1
|
Yagoubat A, Conduit PT. Asymmetric microtubule nucleation from Golgi stacks promotes opposite microtubule polarity in axons and dendrites. Curr Biol 2025; 35:1311-1325.e4. [PMID: 40037351 DOI: 10.1016/j.cub.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/02/2025] [Accepted: 02/06/2025] [Indexed: 03/06/2025]
Abstract
The neuronal microtubule cytoskeleton is highly polarized, with most microtubules growing away from the soma in axons (plus-end-out), but many microtubules growing toward the soma in dendrites (minus-end-out). This differential microtubule polarity allows directional trafficking of specific organelles, vesicles, and molecules into either axons or dendrites, but how it is established and maintained remains unclear. We showed previously that microtubules are nucleated asymmetrically from Golgi stacks within the soma of Drosophila neurons, with their plus ends growing preferentially toward and into axons and away from dendrites. Here, we show that this microtubule nucleation asymmetry correlates with a cis-to-trans orientation of specific Golgi stacks toward the axon and depends on microtubule-nucleating γ-tubulin ring complexes (γ-TuRCs) at the cis-Golgi and the plus-end-stabilizing protein CLASP at the trans-Golgi. Depleting CLASP or reducing γ-TuRC localization to the Golgi by depleting the Golgin protein GMAP (Golgi microtubule-associated protein) perturbs asymmetric microtubule nucleation and growth within the soma and results in polarity changes in proximal axons and dendrites. We propose that the plus ends of microtubules nucleated by γ-TuRCs at the cis-Golgi are stabilized by CLASP at the trans-Golgi to promote the growth of microtubules along the cis-to-trans Golgi axis. This, coupled with oriented Golgi stacks, promotes microtubule growth toward and into axons and away from dendrites, helping promote plus-end-out microtubule polarity in axons and maintain minus-end-out microtubule polarity in dendrites.
Collapse
Affiliation(s)
- Akila Yagoubat
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Paul T Conduit
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France.
| |
Collapse
|
2
|
Prange SE, Bhakta IN, Sysoeva D, Jean GE, Madisetti A, Le HHN, Duong LU, Hwu PT, Melton JG, Thompson-Peer KL. Dendrite injury triggers neuroprotection in Drosophila models of neurodegenerative disease. Sci Rep 2024; 14:24766. [PMID: 39433621 PMCID: PMC11494097 DOI: 10.1038/s41598-024-74670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Dendrite defects and loss are early cellular alterations observed across neurodegenerative diseases that play a role in early disease pathogenesis. Dendrite degeneration can be modeled by expressing pathogenic polyglutamine disease transgenes in Drosophila neurons in vivo. Here, we show that we can protect against dendrite loss in neurons modeling neurodegenerative polyglutamine diseases through injury to a single primary dendrite branch. We find that this neuroprotection is specific to injury-induced activation of dendrite regeneration: neither injury to the axon nor injury just to surrounding tissues induces this response. We show that the mechanism of this regenerative response is stabilization of the actin (but not microtubule) cytoskeleton. We also demonstrate that this regenerative response may extend to other neurodegenerative diseases. Together, we provide evidence that activating dendrite regeneration pathways has the potential to slow-or even reverse-dendrite loss in neurodegenerative disease.
Collapse
Affiliation(s)
- Sydney E Prange
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, Irvine, CA, USA
| | - Isha N Bhakta
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Daria Sysoeva
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Grace E Jean
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Anjali Madisetti
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Hieu H N Le
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Ly U Duong
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Patrick T Hwu
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Jaela G Melton
- Center for the Neurobiology of Learning and Memory, Irvine, CA, USA
| | - Katherine L Thompson-Peer
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
- Center for the Neurobiology of Learning and Memory, Irvine, CA, USA.
- Sue and Bill Gross Stem Cell Research Center, Irvine, CA, USA.
- Reeve-Irvine Research Center, Irvine, CA, USA.
| |
Collapse
|
3
|
El Hajji S, Shiga Y, Belforte N, Solorio YC, Tastet O, D’Onofrio P, Dotigny F, Prat A, Arbour N, Fortune B, Di Polo A. Insulin restores retinal ganglion cell functional connectivity and promotes visual recovery in glaucoma. SCIENCE ADVANCES 2024; 10:eadl5722. [PMID: 39110798 PMCID: PMC11305393 DOI: 10.1126/sciadv.adl5722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Dendrite pathology and synaptic loss result in neural circuit dysfunction, a common feature of neurodegenerative diseases. There is a lack of strategies that target dendritic and synaptic regeneration to promote neurorecovery. We show that daily human recombinant insulin eye drops stimulate retinal ganglion cell (RGC) dendrite and synapse regeneration during ocular hypertension, a risk factor to develop glaucoma. We demonstrate that the ribosomal protein p70S6 kinase (S6K) is essential for insulin-dependent dendritic regrowth. Furthermore, S6K phosphorylation of the stress-activated protein kinase-interacting protein 1 (SIN1), a link between the mammalian target of rapamycin complexes 1 and 2 (mTORC1/2), is required for insulin-induced dendritic regeneration. Using two-photon microscopy live retinal imaging, we show that insulin rescues single-RGC light-evoked calcium (Ca2+) dynamics. We further demonstrate that insulin enhances neuronal survival and retina-brain connectivity leading to improved optomotor reflex-elicited behaviors. Our data support that insulin is a compelling pro-regenerative strategy with potential clinical implications for the treatment and management of glaucoma.
Collapse
Affiliation(s)
- Sana El Hajji
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Yukihiro Shiga
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Nicolas Belforte
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Yves Carpentier Solorio
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Olivier Tastet
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Philippe D’Onofrio
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Florence Dotigny
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Alexandre Prat
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Nathalie Arbour
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, OR, USA
| | - Adriana Di Polo
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Vaughn LS, Lee J. Neuronal Injury Model Divulges Differences in Dendrite and Axonal Function and Regeneration in Adults. eNeuro 2024; 11:ENEURO.0207-24.2024. [PMID: 39191484 DOI: 10.1523/eneuro.0207-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Affiliation(s)
- Lauren S Vaughn
- University of South Carolina, Columbia, South Carolina 29208
| | - Jinyoung Lee
- University of South Carolina, Columbia, South Carolina 29208
| |
Collapse
|
5
|
Duarte VN, Lam VT, Rimicci DS, Thompson-Peer KL. Calcium plays an essential role in early-stage dendrite injury detection and regeneration. Prog Neurobiol 2024; 239:102635. [PMID: 38825174 PMCID: PMC11305834 DOI: 10.1016/j.pneurobio.2024.102635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Dendrites are injured in a variety of clinical conditions such as traumatic brain and spinal cord injuries and stroke. How neurons detect injury directly to their dendrites to initiate a pro-regenerative response has not yet been thoroughly investigated. Calcium plays a critical role in the early stages of axonal injury detection and is also indispensable for regeneration of the severed axon. Here, we report cell and neurite type-specific differences in laser injury-induced elevations of intracellular calcium levels. Using a human KCNJ2 transgene, we demonstrate that hyperpolarizing neurons only at the time of injury dampens dendrite regeneration, suggesting that inhibition of injury-induced membrane depolarization (and thus early calcium influx) plays a role in detecting and responding to dendrite injury. In exploring potential downstream calcium-regulated effectors, we identify L-type voltage-gated calcium channels, inositol triphosphate signaling, and protein kinase D activity as drivers of dendrite regeneration. In conclusion, we demonstrate that dendrite injury-induced calcium elevations play a key role in the regenerative response of dendrites and begin to delineate the molecular mechanisms governing dendrite repair.
Collapse
Affiliation(s)
- Vinicius N Duarte
- Dept of Developmental and Cell Biology, University of California, Irvine, United States
| | - Vicky T Lam
- Dept of Developmental and Cell Biology, University of California, Irvine, United States
| | - Dario S Rimicci
- Dept of Developmental and Cell Biology, University of California, Irvine, United States
| | - Katherine L Thompson-Peer
- Dept of Developmental and Cell Biology, University of California, Irvine, United States; Center for the Neurobiology of Learning and Memory, Irvine, CA, United States; Sue and Bill Gross Stem Cell Research Center, Irvine, CA, United States; Reeve-Irvine Research Center, Irvine, CA, United States.
| |
Collapse
|
6
|
Hertzler JI, Teng J, Bernard AR, Stone MC, Kline HL, Mahata G, Kumar N, Rolls MM. Voltage-gated calcium channels act upstream of adenylyl cyclase Ac78C to promote timely initiation of dendrite regeneration. PLoS Genet 2024; 20:e1011388. [PMID: 39186815 PMCID: PMC11379402 DOI: 10.1371/journal.pgen.1011388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/06/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
Most neurons are not replaced after injury and thus possess robust intrinsic mechanisms for repair after damage. Axon injury triggers a calcium wave, and calcium and cAMP can augment axon regeneration. In comparison to axon regeneration, dendrite regeneration is poorly understood. To test whether calcium and cAMP might also be involved in dendrite injury signaling, we tracked the responses of Drosophila dendritic arborization neurons to laser severing of axons and dendrites. We found that calcium and subsequently cAMP accumulate in the cell body after both dendrite and axon injury. Two voltage-gated calcium channels (VGCCs), L-Type and T-Type, are required for the calcium influx in response to dendrite injury and play a role in rapid initiation of dendrite regeneration. The AC8 family adenylyl cyclase, Ac78C, is required for cAMP production after dendrite injury and timely initiation of regeneration. Injury-induced cAMP production is sensitive to VGCC reduction, placing calcium upstream of cAMP generation. We propose that two VGCCs initiate global calcium influx in response to dendrite injury followed by production of cAMP by Ac78C. This signaling pathway promotes timely initiation of dendrite regrowth several hours after dendrite damage.
Collapse
Affiliation(s)
- J Ian Hertzler
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jiajing Teng
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Annabelle R Bernard
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michelle C Stone
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hannah L Kline
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Gibarni Mahata
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Nitish Kumar
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
7
|
Brar HK, Dey S, Singh P, Pande D, Ghosh-Roy A. Functional Recovery Associated with Dendrite Regeneration in PVD Neuron of Caenorhabditis elegans. eNeuro 2024; 11:ENEURO.0292-23.2024. [PMID: 38548333 PMCID: PMC7615967 DOI: 10.1523/eneuro.0292-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/18/2024] [Accepted: 03/03/2024] [Indexed: 05/02/2024] Open
Abstract
PVD neuron of Caenorhabditis elegans is a highly polarized cell with well-defined axonal, and dendritic compartments. PVD neuron operates in multiple sensory modalities including the control of both nociceptive touch sensation and body posture. Although both the axon and dendrites of this neuron show a regeneration response following laser-assisted injury, it is rather unclear how the behavior associated with this neuron is affected by the loss of these structures. It is also unclear whether neurite regrowth would lead to functional restoration in these neurons. Upon axotomy, using a femtosecond laser, we saw that harsh touch response was specifically affected leaving the body posture unperturbed. Subsequently, recovery in the touch response is highly correlated to the axon regrowth, which was dependent on DLK-1/MLK-1 MAP Kinase. Dendrotomy of both major and minor primary dendrites affected the wavelength and amplitude of sinusoidal movement without any apparent effect on harsh touch response. We further correlated the recovery in posture behavior to the type of dendrite regeneration events. We found that dendrite regeneration through the fusion and reconnection between the proximal and distal branches of the injured dendrite corresponded to improved recovery in posture. Our data revealed that the axons and dendrites of PVD neurons regulate the nociception and proprioception in worms, respectively. It also revealed that dendrite and axon regeneration lead to the restoration of these differential sensory modalities.
Collapse
Affiliation(s)
- Harjot Kaur Brar
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Swagata Dey
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Pallavi Singh
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Devashish Pande
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Anindya Ghosh-Roy
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| |
Collapse
|
8
|
Singh P, Selvarasu K, Ghosh-Roy A. Optimization of RNAi efficiency in PVD neuron of C. elegans. PLoS One 2024; 19:e0298766. [PMID: 38498505 PMCID: PMC10947639 DOI: 10.1371/journal.pone.0298766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
PVD neuron of C. elegans has become an attractive model for the study of dendrite development and regeneration due to its elaborate and stereotype dendrite morphology. RNA interference (RNAi) by feeding E. coli expressing dsRNA has been the basis of several genome wide screens performed using C. elegans. However, the feeding method often fails when it comes to knocking down genes in nervous system. In order to optimize the RNAi conditions for PVD neuron, we fed the worm strains with E. coli HT115 bacteria expressing dsRNA against mec-3, hpo-30, and tiam-1, whose loss of function are known to show dendrite morphology defects in PVD neuron. We found that RNAi of these genes in the available sensitive backgrounds including the one expresses sid-1 under unc-119 promoter, although resulted in reduction of dendrite branching, the phenotypes were significantly modest compared to the respective loss of function mutants. In order to enhance RNAi in PVD neurons, we generated a strain that expressed sid-1 under the promoter mec-3, which exhibits strong expression in PVD. When Pmec-3::sid-1 is expressed in either nre-1(-)lin-15b(-) or lin-15b(-) backgrounds, the higher order branching phenotype after RNAi of mec-3, hpo-30, and tiam-1 was significantly enhanced as compared to the genetic background alone. Moreover, knockdown of genes playing role in dendrite regeneration in the nre-1(-)lin-15b(-), Pmec-3-sid-1[+] background resulted in significant reduction in dendrite regeneration following laser injury. The extent of dendrite regrowth due to the RNAi of aff-1 or ced-10 in our optimized strain was comparable to that of aff-1 and ced-10 mutants. Essentially, our strain expressing sid-1 in PVD neuron, provides an RNAi optimized platform for high throughput screening of genes involved in PVD development, maintenance and regeneration.
Collapse
Affiliation(s)
- Pallavi Singh
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Kavinila Selvarasu
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Anindya Ghosh-Roy
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| |
Collapse
|
9
|
Groden M, Moessinger HM, Schaffran B, DeFelipe J, Benavides-Piccione R, Cuntz H, Jedlicka P. A biologically inspired repair mechanism for neuronal reconstructions with a focus on human dendrites. PLoS Comput Biol 2024; 20:e1011267. [PMID: 38394339 PMCID: PMC10917450 DOI: 10.1371/journal.pcbi.1011267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 03/06/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Investigating and modelling the functionality of human neurons remains challenging due to the technical limitations, resulting in scarce and incomplete 3D anatomical reconstructions. Here we used a morphological modelling approach based on optimal wiring to repair the parts of a dendritic morphology that were lost due to incomplete tissue samples. In Drosophila, where dendritic regrowth has been studied experimentally using laser ablation, we found that modelling the regrowth reproduced a bimodal distribution between regeneration of cut branches and invasion by neighbouring branches. Interestingly, our repair model followed growth rules similar to those for the generation of a new dendritic tree. To generalise the repair algorithm from Drosophila to mammalian neurons, we artificially sectioned reconstructed dendrites from mouse and human hippocampal pyramidal cell morphologies, and showed that the regrown dendrites were morphologically similar to the original ones. Furthermore, we were able to restore their electrophysiological functionality, as evidenced by the recovery of their firing behaviour. Importantly, we show that such repairs also apply to other neuron types including hippocampal granule cells and cerebellar Purkinje cells. We then extrapolated the repair to incomplete human CA1 pyramidal neurons, where the anatomical boundaries of the particular brain areas innervated by the neurons in question were known. Interestingly, the repair of incomplete human dendrites helped to simulate the recently observed increased synaptic thresholds for dendritic NMDA spikes in human versus mouse dendrites. To make the repair tool available to the neuroscience community, we have developed an intuitive and simple graphical user interface (GUI), which is available in the TREES toolbox (www.treestoolbox.org).
Collapse
Affiliation(s)
- Moritz Groden
- 3R Computer-Based Modelling, Faculty of Medicine, ICAR3R, Justus Liebig University Giessen, Giessen, Germany
| | - Hannah M. Moessinger
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, Frankfurt am Main, Germany
| | - Barbara Schaffran
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, Frankfurt am Main, Germany
- Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Spain
- Instituto Cajal (CSIC), Madrid, Spain
| | - Ruth Benavides-Piccione
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Spain
- Instituto Cajal (CSIC), Madrid, Spain
| | - Hermann Cuntz
- 3R Computer-Based Modelling, Faculty of Medicine, ICAR3R, Justus Liebig University Giessen, Giessen, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Peter Jedlicka
- 3R Computer-Based Modelling, Faculty of Medicine, ICAR3R, Justus Liebig University Giessen, Giessen, Germany
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Li M, Xu J, Zou Y, Lu J, Ou A, Ma X, Zhang J, Xu Y, Fu L, Liu J, Wang X, Zhou L, Guo J. Motor neuron-specific RhoA knockout delays degeneration and promotes regeneration of dendrites in spinal ventral horn after brachial plexus injury. Neural Regen Res 2023; 18:2757-2761. [PMID: 37449641 DOI: 10.4103/1673-5374.373657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults. Peripheral axotomy of motor neurons results in the retraction of dendritic arbors, and the dendritic arbor can be re-expanded when reinnervation is allowed. RhoA is a target that regulates the cytoskeleton and promotes neuronal survival and axon regeneration. However, the role of RhoA in dendrite degeneration and regeneration is unknown. In this study, we explored the potential role of RhoA in dendrites. A line of motor neuronal RhoA conditional knockout mice was developed by crossbreeding HB9Cre+ mice with RhoAflox/flox mice. We established two models for assaying dendrite degeneration and regeneration, in which the brachial plexus was transection or crush injured, respectively. We found that at 28 days after brachial plexus transection, the density, complexity, and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice were slightly decreased compared with that in Cre mice. Dendrites underwent degeneration at 7 and 14 days after brachial plexus transection and recovered at 28-56 days. The density, complexity, and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice recovered compared with results in Cre mice. These findings suggest that RhoA knockout in motor neurons attenuates dendrite degeneration and promotes dendrite regeneration after peripheral nerve injury.
Collapse
Affiliation(s)
- Mi Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiawei Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ying Zou
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jialing Lu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Aiyue Ou
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xinrui Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yizhou Xu
- Department of Histology and Embryology, School of Basic Medical Sciences; Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lanya Fu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jingmin Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xianghai Wang
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, Guangdong Province, China
| | - Libing Zhou
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Jiasong Guo
- Department of Histology and Embryology, School of Basic Medical Sciences; Department of Spine Orthopedics, Zhujiang Hospital; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, Guangdong Province, China
| |
Collapse
|
11
|
Trombley S, Powell J, Guttipatti P, Matamoros A, Lin X, O'Harrow T, Steinschaden T, Miles L, Wang Q, Wang S, Qiu J, Li Q, Li F, Song Y. Glia instruct axon regeneration via a ternary modulation of neuronal calcium channels in Drosophila. Nat Commun 2023; 14:6490. [PMID: 37838791 PMCID: PMC10576831 DOI: 10.1038/s41467-023-42306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
A neuron's regenerative capacity is governed by its intrinsic and extrinsic environment. Both peripheral and central neurons exhibit cell-type-dependent axon regeneration, but the underlying mechanism is unclear. Glia provide a milieu essential for regeneration. However, the routes of glia-neuron signaling remain underexplored. Here, we show that regeneration specificity is determined by the axotomy-induced Ca2+ transients only in the fly regenerative neurons, which is mediated by L-type calcium channels, constituting the core intrinsic machinery. Peripheral glia regulate axon regeneration via a three-layered and balanced modulation. Glia-derived tumor necrosis factor acts through its neuronal receptor to maintain calcium channel expression after injury. Glia sustain calcium channel opening by enhancing membrane hyperpolarization via the inwardly-rectifying potassium channel (Irk1). Glia also release adenosine which signals through neuronal adenosine receptor (AdoR) to activate HCN channels (Ih) and dampen Ca2+ transients. Together, we identify a multifaceted glia-neuron coupling which can be hijacked to promote neural repair.
Collapse
Affiliation(s)
- Shannon Trombley
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jackson Powell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Pavithran Guttipatti
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Andrew Matamoros
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaohui Lin
- Department of Neurosurgery, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Fudan University, 200032, Shanghai, China
| | - Tristan O'Harrow
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Tobias Steinschaden
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Leann Miles
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Qin Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuchao Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jingyun Qiu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Qingyang Li
- Department of Neurosurgery, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Fudan University, 200032, Shanghai, China
| | - Feng Li
- Department of Neurosurgery, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Fudan University, 200032, Shanghai, China.
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Stone MC, Mauger AS, Rolls MM. Ciliated sensory neurons can regenerate axons after complete axon removal. J Exp Biol 2023; 226:jeb245717. [PMID: 37212026 PMCID: PMC10323231 DOI: 10.1242/jeb.245717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
Axon regeneration helps maintain lifelong function of neurons in many animals. Depending on the site of injury, new axons can grow either from the axon stump (after distal injury) or from the tip of a dendrite (after proximal injury). However, some neuron types do not have dendrites to be converted to a regenerating axon after proximal injury. For example, many sensory neurons receive information from a specialized sensory cilium rather than a branched dendrite arbor. We hypothesized that the lack of traditional dendrites would limit the ability of ciliated sensory neurons to respond to proximal axon injury. We tested this hypothesis by performing laser microsurgery on ciliated lch1 neurons in Drosophila larvae and tracking cells over time. These cells survived proximal axon injury as well as distal axon injury, and, like many other neurons, initiated growth from the axon stump after distal injury. After proximal injury, neurites regrew in a surprisingly flexible manner. Most cells initiated outgrowth directly from the cell body, but neurite growth could also emerge from the short axon stump or base of the cilium. New neurites were often branched. Although outgrowth after proximal axotomy was variable, it depended on the core DLK axon injury signaling pathway. Moreover, each cell had at least one new neurite specified as an axon based on microtubule polarity and accumulation of the endoplasmic reticulum. We conclude that ciliated sensory neurons are not intrinsically limited in their ability to grow a new axon after proximal axon removal.
Collapse
Affiliation(s)
- Michelle C. Stone
- Department of Biochemistry and Molecular Biology, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Abigail S. Mauger
- Department of Biochemistry and Molecular Biology, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Melissa M. Rolls
- Department of Biochemistry and Molecular Biology, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
13
|
Hertzler JI, Bernard AR, Rolls MM. Dendrite regeneration mediates functional recovery after complete dendrite removal. Dev Biol 2023; 497:18-25. [PMID: 36870669 PMCID: PMC10073339 DOI: 10.1016/j.ydbio.2023.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Unlike many cell types, neurons are not typically replaced if damaged. Therefore, regeneration of damaged cellular domains is critical for maintenance of neuronal function. While axon regeneration has been documented for several hundred years, it has only recently become possible to determine whether neurons respond to dendrite removal with regeneration. Regrowth of dendrite arbors has been documented in invertebrate and vertebrate model systems, but whether it leads to functional restoration of a circuit remains unknown. To test whether dendrite regeneration restores function, we used larval Drosophila nociceptive neurons. Their dendrites detect noxious stimuli to initiate escape behavior. Previous studies of Drosophila sensory neurons have shown that dendrites of single neurons regrow after laser severing. We removed dendrites from 16 neurons per animal to clear most of the dorsal surface of nociceptive innervation. As expected, this reduced aversive responses to noxious touch. Surprisingly, behavior was completely restored 24 h after injury, at the stage when dendrite regeneration has begun, but the new arbor has only covered a small portion of its former territory. This behavioral recovery required regenerative outgrowth as it was eliminated in a genetic background in which new growth is blocked. We conclude that dendrite regeneration can restore behavior.
Collapse
Affiliation(s)
- J Ian Hertzler
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - Annabelle R Bernard
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.
| |
Collapse
|
14
|
Liu X, Zhao Y, Zou W. Molecular mechanisms of neurite regeneration and repair: insights from C. elegans and Drosophila. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:12. [PMID: 37005942 PMCID: PMC10067779 DOI: 10.1186/s13619-022-00155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/01/2022] [Indexed: 04/04/2023]
Abstract
The difficulties of injured and degenerated neurons to regenerate neurites and regain functions are more significant than in other body tissues, making neurodegenerative and related diseases hard to cure. Uncovering the secrets of neural regeneration and how this process may be inhibited after injury will provide insights into novel management and potential treatments for these diseases. Caenorhabditis elegans and Drosophila melanogaster are two of the most widely used and well-established model organisms endowed with advantages in genetic manipulation and live imaging to explore this fundamental question about neural regeneration. Here, we review the classical models and techniques, and the involvement and cooperation of subcellular structures during neurite regeneration using these two organisms. Finally, we list several important open questions that we look forward to inspiring future research.
Collapse
Affiliation(s)
- Xiaofan Liu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Yuqing Zhao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
- Institute of Zhejiang University and University of Edinburgh, Jiaxing, China
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Krzystek TJ, White JA, Rathnayake R, Thurston L, Hoffmar-Glennon H, Li Y, Gunawardena S. HTT (huntingtin) and RAB7 co-migrate retrogradely on a signaling LAMP1-containing late endosome during axonal injury. Autophagy 2023; 19:1199-1220. [PMID: 36048753 PMCID: PMC10012955 DOI: 10.1080/15548627.2022.2119351] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/09/2022] Open
Abstract
ABBREVIATIONS Atg5: Autophagy-related 5; Atg8a: Autophagy-related 8a; AL: autolysosome; AP: autophagosome; BAF1: bafilomycin A1; BDNF: brain derived neurotrophic factor; BMP: bone morphogenetic protein; Cyt-c-p: Cytochrome c proximal; CQ: chloroquine; DCTN1: dynactin 1; Dhc: dynein heavy chain; EE: early endosome; DYNC1I1: dynein cytoplasmic 1 intermediate chain 1; HD: Huntington disease; HIP1/Hip1: huntingtin interacting protein 1; HTT/htt: huntingtin; iNeuron: iPSC-derived human neurons; IP: immunoprecipitation; Khc: kinesin heavy chain; KIF5C: kinesin family member 5C; LAMP1/Lamp1: lysosomal associated membrane protein 1; LE: late endosome; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K12/DLK: mitogen-activated protein kinase kinase kinase 12; MAPK8/JNK/bsk: mitogen-activated protein kinase 8/basket; MAPK8IP3/JIP3: mitogen-activated protein kinase 8 interacting protein 3; NGF: nerve growth factor; NMJ: neuromuscular junction; NTRK1/TRKA: neurotrophic receptor tyrosine kinase 1; NRTK2/TRKB: neurotrophic receptor tyrosine kinase 2; nuf: nuclear fallout; PG: phagophore; PtdIns3P: phosphatidylinositol-3-phosphate; puc: puckered; ref(2)P: refractory to sigma P; Rilpl: Rab interacting lysosomal protein like; Rip11: Rab11 interacting protein; RTN1: reticulon 1; syd: sunday driver; SYP: synaptophysin; SYT1/Syt1: synaptotagmin 1; STX17/Syx17: syntaxin 17; tkv: thickveins; VF: vesicle fraction; wit: wishful thinking; wnd: wallenda.
Collapse
Affiliation(s)
- Thomas J. Krzystek
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Joseph A. White
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Rasika Rathnayake
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Layne Thurston
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Hayley Hoffmar-Glennon
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Yichen Li
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
16
|
Adula KP, Sagasti A. Live Imaging of Axonal Dynamics After Laser Axotomy of Peripheral Neurons in Zebrafish. Methods Mol Biol 2023; 2636:247-261. [PMID: 36881305 DOI: 10.1007/978-1-0716-3012-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Axon severing results in diverse outcomes, including successful regeneration and reestablishment of function, failure to regenerate, or neuronal cell death. Experimentally injuring an axon makes it possible to study degeneration of the distal stump that was detached from the cell body and document the successive steps of regeneration. Precise injury reduces damage to the environment surrounding an axon, and thereby the involvement of extrinsic processes, such as scarring or inflammation, enabling researchers to isolate the role that intrinsic factors play in regeneration. Several methods have been used to sever axons, each with advantages and disadvantages. This chapter describes using a laser on a two-photon microscope to cut individual axons of touch-sensing neurons in zebrafish larvae, and live confocal imaging to monitor its regeneration, a method that provides exceptional resolution.
Collapse
Affiliation(s)
- Kadidia P Adula
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Alvaro Sagasti
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Swope RD, Hertzler JI, Stone MC, Kothe GO, Rolls MM. The exocyst complex is required for developmental and regenerative neurite growth in vivo. Dev Biol 2022; 492:1-13. [PMID: 36162553 PMCID: PMC10228574 DOI: 10.1016/j.ydbio.2022.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022]
Abstract
The exocyst complex is an important regulator of intracellular trafficking and tethers secretory vesicles to the plasma membrane. Understanding of its role in neuron outgrowth remains incomplete, and previous studies have come to different conclusions about its importance for axon and dendrite growth, particularly in vivo. To investigate exocyst function in vivo we used Drosophila sensory neurons as a model system. To bypass early developmental requirements in other cell types, we used neuron-specific RNAi to target seven exocyst subunits. Initial neuronal development proceeded normally in these backgrounds, however, we considered this could be due to residual exocyst function. To probe neuronal growth capacity at later times after RNAi initiation, we used laser microsurgery to remove axons or dendrites and prompt regrowth. Exocyst subunit RNAi reduced axon regeneration, although new axons could be specified. In control neurons, a vesicle trafficking marker often concentrated in the new axon, but this pattern was disrupted in Sec6 RNAi neurons. Dendrite regeneration was also severely reduced by exocyst RNAi, even though the trafficking marker did not accumulate in a strongly polarized manner during normal dendrite regeneration. The requirement for the exocyst was not limited to injury contexts as exocyst subunit RNAi eliminated dendrite regrowth after developmental pruning. We conclude that the exocyst is required for injury-induced and developmental neurite outgrowth, but that residual protein function can easily mask this requirement.
Collapse
Affiliation(s)
- Rachel D Swope
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - J Ian Hertzler
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - Michelle C Stone
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - Gregory O Kothe
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.
| |
Collapse
|
18
|
A photo-switchable assay system for dendrite degeneration and repair in Drosophila melanogaster. Proc Natl Acad Sci U S A 2022; 119:e2204577119. [PMID: 35969739 PMCID: PMC9407391 DOI: 10.1073/pnas.2204577119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurodegeneration arising from aging, injury, or diseases has devastating health consequences. Whereas neuronal survival and axon degeneration have been studied extensively, much less is known about how neurodegeneration affects dendrites, in part due to the limited assay systems available. To develop an assay for dendrite degeneration and repair, we used photo-switchable caspase-3 (caspase-Light-Oxygen-Voltage-sensing [caspase-LOV]) in peripheral class 4 dendrite arborization (c4da) neurons to induce graded neurodegeneration by adjusting illumination duration during development and adulthood in Drosophila melanogaster. We found that both developing and mature c4da neurons were able to survive while sustaining mild neurodegeneration induced by moderate caspase-LOV activation. Further, we observed active dendrite addition and dendrite regeneration in developing and mature c4da neurons, respectively. Using this assay, we found that the mouse Wallerian degeneration slow (WldS) protein can protect c4da neurons from caspase-LOV-induced dendrite degeneration and cell death. Furthermore, our data show that WldS can reduce dendrite elimination without affecting dendrite addition. In summary, we successfully established a photo-switchable assay system in both developing and mature neurons and used WldS as a test case to study the mechanisms underlying dendrite regeneration and repair.
Collapse
|
19
|
Adula KP, Shorey M, Chauhan V, Nassman K, Chen SF, Rolls MM, Sagasti A. The MAP3Ks DLK and LZK Direct Diverse Responses to Axon Damage in Zebrafish Peripheral Neurons. J Neurosci 2022; 42:6195-6210. [PMID: 35840323 PMCID: PMC9374156 DOI: 10.1523/jneurosci.1395-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Mitogen-activated protein kinase kinase kinases (MAP3Ks) dual leucine kinase (DLK) and leucine zipper kinase (LZK) are essential mediators of axon damage responses, but their responses are varied, complex, and incompletely understood. To characterize their functions in axon injury, we generated zebrafish mutants of each gene, labeled motor neurons (MNs) and touch-sensing neurons in live zebrafish, precisely cut their axons with a laser, and assessed the ability of mutant axons to regenerate in larvae, before sex is apparent in zebrafish. DLK and LZK were required redundantly and cell autonomously for axon regeneration in MNs but not in larval Rohon-Beard (RB) or adult dorsal root ganglion (DRG) sensory neurons. Surprisingly, in dlk lzk double mutants, the spared branches of wounded RB axons grew excessively, suggesting that these kinases inhibit regenerative sprouting in damaged axons. Uninjured trigeminal sensory axons also grew excessively in mutants when neighboring neurons were ablated, indicating that these MAP3Ks are general inhibitors of sensory axon growth. These results demonstrate that zebrafish DLK and LZK promote diverse injury responses, depending on the neuronal cell identity and type of axonal injury.SIGNIFICANCE STATEMENT The MAP3Ks DLK and LZK are damage sensors that promote diverse outcomes to neuronal injury, including axon regeneration. Understanding their context-specific functions is a prerequisite to considering these kinases as therapeutic targets. To investigate DLK and LZK cell-type-specific functions, we created zebrafish mutants in each gene. Using mosaic cell labeling and precise laser injury we found that both proteins were required for axon regeneration in motor neurons but, unexpectedly, were not required for axon regeneration in Rohon-Beard or DRG sensory neurons and negatively regulated sprouting in the spared axons of touch-sensing neurons. These findings emphasize that animals have evolved distinct mechanisms to regulate injury site regeneration and collateral sprouting, and identify differential roles for DLK and LZK in these processes.
Collapse
Affiliation(s)
- Kadidia Pemba Adula
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Matthew Shorey
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Vasudha Chauhan
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Khaled Nassman
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Shu-Fan Chen
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Melissa M Rolls
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Alvaro Sagasti
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095,
| |
Collapse
|
20
|
Dendrite regeneration in the vertebrate spinal cord. Dev Biol 2022; 488:114-119. [PMID: 35644253 PMCID: PMC10046145 DOI: 10.1016/j.ydbio.2022.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022]
Abstract
Axon regeneration in response to injury has been documented in many animals over several hundred years. In contrast, how neurons respond to dendrite injury has been examined only in the last decade. So far, dendrite regeneration after injury has been documented in invertebrate model systems, but has not been assayed in a vertebrate. In this study, we use zebrafish motor neurons to track neurons after dendrite injury. We address two major gaps in our knowledge of dendrite regeneration: 1) whether post-synaptic dendrites can regenerate and 2) whether vertebrate dendrites can regenerate. We find that motor neurons survive laser microsurgery to remove one or all dendrites. Outgrowth of new dendrites typically initiated one to three days after injury, and a new, stable dendrite arbor was in place by five days after injury. We conclude that zebrafish motor neurons have the capacity to regenerate a new dendrite arbor.
Collapse
|
21
|
Brar HK, Dey S, Bhardwaj S, Pande D, Singh P, Dey S, Ghosh-Roy A. Dendrite regeneration in C. elegans is controlled by the RAC GTPase CED-10 and the RhoGEF TIAM-1. PLoS Genet 2022; 18:e1010127. [PMID: 35344539 PMCID: PMC8989329 DOI: 10.1371/journal.pgen.1010127] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 04/07/2022] [Accepted: 02/28/2022] [Indexed: 01/30/2023] Open
Abstract
Neurons are vulnerable to physical insults, which compromise the integrity of both dendrites and axons. Although several molecular pathways of axon regeneration are identified, our knowledge of dendrite regeneration is limited. To understand the mechanisms of dendrite regeneration, we used the PVD neurons in C. elegans with stereotyped branched dendrites. Using femtosecond laser, we severed the primary dendrites and axon of this neuron. After severing the primary dendrites near the cell body, we observed sprouting of new branches from the proximal site within 6 hours, which regrew further with time in an unstereotyped manner. This was accompanied by reconnection between the proximal and distal dendrites, and fusion among the higher-order branches as reported before. We quantified the regeneration pattern into three aspects–territory length, number of branches, and fusion phenomena. Axonal injury causes a retraction of the severed end followed by a Dual leucine zipper kinase-1 (DLK-1) dependent regrowth from the severed end. We tested the roles of the major axon regeneration signalling hubs such as DLK-1-RPM-1, cAMP elevation, let-7 miRNA, AKT-1, Phosphatidylserine (PS) exposure/PS in dendrite regeneration. We found that neither dendrite regrowth nor fusion was affected by the axon injury pathway molecules. Surprisingly, we found that the RAC GTPase, CED-10 and its upstream GEF, TIAM-1 play a cell-autonomous role in dendrite regeneration. Additionally, the function of CED-10 in epidermal cell is critical for post-dendrotomy fusion phenomena. This work describes a novel regulatory mechanism of dendrite regeneration and provides a framework for understanding the cellular mechanism of dendrite regeneration using PVD neuron as a model system. The knowledge of the repair of injured neural circuits comes from the study of the regeneration of injured axons. The information receiving neurites, namely dendrites, are also vulnerable to physical insult during stroke and trauma. However, little knowledge is available on the mechanism of dendrite regeneration since the study of Cajal. In order to get insight into this process, we severed both axon and dendrites of PVD neuron in C. elegans using laser. By comparing the roles of axon regeneration pathways in both dendrite and axon regeneration in this neuron, we found that dendrite regeneration is independent of molecular mechanisms involving axon regrowth. We discovered that dendrite regeneration is dependent on the RAC GTPase CED-10 and GEF TIAM-1. Moreover, we found that CED-10 plays roles within both neuron and in the surrounding epithelia for mounting regeneration response to dendrite injury. This work provides mechanistic insight into the process of dendrite repair after physical injury.
Collapse
Affiliation(s)
- Harjot Kaur Brar
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Swagata Dey
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Smriti Bhardwaj
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Devashish Pande
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Pallavi Singh
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Shirshendu Dey
- Fluorescence Microscopy Division, Bruker India Scientific Pvt. Ltd., International Trade Tower, Nehru Place, New Delhi, India
| | - Anindya Ghosh-Roy
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
- * E-mail:
| |
Collapse
|
22
|
Buhlman LM, Krishna G, Jones TB, Thomas TC. Drosophila as a model to explore secondary injury cascades after traumatic brain injury. Biomed Pharmacother 2021; 142:112079. [PMID: 34463269 PMCID: PMC8458259 DOI: 10.1016/j.biopha.2021.112079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022] Open
Abstract
Drosophilae are emerging as a valuable model to study traumatic brain injury (TBI)-induced secondary injury cascades that drive persisting neuroinflammation and neurodegenerative pathology that imposes significant risk for long-term neurological deficits. As in mammals, TBI in Drosophila triggers axonal injury, metabolic crisis, oxidative stress, and a robust innate immune response. Subsequent neurodegeneration stresses quality control systems and perpetuates an environment for neuroprotection, regeneration, and delayed cell death via highly conserved cell signaling pathways. Fly injury models continue to be developed and validated for both whole-body and head-specific injury to isolate, evaluate, and modulate these parallel pathways. In conjunction with powerful genetic tools, the ability for longitudinal evaluation, and associated neurological deficits that can be tested with established behavioral tasks, Drosophilae are an attractive model to explore secondary injury cascades and therapeutic intervention after TBI. Here, we review similarities and differences between mammalian and fly pathophysiology and highlight strategies for their use in translational neurotrauma research.
Collapse
Affiliation(s)
- Lori M Buhlman
- Biomedical Sciences Program, Midwestern University, Glendale, AZ, USA.
| | - Gokul Krishna
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - T Bucky Jones
- Department of Anatomy, Midwestern University, Glendale, AZ, USA
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA; Phoenix VA Health Care System, Phoenix, AZ, USA.
| |
Collapse
|
23
|
Comparing Automated Morphology Quantification Software on Dendrites of Uninjured and Injured Drosophila Neurons. Neuroinformatics 2021; 19:703-717. [PMID: 34342808 PMCID: PMC8566419 DOI: 10.1007/s12021-021-09532-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 10/28/2022]
Abstract
Dendrites shape inputs and integration of depolarization that controls neuronal activity in the nervous system. Neuron pathologies can damage dendrite architecture and cause abnormalities in morphologies after injury. Dendrite regeneration can be quantified by various parameters, including total dendrite length and number of dendrite branches using manual or automated image analysis approaches. However, manual quantification is tedious and time consuming and automated approaches are often trained using wildtype neurons, making them poorly suited for analysis of genetically manipulated or injured dendrite arbors. In this study, we tested how well automated image analysis software performed on class IV Drosophila neurons, which have several hundred individual dendrite branches. We applied each software to automatically quantify features of uninjured neurons and neurons that regenerated new dendrites after injury. Regenerated arbors exhibit defects across multiple features of dendrite morphology, which makes them challenging for automated pipelines to analyze. We compared the performances of three automated pipelines against manual quantification using Simple Neurite Tracer in ImageJ: one that is commercially available (Imaris) and two developed by independent research groups (DeTerm and Tireless Tracing Genie). Out of the three software tested, we determined that Imaris is the most efficient at reconstructing dendrite architecture, but does not accurately measure total dendrite length even after intensive manual editing. Imaris outperforms both DeTerm and Tireless Tracing Genie for counting dendrite branches, and is better able to recreate previous conclusions from this same dataset. This thorough comparison of strengths and weaknesses of each software demonstrates their utility for analyzing regenerated neuron phenotypes in future studies.
Collapse
|
24
|
Li F, Lo TY, Miles L, Wang Q, Noristani HN, Li D, Niu J, Trombley S, Goldshteyn JI, Wang C, Wang S, Qiu J, Pogoda K, Mandal K, Brewster M, Rompolas P, He Y, Janmey PA, Thomas GM, Li S, Song Y. The Atr-Chek1 pathway inhibits axon regeneration in response to Piezo-dependent mechanosensation. Nat Commun 2021; 12:3845. [PMID: 34158506 PMCID: PMC8219705 DOI: 10.1038/s41467-021-24131-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Atr is a serine/threonine kinase, known to sense single-stranded DNA breaks and activate the DNA damage checkpoint by phosphorylating Chek1, which inhibits Cdc25, causing cell cycle arrest. This pathway has not been implicated in neuroregeneration. We show that in Drosophila sensory neurons removing Atr or Chek1, or overexpressing Cdc25 promotes regeneration, whereas Atr or Chek1 overexpression, or Cdc25 knockdown impedes regeneration. Inhibiting the Atr-associated checkpoint complex in neurons promotes regeneration and improves synapse/behavioral recovery after CNS injury. Independent of DNA damage, Atr responds to the mechanical stimulus elicited during regeneration, via the mechanosensitive ion channel Piezo and its downstream NO signaling. Sensory neuron-specific knockout of Atr in adult mice, or pharmacological inhibition of Atr-Chek1 in mammalian neurons in vitro and in flies in vivo enhances regeneration. Our findings reveal the Piezo-Atr-Chek1-Cdc25 axis as an evolutionarily conserved inhibitory mechanism for regeneration, and identify potential therapeutic targets for treating nervous system trauma.
Collapse
Affiliation(s)
- Feng Li
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tsz Y Lo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Leann Miles
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Qin Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harun N Noristani
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Temple University School of Medicine, Philadelphia, PA, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Dan Li
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jingwen Niu
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Temple University School of Medicine, Philadelphia, PA, USA
| | - Shannon Trombley
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica I Goldshteyn
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chuxi Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shuchao Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jingyun Qiu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Katarzyna Pogoda
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Kalpana Mandal
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan Brewster
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ye He
- The City University of New York, Graduate Center - Advanced Science Research Center, Neuroscience Initiative, New York, NY, USA
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Gareth M Thomas
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Temple University School of Medicine, Philadelphia, PA, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Temple University School of Medicine, Philadelphia, PA, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Shorey M, Rao K, Stone MC, Mattie FJ, Sagasti A, Rolls MM. Microtubule organization of vertebrate sensory neurons in vivo. Dev Biol 2021; 478:1-12. [PMID: 34147472 DOI: 10.1016/j.ydbio.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/30/2023]
Abstract
Dorsal root ganglion (DRG) neurons are the predominant cell type that innervates the vertebrate skin. They are typically described as pseudounipolar cells that have central and peripheral axons branching from a single root exiting the cell body. The peripheral axon travels within a nerve to the skin, where free sensory endings can emerge and branch into an arbor that receives and integrates information. In some immature vertebrates, DRG neurons are preceded by Rohon-Beard (RB) neurons. While the sensory endings of RB and DRG neurons function like dendrites, we use live imaging in zebrafish to show that they have axonal plus-end-out microtubule polarity at all stages of maturity. Moreover, we show both cell types have central and peripheral axons with plus-end-out polarity. Surprisingly, in DRG neurons these emerge separately from the cell body, and most cells never acquire the signature pseudounipolar morphology. Like another recently characterized cell type that has multiple plus-end-out neurites, ganglion cells in Nematostella, RB and DRG neurons maintain a somatic microtubule organizing center even when mature. In summary, we characterize key cellular and subcellular features of vertebrate sensory neurons as a foundation for understanding their function and maintenance.
Collapse
Affiliation(s)
- Matthew Shorey
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kavitha Rao
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Michelle C Stone
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Floyd J Mattie
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alvaro Sagasti
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Melissa M Rolls
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
26
|
Bush KM, Barber KR, Martinez JA, Tang SJ, Wairkar YP. Drosophila model of anti-retroviral therapy induced peripheral neuropathy and nociceptive hypersensitivity. Biol Open 2021; 10:bio.054635. [PMID: 33504470 PMCID: PMC7860131 DOI: 10.1242/bio.054635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The success of antiretroviral therapy (ART) has improved the survival of HIV-infected patients significantly. However, significant numbers of patients on ART whose HIV disease is well controlled show peripheral sensory neuropathy (PSN), suggesting that ART may cause PSN. Although the nucleoside reverse transcriptase inhibitors (NRTIs), one of the vital components of ART, are thought to contribute to PSN, the mechanisms underlying the PSN induced by NRTIs are unclear. In this study, we developed a Drosophila model of NRTI-induced PSN that recapitulates the salient features observed in patients undergoing ART: PSN and nociceptive hypersensitivity. Furthermore, our data demonstrate that pathways known to suppress PSN induced by chemotherapeutic drugs are ineffective in suppressing the PSN or nociception induced by NRTIs. Instead, we found that increased dynamics of a peripheral sensory neuron may possibly underlie NRTI-induced PSN and nociception. Our model provides a solid platform in which to investigate further mechanisms of ART-induced PSN and nociceptive hypersensitivity. This article has an associated First Person interview with the first author of the paper. Summary: Nucleoside reverse transcriptase inhibitors (NRTIs) that are important components of anti-retroviral therapies also cause peripheral sensory neuropathies (PSN). This article investigates ways in which NRTIs may cause PSN and outlines ways to better understand the mechanisms underlying it.
Collapse
Affiliation(s)
- Keegan M Bush
- Neuroscience Graduate Program, University of. Texas Medical Branch, Galveston, TX 77555, USA.,Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kara R Barber
- Neuroscience Graduate Program, University of. Texas Medical Branch, Galveston, TX 77555, USA.,Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jade A Martinez
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shao-Jun Tang
- Neuroscience Graduate Program, University of. Texas Medical Branch, Galveston, TX 77555, USA .,Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yogesh P Wairkar
- Neuroscience Graduate Program, University of. Texas Medical Branch, Galveston, TX 77555, USA .,Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
27
|
Furusawa K, Emoto K. Scrap and Build for Functional Neural Circuits: Spatiotemporal Regulation of Dendrite Degeneration and Regeneration in Neural Development and Disease. Front Cell Neurosci 2021; 14:613320. [PMID: 33505249 PMCID: PMC7829185 DOI: 10.3389/fncel.2020.613320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/04/2020] [Indexed: 01/01/2023] Open
Abstract
Dendrites are cellular structures essential for the integration of neuronal information. These elegant but complex structures are highly patterned across the nervous system but vary tremendously in their size and fine architecture, each designed to best serve specific computations within their networks. Recent in vivo imaging studies reveal that the development of mature dendrite arbors in many cases involves extensive remodeling achieved through a precisely orchestrated interplay of growth, degeneration, and regeneration of dendritic branches. Both degeneration and regeneration of dendritic branches involve precise spatiotemporal regulation for the proper wiring of functional networks. In particular, dendrite degeneration must be targeted in a compartmentalized manner to avoid neuronal death. Dysregulation of these developmental processes, in particular dendrite degeneration, is associated with certain types of pathology, injury, and aging. In this article, we review recent progress in our understanding of dendrite degeneration and regeneration, focusing on molecular and cellular mechanisms underlying spatiotemporal control of dendrite remodeling in neural development. We further discuss how developmental dendrite degeneration and regeneration are molecularly and functionally related to dendrite remodeling in pathology, disease, and aging.
Collapse
Affiliation(s)
- Kotaro Furusawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Wang Q, Fan H, Li F, Skeeters SS, Krishnamurthy VV, Song Y, Zhang K. Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in Drosophila. eLife 2020; 9:57395. [PMID: 33021199 PMCID: PMC7567606 DOI: 10.7554/elife.57395] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Neuroregeneration is a dynamic process synergizing the functional outcomes of multiple signaling circuits. Channelrhodopsin-based optogenetics shows the feasibility of stimulating neural repair but does not pin down specific signaling cascades. Here, we utilized optogenetic systems, optoRaf and optoAKT, to delineate the contribution of the ERK and AKT signaling pathways to neuroregeneration in live Drosophila larvae. We showed that optoRaf or optoAKT activation not only enhanced axon regeneration in both regeneration-competent and -incompetent sensory neurons in the peripheral nervous system but also allowed temporal tuning and proper guidance of axon regrowth. Furthermore, optoRaf and optoAKT differ in their signaling kinetics during regeneration, showing a gated versus graded response, respectively. Importantly in the central nervous system, their activation promotes axon regrowth and functional recovery of the thermonociceptive behavior. We conclude that non-neuronal optogenetics targets damaged neurons and signaling subcircuits, providing a novel strategy in the intervention of neural damage with improved precision. Most cells have a built-in regeneration signaling program that allows them to divide and repair. But, in the cells of the central nervous system, which are called neurons, this program is ineffective. This is why accidents and illnesses affecting the brain and spinal cord can cause permanent damage. Reactivating regeneration in neurons could help them repair, but it is not easy. Certain small molecules can switch repair signaling programs back on. Unfortunately, these molecules diffuse easily through tissues, spreading around the body and making it hard to target individual damaged cells. This both hampers research into neuronal repair and makes treatments directed at healing damage to the nervous system more likely to have side-effects. It is unclear whether reactivating regeneration signaling in individual neurons is possible. One way to address this question is to use optogenetics. This technique uses genetic engineering to fuse proteins that are light-sensitive to proteins responsible for relaying signals in the cell. When specific wavelengths of light hit the light-sensitive proteins, the fused signaling proteins switch on, leading to the activation of any proteins they control, for example, those involved in regeneration. Wang et al. used optogenetic tools to determine if light can help repair neurons in fruit fly larvae. First, a strong laser light was used to damage an individual neuron in a fruit fly larva that had been genetically modified so that blue light would activate the regeneration program in its neurons. Then, Wang et al. illuminated the cell with dim blue light, switching on the regeneration program. Not only did this allow the neuron to repair itself, it also allowed the light to guide its regeneration. By focusing the blue light on the damaged end of the neuron, it was possible to guide the direction of the cell's growth as it regenerated. Regeneration programs in flies and mammals involve similar signaling proteins, but blue light does not penetrate well into mammalian tissues. This means that further research into LEDs that can be implanted may be necessary before neuronal repair experiments can be performed in mammals. In any case, the ability to focus treatment on individual neurons paves the way for future work into the regeneration of the nervous system, and the combination of light and genetics could reveal more about how repair signals work.
Collapse
Affiliation(s)
- Qin Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, United States.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| | - Huaxun Fan
- Department of Biochemistry, Urbana, United States
| | - Feng Li
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, United States.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| | | | | | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, United States.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| | - Kai Zhang
- Department of Biochemistry, Urbana, United States.,Neuroscience Program, Urbana, United States.,Center for Biophysics and Quantitative Biology, Urbana, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
29
|
Kitatani Y, Tezuka A, Hasegawa E, Yanagi S, Togashi K, Tsuji M, Kondo S, Parrish JZ, Emoto K. Drosophila miR-87 promotes dendrite regeneration by targeting the transcriptional repressor Tramtrack69. PLoS Genet 2020; 16:e1008942. [PMID: 32764744 PMCID: PMC7439810 DOI: 10.1371/journal.pgen.1008942] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/19/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
To remodel functional neuronal connectivity, neurons often alter dendrite arbors through elimination and subsequent regeneration of dendritic branches. However, the intrinsic mechanisms underlying this developmentally programmed dendrite regeneration and whether it shares common machinery with injury-induced regeneration remain largely unknown. Drosophila class IV dendrite arborization (C4da) sensory neurons regenerate adult-specific dendrites after eliminating larval dendrites during metamorphosis. Here we show that the microRNA miR-87 is a critical regulator of dendrite regeneration in Drosophila. miR-87 knockout impairs dendrite regeneration after developmentally-programmed pruning, whereas miR-87 overexpression in C4da neurons leads to precocious initiation of dendrite regeneration. Genetic analyses indicate that the transcriptional repressor Tramtrack69 (Ttk69) is a functional target for miR-87-mediated repression as ttk69 expression is increased in miR-87 knockout neurons and reducing ttk69 expression restores dendrite regeneration to mutants lacking miR-87 function. We further show that miR-87 is required for dendrite regeneration after acute injury in the larval stage, providing a mechanistic link between developmentally programmed and injury-induced dendrite regeneration. These findings thus indicate that miR-87 promotes dendrite regrowth during regeneration at least in part through suppressing Ttk69 in Drosophila sensory neurons and suggest that developmental and injury-induced dendrite regeneration share a common intrinsic mechanism to reactivate dendrite growth. Dendrites are the primary sites for synaptic and sensory inputs. To remodel or repair neuronal connectivity, dendrites often exhibit large-scale structural changes that can be triggered by developmental signals, alterations in sensory inputs, or injury. Despite the importance of dendritic remodeling to nervous system function, the molecular basis for this remodeling is largely unknown. Here we used an unbiased genetic screen and in vivo imaging in Drosophila sensory neurons to demonstrate that the microRNA miR-87 is a critical factor required in neurons to reactivate dendritic growth both in developmental remodeling and following injury. Our work supports the model that miR-87 promotes dendrite regeneration by blocking expression of the transcriptional repressor Tramtrack69 in neurons. This study thus establishes a role for miRNAs in temporal control of dendrite regeneration.
Collapse
Affiliation(s)
- Yasuko Kitatani
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Akane Tezuka
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Eri Hasegawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Satoyoshi Yanagi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kazuya Togashi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Masato Tsuji
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shu Kondo
- Genetic Strains Research Center, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
| | - Jay Z. Parrish
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (JZP); (KE)
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (JZP); (KE)
| |
Collapse
|
30
|
Shorey M, Stone MC, Mandel J, Rolls MM. Neurons survive simultaneous injury to axons and dendrites and regrow both types of processes in vivo. Dev Biol 2020; 465:108-118. [PMID: 32687893 DOI: 10.1016/j.ydbio.2020.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Abstract
Neurons extend dendrites and axons to receive and send signals. If either type of process is removed, the cell cannot function. Rather than undergoing cell death, some neurons can regrow axons and dendrites. Axon and dendrite regeneration have been examined separately and require sensing the injury and reinitiating the correct growth program. Whether neurons in vivo can sense and respond to simultaneous axon and dendrite injury with polarized regeneration has not been explored. To investigate the outcome of simultaneous axon and dendrite damage, we used a Drosophila model system in which neuronal polarity, axon regeneration, and dendrite regeneration have been characterized. After removal of the axon and all but one dendrite, the remaining dendrite was converted to a process that had a long unbranched region that extended over long distances and a region where shorter branched processes were added. These observations suggested axons and dendrites could regrow at the same time. To further test the capacity of neurons to implement polarized regeneration after axon and dendrite damage, we removed all neurites from mature neurons. In this case a long unbranched neurite and short branched neurites were regrown from the stripped cell body. Moreover, the long neurite had axonal plus-end-out microtubule polarity and the shorter neurites had mixed polarity consistent with dendrite identity. The long process also accumulated endoplasmic reticulum at its tip like regenerating axons. We conclude that neurons in vivo can respond to simultaneous axon and dendrite injury by initiating growth of a new axon and new dendrites.
Collapse
Affiliation(s)
- Matthew Shorey
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Michelle C Stone
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Jenna Mandel
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
31
|
Jin Y, Zheng B. Multitasking: Dual Leucine Zipper-Bearing Kinases in Neuronal Development and Stress Management. Annu Rev Cell Dev Biol 2020; 35:501-521. [PMID: 31590586 DOI: 10.1146/annurev-cellbio-100617-062644] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The dual leucine zipper-bearing kinase (DLK) and leucine zipper-bearing kinase (LZK) are evolutionarily conserved MAPKKKs of the mixed-lineage kinase family. Acting upstream of stress-responsive JNK and p38 MAP kinases, DLK and LZK have emerged as central players in neuronal responses to a variety of acute and traumatic injuries. Recent studies also implicate their function in astrocytes, microglia, and other nonneuronal cells, reflecting their expanding roles in the multicellular response to injury and in disease. Of particular note is the potential link of these kinases to neurodegenerative diseases and cancer. It is thus critical to understand the physiological contexts under which these kinases are activated, as well as the signal transduction mechanisms that mediate specific functional outcomes. In this review we first provide a historical overview of the biochemical and functional dissection of these kinases. We then discuss recent findings on regulating their activity to enhance cellular protection following injury and in disease, focusing on but not limited to the nervous system.
Collapse
Affiliation(s)
- Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA; .,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| | - Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA; .,VA San Diego Healthcare System, San Diego, California 92161, USA
| |
Collapse
|
32
|
Hertzler JI, Simonovitch SI, Albertson RM, Weiner AT, Nye DMR, Rolls MM. Kinetochore proteins suppress neuronal microtubule dynamics and promote dendrite regeneration. Mol Biol Cell 2020; 31:2125-2138. [PMID: 32673176 PMCID: PMC7530905 DOI: 10.1091/mbc.e20-04-0237-t] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kinetochores connect centromeric chromatin to spindle microtubules during mitosis. Neurons are postmitotic, so it was surprising to identify transcripts of structural kinetochore (KT) proteins and regulatory chromosome passenger complex (CPC) and spindle assembly checkpoint (SAC) proteins in Drosophila neurons after dendrite injury. To test whether these proteins function during dendrite regeneration, postmitotic RNA interference (RNAi) was performed and dendrites or axons were removed using laser microsurgery. Reduction of KT, CPC, and SAC proteins decreased dendrite regeneration without affecting axon regeneration. To understand whether neuronal functions of these proteins rely on microtubules, we analyzed microtubule behavior in uninjured neurons. The number of growing plus, but not minus, ends increased in dendrites with reduced KT, CPC, and SAC proteins, while axonal microtubules were unaffected. Increased dendritic microtubule dynamics was independent of dual leucine zipper kinase (DLK)-mediated stress but was rescued by concurrent reduction of γ-tubulin, the core microtubule nucleation protein. Reduction of γ-tubulin also rescued dendrite regeneration in backgrounds containing kinetochore RNAi transgenes. We conclude that kinetochore proteins function postmitotically in neurons to suppress dendritic microtubule dynamics by inhibiting nucleation.
Collapse
Affiliation(s)
- James I Hertzler
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Samantha I Simonovitch
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Richard M Albertson
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802.,MSTP Program, Milton S. Hershey College of Medicine, Hershey, PA 17033
| | - Alexis T Weiner
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Derek M R Nye
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802.,MSTP Program, Milton S. Hershey College of Medicine, Hershey, PA 17033
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
33
|
Bolus H, Crocker K, Boekhoff-Falk G, Chtarbanova S. Modeling Neurodegenerative Disorders in Drosophila melanogaster. Int J Mol Sci 2020; 21:E3055. [PMID: 32357532 PMCID: PMC7246467 DOI: 10.3390/ijms21093055] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Drosophila melanogaster provides a powerful genetic model system in which to investigate the molecular mechanisms underlying neurodegenerative diseases. In this review, we discuss recent progress in Drosophila modeling Alzheimer's Disease, Parkinson's Disease, Amyotrophic Lateral Sclerosis (ALS), Huntington's Disease, Ataxia Telangiectasia, and neurodegeneration related to mitochondrial dysfunction or traumatic brain injury. We close by discussing recent progress using Drosophila models of neural regeneration and how these are likely to provide critical insights into future treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Harris Bolus
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Kassi Crocker
- Genetics Graduate Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA;
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Grace Boekhoff-Falk
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705, USA
| | | |
Collapse
|
34
|
Tang Q, Rui M, Bu S, Wang Y, Chew LY, Yu F. A microtubule polymerase is required for microtubule orientation and dendrite pruning in Drosophila. EMBO J 2020; 39:e103549. [PMID: 32267553 DOI: 10.15252/embj.2019103549] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 01/12/2023] Open
Abstract
Drosophila class IV ddaC neurons selectively prune all larval dendrites to refine the nervous system during metamorphosis. During dendrite pruning, severing of proximal dendrites is preceded by local microtubule (MT) disassembly. Here, we identify an unexpected role of Mini spindles (Msps), a conserved MT polymerase, in governing dendrite pruning. Msps associates with another MT-associated protein TACC, and both stabilize each other in ddaC neurons. Moreover, Msps and TACC are required to orient minus-end-out MTs in dendrites. We further show that the functions of msps in dendritic MT orientation and dendrite pruning are antagonized by the kinesin-13 MT depolymerase Klp10A. Excessive MT depolymerization, which is induced by pharmacological treatment and katanin overexpression, also perturbs dendritic MT orientation and dendrite pruning, phenocopying msps mutants. Thus, we demonstrate that the MT polymerase Msps is required to form dendritic minus-end-out MTs and thereby promotes dendrite pruning in Drosophila sensory neurons.
Collapse
Affiliation(s)
- Quan Tang
- Temasek Life Sciences Laboratory, Singapore City, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| | - Menglong Rui
- Temasek Life Sciences Laboratory, Singapore City, Singapore
| | - Shufeng Bu
- Temasek Life Sciences Laboratory, Singapore City, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| | - Yan Wang
- Temasek Life Sciences Laboratory, Singapore City, Singapore
| | - Liang Yuh Chew
- Temasek Life Sciences Laboratory, Singapore City, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| | - Fengwei Yu
- Temasek Life Sciences Laboratory, Singapore City, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore City, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore City, Singapore.,Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School Singapore, Singapore City, Singapore
| |
Collapse
|
35
|
Nye DMR, Albertson RM, Weiner AT, Hertzler JI, Shorey M, Goberdhan DCI, Wilson C, Janes KA, Rolls MM. The receptor tyrosine kinase Ror is required for dendrite regeneration in Drosophila neurons. PLoS Biol 2020; 18:e3000657. [PMID: 32163406 PMCID: PMC7067388 DOI: 10.1371/journal.pbio.3000657] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
While many regulators of axon regeneration have been identified, very little is known about mechanisms that allow dendrites to regenerate after injury. Using a Drosophila model of dendrite regeneration, we performed a candidate screen of receptor tyrosine kinases (RTKs) and found a requirement for RTK-like orphan receptor (Ror). We confirmed that Ror was required for regeneration in two different neuron types using RNA interference (RNAi) and mutants. Ror was not required for axon regeneration or normal dendrite development, suggesting a specific role in dendrite regeneration. Ror can act as a Wnt coreceptor with frizzleds (fzs) in other contexts, so we tested the involvement of Wnt signaling proteins in dendrite regeneration. We found that knockdown of fz, dishevelled (dsh), Axin, and gilgamesh (gish) also reduced dendrite regeneration. Moreover, Ror was required to position dsh and Axin in dendrites. We recently found that Wnt signaling proteins, including dsh and Axin, localize microtubule nucleation machinery in dendrites. We therefore hypothesized that Ror may act by regulating microtubule nucleation at baseline and during dendrite regeneration. Consistent with this hypothesis, localization of the core nucleation protein γTubulin was reduced in Ror RNAi neurons, and this effect was strongest during dendrite regeneration. In addition, dendrite regeneration was sensitive to partial reduction of γTubulin. We conclude that Ror promotes dendrite regeneration as part of a Wnt signaling pathway that regulates dendritic microtubule nucleation.
Collapse
Affiliation(s)
- Derek M. R. Nye
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- MSTP Program, Milton S. Hershey College of Medicine, Hershey, Pennsylvania, United States of America
| | - Richard M. Albertson
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- MSTP Program, Milton S. Hershey College of Medicine, Hershey, Pennsylvania, United States of America
| | - Alexis T. Weiner
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - J. Ian Hertzler
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew Shorey
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | | | - Clive Wilson
- Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Kevin A. Janes
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Melissa M. Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
36
|
Ji H, Han C. LarvaSPA, A Method for Mounting Drosophila Larva for Long-Term Time-Lapse Imaging. J Vis Exp 2020. [PMID: 32176208 DOI: 10.3791/60792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Live imaging is a valuable approach for investigating cell biology questions. The Drosophila larva is particularly suited for in vivo live imaging because the larval body wall and most internal organs are transparent. However, continuous live imaging of intact Drosophila larvae for longer than 30 min has been challenging because it is difficult to noninvasively immobilizeimmobilizing larvae for a long time. Here we present a larval mounting method called LarvaSPA that allows for continuous imaging of live Drosophila larvae with high temporal and spatial resolution for longer than 10 hours. This method involves partially attaching larvae to the coverslip using a UV-reactive glue and additionally restraining larval movement using a polydimethylsiloxane (PDMS) block. This method is compatible with larvae at developmental stages from second instar to wandering third instar. We demonstrate applications of this method in studying dynamic processes of Drosophila somatosensory neurons, including dendrite growth and injury-induced dendrite degeneration. This method can also be applied to study many other cellular processes that happen near the larval body wall.
Collapse
Affiliation(s)
- Hui Ji
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University
| | - Chun Han
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University;
| |
Collapse
|
37
|
Vargas EJM, Matamoros AJ, Qiu J, Jan CH, Wang Q, Gorczyca D, Han TW, Weissman JS, Jan YN, Banerjee S, Song Y. The microtubule regulator ringer functions downstream from the RNA repair/splicing pathway to promote axon regeneration. Genes Dev 2020; 34:194-208. [PMID: 31919191 PMCID: PMC7000917 DOI: 10.1101/gad.331330.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022]
Abstract
In this study, Vargas et al. set out to elucidate the downstream effectors of the Rtca-mediated RNA repair/splicing pathway. Using genome-wide transcriptome analysis, the authors demonstrate that the microtubule-associated protein (MAP) tubulin polymerization-promoting protein (TPPP) ringer functions downstream from and is suppressed by Rtca via Xbp1-dependent transcription. Ringer cell-autonomously promotes axon regeneration in the peripheral and central nervous system. Promoting axon regeneration in the central and peripheral nervous system is of clinical importance in neural injury and neurodegenerative diseases. Both pro- and antiregeneration factors are being identified. We previously reported that the Rtca mediated RNA repair/splicing pathway restricts axon regeneration by inhibiting the nonconventional splicing of Xbp1 mRNA under cellular stress. However, the downstream effectors remain unknown. Here, through transcriptome profiling, we show that the tubulin polymerization-promoting protein (TPPP) ringmaker/ringer is dramatically increased in Rtca-deficient Drosophila sensory neurons, which is dependent on Xbp1. Ringer is expressed in sensory neurons before and after injury, and is cell-autonomously required for axon regeneration. While loss of ringer abolishes the regeneration enhancement in Rtca mutants, its overexpression is sufficient to promote regeneration both in the peripheral and central nervous system. Ringer maintains microtubule stability/dynamics with the microtubule-associated protein futsch/MAP1B, which is also required for axon regeneration. Furthermore, ringer lies downstream from and is negatively regulated by the microtubule-associated deacetylase HDAC6, which functions as a regeneration inhibitor. Taken together, our findings suggest that ringer acts as a hub for microtubule regulators that relays cellular status information, such as cellular stress, to the integrity of microtubules in order to instruct neuroregeneration.
Collapse
Affiliation(s)
- Ernest J Monahan Vargas
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrew J Matamoros
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jingyun Qiu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Calvin H Jan
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California 94158, USA.,Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Qin Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David Gorczyca
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Tina W Han
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California 94158, USA.,Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA.,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Swati Banerjee
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
38
|
Hao Y, Waller TJ, Nye DM, Li J, Zhang Y, Hume RI, Rolls MM, Collins CA. Degeneration of Injured Axons and Dendrites Requires Restraint of a Protective JNK Signaling Pathway by the Transmembrane Protein Raw. J Neurosci 2019; 39:8457-8470. [PMID: 31492772 PMCID: PMC6807270 DOI: 10.1523/jneurosci.0016-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
Abstract
The degeneration of injured axons involves a self-destruction pathway whose components and mechanism are not fully understood. Here, we report a new regulator of axonal resilience. The transmembrane protein Raw is cell autonomously required for the degeneration of injured axons, dendrites, and synapses in Drosophila melanogaster In both male and female raw hypomorphic mutant or knock-down larvae, the degeneration of injured axons, dendrites, and synapses from motoneurons and sensory neurons is strongly inhibited. This protection is insensitive to reduction in the levels of the NAD+ synthesis enzyme Nmnat (nicotinamide mononucleotide adenylyl transferase), but requires the c-Jun N-terminal kinase (JNK) mitogen-activated protein (MAP) kinase and the transcription factors Fos and Jun (AP-1). Although these factors were previously known to function in axonal injury signaling and regeneration, Raw's function can be genetically separated from other axonal injury responses: Raw does not modulate JNK-dependent axonal injury signaling and regenerative responses, but instead restrains a protective pathway that inhibits the degeneration of axons, dendrites, and synapses. Although protection in raw mutants requires JNK, Fos, and Jun, JNK also promotes axonal degeneration. These findings suggest the existence of multiple independent pathways that share modulation by JNK, Fos, and Jun that influence how axons respond to stress and injury.SIGNIFICANCE STATEMENT Axonal degeneration is a major feature of neuropathies and nerve injuries and occurs via a cell autonomous self-destruction pathway whose mechanism is poorly understood. This study reports the identification of a new regulator of axonal degeneration: the transmembrane protein Raw. Raw regulates a cell autonomous nuclear signaling pathway whose yet unknown downstream effectors protect injured axons, dendrites, and synapses from degenerating. These findings imply that the susceptibility of axons to degeneration is strongly regulated in neurons. Future understanding of the cellular pathway regulated by Raw, which engages the c-Jun N-terminal kinase (JNK) mitogen-activated protein (MAP) kinase and Fos and Jun transcription factors, may suggest new strategies to increase the resiliency of axons in debilitating neuropathies.
Collapse
Affiliation(s)
- Yan Hao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085
| | - Thomas J Waller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085
| | - Derek M Nye
- Huck Institutes of the Life Sciences, and Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and
| | - Jiaxing Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085
| | - Yanxiao Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-2218
| | - Richard I Hume
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085
| | - Melissa M Rolls
- Huck Institutes of the Life Sciences, and Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and
| | - Catherine A Collins
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1085,
| |
Collapse
|
39
|
Agostinone J, Alarcon-Martinez L, Gamlin C, Yu WQ, Wong ROL, Di Polo A. Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury. Brain 2019; 141:1963-1980. [PMID: 29931057 PMCID: PMC6022605 DOI: 10.1093/brain/awy142] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/06/2018] [Indexed: 01/07/2023] Open
Abstract
Dendrite pathology and synapse disassembly are critical features of chronic neurodegenerative diseases. In spite of this, the capacity of injured neurons to regenerate dendrites has been largely ignored. Here, we show that, upon axonal injury, retinal ganglion cells undergo rapid dendritic retraction and massive synapse loss that preceded neuronal death. Human recombinant insulin, administered as eye drops or systemically after dendritic arbour shrinkage and prior to cell loss, promoted robust regeneration of dendrites and successful reconnection with presynaptic targets. Insulin-mediated regeneration of excitatory postsynaptic sites on retinal ganglion cell dendritic processes increased neuronal survival and rescued light-triggered retinal responses. Further, we show that axotomy-induced dendrite retraction triggered substantial loss of the mammalian target of rapamycin (mTOR) activity exclusively in retinal ganglion cells, and that insulin fully reversed this response. Targeted loss-of-function experiments revealed that insulin-dependent activation of mTOR complex 1 (mTORC1) is required for new dendritic branching to restore arbour complexity, while complex 2 (mTORC2) drives dendritic process extension thus re-establishing field area. Our findings demonstrate that neurons in the mammalian central nervous system have the intrinsic capacity to regenerate dendrites and synapses after injury, and provide a strong rationale for the use of insulin and/or its analogues as pro-regenerative therapeutics for intractable neurodegenerative diseases including glaucoma.
Collapse
Affiliation(s)
- Jessica Agostinone
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada.,University of Montreal Hospital Research Center (CR-CHUM), University of Montreal, Montreal, Quebec, Canada
| | - Luis Alarcon-Martinez
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada.,University of Montreal Hospital Research Center (CR-CHUM), University of Montreal, Montreal, Quebec, Canada
| | - Clare Gamlin
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, Washington, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, Washington, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, Washington, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada.,University of Montreal Hospital Research Center (CR-CHUM), University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Feng C, Thyagarajan P, Shorey M, Seebold DY, Weiner AT, Albertson RM, Rao KS, Sagasti A, Goetschius DJ, Rolls MM. Patronin-mediated minus end growth is required for dendritic microtubule polarity. J Cell Biol 2019; 218:2309-2328. [PMID: 31076454 PMCID: PMC6605808 DOI: 10.1083/jcb.201810155] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/13/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Feng et al. describe persistent neuronal microtubule minus end growth that depends on the CAMSAP protein Patronin and is needed for dendritic minus-end-out polarity. Microtubule minus ends are thought to be stable in cells. Surprisingly, in Drosophila and zebrafish neurons, we observed persistent minus end growth, with runs lasting over 10 min. In Drosophila, extended minus end growth depended on Patronin, and Patronin reduction disrupted dendritic minus-end-out polarity. In fly dendrites, microtubule nucleation sites localize at dendrite branch points. Therefore, we hypothesized minus end growth might be particularly important beyond branch points. Distal dendrites have mixed polarity, and reduction of Patronin lowered the number of minus-end-out microtubules. More strikingly, extra Patronin made terminal dendrites almost completely minus-end-out, indicating low Patronin normally limits minus-end-out microtubules. To determine whether minus end growth populated new dendrites with microtubules, we analyzed dendrite development and regeneration. Minus ends extended into growing dendrites in the presence of Patronin. In sum, our data suggest that Patronin facilitates sustained microtubule minus end growth, which is critical for populating dendrites with minus-end-out microtubules.
Collapse
Affiliation(s)
- Chengye Feng
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Pankajam Thyagarajan
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Matthew Shorey
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Dylan Y Seebold
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Alexis T Weiner
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Richard M Albertson
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Kavitha S Rao
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Alvaro Sagasti
- Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Daniel J Goetschius
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| |
Collapse
|
41
|
Song Y, Li D, Farrelly O, Miles L, Li F, Kim SE, Lo TY, Wang F, Li T, Thompson-Peer KL, Gong J, Murthy SE, Coste B, Yakubovich N, Patapoutian A, Xiang Y, Rompolas P, Jan LY, Jan YN. The Mechanosensitive Ion Channel Piezo Inhibits Axon Regeneration. Neuron 2019; 102:373-389.e6. [PMID: 30819546 PMCID: PMC6487666 DOI: 10.1016/j.neuron.2019.01.050] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 11/27/2018] [Accepted: 01/23/2019] [Indexed: 01/09/2023]
Abstract
Neurons exhibit a limited ability of repair. Given that mechanical forces affect neuronal outgrowth, it is important to investigate whether mechanosensitive ion channels may regulate axon regeneration. Here, we show that DmPiezo, a Ca2+-permeable non-selective cation channel, functions as an intrinsic inhibitor for axon regeneration in Drosophila. DmPiezo activation during axon regeneration induces local Ca2+ transients at the growth cone, leading to activation of nitric oxide synthase and the downstream cGMP kinase Foraging or PKG to restrict axon regrowth. Loss of DmPiezo enhances axon regeneration of sensory neurons in the peripheral and CNS. Conditional knockout of its mammalian homolog Piezo1 in vivo accelerates regeneration, while its pharmacological activation in vitro modestly reduces regeneration, suggesting the role of Piezo in inhibiting regeneration may be evolutionarily conserved. These findings provide a precedent for the involvement of mechanosensitive channels in axon regeneration and add a potential target for modulating nervous system repair.
Collapse
Affiliation(s)
- Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Dan Li
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Olivia Farrelly
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Leann Miles
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Feng Li
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sung Eun Kim
- Departments of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tsz Y. Lo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Fei Wang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tun Li
- Departments of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Katherine L. Thompson-Peer
- Departments of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiaxin Gong
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Swetha E. Murthy
- Department of Neuroscience, The Scripps Research Institute, Howard Hughes Medical Institute, La Jolla, CA 92037, USA
| | - Bertrand Coste
- Department of Neuroscience, The Scripps Research Institute, Howard Hughes Medical Institute, La Jolla, CA 92037, USA,Present address: Aix Marseille Université, CNRS, LNC-UMR 7291, 13344 Marseille, France
| | - Nikita Yakubovich
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ardem Patapoutian
- Department of Neuroscience, The Scripps Research Institute, Howard Hughes Medical Institute, La Jolla, CA 92037, USA
| | - Yang Xiang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Panteleimon Rompolas
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lily Yeh Jan
- Departments of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuh Nung Jan
- Departments of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
42
|
Farley MM, Watkins TA. Intrinsic Neuronal Stress Response Pathways in Injury and Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 13:93-116. [PMID: 29414247 DOI: 10.1146/annurev-pathol-012414-040354] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
From injury to disease to aging, neurons, like all cells, may face various insults that can impact their function and survival. Although the consequences are substantially dictated by the type, context, and severity of insult, distressed neurons are far from passive. Activation of cellular stress responses aids in the preservation or restoration of nervous system function. However, stress responses themselves can further advance neuropathology and contribute significantly to neuronal dysfunction and neurodegeneration. Here we explore the recent advances in defining the cellular stress responses within neurodegenerative diseases and neuronal injury, and we emphasize axonal injury as a well-characterized model of neuronal insult. We highlight key findings and unanswered questions about neuronal stress response pathways, from the initial detection of cellular insults through the underlying mechanisms of the responses to their ultimate impact on the fates of distressed neurons.
Collapse
Affiliation(s)
- Madeline M Farley
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030;
| | - Trent A Watkins
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030;
| |
Collapse
|
43
|
Wang Y, Rui M, Tang Q, Bu S, Yu F. Patronin governs minus-end-out orientation of dendritic microtubules to promote dendrite pruning in Drosophila. eLife 2019; 8:39964. [PMID: 30920370 PMCID: PMC6438692 DOI: 10.7554/elife.39964] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 03/08/2019] [Indexed: 01/09/2023] Open
Abstract
Class IV ddaC neurons specifically prune larval dendrites without affecting axons during Drosophila metamorphosis. ddaCs distribute the minus ends of microtubules (MTs) to dendrites but the plus ends to axons. However, a requirement of MT minus-end-binding proteins in dendrite-specific pruning remains completely unknown. Here, we identified Patronin, a minus-end-binding protein, for its crucial and dose-sensitive role in ddaC dendrite pruning. The CKK domain is important for Patronin’s function in dendrite pruning. Moreover, we show that both patronin knockdown and overexpression resulted in a drastic decrease of MT minus ends and a concomitant increase of plus-end-out MTs in ddaC dendrites, suggesting that Patronin stabilizes dendritic minus-end-out MTs. Consistently, attenuation of Klp10A MT depolymerase in patronin mutant neurons significantly restored minus-end-out MTs in dendrites and thereby rescued dendrite-pruning defects. Thus, our study demonstrates that Patronin orients minus-end-out MT arrays in dendrites to promote dendrite-specific pruning mainly through antagonizing Klp10A activity. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that minor issues remain unresolved (see decision letter).
Collapse
Affiliation(s)
- Yan Wang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Menglong Rui
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Quan Tang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Shufeng Bu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Fengwei Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, National University of Singapore, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore
| |
Collapse
|
44
|
Abstract
How the nervous system is wired has been a central question of neuroscience since the inception of the field, and many of the foundational discoveries and conceptual advances have been made through the study of invertebrate experimental organisms, including Caenorhabditis elegans and Drosophila melanogaster. Although many guidance molecules and receptors have been identified, recent experiments have shed light on the many modes of action for these pathways. Here, we summarize the recent progress in determining how the physical and temporal constraints of the surrounding environment provide instructive regulations in nervous system wiring. We use Netrin and its receptors as an example to analyze the complexity of how they guide neurite outgrowth. In neurite repair, conserved injury detection and response-signaling pathways regulate gene expression and cytoskeletal dynamics. We also describe recent developments in the research on molecular mechanisms of neurite regeneration in worms and flies.
Collapse
Affiliation(s)
- Claire E Richardson
- Department of Biology, Stanford University, Stanford, California 94305, USA;
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, California 94305, USA; .,Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
45
|
Glial ensheathment of the somatodendritic compartment regulates sensory neuron structure and activity. Proc Natl Acad Sci U S A 2019; 116:5126-5134. [PMID: 30804200 DOI: 10.1073/pnas.1814456116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sensory neurons perceive environmental cues and are important of organismal survival. Peripheral sensory neurons interact intimately with glial cells. While the function of axonal ensheathment by glia is well studied, less is known about the functional significance of glial interaction with the somatodendritic compartment of neurons. Herein, we show that three distinct glia cell types differentially wrap around the axonal and somatodendritic surface of the polymodal dendritic arborization (da) neuron of the Drosophila peripheral nervous system for detection of thermal, mechanical, and light stimuli. We find that glial cell-specific loss of the chromatin modifier gene dATRX in the subperineurial glial layer leads to selective elimination of somatodendritic glial ensheathment, thus allowing us to investigate the function of such ensheathment. We find that somatodendritic glial ensheathment regulates the morphology of the dendritic arbor, as well as the activity of the sensory neuron, in response to sensory stimuli. Additionally, glial ensheathment of the neuronal soma influences dendritic regeneration after injury.
Collapse
|
46
|
Caneo M, Julian V, Byrne AB, Alkema MJ, Calixto A. Diapause induces functional axonal regeneration after necrotic insult in C. elegans. PLoS Genet 2019; 15:e1007863. [PMID: 30640919 PMCID: PMC6347329 DOI: 10.1371/journal.pgen.1007863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 01/25/2019] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Many neurons are unable to regenerate after damage. The ability to regenerate after an insult depends on life stage, neuronal subtype, intrinsic and extrinsic factors. C. elegans is a powerful model to test the genetic and environmental factors that affect axonal regeneration after damage, since its axons can regenerate after neuronal insult. Here we demonstrate that diapause promotes the complete morphological regeneration of truncated touch receptor neuron (TRN) axons expressing a neurotoxic MEC-4(d) DEG/ENaC channel. Truncated axons of different lengths were repaired during diapause and we observed potent axonal regrowth from somas alone. Complete morphological regeneration depends on DLK-1 but neuronal sprouting and outgrowth is DLK-1 independent. We show that TRN regeneration is fully functional since animals regain their ability to respond to mechanical stimulation. Thus, diapause induced regeneration provides a simple model of complete axonal regeneration which will greatly facilitate the study of environmental and genetic factors affecting the rate at which neurons die.
Collapse
Affiliation(s)
- Mauricio Caneo
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago de Chile, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Victoria Julian
- Neurobiology Department, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Alexandra B. Byrne
- Neurobiology Department, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Mark J. Alkema
- Neurobiology Department, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Andrea Calixto
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago de Chile, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
- * E-mail: ,
| |
Collapse
|
47
|
Beckers A, Moons L. Dendritic shrinkage after injury: a cellular killer or a necessity for axonal regeneration? Neural Regen Res 2019; 14:1313-1316. [PMID: 30860164 PMCID: PMC6524513 DOI: 10.4103/1673-5374.253505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dendrites form an essential component of the neuronal circuit have been largely overlooked in regenerative research. Nevertheless, subtle changes in the dendritic arbors of neurons are one of the first stages of various neurodegenerative diseases, leading to dysfunctional neuronal networks and ultimately cellular death. Maintaining dendrites is therefore considered an essential neuroprotective strategy. This mini-review aims to discuss an intriguing hypothesis, which postulates that dendritic shrinkage is an important stimulant to boost axonal regeneration, and thus that preserving dendrites might not be the ideal therapeutic method to regain a full functional network upon central nervous system damage. Indeed, our study in zebrafish, a versatile animal model with robust regenerative capacity recently unraveled that dendritic retraction is evoked prior to axonal regrowth after optic nerve injury. Strikingly, inhibiting dendritic pruning upon damage perturbed axonal regeneration. This constraining effect of dendrites on axonal regrowth has sporadically been proposed in literature, as summarized in this short narrative. In addition, the review discusses a plausible underlying mechanism for the observed antagonistic axon-dendrite interplay, which is based on energy restriction inside neurons. Axonal injury indeed leads to a high local energy demand in which efficient axonal energy supply is fundamental to ensure regrowth. At the same time, axonal lesion is known to induce mitochondrial depolarization, causing energy depletion in the axonal compartment of damaged neurons. Mitochondria, however, become mostly stationary after development, which has been proposed as a potential underlying reason for the low regenerative capacity of adult mammals. Per contra, upon reduced neuronal activity, mitochondrial mobility enhances. In this view, dendritic shrinkage after axonal injury in zebrafish could result in less synaptic input and hence, a release of mitochondria within the soma-dendrite compartment that then translocate to the axonal growth cone to stimulate axonal regeneration. If this hypothesis proofs to be correct, i.e. dendritic remodeling serving as fuel for axonal regeneration, we envision a major shift in the research focus within the neuroregenerative field and in the potential uncovering of various novel therapeutic targets.
Collapse
Affiliation(s)
- An Beckers
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
48
|
Asghari Adib E, Smithson LJ, Collins CA. An axonal stress response pathway: degenerative and regenerative signaling by DLK. Curr Opin Neurobiol 2018; 53:110-119. [PMID: 30053694 DOI: 10.1016/j.conb.2018.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/02/2018] [Indexed: 02/08/2023]
Abstract
Signaling through the dual leucine zipper-bearing kinase (DLK) is required for injured neurons to initiate new axonal growth; however, activation of this kinase also leads to neuronal degeneration and death in multiple models of injury and neurodegenerative diseases. This has spurred current consideration of DLK as a candidate therapeutic target, and raises a vital question: in what context is DLK a friend or foe to neurons? Here, we review our current understanding of DLK's function and mechanisms in regulating both regenerative and degenerative responses to axonal damage and stress in the nervous system.
Collapse
Affiliation(s)
- Elham Asghari Adib
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Laura J Smithson
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Catherine A Collins
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.
| |
Collapse
|
49
|
DeVault L, Li T, Izabel S, Thompson-Peer KL, Jan LY, Jan YN. Dendrite regeneration of adult Drosophila sensory neurons diminishes with aging and is inhibited by epidermal-derived matrix metalloproteinase 2. Genes Dev 2018; 32:402-414. [PMID: 29563183 PMCID: PMC5900713 DOI: 10.1101/gad.308270.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/26/2018] [Indexed: 11/30/2022]
Abstract
DeVault et al. show that the capacity for regeneration was present in adult neurons but diminished as the animal aged. The regenerated dendrites showed preferential alignment with the extracellular matrix, and inhibition of matrix metalloproteinase 2 led to increased dendrite regeneration. Dendrites possess distinct structural and functional properties that enable neurons to receive information from the environment as well as other neurons. Despite their key role in neuronal function, current understanding of the ability of neurons to regenerate dendrites is lacking. This study characterizes the structural and functional capacity for dendrite regeneration in vivo in adult animals and examines the effect of neuronal maturation on dendrite regeneration. We focused on the class IV dendritic arborization (c4da) neuron of the Drosophila sensory system, which has a dendritic arbor that undergoes dramatic remodeling during the first 3 d of adult life and then maintains a relatively stable morphology thereafter. Using a laser severing paradigm, we monitored regeneration after acute and spatially restricted injury. We found that the capacity for regeneration was present in adult neurons but diminished as the animal aged. Regenerated dendrites recovered receptive function. Furthermore, we found that the regenerated dendrites show preferential alignment with the extracellular matrix (ECM). Finally, inhibition of ECM degradation by inhibition of matrix metalloproteinase 2 (Mmp2) to preserve the extracellular environment characteristics of young adults led to increased dendrite regeneration. These results demonstrate that dendrites retain regenerative potential throughout adulthood and that regenerative capacity decreases with aging.
Collapse
Affiliation(s)
- Laura DeVault
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Tun Li
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Sarah Izabel
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Katherine L Thompson-Peer
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Lily Yeh Jan
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
50
|
Alp M, Cucinotta FA. Biophysics Model of Heavy-Ion Degradation of Neuron Morphology in Mouse Hippocampal Granular Cell Layer Neurons. Radiat Res 2018; 189:312-325. [PMID: 29502499 PMCID: PMC5872156 DOI: 10.1667/rr14923.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Exposure to heavy-ion radiation during cancer treatment or space travel may cause cognitive detriments that have been associated with changes in neuron morphology and plasticity. Observations in mice of reduced neuronal dendritic complexity have revealed a dependence on radiation quality and absorbed dose, suggesting that microscopic energy deposition plays an important role. In this work we used morphological data for mouse dentate granular cell layer (GCL) neurons and a stochastic model of particle track structure and microscopic energy deposition (ED) to develop a predictive model of high-charge and energy (HZE) particle-induced morphological changes to the complex structures of dendritic arbors. We represented dendrites as cylindrical segments of varying diameter with unit aspect ratios, and developed a fast sampling method to consider the stochastic distribution of ED by δ rays (secondary electrons) around the path of heavy ions, to reduce computational times. We introduce probabilistic models with a small number of parameters to describe the induction of precursor lesions that precede dendritic snipping, denoted as snip sites. Predictions for oxygen (16O, 600 MeV/n) and titanium (48Ti, 600 MeV/n) particles with LET of 16.3 and 129 keV/μm, respectively, are considered. Morphometric parameters to quantify changes in neuron morphology are described, including reduction in total dendritic length, number of branch points and branch numbers. Sholl analysis is applied for single neurons to elucidate dose-dependent reductions in dendritic complexity. We predict important differences in measurements from imaging of tissues from brain slices with single neuron cell observations due to the role of neuron death through both soma apoptosis and excessive dendritic length reduction. To further elucidate the role of track structure, random segment excision (snips) models are introduced and a sensitivity study of the effects of the modes of neuron death in predictions of morphometric parameters is described. An important conclusion of this study is that δ rays play a major role in neuron morphological changes due to the large spatial distribution of damage sites, which results in a reduced dependence on LET, including modest difference between 16O and 48Ti, compared to damages resulting from ED in localized damage sites.
Collapse
Affiliation(s)
- Murat Alp
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada
| | - Francis A. Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada
| |
Collapse
|