1
|
Liu M, Li Y, Yuan X, Rong S, Du J. Novel insights into RNA polymerase II transcription regulation: transcription factors, phase separation, and their roles in cardiovascular diseases. Biochem Cell Biol 2025; 103:1-21. [PMID: 39540550 DOI: 10.1139/bcb-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Transcription factors (TFs) are specialized proteins that bind DNA in a sequence-specific manner and modulate RNA polymerase II (Pol II) in multiple steps of the transcription process. Phase separation is a spontaneous or driven process that can form membrane-less organelles called condensates. By creating different liquid phases at active transcription sites, the formation of transcription condensates can reduce the water content of the condensate and lower the dielectric constant in biological systems, which in turn alters the structure and function of proteins and nucleic acids in the condensate. In RNA Pol II transcription, phase separation formation shortens the time at which TFs bind to target DNA sites and promotes transcriptional bursting. RNA Pol II transcription is engaged in developing several diseases, such as cardiovascular disease, by regulating different TFs and mediating the occurrence of phase separation. This review aims to summarize the advances in the molecular mechanisms of RNA Pol II transcriptional regulation, in particular the effect of TFs and phase separation. The role of RNA Pol II transcriptional regulation in cardiovascular disease will be elucidated, providing potential therapeutic targets for the management and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 4000l0, China
| | - Shunkang Rong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
2
|
Pan H, Cheng X, Rodríguez PFG, Zhang X, Chung I, Jin VX, Li W, Hu Y, Li R. An essential signaling function of cytoplasmic NELFB is independent of RNA polymerase II pausing. J Biol Chem 2023; 299:105259. [PMID: 37717699 PMCID: PMC10591015 DOI: 10.1016/j.jbc.2023.105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
The four-subunit negative elongation factor (NELF) complex mediates RNA polymerase II (Pol II) pausing at promoter-proximal regions. Ablation of individual NELF subunits destabilizes the NELF complex and causes cell lethality, leading to the prevailing concept that NELF-mediated Pol II pausing is essential for cell proliferation. Using separation-of-function mutations, we show here that NELFB function in cell proliferation can be uncoupled from that in Pol II pausing. NELFB mutants sequestered in the cytoplasm and deprived of NELF nuclear function still support cell proliferation and part of the NELFB-dependent transcriptome. Mechanistically, cytoplasmic NELFB physically and functionally interacts with prosurvival signaling kinases, most notably phosphatidylinositol-3-kinase/AKT. Ectopic expression of membrane-tethered phosphatidylinositol-3-kinase/AKT partially bypasses the role of NELFB in cell proliferation, but not Pol II occupancy. Together, these data expand the current understanding of the physiological impact of Pol II pausing and underscore the multiplicity of the biological functions of individual NELF subunits.
Collapse
Affiliation(s)
- Haihui Pan
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA.
| | - Xiaolong Cheng
- Department of Genomics & Precision Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA; Center for Genetic Medicine Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Pedro Felipe Gardeazábal Rodríguez
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Xiaowen Zhang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Inhee Chung
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Victor X Jin
- Institute of Health Equity and Cancer Center, The Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Wei Li
- Department of Genomics & Precision Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA; Center for Genetic Medicine Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Yanfen Hu
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Rong Li
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA.
| |
Collapse
|
3
|
Chen J, Chapski DJ, Jong J, Awada J, Wang Y, Slamon DJ, Vondriska TM, Packard RRS. Integrative transcriptomics and cell systems analyses reveal protective pathways controlled by Igfbp-3 in anthracycline-induced cardiotoxicity. FASEB J 2023; 37:e22977. [PMID: 37219486 PMCID: PMC10286824 DOI: 10.1096/fj.202201885rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
Anthracyclines such as doxorubicin (Dox) are effective chemotherapeutic agents; however, their use is hampered by subsequent cardiotoxicity risk. Our understanding of cardiomyocyte protective pathways activated following anthracycline-induced cardiotoxicity (AIC) remains incomplete. Insulin-like growth factor binding protein (IGFBP) 3 (Igfbp-3), the most abundant IGFBP family member in the circulation, is associated with effects on the metabolism, proliferation, and survival of various cells. Whereas Igfbp-3 is induced by Dox in the heart, its role in AIC is ill-defined. We investigated molecular mechanisms as well as systems-level transcriptomic consequences of manipulating Igfbp-3 in AIC using neonatal rat ventricular myocytes and human-induced pluripotent stem cell-derived cardiomyocytes. Our findings reveal that Dox induces the nuclear enrichment of Igfbp-3 in cardiomyocytes. Furthermore, Igfbp-3 reduces DNA damage, impedes topoisomerase IIβ expression (Top2β) which forms Top2β-Dox-DNA cleavage complex leading to DNA double-strand breaks (DSB), alleviates detyrosinated microtubule accumulation-a hallmark of increased cardiomyocyte stiffness and heart failure-and favorably affects contractility following Dox treatment. These results indicate that Igfbp-3 is induced by cardiomyocytes in an effort to mitigate AIC.
Collapse
Affiliation(s)
- Junjie Chen
- Molecular, Cellular, and Integrative Physiology Program,
College of Letters and Science, and David Geffen School of Medicine, University of
California, Los Angeles, CA
| | - Douglas J. Chapski
- Department of Anesthesiology & Perioperative Medicine,
David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Jeremy Jong
- Division of Cardiology, Department of Medicine, David
Geffen School of Medicine, University of California, Los Angeles, CA
| | - Jerome Awada
- Division of Cardiology, Department of Medicine, David
Geffen School of Medicine, University of California, Los Angeles, CA
| | - Yijie Wang
- Division of Cardiology, Department of Medicine, David
Geffen School of Medicine, University of California, Los Angeles, CA
| | - Dennis J. Slamon
- Division of Hematology & Oncology, Department of
Medicine, David Geffen School of Medicine, University of California, Los Angeles,
CA
- Jonsson Comprehensive Cancer Center, University of
California, Los Angeles, CA
| | - Thomas M. Vondriska
- Molecular, Cellular, and Integrative Physiology Program,
College of Letters and Science, and David Geffen School of Medicine, University of
California, Los Angeles, CA
- Department of Anesthesiology & Perioperative Medicine,
David Geffen School of Medicine, University of California, Los Angeles, CA
- Division of Cardiology, Department of Medicine, David
Geffen School of Medicine, University of California, Los Angeles, CA
- Department of Physiology, David Geffen School of Medicine,
University of California, Los Angeles, CA
- Molecular Biology Institute, University of California, Los
Angeles, CA
| | - René R. Sevag Packard
- Molecular, Cellular, and Integrative Physiology Program,
College of Letters and Science, and David Geffen School of Medicine, University of
California, Los Angeles, CA
- Division of Cardiology, Department of Medicine, David
Geffen School of Medicine, University of California, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of
California, Los Angeles, CA
- Department of Physiology, David Geffen School of Medicine,
University of California, Los Angeles, CA
- Molecular Biology Institute, University of California, Los
Angeles, CA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA
- Veterans Affairs West Los Angeles Medical Center, Los
Angeles, CA
- California NanoSystems Institute, University of
California, Los Angeles, CA
| |
Collapse
|
4
|
Zhang J, Hu Z, Chung HH, Tian Y, Lau KW, Ser Z, Lim YT, Sobota RM, Leong HF, Chen BJ, Yeo CJ, Tan SYX, Kang J, Tan DEK, Sou IF, McClurg UL, Lakshmanan M, Vaiyapuri TS, Raju A, Wong ESM, Tergaonkar V, Rajarethinam R, Pathak E, Tam WL, Tan EY, Tee WW. Dependency of NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis. Nat Commun 2023; 14:2439. [PMID: 37117180 PMCID: PMC10147683 DOI: 10.1038/s41467-023-38132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
Cancer cells undergo transcriptional reprogramming to drive tumor progression and metastasis. Using cancer cell lines and patient-derived tumor organoids, we demonstrate that loss of the negative elongation factor (NELF) complex inhibits breast cancer development through downregulating epithelial-mesenchymal transition (EMT) and stemness-associated genes. Quantitative multiplexed Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins (qPLEX-RIME) further reveals a significant rewiring of NELF-E-associated chromatin partners as a function of EMT and a co-option of NELF-E with the key EMT transcription factor SLUG. Accordingly, loss of NELF-E leads to impaired SLUG binding on chromatin. Through integrative transcriptomic and genomic analyses, we identify the histone acetyltransferase, KAT2B, as a key functional target of NELF-E-SLUG. Genetic and pharmacological inactivation of KAT2B ameliorate the expression of EMT markers, phenocopying NELF ablation. Elevated expression of NELF-E and KAT2B is associated with poorer prognosis in breast cancer patients, highlighting the clinical relevance of our findings. Taken together, we uncover a crucial role of the NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis.
Collapse
Affiliation(s)
- Jieqiong Zhang
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Republic of Singapore
| | - Zhenhua Hu
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Hwa Hwa Chung
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yun Tian
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 210004, Nanjing, People's Republic of China
| | - Kah Weng Lau
- Department of Pathology, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
| | - Zheng Ser
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yan Ting Lim
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Hwei Fen Leong
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Benjamin Jieming Chen
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Clarisse Jingyi Yeo
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Shawn Ying Xuan Tan
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Jian Kang
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Dennis Eng Kiat Tan
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Ieng Fong Sou
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Urszula Lucja McClurg
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Thamil Selvan Vaiyapuri
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Anandhkumar Raju
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Esther Sook Miin Wong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Vinay Tergaonkar
- Department of Pathology, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Republic of Singapore
| | - Ravisankar Rajarethinam
- Advanced Molecular Pathology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Elina Pathak
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Drive, Genome, Singapore, 138672, Republic of Singapore
| | - Wai Leong Tam
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Republic of Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Drive, Genome, Singapore, 138672, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Ern Yu Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, 308433, Republic of Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Republic of Singapore
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Republic of Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
| |
Collapse
|
5
|
Abuhashem A, Chivu AG, Zhao Y, Rice EJ, Siepel A, Danko CG, Hadjantonakis AK. RNA Pol II pausing facilitates phased pluripotency transitions by buffering transcription. Genes Dev 2022; 36:gad.349565.122. [PMID: 35981753 PMCID: PMC9480856 DOI: 10.1101/gad.349565.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/18/2022] [Indexed: 01/03/2023]
Abstract
Promoter-proximal RNA Pol II pausing is a critical step in transcriptional control. Pol II pausing has been predominantly studied in tissue culture systems. While Pol II pausing has been shown to be required for mammalian development, the phenotypic and mechanistic details of this requirement are unknown. Here, we found that loss of Pol II pausing stalls pluripotent state transitions within the epiblast of the early mouse embryo. Using Nelfb -/- mice and a NELFB degron mouse pluripotent stem cell model, we show that embryonic stem cells (ESCs) representing the naïve state of pluripotency successfully initiate a transition program but fail to balance levels of induced and repressed genes and enhancers in the absence of NELF. We found an increase in chromatin-associated NELF during transition from the naïve to later pluripotent states. Overall, our work defines the acute and long-term molecular consequences of NELF loss and reveals a role for Pol II pausing in the pluripotency continuum as a modulator of cell state transitions.
Collapse
Affiliation(s)
- Abderhman Abuhashem
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York 10065, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York 10065, USA
| | - Alexandra G Chivu
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Yixin Zhao
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York 10065, USA
| |
Collapse
|
6
|
Wu B, Zhang X, Chiang HC, Pan H, Yuan B, Mitra P, Qi L, Simonyan H, Young CN, Yvon E, Hu Y, Zhang N, Li R. RNA polymerase II pausing factor NELF in CD8 + T cells promotes antitumor immunity. Nat Commun 2022; 13:2155. [PMID: 35444206 PMCID: PMC9021285 DOI: 10.1038/s41467-022-29869-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/31/2022] [Indexed: 11/15/2022] Open
Abstract
T cell factor 1 (TCF1) is required for memory and stem-like CD8+ T cell functions. How TCF1 partners with other transcription factors to regulate transcription remains unclear. Here we show that negative elongation factor (NELF), an RNA polymerase II (Pol II) pausing factor, cooperates with TCF1 in T cell responses to cancer. Deletion of mouse Nelfb, which encodes the NELFB subunit, in mature T lymphocytes impairs immune responses to both primary tumor challenge and tumor antigen-mediated vaccination. Nelfb deletion causes more exhausted and reduced memory T cell populations, whereas its ectopic expression boosts antitumor immunity and efficacy of chimeric antigen receptor T-cell immunotherapy. Mechanistically, NELF is associated with TCF1 and recruited preferentially to the enhancers and promoters of TCF1 target genes. Nelfb ablation reduces Pol II pausing and chromatin accessibility at these TCF1-associated loci. Our findings thus suggest an important and rate-limiting function of NELF in anti-tumor immunity. Negative elongation factor B (NELFB) is one of the four subunits of the NELF complex that controls RNA polymerase II pausing. Here the authors show that, by associating with the key T cell transcription factor TCF1, NELFB is required for eliciting CD8 + T cell memory and anti-tumor immune responses.
Collapse
Affiliation(s)
- Bogang Wu
- Department of Biochemistry & Molecular Medicine, The George Washington University, Washington, DC, 20037, USA
| | - Xiaowen Zhang
- Department of Biochemistry & Molecular Medicine, The George Washington University, Washington, DC, 20037, USA
| | - Huai-Chin Chiang
- Department of Biochemistry & Molecular Medicine, The George Washington University, Washington, DC, 20037, USA
| | - Haihui Pan
- Department of Biochemistry & Molecular Medicine, The George Washington University, Washington, DC, 20037, USA
| | - Bin Yuan
- Department of Biochemistry & Molecular Medicine, The George Washington University, Washington, DC, 20037, USA
| | - Payal Mitra
- Department of Anatomy & Cell Biology, The George Washington University, Washington, DC, 20037, USA
| | - Leilei Qi
- Department of Anatomy & Cell Biology, The George Washington University, Washington, DC, 20037, USA
| | - Hayk Simonyan
- Department of Pharmacology & Physiology, The George Washington University, Washington, DC, 20037, USA
| | - Colin N Young
- Department of Pharmacology & Physiology, The George Washington University, Washington, DC, 20037, USA
| | - Eric Yvon
- Department of Medicine, The George Washington University Cancer Center School of Medicine & Health Sciences, The George Washington University, Washington, DC, 20037, USA
| | - Yanfen Hu
- Department of Anatomy & Cell Biology, The George Washington University, Washington, DC, 20037, USA
| | - Nu Zhang
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Rong Li
- Department of Biochemistry & Molecular Medicine, The George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
7
|
Negative Elongation Factor (NELF) Inhibits Premature Granulocytic Development in Zebrafish. Int J Mol Sci 2022; 23:ijms23073833. [PMID: 35409193 PMCID: PMC8998717 DOI: 10.3390/ijms23073833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
Gene expression is tightly regulated during hematopoiesis. Recent studies have suggested that RNA polymerase II (Pol II) promoter proximal pausing, a temporary stalling downstream of the promoter region after initiation, plays a critical role in regulating the expression of various genes in metazoans. However, the function of proximal pausing in hematopoietic gene regulation remains largely unknown. The negative elongation factor (NELF) complex is a key factor important for this proximal pausing. Previous studies have suggested that NELF regulates granulocytic differentiation in vitro, but its in vivo function during hematopoiesis remains uncharacterized. Here, we generated the zebrafish mutant for one NELF complex subunit Nelfb using the CRISPR-Cas9 technology. We found that the loss of nelfb selectively induced excessive granulocytic development during primitive and definitive hematopoiesis. The loss of nelfb reduced hematopoietic progenitor cell formation and did not affect erythroid development. Moreover, the accelerated granulocytic differentiation and reduced progenitor cell development could be reversed by inhibiting Pol II elongation. Further experiments demonstrated that the other NELF complex subunits (Nelfa and Nelfe) played similar roles in controlling granulocytic development. Together, our studies suggested that NELF is critical in controlling the proper granulocytic development in vivo, and that promoter proximal pausing might help maintain the undifferentiated state of hematopoietic progenitor cells.
Collapse
|
8
|
Wang D, Wang T, Gill A, Hilliard T, Chen F, Karamyshev AL, Zhang F. Uncovering the cellular capacity for intensive and specific feedback self-control of the argonautes and MicroRNA targeting activity. Nucleic Acids Res 2020; 48:4681-4697. [PMID: 32297952 PMCID: PMC7229836 DOI: 10.1093/nar/gkaa209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
The miRNA pathway has three segments—biogenesis, targeting and downstream regulatory effectors. We aimed to better understand their cellular control by exploring the miRNA-mRNA-targeting relationships. We first used human evolutionarily conserved sites. Strikingly, AGOs 1–3 are all among the top 14 mRNAs with the highest miRNA site counts, along with ANKRD52, the phosphatase regulatory subunit of the recently identified AGO phosphorylation cycle; and the AGO phosphorylation cycle mRNAs share much more than expected miRNA sites. The mRNAs for TNRC6, which acts with AGOs to channel miRNA-mediated regulatory actions onto specific mRNAs, are also heavily miRNA-targeted. In contrast, upstream miRNA biogenesis mRNAs are not, and neither are downstream regulatory effectors. In short, binding site enrichment in miRNA targeting machinery mRNAs, but neither upstream biogenesis nor downstream effector mRNAs, was observed, endowing a cellular capacity for intensive and specific feedback control of the targeting activity. The pattern was confirmed with experimentally determined miRNA-mRNA target relationships. Moreover, genetic experiments demonstrated cellular utilization of this capacity. Thus, we uncovered a capacity for intensive, and specific, feedback-regulation of miRNA targeting activity directly by miRNAs themselves, i.e. segment-specific feedback auto-regulation of miRNA pathway, complementing miRNAs pairing with transcription factors to form hybrid feedback-loop.
Collapse
Affiliation(s)
- Degeng Wang
- Department of Environmental Toxicology, Lubbock, TX 79409, USA.,The Institute of Environmental and Human Health (TIEHH), Lubbock, TX 79409, USA
| | - Tingzeng Wang
- Department of Environmental Toxicology, Lubbock, TX 79409, USA.,The Institute of Environmental and Human Health (TIEHH), Lubbock, TX 79409, USA
| | - Audrey Gill
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA
| | - Terrell Hilliard
- Department of Environmental Toxicology, Lubbock, TX 79409, USA.,The Institute of Environmental and Human Health (TIEHH), Lubbock, TX 79409, USA
| | - Fengqian Chen
- Department of Environmental Toxicology, Lubbock, TX 79409, USA.,The Institute of Environmental and Human Health (TIEHH), Lubbock, TX 79409, USA
| | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock TX 79430, USA
| | - Fangyuan Zhang
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
9
|
Alikunju S, Severinova E, Yang Z, Ivessa A, Sayed D. Acute NelfA knockdown restricts compensatory gene expression and precipitates ventricular dysfunction during cardiac hypertrophy. J Mol Cell Cardiol 2020; 142:93-104. [PMID: 32278832 DOI: 10.1016/j.yjmcc.2020.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/15/2020] [Accepted: 04/06/2020] [Indexed: 11/30/2022]
Abstract
Coordinated functional balance of negative and positive transcription complexes maintain and accommodate gene expression in hearts during quiescent and hypertrophic conditions, respectively. Negative elongation factor (Nelf) complex has been implicated in RNA polymerase II (pol II) pausing, a widespread regulatory transcriptional phenomenon observed across the cardiac genome. Here, we examine the role of NelfA aka, Wolf-Hirschhorn syndrome candidate 2 (Whsc2), a critical component of the negative elongation complex in hearts undergoing pressure-overload induced hypertrophy. Alignment of high-resolution genome-wide occupancy data of NelfA, Pol II, TFIIB and H3k9ac from control and hypertrophied hearts reveal that NelfA associates with active gene promoters. High NelfA occupancy is seen at promoters of essential and cardiac-enriched genes, expressed under both quiescent and hypertrophic conditions. Conversely, de novo NelfA recruitment is observed at inducible gene promoters with pressure overload, accompanied by significant increase in expression of these genes with hypertrophy. Interestingly, change in promoter NelfA levels correlates with the transcript output in hypertrophied hearts compared to Sham, suggesting NelfA might be playing a critical role in the regulation of gene transcription during cardiac hypertrophy. In vivo knockdown of NelfA (siNelfA) in hearts subjected to pressure-overload results in early ventricular dilatation and dysfunction, associated with decrease in expression of inducible and cardiac-enriched genes in siNelfA hypertrophied compared to control hypertrophied hearts. In accordance, in vitro knockdown of NelfA in cardiomyocytes showed no change in promoter pol II, however significant decrease in in-gene and downstream pol II occupancy was observed. These data suggest an inhibited pol II progression in transcribing and inducible genes, which reflects as a decrease in transcript abundance of these genes. These results indicate that promoter NelfA occupancy is essential for pol II -dependent transcription. Therefore, we conclude that NelfA is required for active transcription and gene expression during cardiac hypertrophy.
Collapse
Affiliation(s)
- Saleena Alikunju
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Elena Severinova
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Zhi Yang
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Andreas Ivessa
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America
| | - Danish Sayed
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America.
| |
Collapse
|
10
|
Mills A, Bearce E, Cella R, Kim SW, Selig M, Lee S, Lowery LA. Wolf-Hirschhorn Syndrome-Associated Genes Are Enriched in Motile Neural Crest Cells and Affect Craniofacial Development in Xenopus laevis. Front Physiol 2019; 10:431. [PMID: 31031646 PMCID: PMC6474402 DOI: 10.3389/fphys.2019.00431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 01/08/2023] Open
Abstract
Wolf-Hirschhorn Syndrome (WHS) is a human developmental disorder arising from a hemizygous perturbation, typically a microdeletion, on the short arm of chromosome four. In addition to pronounced intellectual disability, seizures, and delayed growth, WHS presents with a characteristic facial dysmorphism and varying prevalence of microcephaly, micrognathia, cartilage malformation in the ear and nose, and facial asymmetries. These affected craniofacial tissues all derive from a shared embryonic precursor, the cranial neural crest (CNC), inviting the hypothesis that one or more WHS-affected genes may be critical regulators of neural crest development or migration. To explore this, we characterized expression of multiple genes within or immediately proximal to defined WHS critical regions, across the span of craniofacial development in the vertebrate model system Xenopus laevis. This subset of genes, whsc1, whsc2, letm1, and tacc3, are diverse in their currently-elucidated cellular functions; yet we find that their expression demonstrates shared tissue-specific enrichment within the anterior neural tube, migratory neural crest, and later craniofacial structures. We examine the ramifications of this by characterizing craniofacial development and neural crest migration following individual gene depletion. We observe that several WHS-associated genes significantly impact facial patterning, cartilage formation, neural crest motility in vivo and in vitro, and can separately contribute to forebrain scaling. Thus, we have determined that numerous genes within and surrounding the defined WHS critical regions potently impact craniofacial patterning, suggesting their role in WHS presentation may stem from essential functions during neural crest-derived tissue formation.
Collapse
Affiliation(s)
- Alexandra Mills
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Elizabeth Bearce
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Rachael Cella
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Seung Woo Kim
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Megan Selig
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Sangmook Lee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Laura Anne Lowery
- Biology Department, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
11
|
The DNA modification N6-methyl-2'-deoxyadenosine (m6dA) drives activity-induced gene expression and is required for fear extinction. Nat Neurosci 2019; 22:534-544. [PMID: 30778148 PMCID: PMC6462436 DOI: 10.1038/s41593-019-0339-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/10/2019] [Indexed: 02/04/2023]
Abstract
DNA modification is known to regulate experience-dependent gene expression. However, beyond cytosine methylation and its oxidated derivatives, very little is known about the functional importance of chemical modifications on other nucleobases in the brain. Here we report that in adult mice trained in fear extinction the DNA modification N6-methyl-2’-deoxyadenosine (m6dA) accumulates along promoters and coding sequences in activated prefrontal cortical neurons. The deposition of m6dA is associated with increased genome-wide occupancy of the mammalian m6dA methyltransferase, N6amt1, and this correlates with extinction-induced gene expression. The accumulation of m6dA is associated with transcriptional activation at the brain-derived neurotrophic factor (Bdnf) P4 promoter, which is required for Bdnf exon IV mRNA expression and for the extinction of conditioned fear. These results expand the scope of DNA modifications in the adult brain and highlight changes in m6dA as an epigenetic mechanism associated with activity-induced gene expression and the formation of fear extinction memory.
Collapse
|
12
|
Zhang X, Li R. BRCA1-Dependent Transcriptional Regulation: Implication in Tissue-Specific Tumor Suppression. Cancers (Basel) 2018; 10:cancers10120513. [PMID: 30558184 PMCID: PMC6316118 DOI: 10.3390/cancers10120513] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/24/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
Germ-line mutations in breast cancer susceptibility gene 1 (BRCA1) predominantly predispose women to breast and ovarian cancers. BRCA1 is best known for its functions in maintenance of genomic integrity including repairing DNA double-strand breaks through homologous recombination and suppressing DNA replication stress. However, whether these universally important BRCA1 functions in maintenance of genomic stability are sufficient to account for its tissue-specific tumor-suppressing function remains unclear. Accumulating evidence indicates that there are previously underappreciated roles of BRCA1 in transcriptional regulation and chromatin remodeling. In this review, we discuss the functional significance of interactions between BRCA1 and various transcription factors, its role in epigenetic regulation and chromatin dynamics, and BRCA1-dependent crosstalk between the machineries of transcription and genome integrity. Furthermore, we propose a model of how transcriptional regulation could contribute to tissue-dependent tumor-suppressing function of BRCA1.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA.
| | - Rong Li
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
13
|
Semantic Multi-Classifier Systems Identify Predictive Processes in Heart Failure Models across Species. Biomolecules 2018; 8:biom8040158. [PMID: 30486323 PMCID: PMC6315933 DOI: 10.3390/biom8040158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 11/29/2022] Open
Abstract
Genetic model organisms have the potential of removing blind spots from the underlying gene regulatory networks of human diseases. Allowing analyses under experimental conditions they complement the insights gained from observational data. An inevitable requirement for a successful trans-species transfer is an abstract but precise high-level characterization of experimental findings. In this work, we provide a large-scale analysis of seven weak contractility/heart failure genotypes of the model organism zebrafish which all share a weak contractility phenotype. In supervised classification experiments, we screen for discriminative patterns that distinguish between observable phenotypes (homozygous mutant individuals) as well as wild-type (homozygous wild-types) and carriers (heterozygous individuals). As the method of choice we use semantic multi-classifier systems, a knowledge-based approach which constructs hypotheses from a predefined vocabulary of high-level terms (e.g., Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways or Gene Ontology (GO) terms). Evaluating these models leads to a compact description of the underlying processes and guides the screening for new molecular markers of heart failure. Furthermore, we were able to independently corroborate the identified processes in Wistar rats.
Collapse
|
14
|
Aguayo-Orozco A, Bois FY, Brunak S, Taboureau O. Analysis of Time-Series Gene Expression Data to Explore Mechanisms of Chemical-Induced Hepatic Steatosis Toxicity. Front Genet 2018; 9:396. [PMID: 30279702 PMCID: PMC6153316 DOI: 10.3389/fgene.2018.00396] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a wide spectrum of disease, ranging from simple fatty liver through steatosis with inflammation and necrosis to cirrhosis. One of the most challenging problems in biomedical research and within the chemical industry is to understand the underlying mechanisms of complex disease, and complex adverse outcome pathways (AOPs). Based on a set of 28 steatotic chemicals with gene expression data measured on primary hepatocytes at three times (2, 8, and 24 h) and three doses (low, medium, and high), we identified genes and pathways, defined as molecular initiating events (MIEs) and key events (KEs) of steatosis using a combination of a time series and pathway analyses. Among the genes deregulated by these compounds, the study highlighted OSBPL9, ALDH7A1, MYADM, SLC51B, PRDX6, GPAT3, TMEM135, DLGDA5, BCO2, APO10LA, TSPAN6, NEURL1B, and DUSP1. Furthermore, pathway analysis indicated deregulation of pathways related to lipid accumulation, such as fat digestion and absorption, linoleic and linolenic acid metabolism, calcium signaling pathway, fatty acid metabolism, peroxisome, retinol metabolism, and steroid metabolic pathways in a time dependent manner. Such transcription profile analysis can help in the understanding of the steatosis evolution over time generated by chemical exposure.
Collapse
Affiliation(s)
- Alejandro Aguayo-Orozco
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederic Yves Bois
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité Modèles pour l'Ecotoxicologie et la Toxicologie (METO), Verneuil en Halatte, France
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olivier Taboureau
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,UMRS 973 INSERM, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
15
|
Qin K, Zhang N, Zhang Z, Nipper M, Zhu Z, Leighton J, Xu K, Musi N, Wang P. SIRT6-mediated transcriptional suppression of Txnip is critical for pancreatic beta cell function and survival in mice. Diabetologia 2018; 61:906-918. [PMID: 29322219 PMCID: PMC6203439 DOI: 10.1007/s00125-017-4542-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Better understanding of how genetic and epigenetic components control beta cell differentiation and function is key to the discovery of novel therapeutic approaches to prevent beta cell dysfunction and failure in the progression of type 2 diabetes. Our goal was to elucidate the role of histone deacetylase sirtuin 6 (SIRT6) in beta cell development and homeostasis. METHODS Sirt6 endocrine progenitor cell conditional knockout and beta cell-specific knockout mice were generated using the Cre-loxP system. Mice were assayed for islet morphology, glucose tolerance, glucose-stimulated insulin secretion and susceptibility to streptozotocin. Transcriptional regulatory functions of SIRT6 in primary islets were evaluated by RNA-Seq analysis. Reverse transcription-quantitative (RT-q)PCR and immunoblot were used to verify and investigate the gene expression changes. Chromatin occupancies of SIRT6, H3K9Ac, H3K56Ac and active RNA polymerase II were evaluated by chromatin immunoprecipitation. RESULTS Deletion of Sirt6 in pancreatic endocrine progenitor cells did not affect endocrine morphology, beta cell mass or insulin production but did result in glucose intolerance and defective glucose-stimulated insulin secretion in mice. Conditional deletion of Sirt6 in adult beta cells reproduced the insulin secretion defect. Loss of Sirt6 resulted in aberrant upregulation of thioredoxin-interacting protein (TXNIP) in beta cells. SIRT6 deficiency led to increased acetylation of histone H3 lysine residue at 9 (H3K9Ac), acetylation of histone H3 lysine residue at 56 (H3K56Ac) and active RNA polymerase II at the promoter region of Txnip. SIRT6-deficient beta cells exhibited a time-dependent increase in H3K9Ac, H3K56Ac and TXNIP levels. Finally, beta cell-specific SIRT6-deficient mice showed increased sensitivity to streptozotocin. CONCLUSIONS/INTERPRETATION Our results reveal that SIRT6 suppresses Txnip expression in beta cells via deacetylation of histone H3 and plays a critical role in maintaining beta cell function and viability. DATA AVAILABILITY Sequence data have been deposited in the National Institutes of Health (NIH) Gene Expression Omnibus (GEO) with the accession code GSE104161.
Collapse
Affiliation(s)
- Kunhua Qin
- Department of Molecular Medicine, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Ning Zhang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Michael Nipper
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Zhenxin Zhu
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jake Leighton
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Pei Wang
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
16
|
Gene-Specific Genetic Complementation between Brca1 and Cobra1 During Mouse Mammary Gland Development. Sci Rep 2018; 8:2731. [PMID: 29426838 PMCID: PMC5807304 DOI: 10.1038/s41598-018-21044-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
Germ-line mutations in breast cancer susceptibility gene, BRCA1, result in familial predisposition to breast and ovarian cancers. The BRCA1 protein has multiple functional domains that interact with a variety of proteins in multiple cellular processes. Understanding the biological consequences of BRCA1 interactions with its binding partners is important for elucidating its tissue-specific tumor suppression function. The Cofactor of BRCA1 (COBRA1) is a BRCA1-binding protein that, as a component of negative elongation factor (NELF), regulates RNA polymerase II pausing during transcription elongation. We recently identified a genetic interaction between mouse Brca1 and Cobra1 that antagonistically regulates mammary gland development. However, it remains unclear which of the myriad functions of Brca1 are required for its genetic interaction with Cobra1. Here, we show that, unlike deletion of Brca1 exon 11, separation-of-function mutations that abrogate either the E3 ligase activity of its RING domain or the phospho-recognition property of its BRCT domain are not sufficient to rescue the mammary developmental defects in Cobra1 knockout mice. Furthermore, deletion of mouse Palb2, another breast cancer susceptibility gene with functional similarities to BRCA1, does not rescue Cobra1 knockout-associated mammary defects. Thus, the Brca1/Cobra1 genetic interaction is both domain- and gene-specific in the context of mammary gland development.
Collapse
|
17
|
Dynamic Change of Transcription Pausing through Modulating NELF Protein Stability Regulates Granulocytic Differentiation. Blood Adv 2017; 1:1358-1367. [PMID: 28868519 DOI: 10.1182/bloodadvances.2017008383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The NELF complex is a metazoan-specific factor essential for establishing transcription pausing. Although NELF has been implicated in cell fate regulation, the cellular regulation of NELF and its intrinsic role in specific lineage differentiation remains largely unknown. Using mammalian hematopoietic differentiation as a model system, here we identified a dynamic change of NELF-mediated transcription pausing as a novel mechanism regulating hematopoietic differentiation. We found a sharp decrease of NELF protein abundance upon granulocytic differentiation and a subsequent genome-wide reduction of transcription pausing. This loss of pausing coincides with activation of granulocyte-affiliated genes and diminished expression of progenitor markers. Functional studies revealed that sustained expression of NELF inhibits granulocytic differentiation, whereas NELF depletion in progenitor cells leads to premature differentiation towards the granulocytic lineage. Our results thus uncover a previously unrecognized regulation of transcription pausing by modulating NELF protein abundance to control cellular differentiation.
Collapse
|
18
|
Pan H, Yan Y, Liu C, Finkel T. The role of ZKSCAN3 in the transcriptional regulation of autophagy. Autophagy 2017; 13:1235-1238. [PMID: 28581889 DOI: 10.1080/15548627.2017.1320635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Haihui Pan
- a Center for Molecular Medicine, National Heart, Lung, and Blood Institute, NIH , Bethesda , MD USA
| | - Ye Yan
- a Center for Molecular Medicine, National Heart, Lung, and Blood Institute, NIH , Bethesda , MD USA
| | - Chengyu Liu
- b Transgenic Core, National Heart, Lung, and Blood Institute, NIH , Bethesda , MD USA
| | - Toren Finkel
- a Center for Molecular Medicine, National Heart, Lung, and Blood Institute, NIH , Bethesda , MD USA
| |
Collapse
|
19
|
Robinson C, Lowe M, Schwartz A, Kikyo N. Mechanisms and Developmental Roles of Promoter-proximal Pausing of RNA Polymerase II. ACTA ACUST UNITED AC 2016; 6. [PMID: 27158559 PMCID: PMC4855949 DOI: 10.4172/2157-7633.1000330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA polymerase II (Pol II) temporarily stops transcription after synthesizing 30–50 bases, and resumes elongation only after stimulations by various signaling molecules and developmental cues. This phenomenon, called promoter-proximal pausing, is observed in 10–50% of the entire genes from Drosophila embryos to human cells. Release of paused Pol II is primarily mediated by the activated form of positive transcription elongation factor b (P-TEFb) initially sequestered in the inhibitory 7SK small nuclear ribonucleoprotein (7SK snRNP) complex. Many proteins and RNAs have been discovered and studied in detail to explain the process of the pausing and release of Pol II in relation to P-TEFb. At the functional level, promoter-proximal pausing regulates genes involved in stimulus-response and development in Drosophila. In mammalian stem cell biology, pausing is important for proliferation and signaling in embryonic stem cells and the formation of induced pluripotent stem cells. Other than this, however, little is known about the biological significance of pausing in mammalian cell differentiation. Further study on pausing mechanisms as well as its functions will contribute to the development of stem cell biology and its clinical applications.
Collapse
Affiliation(s)
- Christine Robinson
- Stem Cell Institute, Department of Genetics, Cell Biology and Development, University of Minnesota, USA
| | - Matthew Lowe
- Stem Cell Institute, Department of Genetics, Cell Biology and Development, University of Minnesota, USA
| | - Amanda Schwartz
- Stem Cell Institute, Department of Genetics, Cell Biology and Development, University of Minnesota, USA
| | - Nobuaki Kikyo
- Stem Cell Institute, Department of Genetics, Cell Biology and Development, University of Minnesota, USA
| |
Collapse
|
20
|
Nair SJ, Zhang X, Chiang HC, Jahid MJ, Wang Y, Garza P, April C, Salathia N, Banerjee T, Alenazi FS, Ruan J, Fan JB, Parvin JD, Jin VX, Hu Y, Li R. Genetic suppression reveals DNA repair-independent antagonism between BRCA1 and COBRA1 in mammary gland development. Nat Commun 2016; 7:10913. [PMID: 26941120 PMCID: PMC4785232 DOI: 10.1038/ncomms10913] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022] Open
Abstract
The breast cancer susceptibility gene BRCA1 is well known for its function in double-strand break (DSB) DNA repair. While BRCA1 is also implicated in transcriptional regulation, the physiological significance remains unclear. COBRA1 (also known as NELF-B) is a BRCA1-binding protein that regulates RNA polymerase II (RNAPII) pausing and transcription elongation. Here we interrogate functional interaction between BRCA1 and COBRA1 during mouse mammary gland development. Tissue-specific deletion of Cobra1 reduces mammary epithelial compartments and blocks ductal morphogenesis, alveologenesis and lactogenesis, demonstrating a pivotal role of COBRA1 in adult tissue development. Remarkably, these developmental deficiencies due to Cobra1 knockout are largely rescued by additional loss of full-length Brca1. Furthermore, Brca1/Cobra1 double knockout restores developmental transcription at puberty, alters luminal epithelial homoeostasis, yet remains deficient in homologous recombination-based DSB repair. Thus our genetic suppression analysis uncovers a previously unappreciated, DNA repair-independent function of BRCA1 in antagonizing COBRA1-dependent transcription programme during mammary gland development. COBRA1 is a BRCA1-binding protein and, as part of the negative elongation factor, regulates RNA polymerase II pausing and transcription elongation. Here, the authors show that tissue-specific deletion of mouse Cobra1 inhibits postnatal mammary gland development and that the mammary defects can be rescued by additional deletion of Brca1 in a DNA repair-independent manner.
Collapse
Affiliation(s)
- Sreejith J Nair
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Xiaowen Zhang
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Huai-Chin Chiang
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Md Jamiul Jahid
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Yao Wang
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Paula Garza
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Craig April
- Research and Development, Illumina, Inc., San Diego, California 92122, USA
| | - Neeraj Salathia
- Research and Development, Illumina, Inc., San Diego, California 92122, USA
| | - Tapahsama Banerjee
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Fahad S Alenazi
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Jianhua Ruan
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Jian-Bing Fan
- Research and Development, Illumina, Inc., San Diego, California 92122, USA
| | - Jeffrey D Parvin
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Victor X Jin
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Yanfen Hu
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Rong Li
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| |
Collapse
|
21
|
Scheidegger A, Nechaev S. RNA polymerase II pausing as a context-dependent reader of the genome. Biochem Cell Biol 2015; 94:82-92. [PMID: 26555214 DOI: 10.1139/bcb-2015-0045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The RNA polymerase II (Pol II) transcribes all mRNA genes in eukaryotes and is among the most highly regulated enzymes in the cell. The classic model of mRNA gene regulation involves recruitment of the RNA polymerase to gene promoters in response to environmental signals. Higher eukaryotes have an additional ability to generate multiple cell types. This extra level of regulation enables each cell to interpret the same genome by committing to one of the many possible transcription programs and executing it in a precise and robust manner. Whereas multiple mechanisms are implicated in cell type-specific transcriptional regulation, how one genome can give rise to distinct transcriptional programs and what mechanisms activate and maintain the appropriate program in each cell remains unclear. This review focuses on the process of promoter-proximal Pol II pausing during early transcription elongation as a key step in context-dependent interpretation of the metazoan genome. We highlight aspects of promoter-proximal Pol II pausing, including its interplay with epigenetic mechanisms, that may enable cell type-specific regulation, and emphasize some of the pertinent questions that remain unanswered and open for investigation.
Collapse
Affiliation(s)
- Adam Scheidegger
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA.,Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| | - Sergei Nechaev
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA.,Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| |
Collapse
|
22
|
Pan H, Zhao X, Zhang X, Abouelsoud M, Sun J, April C, Amleh A, Fan JB, Hu Y, Li R. Translational Initiation at a Non-AUG Start Codon for Human and Mouse Negative Elongation Factor-B. PLoS One 2015; 10:e0127422. [PMID: 26010750 PMCID: PMC4444357 DOI: 10.1371/journal.pone.0127422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/15/2015] [Indexed: 12/24/2022] Open
Abstract
Negative elongation factor (NELF), a four-subunit protein complex in metazoan, plays an important role in regulating promoter-proximal pausing of RNA polymerase II (RNAPII). Genetic studies demonstrate that the B subunit of mouse NELF (NELF-B) is critical for embryonic development and homeostasis in adult tissue. We report here that both human and mouse NELF-B proteins are translated from a non-AUG codon upstream of the annotated AUG. This non-AUG codon sequence is conserved in mammalian NELF-B but not NELF-B orthologs of lower metazoan. The full-length and a truncated NELF-B that starts at the first AUG codon both interact with the other three NELF subunits. Furthermore, these two forms of NELF-B have a similar impact on the transcriptomics and proliferation of mouse embryonic fibroblasts. These results strongly suggest that additional amino acid sequence upstream of the annotated AUG is dispensable for the essential NELF function in supporting cell growth in vitro. The majority of mouse adult tissues surveyed express the full-length NELF-B protein, and some contain a truncated NELF-B protein with the same apparent size as the AUG-initiated version. This result raises the distinct possibility that translational initiation of mouse NELF-B is regulated in a tissue-dependent manner.
Collapse
Affiliation(s)
- Haihui Pan
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| | - Xiayan Zhao
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| | - Xiaowen Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| | - Mohamed Abouelsoud
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Jianlong Sun
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| | - Craig April
- Illumina, Inc., San Diego, CA, 92121, United States of America
| | - Asma Amleh
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Jian-Bing Fan
- Illumina, Inc., San Diego, CA, 92121, United States of America
| | - Yanfen Hu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| | - Rong Li
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| |
Collapse
|
23
|
Abstract
Studies of transcriptional mechanisms in heart failure have focused heavily on roles of sequence-specific DNA-binding factors such as NFAT, MEF2 and GATA4. Recent findings have illuminated crucial functions for epigenetic regulators in the control of cardiac structural remodeling and mechanical dysfunction in response to pathological stress. Here, we review the current understanding of chromatin-dependent signal transduction in cardiac gene control, and highlight the potential for pharmacologic regulation of BET acetyl-lysine binding proteins as a means of treating heart failure.
Collapse
|