai 1-1-1, Tsukuba,, Ibaraki 305-8572, Japan
| | - Kathleen Ayers
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Soumya Vemuganti
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Feiyue Lu
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Andrew M Hudson
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Lynn Cooley
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States; Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Prospect Street, New Haven, CT 06510, United States.
| |
Collapse
|
36
|
Amen T, Kaganovich D. Dynamic droplets: the role of cytoplasmic inclusions in stress, function, and disease. Cell Mol Life Sci 2015; 72:401-415. [PMID: 25283146 PMCID: PMC11113435 DOI: 10.1007/s00018-014-1740-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/16/2014] [Accepted: 09/22/2014] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases and other proteinopathies constitute a class of several dozen illnesses etiologically linked to pathological protein misfolding and aggregation. Because of this strong association with disease pathology, cell death, and aging, accumulation of proteins in aggregates or aggregation-associated structures (inclusions) has come to be regarded by many as a deleterious process, to be avoided if possible. Recent work has led us to see inclusion structures and disordered aggregate-like protein mixtures (which we call dynamic droplets) in a new light: not necessarily as a result of a pathological breakdown of cellular order, but as an elaborate cellular architecture regulating function and stress response. In this review, we discuss what is currently known about the role of inclusion structures in cellular homeostasis, stress response, toxicity, and disease. We will focus on possible mechanisms of aggregate toxicity, in contrast to the homeostatic function of several inclusion structures.
Collapse
Affiliation(s)
- Triana Amen
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Alexander Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Kaganovich
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
37
|
Abstract
The Drosophila melanogaster ovary has served as a popular and successful model for understanding a wide range of biological processes: stem cell function, germ cell development, meiosis, cell migration, morphogenesis, cell death, intercellular signaling, mRNA localization, and translational control. This review provides a brief introduction to Drosophila oogenesis, along with a survey of its diverse biological topics and the advanced genetic tools that continue to make this a popular developmental model system.
Collapse
|
38
|
Abstract
Localization and the associated translational control of mRNA is a well established mechanism for segregating cellular protein expression. Drosophila has been instrumental in deciphering the prevailing mechanisms of mRNA localization and regulation. This review will discuss the diverse roles of mRNA localization in the Drosophila germline, the cis-elements and cellular components regulating localization and the superimposition of translational regulatory mechanisms. Despite a history of discovery, there are still many fundamental questions regarding mRNA localization that remain unanswered. Take home messages, outstanding questions and future approaches that will likely lead to resolving these unknowns in the future are summarized at the end.
Collapse
Affiliation(s)
- Timothy T Weil
- a Department of Zoology ; University of Cambridge ; Cambridge , UK
| |
Collapse
|