1
|
Yang C, Wu Y, Tu H, Yeh Y, Lin TE, Sung T, Li M, Yen S, Hsieh J, Yu M, Hsieh S, Hsieh H, Pan S, Hsu K. Identification and Biological Evaluation of a Novel CLK4 Inhibitor Targeting Alternative Splicing in Pancreatic Cancer Using Structure-Based Virtual Screening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416323. [PMID: 40126184 PMCID: PMC12097107 DOI: 10.1002/advs.202416323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/02/2025] [Indexed: 03/25/2025]
Abstract
Pancreatic cancer is an aggressive malignancy with a poor prognosis and limited treatment options. Cdc-like kinase 4 (CLK4), a kinase that regulates alternative splicing by phosphorylating spliceosome components, is implicated in aberrant splicing events driving pancreatic cancer progression. In this study, we established a computational model that integrates pharmacological interactions of CLK4 inhibitors with an improved hit rate. Through this model, we identified a novel CLK4 inhibitor, compound 150441, with a 50% inhibitory concentration (IC50) value of 21.4 nm. Structure-activity relationship analysis was performed to investigate key interactions and functional groups. Kinase profiling revealed that compound 150441 is selective for CLK4. Subsequent in vitro assays demonstrated that this inhibitor effectively suppressed cell growth and viability of pancreatic cancer cells. In addition, it inhibited the phosphorylation of key splicing factors, including serine- and arginine-rich splicing factor (SRSF) 4 and SRSF6. Cell cycle analysis further indicated that the compound induced G2/M arrest, leading to apoptosis. RNA-seq analysis revealed that the compound induced significant changes in alternative splicing and key biological pathways, including RNA processing, DNA replication, DNA damage, and mitosis. These findings suggest that compound 150441 has promising potential for further development as a novel pancreatic cancer treatment.
Collapse
Affiliation(s)
- Chun‐Lin Yang
- Graduate Institute of Cancer Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
| | - Yi‐Wen Wu
- Graduate Institute of Cancer Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
| | - Huang‐Ju Tu
- Graduate Institute of Cancer Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
| | - Yun‐Hsuan Yeh
- Graduate Institute of Cancer Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
| | - Tzu‐Ying Sung
- Graduate Institute of Cancer Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
| | - Mu‐Chun Li
- Institute of Biotechnology and Pharmaceutical ResearchNational Health Research InstitutesMiaoli County350401Taiwan
- Biomedical Translation Research CenterAcademia SinicaTaipei115202Taiwan
| | - Shih‐Chung Yen
- Warshel Institute for Computational BiologySchool of MedicineThe Chinese University of Hong Kong (Shenzhen)ShenzhenGuangdong518172China
| | - Jui‐Hua Hsieh
- Division of Translational ToxicologyNational Institute of Environmental Health SciencesNational Institutes of HealthDurhamNC27709USA
| | - Ming‐Chin Yu
- College of MedicineChang Gung UniversityTaoyuan333323Taiwan
- Department of SurgeryNew Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation)TuchengNew Taipei City236043Taiwan
- Graduate Institute of Clinical Medical SciencesChang Gung UniversityGuishanTaoyuan333323Taiwan
| | - Sen‐Yung Hsieh
- College of MedicineChang Gung UniversityTaoyuan333323Taiwan
- Department of Gastroenterology and HepatologyChang Gung Memorial HospitalLinkouTaoyuan333423Taiwan
| | - Hsing‐Pang Hsieh
- Institute of Biotechnology and Pharmaceutical ResearchNational Health Research InstitutesMiaoli County350401Taiwan
- Biomedical Translation Research CenterAcademia SinicaTaipei115202Taiwan
- Department of ChemistryNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Shiow‐Lin Pan
- Graduate Institute of Cancer Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
- TMU Research Center of Cancer Translational MedicineTaipei Medical UniversityTaipei110301Taiwan
| | - Kai‐Cheng Hsu
- Graduate Institute of Cancer Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
- TMU Research Center of Cancer Translational MedicineTaipei Medical UniversityTaipei110301Taiwan
- Cancer CenterWan Fang Hospital, Taipei Medical UniversityTaipei116079Taiwan
| |
Collapse
|
2
|
Duzgun D, Oltean S. Aberrant Splicing as a Mechanism for Resistance to Cancer Therapies. Cancers (Basel) 2025; 17:1381. [PMID: 40282556 PMCID: PMC12025770 DOI: 10.3390/cancers17081381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Cancer is biologically diverse, highly heterogeneous, and associated with molecular alterations, significantly contributing to mortality worldwide. Currently, cancer patients are subjected to single or combination treatments comprising chemotherapy, surgery, immunotherapy, radiation therapy, and targeted therapy. Chemotherapy remains the first line of treatment in cancer but faces a major obstacle in the form of chemoresistance. This obstacle has resulted in relapses and poor patient survival due to decreased treatment efficacy. Aberrant pre-mRNA alternative splicing can significantly modulate gene expression and function involved in the resistance mechanisms, potentially shaping the intricate landscape of tumour chemoresistance. Thus, novel strategies targeting abnormal pre-mRNA alternative splicing and understanding the molecular mechanisms of chemotherapy resistance could aid in overcoming the chemotherapeutic challenges. This review first highlights drug targets, drug pumps, detoxification mechanisms, DNA damage response, and evasion of apoptosis and cell death as key molecular mechanisms involved in chemotherapy resistance. Furthermore, the review discusses the progress of research on the dysregulation of alternative splicing and molecular targets involved in chemotherapy resistance in major cancer types.
Collapse
Affiliation(s)
| | - Sebastian Oltean
- Department of Clinical and Biomedical Sciences, Faculty of Health Sciences, University of Exeter, Exeter EX1 2LU, UK
| |
Collapse
|
3
|
Zhang X, Guo Z, Li Y, Xu Y. Splicing to orchestrate cell fate. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102416. [PMID: 39811494 PMCID: PMC11729663 DOI: 10.1016/j.omtn.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Alternative splicing (AS) plays a critical role in gene expression by generating protein diversity from single genes. This review provides an overview of the role of AS in regulating cell fate, focusing on its involvement in processes such as cell proliferation, differentiation, apoptosis, and tumorigenesis. We explore how AS influences the cell cycle, particularly its impact on key stages like G1, S, and G2/M. The review also examines AS in cell differentiation, highlighting its effects on mesenchymal stem cells and neurogenesis, and how it regulates differentiation into adipocytes, osteoblasts, and chondrocytes. Additionally, we discuss the role of AS in programmed cell death, including apoptosis and pyroptosis, and its contribution to cancer progression. Importantly, targeting aberrant splicing mechanisms presents promising therapeutic opportunities for restoring normal cellular function. By synthesizing recent findings, this review provides insights into how AS governs cellular fate and offers directions for future research into splicing regulatory networks.
Collapse
Affiliation(s)
- Xurui Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Zhonghao Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yachen Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yungang Xu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| |
Collapse
|
4
|
Matos P, Jordan P. Alternative Splicing at the Crossroad of Inflammatory Bowel Diseases and Colitis-Associated Colon Cancer. Cancers (Basel) 2025; 17:219. [PMID: 39858001 PMCID: PMC11764256 DOI: 10.3390/cancers17020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The risk of developing colorectal cancer (CRC) is increased in ulcerative colitis patients compared to the general population. This increased risk results from the state of chronic inflammation, a well-known tumour-promoting condition. This review explores the pathologic and molecular characteristics of colitis-associated colon cancer (CAC), emphasizing the distinct features from sporadic CRC. We focus on the key signalling pathways involved in the transition to CAC, highlighting the emerging role of alternative splicing in these processes, namely on how inflammation-induced alternative splicing can significantly contribute to the increased CRC risk observed among UC patients. This review calls for more transcriptomic studies to elucidate the molecular mechanisms through which inflammation-induced alternative splicing drives CAC pathogenesis. A better understanding of these splicing events is crucial as they may reveal novel biomarkers for disease progression and have the potential to target changes in alternative splicing as a therapeutic strategy.
Collapse
Affiliation(s)
- Paulo Matos
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
5
|
Wang R, Huang Y, Shao K, Yan J, Sun Q. High Expression of miR-6785-5p in the Serum Exosomes of Psoriasis Patients Alleviates Psoriasis-Like Skin Damage by Interfering with the MNK2/p-eIF4E Axis in Keratinocytes. Inflammation 2024; 47:1585-1599. [PMID: 38472599 DOI: 10.1007/s10753-024-01995-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by abnormal keratinocyte proliferation and inflammation. MiRNAs and serum exosomes participate in the pathogenesis of many diseases. The objective of this study is to explore the function of miR-6785-5p in psoriatic keratinocytes and its upstream and downstream mechanisms. For our study, we employed qRT-PCR and fluorescence in situ hybridization to evaluate miR-6785-5p in psoriatic keratinocytes and conducted a microRNA microarray for identifying differentially expressed miRNAs in patient serum exosomes. We then cocultured keratinocytes with these exosomes, using immunofluorescence staining and qRT-PCR to assess uptake and miR-6785-5p overexpression. We explored miR-6785-5p's role through transfection with specific mimics and inhibitors and confirmed MNK2 as its target using a luciferase assay. MNK2's function was further examined using siRNA technology. Lastly, we applied an imiquimod-induced psoriasis mouse model, also employing siRNA, to investigate MNK2's role in psoriasis. MiR-6785-5p demonstrates a notable overexpression in the keratinocytes of psoriasis patients as well as in their serum exosomes. These keratinocytes actively uptake the miR-6785-5p-enriched serum exosomes. Functionally, miR-6785-5p appears to alleviate psoriasis-like skin damage, observable both in vitro and in vivo, by downregulating MNK2 expression. Psoriasis keratinocytes uptake serum exosomes highly expressing miR-6785-5p. MiR-6785-5p inhibits the abnormal proliferation and inflammatory state of keratinocytes by reducing MNK2 expression and interfering with the MNK2/p-eIF4E axis.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
- Laboratory of Basic Medical Science, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Yingjian Huang
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
- Laboratory of Basic Medical Science, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Kaixin Shao
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
- Laboratory of Basic Medical Science, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Jianjun Yan
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
6
|
Zhi L, Chen C, Zhang G, Huang T, He W, Zhang J, Chen D, Liu J, Zhao J, Qi Y, Wang G, Zhang W, Wang Y. RBM25 depletion suppresses the growth of colon cancer cells through regulating alternative splicing of MNK2. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2186-2197. [PMID: 39110401 DOI: 10.1007/s11427-023-2582-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/22/2024] [Indexed: 10/15/2024]
Abstract
Increasing evidence suggests that deregulated RNA splicing factors play critical roles in tumorigenesis; however, their specific involvement in colon cancer remains largely unknown. Here we report that the splicing factor RBM25 is overexpressed in colon cancer, and this increased expression correlates with a poor prognosis of patients with colon cancer. Functionally, RBM25 ablation suppresses the growth of colon cancer cells both in vitro and in vivo. Mechanistically, our transcriptome-wide analysis of splicing events revealed that RBM25 regulates a large number of cancer-related alternative splicing events across the human genome in colon cancer. Particularly, RBM25 regulates the splicing of MNK2 by interacting with the poly G rich region in exon 14a, thereby inhibiting the selection of the proximal 3' splice site (ss), resulting in the production of the oncogenic short isoform, MNK2b. Knockdown of RBM25 leads to an increase in the MNK2a isoform and a decrease in the MNK2b isoform. Importantly, re-expression of MNK2b or blocking the 3' ss of the alternative exon 14a with ASO partially reverses the RBM25 knockdown mediated tumor suppression. Moreover, MNK2b levels were significantly increased in colon cancer tissues, which is positively correlated with the expression level of RBM25. Collectively, our findings uncover the critical role of RBM25 as a key splicing factor in colon cancer, suggesting its potential as a prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Lili Zhi
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116023, China
| | - Chaoqun Chen
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116023, China
| | - Ge Zhang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Tian Huang
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116023, China
| | - Wenxia He
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116023, China
| | - Jinrui Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Dan Chen
- Department of Pathology, the First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, 116011, China
| | - Jiayi Liu
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116023, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Yangfan Qi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Guiying Wang
- Department of General Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
- The Second Department of General Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
- Hebei Key Laboratory of Etiology Tracing and Individualized Diagnosis and Treatment for Digestive System Carcinoma, Shijiazhuang, 050001, China.
| | - Wenjing Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| | - Yang Wang
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
7
|
Escobar-Sierra C, Cañedo-Argüelles M, Vinyoles D, Lampert KP. Unraveling the molecular mechanisms of fish physiological response to freshwater salinization: A comparative multi-tissue transcriptomic study in a river polluted by potash mining. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124400. [PMID: 38906407 DOI: 10.1016/j.envpol.2024.124400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Freshwater salinization is an escalating global environmental issue that threatens freshwater biodiversity, including fish populations. This study aims to uncover the molecular basis of salinity physiological responses in a non-native minnow species (Phoxinus septimaniae x P. dragarum) exposed to saline effluents from potash mines in the Llobregat River, Barcelona, Spain. Employing high-throughput mRNA sequencing and differential gene expression analyses, brain, gills, and liver tissues collected from fish at two stations (upstream and downstream of saline effluent discharge) were examined. Salinization markedly influenced global gene expression profiles, with the brain exhibiting the most differentially expressed genes, emphasizing its unique sensitivity to salinity fluctuations. Pathway analyses revealed the expected enrichment of ion transport and osmoregulation pathways across all tissues. Furthermore, tissue-specific pathways associated with stress, reproduction, growth, immune responses, methylation, and neurological development were identified in the context of salinization. Rigorous validation of RNA-seq data through quantitative PCR (qPCR) underscored the robustness and consistency of our findings across platforms. This investigation unveils intricate molecular mechanisms steering salinity physiological response in non-native minnows confronting diverse environmental stressors. This comprehensive analysis sheds light on the underlying genetic and physiological mechanisms governing fish physiological response in salinity-stressed environments, offering essential knowledge for the conservation and management of freshwater ecosystems facing salinization.
Collapse
Affiliation(s)
- Camilo Escobar-Sierra
- Institute of Zoology, Universität zu Köln Mathematisch-Naturwissenschaftliche Fakultät, Zülpicher Str. 47b, Köln, NRW, 50674, Germany.
| | - Miguel Cañedo-Argüelles
- FEHM-Lab, Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Dolors Vinyoles
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Avda. Diagonal 643, Barcelona, 08028, Catalonia, Spain
| | - Kathrin P Lampert
- Institute of Zoology, Universität zu Köln Mathematisch-Naturwissenschaftliche Fakultät, Zülpicher Str. 47b, Köln, NRW, 50674, Germany
| |
Collapse
|
8
|
Zhang J, Xu X, Deng H, Liu L, Xiang Y, Feng J. Overcoming cancer drug-resistance calls for novel strategies targeting abnormal alternative splicing. Pharmacol Ther 2024; 261:108697. [PMID: 39025436 DOI: 10.1016/j.pharmthera.2024.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Abnormal gene alternative splicing (AS) events are strongly associated with cancer progression. Here, we summarize AS events that contribute to the development of drug resistance and classify them into three categories: alternative cis-splicing (ACS), alternative trans-splicing (ATS), and alternative back-splicing (ABS). The regulatory mechanisms underlying AS processes through cis-acting regulatory elements and trans-acting factors are comprehensively described, and the distinct functions of spliced variants, including linear spliced variants derived from ACS, chimeric spliced variants arising from ATS, and circRNAs generated through ABS, are discussed. The identification of dysregulated spliced variants, which contribute to drug resistance and hinder effective cancer treatment, suggests that abnormal AS processes may together serve as a precise regulatory mechanism enabling drug-resistant cancer cell survival or, alternatively, represent an evolutionary pathway for cancer cells to adapt to changes in the external environment. Moreover, this review summarizes recent advancements in treatment approaches targeting AS-associated drug resistance, focusing on cis-acting regulatory elements, trans-acting factors, and specific spliced variants. Collectively, gaining an in-depth understanding of the mechanisms underlying aberrant alternative splicing events and developing strategies to target this process hold great promise for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xinyu Xu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hongwei Deng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yuancai Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou city, Sichuan 646000, China.
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
9
|
Mathias C, Rodrigues AC, Baal SCS, de Azevedo ALK, Kozak VN, Alves LF, de Oliveira JC, Guil S, Gradia DF. The landscape of lncRNAs in cell granules: Insights into their significance in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1870. [PMID: 39268566 DOI: 10.1002/wrna.1870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
Cellular compartmentalization, achieved through membrane-based compartments, is a fundamental aspect of cell biology that contributes to the evolutionary success of cells. While organelles have traditionally been the focus of research, membrane-less organelles (MLOs) are emerging as critical players, exhibiting distinct morphological features and unique molecular compositions. Recent research highlights the pivotal role of long noncoding RNAs (lncRNAs) in MLOs and their involvement in various cellular processes across different organisms. In the context of cancer, dysregulation of MLO formation, influenced by altered lncRNA expression, impacts chromatin organization, oncogenic transcription, signaling pathways, and telomere lengthening. This review synthesizes the current understanding of lncRNA composition within MLOs, delineating their functions and exploring how their dysregulation contributes to human cancers. Environmental challenges in tumorigenesis, such as nutrient deprivation and hypoxia, induce stress granules, promoting cancer cell survival and progression. Advancements in biochemical techniques, particularly single RNA imaging methods, offer valuable tools for studying RNA functions within live cells. However, detecting low-abundance lncRNAs remains challenging due to their limited expression levels. The correlation between lncRNA expression and pathological conditions, particularly cancer, should be explored, emphasizing the importance of single-cell studies for precise biomarker identification and the development of personalized therapeutic strategies. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Carolina Mathias
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Ana Carolina Rodrigues
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | - Suelen Cristina Soares Baal
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Vanessa Nascimento Kozak
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba, PR, Brazil
| |
Collapse
|
10
|
Ogbe SE, Wang J, Shi Y, Wang Y, Xu Z, Abankwa JK, Dal Pozzo L, Zhao S, Zhou H, Peng Y, Chu X, Wang X, Bian Y. Insights into the epitranscriptomic role of N 6-methyladenosine on aging skeletal muscle. Biomed Pharmacother 2024; 177:117041. [PMID: 38964182 DOI: 10.1016/j.biopha.2024.117041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
The modification of RNA through the N6-methyladenosine (m6A) has emerged as a growing area of research due to its regulatory role in gene expression and various biological processes regulating the expression of genes. m6A RNA methylation is a post-transcriptional modification that is dynamic and reversible and found in mRNA, tRNA, rRNA, and other non-coding RNA of most eukaryotic cells. It is executed by special proteins known as "writers," which initiate methylation; "erasers," which remove methylation; and "readers," which recognize it and regulate the expression of the gene. Modification by m6A regulates gene expression by affecting the splicing, translation, stability, and localization of mRNA. Aging causes molecular and cellular damage, which forms the basis of most age-related diseases. The decline in skeletal muscle mass and functionality because of aging leads to metabolic disorders and morbidities. The inability of aged muscles to regenerate and repair after injury poses a great challenge to the geriatric populace. This review seeks to explore the m6A epigenetic regulation in the myogenesis and regeneration processes in skeletal muscle as well as the progress made on the m6A epigenetic regulation of aging skeletal muscles.
Collapse
Affiliation(s)
- Susan Enechojo Ogbe
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Physiology, Federal University, Wukari, Taraba 670101, Nigeria
| | - JiDa Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - YueXuan Shi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhe Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Joseph Kofi Abankwa
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lisa Dal Pozzo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - ShuWu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - HuiFang Zhou
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - YanFei Peng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - XiaoQian Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - XiangLing Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - YuHong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
11
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
12
|
Luo Q, Zhou X, Lv X, Zheng W, Geng S, Xu T, Sun Y. Identification and functional regulation of three alternative splicing isoforms of the fthl27 gene in miiuy croaker, Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109147. [PMID: 37805112 DOI: 10.1016/j.fsi.2023.109147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Alternative splicing is an important basic mechanism for eukaryotes to control gene expression. Different forms of alternative splicing may lead to the production of protein subtypes with different functions, leading to the expansion of protein diversity in organisms, affecting cell production and metabolism, and is even related to the occurrence of many diseases. Many studies have shown that ferritin is usually associated with inflammation, vascular proliferation, and tumors, which is the focus of immunological research. It not only plays a role in iron metabolism and storage in the body, but also plays an important regulatory role in pathways related to immune and inflammatory regulation. However, there are few studies on alternative splicing events of the ferritin gene nowadays. Therefore, this study identified three different splicing isoforms in its ferritin gene fthl27 of Miichthys miiuy through Sanger sequencing, qRT-PCR, and other experimental techniques, and we found that three different splicing isoforms of the ferritin gene fthl27 in M. Miiuy cells showed an upregulation trend after being stimulated by Lipopolysaccharide (LPS) and poly (I: C). The experiment also found that the three isoforms may have different regulatory effects on the expression of inflammatory factors and antiviral immune factors, playing an important role in the innate immune response of fish.
Collapse
Affiliation(s)
- Qiang Luo
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xuefeng Zhou
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shang Geng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
13
|
Gao X, Jin Y, Zhu W, Wu X, Wang J, Guo C. Regulation of Eukaryotic Translation Initiation Factor 4E as a Potential Anticancer Strategy. J Med Chem 2023; 66:12678-12696. [PMID: 37725577 DOI: 10.1021/acs.jmedchem.3c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Eukaryotic translation initiation factors (eIFs) are highly expressed in cancer cells, especially eIF4E, the central regulatory node driving cancer cell growth and a potential target for anticancer drugs. eIF4E-targeting strategies primarily focus on inhibiting eIF4E synthesis, interfering with eIF4E/eIF4G interactions, and targeting eIF4E phosphorylation and peptide inhibitors. Although some small-molecule inhibitors are in clinical trials, no eIF4E inhibitors are available for clinical use. We provide an overview of the regulatory mechanisms of eIF4E and summarize the progress in developing and discovering eIF4E inhibitor strategies. We propose that interference with eIF4E/eIF4G interactions will provide a new perspective for the design of eIF4E inhibitors and may be a preferred strategy.
Collapse
Affiliation(s)
- Xintao Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yonglong Jin
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wenyong Zhu
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
14
|
Schertzer MD, Stirn A, Isaev K, Pereira L, Das A, Harbison C, Park SH, Wessels HH, Sanjana NE, Knowles DA. Cas13d-mediated isoform-specific RNA knockdown with a unified computational and experimental toolbox. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557474. [PMID: 37745416 PMCID: PMC10515814 DOI: 10.1101/2023.09.12.557474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Alternative splicing is an essential mechanism for diversifying proteins, in which mature RNA isoforms produce proteins with potentially distinct functions. Two major challenges in characterizing the cellular function of isoforms are the lack of experimental methods to specifically and efficiently modulate isoform expression and computational tools for complex experimental design. To address these gaps, we developed and methodically tested a strategy which pairs the RNA-targeting CRISPR/Cas13d system with guide RNAs that span exon-exon junctions in the mature RNA. We performed a high-throughput essentiality screen, quantitative RT-PCR assays, and PacBio long read sequencing to affirm our ability to specifically target and robustly knockdown individual RNA isoforms. In parallel, we provide computational tools for experimental design and screen analysis. Considering all possible splice junctions annotated in GENCODE for multi-isoform genes and our gRNA efficacy predictions, we estimate that our junction-centric strategy can uniquely target up to 89% of human RNA isoforms, including 50,066 protein-coding and 11,415 lncRNA isoforms. Importantly, this specificity spans all splicing and transcriptional events, including exon skipping and inclusion, alternative 5' and 3' splice sites, and alternative starts and ends.
Collapse
Affiliation(s)
- Megan D Schertzer
- New York Genome Center, New York, NY
- Department of Computer Science, Columbia University, New York, NY
| | - Andrew Stirn
- New York Genome Center, New York, NY
- Department of Computer Science, Columbia University, New York, NY
| | - Keren Isaev
- New York Genome Center, New York, NY
- Department of Systems Biology, Columbia University, New York, NY
| | | | - Anjali Das
- New York Genome Center, New York, NY
- Department of Computer Science, Columbia University, New York, NY
| | | | - Stella H Park
- New York Genome Center, New York, NY
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Hans-Hermann Wessels
- New York Genome Center, New York, NY
- Department of Biology, New York University, New York, NY
| | - Neville E Sanjana
- New York Genome Center, New York, NY
- Department of Biology, New York University, New York, NY
| | - David A Knowles
- New York Genome Center, New York, NY
- Department of Computer Science, Columbia University, New York, NY
- Department of Systems Biology, Columbia University, New York, NY
- Data Science Institute, Columbia University, New York, NY
| |
Collapse
|
15
|
Zheng Y, Zhong G, He C, Li M. Targeted splicing therapy: new strategies for colorectal cancer. Front Oncol 2023; 13:1222932. [PMID: 37664052 PMCID: PMC10470845 DOI: 10.3389/fonc.2023.1222932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
RNA splicing is the process of forming mature mRNA, which is an essential phase necessary for gene expression and controls many aspects of cell proliferation, survival, and differentiation. Abnormal gene-splicing events are closely related to the development of tumors, and the generation of oncogenic isoform in splicing can promote tumor progression. As a main process of tumor-specific splicing variants, alternative splicing (AS) can promote tumor progression by increasing the production of oncogenic splicing isoforms and/or reducing the production of normal splicing isoforms. This is the focus of current research on the regulation of aberrant tumor splicing. So far, AS has been found to be associated with various aspects of tumor biology, including cell proliferation and invasion, resistance to apoptosis, and sensitivity to different chemotherapeutic drugs. This article will review the abnormal splicing events in colorectal cancer (CRC), especially the tumor-associated splicing variants arising from AS, aiming to offer an insight into CRC-targeted splicing therapy.
Collapse
Affiliation(s)
| | | | - Chengcheng He
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | | |
Collapse
|
16
|
Manabile MA, Hull R, Khanyile R, Molefi T, Damane BP, Mongan NP, Bates DO, Dlamini Z. Alternative Splicing Events and Their Clinical Significance in Colorectal Cancer: Targeted Therapeutic Opportunities. Cancers (Basel) 2023; 15:3999. [PMID: 37568815 PMCID: PMC10417810 DOI: 10.3390/cancers15153999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) ranks as one of the top causes of cancer mortality worldwide and its incidence is on the rise, particularly in low-middle-income countries (LMICs). There are several factors that contribute to the development and progression of CRC. Alternative splicing (AS) was found to be one of the molecular mechanisms underlying the development and progression of CRC. With the advent of genome/transcriptome sequencing and large patient databases, the broad role of aberrant AS in cancer development and progression has become clear. AS affects cancer initiation, proliferation, invasion, and migration. These splicing changes activate oncogenes or deactivate tumor suppressor genes by producing altered amounts of normally functional or new proteins with different, even opposing, functions. Thus, identifying and characterizing CRC-specific alternative splicing events and variants might help in designing new therapeutic splicing disrupter drugs. CRC-specific splicing events can be used as diagnostic and prognostic biomarkers. In this review, alternatively spliced events and their role in CRC development will be discussed. The paper also reviews recent research on alternatively spliced events that might be exploited as prognostic, diagnostic, and targeted therapeutic indicators. Of particular interest is the targeting of protein arginine methyltransferase (PMRT) isoforms for the development of new treatments and diagnostic tools. The potential challenges and limitations in translating these discoveries into clinical practice will also be addressed.
Collapse
Affiliation(s)
- Mosebo Armstrong Manabile
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
| | - Richard Khanyile
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa
| | - Thulo Molefi
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa;
| | - Nigel Patrick Mongan
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham NG7 2QL, UK;
| | - David Owen Bates
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Centre for Cancer Sciences, Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
| |
Collapse
|
17
|
Wojtyś W, Oroń M. How Driver Oncogenes Shape and Are Shaped by Alternative Splicing Mechanisms in Tumors. Cancers (Basel) 2023; 15:cancers15112918. [PMID: 37296881 DOI: 10.3390/cancers15112918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The development of RNA sequencing methods has allowed us to study and better understand the landscape of aberrant pre-mRNA splicing in tumors. Altered splicing patterns are observed in many different tumors and affect all hallmarks of cancer: growth signal independence, avoidance of apoptosis, unlimited proliferation, invasiveness, angiogenesis, and metabolism. In this review, we focus on the interplay between driver oncogenes and alternative splicing in cancer. On one hand, oncogenic proteins-mutant p53, CMYC, KRAS, or PI3K-modify the alternative splicing landscape by regulating expression, phosphorylation, and interaction of splicing factors with spliceosome components. Some splicing factors-SRSF1 and hnRNPA1-are also driver oncogenes. At the same time, aberrant splicing activates key oncogenes and oncogenic pathways: p53 oncogenic isoforms, the RAS-RAF-MAPK pathway, the PI3K-mTOR pathway, the EGF and FGF receptor families, and SRSF1 splicing factor. The ultimate goal of cancer research is a better diagnosis and treatment of cancer patients. In the final part of this review, we discuss present therapeutic opportunities and possible directions of further studies aiming to design therapies targeting alternative splicing mechanisms in the context of driver oncogenes.
Collapse
Affiliation(s)
- Weronika Wojtyś
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Oroń
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
18
|
Carrión-Marchante R, Pinto-Díez C, Klett-Mingo JI, Palacios E, Barragán-Usero M, Pérez-Morgado MI, Pascual-Mellado M, Alcalá S, Ruiz-Cañas L, Sainz B, González VM, Martín ME. An Aptamer against MNK1 for Non-Small Cell Lung Cancer Treatment. Pharmaceutics 2023; 15:1273. [PMID: 37111758 PMCID: PMC10146192 DOI: 10.3390/pharmaceutics15041273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Its late diagnosis and consequently poor survival make necessary the search for new therapeutic targets. The mitogen-activated protein kinase (MAPK)-interacting kinase 1 (MNK1) is overexpressed in lung cancer and correlates with poor overall survival in non-small cell lung cancer (NSCLC) patients. The previously identified and optimized aptamer from our laboratory against MNK1, apMNKQ2, showed promising results as an antitumor drug in breast cancer in vitro and in vivo. Thus, the present study shows the antitumor potential of apMNKQ2 in another type of cancer where MNK1 plays a significant role, such as NSCLC. The effect of apMNKQ2 in lung cancer was studied with viability, toxicity, clonogenic, migration, invasion, and in vivo efficacy assays. Our results show that apMNKQ2 arrests the cell cycle and reduces viability, colony formation, migration, invasion, and epithelial-mesenchymal transition (EMT) processes in NSCLC cells. In addition, apMNKQ2 reduces tumor growth in an A549-cell line NSCLC xenograft model. In summary, targeting MNK1 with a specific aptamer may provide an innovative strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Rebeca Carrión-Marchante
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | | | - José Ignacio Klett-Mingo
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Esther Palacios
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Miriam Barragán-Usero
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - M. Isabel Pérez-Morgado
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Manuel Pascual-Mellado
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Sonia Alcalá
- Department of Cancer, Instituto de Investigaciones-Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, 28034 Madrid, Spain
- Chronic Diseases and Cancer Area 3—Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Laura Ruiz-Cañas
- Department of Cancer, Instituto de Investigaciones-Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, 28034 Madrid, Spain
- Chronic Diseases and Cancer Area 3—Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Bruno Sainz
- Department of Cancer, Instituto de Investigaciones-Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, 28034 Madrid, Spain
- Chronic Diseases and Cancer Area 3—Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área Cáncer—CIBERONC, ISCIII, 28029 Madrid, Spain
| | - Víctor M. González
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - M. Elena Martín
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS—Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| |
Collapse
|
19
|
Abstract
Alternative splicing (AS) of mRNAs is an essential regulatory mechanism in eukaryotic gene expression. AS misregulation, caused by either dysregulation or mutation of splicing factors, has been shown to be involved in cancer development and progression, making splicing factors suitable targets for cancer therapy. In recent years, various types of pharmacological modulators, such as small molecules and oligonucleotides, targeting distinct components of the splicing machinery, have been under development to treat multiple disorders. Although these approaches have promise, targeting the core spliceosome components disrupts the early stages of spliceosome assembly and can lead to nonspecific and toxic effects. New research directions have been focused on targeting specific splicing factors for a more precise effect. In this Perspective, we will highlight several approaches for targeting splicing factors and their functions and suggest ways to improve their specificity.
Collapse
Affiliation(s)
- Ariel Bashari
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| | - Zahava Siegfried
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| |
Collapse
|
20
|
He Q, Yang C, Xiang Z, Huang G, Wu H, Chen T, Dou R, Song J, Han L, Song T, Wang S, Xiong B. LINC00924-induced fatty acid metabolic reprogramming facilitates gastric cancer peritoneal metastasis via hnRNPC-regulated alternative splicing of Mnk2. Cell Death Dis 2022; 13:987. [PMID: 36418856 PMCID: PMC9684446 DOI: 10.1038/s41419-022-05436-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022]
Abstract
The molecular mechanism underlying gastric cancer (GC) peritoneal metastasis (PM) remains unclear. Here, we identified LINC00924 as a GC PM-related lncRNA through Microarray sequencing. LINC00924 was highly expressed in GC, and its high expression is associated with a broad range of PM. Via RNA sequencing, RNA pulldown assay, mass spectrometry, Seahorse, Lipidomics, spheroid formation and cell viability assays, we found that LINC00924 promoted fatty acid (FA) oxidation (FAO) and FA uptake, which was essential for matrix-detached GC cell survival and spheroid formation. Regarding the mechanism, LINC00924 regulated the alternative splicing (AS) of Mnk2 pre-mRNA by binding to hnRNPC. Specifically, LINC00924 enhanced the binding of hnRNPC to Mnk2 pre-mRNA at e14a, thus downregulating Mnk2a splicing and regulating the p38 MAPK/PPARα signaling pathway. Collectively, our results demonstrate that LINC00924 plays a role in promoting GC PM and could serve as a drug target.
Collapse
Affiliation(s)
- Qiuming He
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - Chaogang Yang
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - Zhenxian Xiang
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - Guoquan Huang
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - Haitao Wu
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - Tingna Chen
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - Rongzhang Dou
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - Jialing Song
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - Lei Han
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - TianTian Song
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - Shuyi Wang
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| | - Bin Xiong
- grid.413247.70000 0004 1808 0969Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,grid.413247.70000 0004 1808 0969Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China ,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071 China ,Hubei Cancer Clinical Study Center, Wuhan, 430071 China
| |
Collapse
|
21
|
Yu M, Sun Y, Shan X, Yang F, Chu G, Chen Q, Han L, Guo Z, Wang G. Therapeutic overexpression of miR-92a-2-5p ameliorated cardiomyocyte oxidative stress injury in the development of diabetic cardiomyopathy. Cell Mol Biol Lett 2022; 27:85. [PMID: 36209049 PMCID: PMC9548149 DOI: 10.1186/s11658-022-00379-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Diabetic cardiomyopathy (DCM) results from pathological changes in cardiac structure and function caused by diabetes. Excessive oxidative stress is an important feature of DCM pathogenesis. MicroRNAs (miRNAs) are key regulators of oxidative stress in the cardiovascular system. In the present study, we screened for the expression of oxidative stress-responsive miRNAs in the development of DCM. Furthermore, we aimed to explore the mechanism and therapeutic potential of miR-92a-2-5p in preventing diabetes-induced myocardial damage. Methods An experimental type 2 diabetic (T2DM) rat model was induced using a high-fat diet and low-dose streptozotocin (30 mg/kg). Oxidative stress injury in cardiomyocytes was induced by high glucose (33 mmol/L). Oxidative stress-responsive miRNAs were screened by quantitative real-time PCR. Intervention with miR-92a-2-5p was accomplished by tail vein injection of agomiR in vivo or adenovirus transfection in vitro. Results The expression of miR-92a-2-5p in the heart tissues was significantly decreased in the T2DM group. Decreased miR-92a-2-5p expression was also detected in high glucose-stimulated cardiomyocytes. Overexpression of miR-92a-2-5p attenuated cardiomyocyte oxidative stress injury, as demonstrated by increased glutathione level, and reduced reactive oxygen species accumulation, malondialdehyde and apoptosis levels. MAPK interacting serine/threonine kinase 2 (MKNK2) was verified as a novel target of miR-92a-2-5p. Overexpression of miR-92a-2-5p in cardiomyocytes significantly inhibited MKNK2 expression, leading to decreased phosphorylation of p38-MAPK signaling, which, in turn, ameliorated cardiomyocyte oxidative stress injury. Additionally, diabetes-induced myocardial damage was significantly alleviated by the injection of miR-92a-2-5p agomiR, which manifested as a significant improvement in myocardial remodeling and function. Conclusions miR-92a-2-5p plays an important role in cardiac oxidative stress, and may serve as a therapeutic target in DCM. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00379-9.
Collapse
Affiliation(s)
- Manli Yu
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yangyong Sun
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Xinghua Shan
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Fan Yang
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Guojun Chu
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qian Chen
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Lin Han
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Zhifu Guo
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Guokun Wang
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
22
|
Li Y, Li L, Liu H, Zhou T. CPNE1 silencing inhibits cell proliferation and accelerates apoptosis in human gastric cancer. Eur J Pharm Sci 2022; 177:106278. [PMID: 35985444 DOI: 10.1016/j.ejps.2022.106278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
Gastric cancer is a heterogeneous disease accompanied by the alteration of various causative genes. The discovery of molecular targets and potential mechanisms of gastric cancer is valuable. Here we explored the biological function of CPNE1 and its molecular mechanisms in gastric cancer. Immunohistochemistry and Kaplan-Meier plotter database were used to identify that CPNE1 was upregulated in human gastric cancer and high expression of CPNE1 suggested a worse prognosis. Silencing CPNE1 could effectively suppress tumor proliferation, accelerate cell apoptosis and arrest cell cycle in vitro. CPNE1 knockdown mediating apoptosis by PARP-1 cleavage via caspase-3 and -7 activation through cytochrome c release from mitochondria in gastric cancer cells. Xenograft mouse model showed that targeted inhibition of CPNE1 slowed down the rate of tumor growth in vivo. We also verified that CPNE1 knockdown inhibited the activation of MAPK pathway mediated by DDIT3-FOS-MKNK2 axis. Specific inhibitor of DDIT3-FOS-MKNK2 axis could suppress gastric cancer cell proliferation, concomitant with knockdown of CPNE1. In conclusion, CPNE1 silencing inhibited gastric cancer growth via deactivating DDIT3-FOS-MKNK2 axis, which indicated that CPNE1 might serve as a therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yan Li
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Department of Gastroenterology, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong 266035, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Han Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Tao Zhou
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
23
|
Juarez I, Su S, Herbert ZT, Teijaro JR, Moulton VR. Splicing factor SRSF1 is essential for CD8 T cell function and host antigen-specific viral immunity. Front Immunol 2022; 13:906355. [PMID: 36189299 PMCID: PMC9523749 DOI: 10.3389/fimmu.2022.906355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Cytotoxic CD8 T cells are crucial for the host antigen-specific immune response to viral pathogens. Here we report the identification of an essential role for the serine/arginine-rich splicing factor (SRSF) 1 in CD8 T cell homeostasis and function. Specifically, SRSF1 is necessary for the maintenance of normal CD8 T lymphocyte numbers in the lymphoid compartment, and for the proliferative capacity and cytotoxic function of CD8 T cells. Furthermore, SRSF1 is required for antigen-specific IFN-γ cytokine responses in a viral infection challenge in mice. Transcriptomics analyses of Srsf1-deficient T cells reveal that SRSF1 controls proliferation, MAP kinase signaling and IFN signaling pathways. Mechanistically, SRSF1 controls the expression and activity of the Mnk2/p38-MAPK axis at the molecular level. Our findings reveal previously unrecognized roles for SRSF1 in the physiology and function of cytotoxic CD8 T lymphocytes and a potential molecular mechanism in viral immunopathogenesis.
Collapse
Affiliation(s)
- Ignacio Juarez
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Immunology, Ophthalmology and ENT, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Shi Su
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Zachary T. Herbert
- Molecular Biology Core Facilities at Dana-Farber Cancer Institute, Boston, MA, United States
| | - John R. Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Vaishali R. Moulton
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Yu B, Liu J, Zhang J, Mu T, Feng X, Ma R, Gu Y. Regulatory role of RNA N6-methyladenosine modifications during skeletal muscle development. Front Cell Dev Biol 2022; 10:929183. [PMID: 35990615 PMCID: PMC9389409 DOI: 10.3389/fcell.2022.929183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/28/2022] [Indexed: 01/07/2023] Open
Abstract
Functional cells in embryonic myogenesis and postnatal muscle development undergo multiple stages of proliferation and differentiation, which are strict procedural regulation processes. N6-methyladenosine (m6A) is the most abundant RNA modification that regulates gene expression in specific cell types in eukaryotes and regulates various biological activities, such as RNA processing and metabolism. Recent studies have shown that m6A modification-mediated transcriptional and post-transcriptional regulation plays an essential role in myogenesis. This review outlines embryonic and postnatal myogenic differentiation and summarizes the important roles played by functional cells in each developmental period. Furthermore, the key roles of m6A modifications and their regulators in myogenesis were highlighted, and the synergistic regulation of m6A modifications with myogenic transcription factors was emphasized to characterize the cascade of transcriptional and post-transcriptional regulation during myogenesis. This review also discusses the crosstalk between m6A modifications and non-coding RNAs, proposing a novel mechanism for post-transcriptional regulation during skeletal muscle development. In summary, the transcriptional and post-transcriptional regulatory mechanisms mediated by m6A and their regulators may help develop new strategies to maintain muscle homeostasis, which are expected to become targets for animal muscle-specific trait breeding and treatment of muscle metabolic diseases.
Collapse
|
25
|
Liu Y, Chen J, Liang H, Cai Y, Li X, Yan L, Zhou L, Shan L, Wang H. Human umbilical cord-derived mesenchymal stem cells not only ameliorate blood glucose but also protect vascular endothelium from diabetic damage through a paracrine mechanism mediated by MAPK/ERK signaling. Stem Cell Res Ther 2022; 13:258. [PMID: 35715841 PMCID: PMC9205155 DOI: 10.1186/s13287-022-02927-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endothelial damage is an initial step of macro- and micro-vasculature dysfunctions in diabetic patients, accounting for a high incidence of diabetic vascular complications, such as atherosclerosis, nephropathy, retinopathy, and neuropathy. However, clinic lacks effective therapeutics targeting diabetic vascular complications. In field of regenerative medicine, mesenchymal stem cells, such as human umbilical cord-derived MSCs (hucMSCs), have great potential in treating tissue damage. METHODS To determine whether hucMSCs infusion could repair diabetic vascular endothelial damage and how it works, this study conducted in vivo experiment on streptozotocin-induced diabetic rat model to test body weight, fasting blood glucose (FBG), serum ICAM-1 and VCAM-1 levels, histopathology and immunohistochemical staining of aorta segments. In vitro experiment was further conducted to determine the effects of hucMSCs on diabetic vascular endothelial damage, applying assays of resazurin staining, MTT cell viability, wound healing, transwell migration, and matrigel tube formation on human umbilical vein endothelial cells (HUVECs). RNA sequencing (RNAseq) and molecular experiment were conducted to clarify the mechanism of hucMSCs. RESULTS The in vivo data revealed that hucMSCs partially restore the alterations of body weight, FBG, serum ICAM-1 and VCAM-1 levels, histopathology of aorta and reversed the abnormal phosphorylation of ERK in diabetic rats. By using the conditioned medium of hucMSCs (MSC-CM), the in vitro data revealed that hucMSCs improved cell viability, wound healing, migration and angiogenesis of the high glucose-damaged HUVECs through a paracrine action mode, and the altered gene expressions of IL-6, TNF-α, ICAM-1, VCAM-1, BAX, P16, P53 and ET-1 were significantly restored by MSC-CM. RNAseq incorporated with real-time PCR and Western blot results clarified that high glucose activated MAPK/ERK signaling in HUVECs, while MSC-CM reversed the abnormal phosphorylation of ERK and overexpressions of MKNK2, ERBB3, MYC and DUSP5 in MAPK/ERK signaling pathway. CONCLUSIONS HucMSCs not only ameliorated blood glucose but also protected vascular endothelium from diabetic damage, in which MAPK/ERK signaling mediated its molecular mechanism of paracrine action. Our findings provided novel knowledge of hucMSCs in the treatment of diabetes and suggested a prospective strategy for the clinical treatment of diabetic vascular complications.
Collapse
Affiliation(s)
- Yi Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haowei Liang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yueqin Cai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyue Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China. .,Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China.
| | - Hui Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
26
|
Abstract
Mitogen-activated protein kinase (MAPK)-activated protein kinases (MAPKAPKs) are defined by their exclusive activation by MAPKs. They can be activated by classical and atypical MAPKs that have been stimulated by mitogens and various stresses. Genetic deletions of MAPKAPKs and availability of highly specific small-molecule inhibitors have continuously increased our functional understanding of these kinases. MAPKAPKs cooperate in the regulation of gene expression at the level of transcription; RNA processing, export, and stability; and protein synthesis. The diversity of stimuli for MAPK activation, the cross talk between the different MAPKs and MAPKAPKs, and the specific substrate pattern of MAPKAPKs orchestrate immediate-early and inflammatory responses in space and time and ensure proper control of cell growth, differentiation, and cell behavior. Hence, MAPKAPKs are promising targets for cancer therapy and treatments for conditions of acute and chronic inflammation, such as cytokine storms and rheumatoid arthritis. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Natalia Ronkina
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany;
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany;
| |
Collapse
|
27
|
Wink L, Miller RA, Garcia GG. Rapamycin, Acarbose and 17α-estradiol share common mechanisms regulating the MAPK pathways involved in intracellular signaling and inflammation. Immun Ageing 2022; 19:8. [PMID: 35105357 PMCID: PMC8805398 DOI: 10.1186/s12979-022-00264-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/19/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Rapamycin (Rapa), acarbose (ACA), and 17α-estradiol (17aE2, males only) have health benefits that increase lifespan of mice. Little is known about how these three agents alter the network of pathways downstream of insulin/IGF1 signals as well as inflammatory/stress responses. RESULTS ACA, Rapa, and 17aE2 (in males, but not in females) oppose age-related increases in the MEK1- ERK1/2-MNK1/2 cascade, and thus reduce phosphorylation of eIF4E, a key component of cap-dependent translation. In parallel, these treatments (in both sexes) reduce age-related increases in the MEK3-p38MAPK-MK2 pathway, to decrease levels of the acute phase response proteins involved in inflammation. CONCLUSION Each of three drugs converges on the regulation of both the ERK1/2 signaling pathway and the p38-MAPK pathway. The changes induced by treatments in ERK1/2 signaling are seen in both sexes, but the 17aE2 effects are male-specific, consistent with the effects on lifespan. However, the inhibition of age-dependent p38MAPK pathways and acute phase responses is triggered in both sexes by all three drugs, suggesting new approaches to prevention or reversal of age-related inflammatory changes in a clinical setting independent of lifespan effects.
Collapse
Affiliation(s)
- Lily Wink
- grid.214458.e0000000086837370Department of Chemistry, University of Michigan College of Literature Science and The Arts, Ann Arbor, USA
| | - Richard A. Miller
- grid.214458.e0000000086837370Department of Pathology, University of Michigan School of Medicine, Ann Arbor, USA ,grid.214458.e0000000086837370University of Michigan Geriatrics Center, Room 3005 BSRB, Box 2200, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
| | - Gonzalo G. Garcia
- grid.214458.e0000000086837370Department of Pathology, University of Michigan School of Medicine, Ann Arbor, USA
| |
Collapse
|
28
|
Xie SJ, Lei H, Yang B, Diao LT, Liao JY, He JH, Tao S, Hu YX, Hou YR, Sun YJ, Peng YW, Zhang Q, Xiao ZD. Dynamic m 6A mRNA Methylation Reveals the Role of METTL3/14-m 6A-MNK2-ERK Signaling Axis in Skeletal Muscle Differentiation and Regeneration. Front Cell Dev Biol 2021; 9:744171. [PMID: 34660602 PMCID: PMC8517268 DOI: 10.3389/fcell.2021.744171] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/10/2021] [Indexed: 11/25/2022] Open
Abstract
N6-methyladenosine (m6A) RNA methylation has emerged as an important factor in various biological processes by regulating gene expression. However, the dynamic profile, function and underlying molecular mechanism of m6A modification during skeletal myogenesis remain elusive. Here, we report that members of the m6A core methyltransferase complex, METTL3 and METTL14, are downregulated during skeletal muscle development. Overexpression of either METTL3 or METTL14 dramatically blocks myotubes formation. Correspondingly, knockdown of METTL3 or METTL14 accelerates the differentiation of skeletal muscle cells. Genome-wide transcriptome analysis suggests ERK/MAPK is the downstream signaling pathway that is regulated to the greatest extent by METTL3/METTL14. Indeed, METTL3/METTL14 expression facilitates ERK/MAPK signaling. Via MeRIP-seq, we found that MNK2, a critical regulator of ERK/MAPK signaling, is m6A modified and is a direct target of METTL3/METTL14. We further revealed that YTHDF1 is a potential reader of m6A on MNK2, regulating MNK2 protein levels without affecting mRNA levels. Furthermore, we discovered that METTL3/14-MNK2 axis was up-regulated notably after acute skeletal muscle injury. Collectively, our studies revealed that the m6A writers METTL3/METTL14 and the m6A reader YTHDF1 orchestrate MNK2 expression posttranscriptionally and thus control ERK signaling, which is required for the maintenance of muscle myogenesis and may contribute to regeneration.
Collapse
Affiliation(s)
- Shu-Juan Xie
- Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hang Lei
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bing Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-Ting Diao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie-Hua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuang Tao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan-Xia Hu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ya-Rui Hou
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu-Jia Sun
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan-Wen Peng
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhen-Dong Xiao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Alternative splicing of mRNA in colorectal cancer: new strategies for tumor diagnosis and treatment. Cell Death Dis 2021; 12:752. [PMID: 34330892 PMCID: PMC8324868 DOI: 10.1038/s41419-021-04031-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Alternative splicing (AS) is an important event that contributes to posttranscriptional gene regulation. This process leads to several mature transcript variants with diverse physiological functions. Indeed, disruption of various aspects of this multistep process, such as cis- or trans- factor alteration, promotes the progression of colorectal cancer. Therefore, targeting some specific processes of AS may be an effective therapeutic strategy for treating cancer. Here, we provide an overview of the AS events related to colorectal cancer based on research done in the past 5 years. We focus on the mechanisms and functions of variant products of AS that are relevant to malignant hallmarks, with an emphasis on variants with clinical significance. In addition, novel strategies for exploiting the therapeutic value of AS events are discussed.
Collapse
|
30
|
Mehterov N, Kazakova M, Sbirkov Y, Vladimirov B, Belev N, Yaneva G, Todorova K, Hayrabedyan S, Sarafian V. Alternative RNA Splicing-The Trojan Horse of Cancer Cells in Chemotherapy. Genes (Basel) 2021; 12:genes12071085. [PMID: 34356101 PMCID: PMC8306420 DOI: 10.3390/genes12071085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Almost all transcribed human genes undergo alternative RNA splicing, which increases the diversity of the coding and non-coding cellular landscape. The resultant gene products might have distinctly different and, in some cases, even opposite functions. Therefore, the abnormal regulation of alternative splicing plays a crucial role in malignant transformation, development, and progression, a fact supported by the distinct splicing profiles identified in both healthy and tumor cells. Drug resistance, resulting in treatment failure, still remains a major challenge for current cancer therapy. Furthermore, tumor cells often take advantage of aberrant RNA splicing to overcome the toxicity of the administered chemotherapeutic agents. Thus, deciphering the alternative RNA splicing variants in tumor cells would provide opportunities for designing novel therapeutics combating cancer more efficiently. In the present review, we provide a comprehensive outline of the recent findings in alternative splicing in the most common neoplasms, including lung, breast, prostate, head and neck, glioma, colon, and blood malignancies. Molecular mechanisms developed by cancer cells to promote oncogenesis as well as to evade anticancer drug treatment and the subsequent chemotherapy failure are also discussed. Taken together, these findings offer novel opportunities for future studies and the development of targeted therapy for cancer-specific splicing variants.
Collapse
Affiliation(s)
- Nikolay Mehterov
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.); (M.K.); (Y.S.)
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.); (M.K.); (Y.S.)
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Yordan Sbirkov
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.); (M.K.); (Y.S.)
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Boyan Vladimirov
- Department of Maxillofacial Surgery, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Nikolay Belev
- Medical Simulation and Training Center, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Galina Yaneva
- Department of Biology, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria;
| | - Krassimira Todorova
- Laboratory of Reproductive OMICs Technologies, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.T.); (S.H.)
| | - Soren Hayrabedyan
- Laboratory of Reproductive OMICs Technologies, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.T.); (S.H.)
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.); (M.K.); (Y.S.)
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
- Correspondence: ; Tel.: +359-882-512-952
| |
Collapse
|
31
|
Jbara A, Siegfried Z, Karni R. Splice-switching as cancer therapy. Curr Opin Pharmacol 2021; 59:140-148. [PMID: 34217945 DOI: 10.1016/j.coph.2021.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022]
Abstract
In light of recent advances in RNA splicing modulation as therapy for specific genetic diseases, there is great optimism that this approach can be applied to treatment of cancer as well. Dysregulation of alternative RNA splicing is a common aberration detected in many cancers and thus, provides an attractive target for therapeutics. Here, we present and compare two promising approaches that are currently being investigated to manipulate alternative splicing and their potential use in therapy. The first strategy makes use of splice-switching oligonucleotides, whereas the second strategy uses CRISPR (clustered regularly interspaced short palindromic repeat Cas (CRISPR-associated) technology. We will discuss both the challenges and limitations of these technologies and progress being made to implement splice-switching as a potential cancer therapy.
Collapse
Affiliation(s)
- Amina Jbara
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Zahava Siegfried
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel.
| |
Collapse
|
32
|
Oh J, Pradella D, Shao C, Li H, Choi N, Ha J, Ruggiero S, Fu XD, Zheng X, Ghigna C, Shen H. Widespread Alternative Splicing Changes in Metastatic Breast Cancer Cells. Cells 2021; 10:cells10040858. [PMID: 33918758 PMCID: PMC8070448 DOI: 10.3390/cells10040858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Aberrant alternative splicing (AS) is a hallmark of cancer and a potential target for novel anti-cancer therapeutics. Breast cancer-associated AS events are known to be linked to disease progression, metastasis, and survival of breast cancer patients. To identify altered AS programs occurring in metastatic breast cancer, we perform a global analysis of AS events by using RNA-mediated oligonucleotide annealing, selection, and ligation coupled with next-generation sequencing (RASL-seq). We demonstrate that, relative to low-metastatic, high-metastatic breast cancer cells show different AS choices in genes related to cancer progression. Supporting a global reshape of cancer-related splicing profiles in metastatic breast cancer we found an enrichment of RNA-binding motifs recognized by several splicing regulators, which have aberrant expression levels or activity during breast cancer progression, including SRSF1. Among SRSF1-regulated targets we found DCUN1D5, a gene for which skipping of exon 4 in its pre-mRNA introduces a premature termination codon (PTC), thus generating an unstable transcript degraded by nonsense-mediated mRNA decay (NMD). Significantly, distinct breast cancer subtypes show different DCUN1D5 isoform ratios with metastatic breast cancer expressing the highest level of the NMD-insensitive DCUN1D5 mRNA, thus showing high DCUN1D5 expression levels, which are ultimately associated with poor overall and relapse-free survival in breast cancer patients. Collectively, our results reveal global AS features of metastatic breast tumors, which open new possibilities for the treatment of these aggressive tumor types.
Collapse
Affiliation(s)
- Jagyeong Oh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (N.C.); (J.H.); (X.Z.)
| | - Davide Pradella
- Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy; (D.P.); (S.R.)
| | - Changwei Shao
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0021, USA; (C.S.); (H.L.); (X.-D.F.)
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0021, USA; (C.S.); (H.L.); (X.-D.F.)
| | - Namjeong Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (N.C.); (J.H.); (X.Z.)
| | - Jiyeon Ha
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (N.C.); (J.H.); (X.Z.)
| | - Sonia Ruggiero
- Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy; (D.P.); (S.R.)
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0021, USA; (C.S.); (H.L.); (X.-D.F.)
| | - Xuexiu Zheng
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (N.C.); (J.H.); (X.Z.)
| | - Claudia Ghigna
- Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy; (D.P.); (S.R.)
- Correspondence: (C.G.); (H.S.); Tel.: +39-0382-546324 (C.G.); +82-62-715-2507 (H.S.); Fax: +39-0382-422-286 (C.G.); +82-62-715-2484 (H.S.)
| | - Haihong Shen
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (J.O.); (N.C.); (J.H.); (X.Z.)
- Correspondence: (C.G.); (H.S.); Tel.: +39-0382-546324 (C.G.); +82-62-715-2507 (H.S.); Fax: +39-0382-422-286 (C.G.); +82-62-715-2484 (H.S.)
| |
Collapse
|
33
|
Deng K, Yao J, Huang J, Ding Y, Zuo J. Abnormal alternative splicing promotes tumor resistance in targeted therapy and immunotherapy. Transl Oncol 2021; 14:101077. [PMID: 33774500 PMCID: PMC8039720 DOI: 10.1016/j.tranon.2021.101077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal alternative splicing is involve in abnormal expression of genes in cancer. Abnormal alternative splicing events promote malignant progression of cancer. Abnormal alternative splicing develops tumor resistance to targeted therapy by changing the target point and signal transduction pathway. Abnormal alternative splicing develops tumor resistance to immunotherapy by changing cell surface antigens and protein structure.
Abnormally alternative splicing events are common hallmark of diverse types of cancers. Splicing variants with aberrant functions play an important role in cancer development. Most importantly, a growing body of evidence has supported that alternative splicing might play a significant role in the therapeutic resistance of tumors. Targeted therapy and immunotherapy are the future directions of tumor therapy; however, the loss of antigen targets on the tumor cells surface and alterations in drug efficacy have resulted in the failure of targeted therapy and immunotherapy. Interestingly, abnormal alternative splicing, as a strategy to regulate gene expression, is reportedly involved in the reprogramming of cell signaling pathways and epitopes on the tumor cell surface by changing splicing patterns of genes, thus rendering tumors resisted to targeted therapy and immunotherapy. Accordingly, increased knowledge regarding abnormal alternative splicing in tumors may help predict therapeutic resistance during targeted therapy and immunotherapy and lead to novel therapeutic approaches in cancer. Herein, we provide a brief synopsis of abnormal alternative splicing events in cancer progression and therapeutic resistance.
Collapse
Affiliation(s)
- Kun Deng
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China
| | - Jingwei Yao
- The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China
| | - Jialu Huang
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China
| | - Yubo Ding
- The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China
| | - Jianhong Zuo
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China; The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China; Clinical Laboratory, The Third Affiliated Hospital of University of South China, Hengyang, Hunan 421900, China.
| |
Collapse
|
34
|
Wang J, Wang C, Li L, Yang L, Wang S, Ning X, Gao S, Ren L, Chaulagain A, Tang J, Wang T. Alternative splicing: An important regulatory mechanism in colorectal carcinoma. Mol Carcinog 2021; 60:279-293. [PMID: 33629774 DOI: 10.1002/mc.23291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 12/17/2022]
Abstract
Alternative splicing (AS) is a process that produces various mRNA splicing isoforms via different splicing patterns of mRNA precursors (pre-mRNAs). AS is the primary mechanism for increasing the types and quantities of proteins to improve biodiversity and influence multiple biological processes, including chromatin modification, signal transduction, and protein expression. It has been reported that AS is involved in the tumorigenesis and development of colorectal carcinoma (CRC). In this review, we delineate the concept, types, regulatory processes, and technical advances of AS and focus on the role of AS in CRC initiation, progression, treatment, and prognosis. This summary of the current knowledge about AS will contribute to our understanding of CRC initiation and development. This study will help in the discovery of novel biomarkers and therapeutic targets for CRC prognosis and treatment.
Collapse
Affiliation(s)
- Jianyi Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Chuhan Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lirui Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Shuoshuo Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xuelian Ning
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Shuangshu Gao
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lili Ren
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Anita Chaulagain
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
35
|
Liu H, Gong Z, Li K, Zhang Q, Xu Z, Xu Y. SRPK1/2 and PP1α exert opposite functions by modulating SRSF1-guided MKNK2 alternative splicing in colon adenocarcinoma. J Exp Clin Cancer Res 2021; 40:75. [PMID: 33602301 PMCID: PMC7893936 DOI: 10.1186/s13046-021-01877-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The Mnk2 kinase, encoded by MKNK2 gene, plays critical roles in MAPK signaling and was involved in oncogenesis. Human MKNK2 pre-mRNA can be alternatively spliced into two splicing isoforms, the MKNK2a and MKNK2b, thus yielding Mnk2a and Mnk2b proteins with different domains. The involvement of Mnk2 alternative splicing in colon cancer has been implicated based on RNA-sequencing data from TCGA database. This study aimed at investigating the upstream modulators and clinical relevance of Mnk2 alternative splicing in colon adenocarcinoma (CAC). METHODS PCR, western blotting and immunohistochemistry (IHC) were performed to assess the expression of Mnk2 and upstream proteins in CAC. The function of Mnk2 and its regulators were demonstrated in different CAC cell lines as well as in xenograft models. Two independent cohorts of CAC patients were used to reveal the clinical significance of MKNK2 alternative splicing. RESULTS Comparing with adjacent nontumorous tissue, CAC specimen showed a decreased MKNK2a level and an increased MKNK2b level, which were correlated with KRAS mutation and tumor size. The SRSF1 (serine/arginine-rich splicing factor 1) was further confirmed to be the major splicing factor targeting MKNK2 in CAC cells. Higher expression of SRPK1/2 or decreased activity of PP1α were responsible for enhancing SRSF1 phosphorylation and nucleus translocation, subsequently resulted in a switch of MKNK2 alternative splicing. CONCLUSIONS Our data showed that phosphorylation and subcellular localization of SRSF1 were balanced by SRPK1/2 and PP1α in CAC cells. High nucleus SRSF1 promoted MKNK2 splicing into MKNK2b instead of MNK2a, consequently enhanced tumor proliferation.
Collapse
Affiliation(s)
- Hongda Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Zheng Gong
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Kangshuai Li
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Qun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
36
|
Bagheri-Yarmand R, Dadu R, Ye L, Shiny Jebaraj Y, Martinez JA, Ma J, Tarapore RS, Allen JE, Sherman SI, Williams MD, Gagel RF. ONC201 Shows Potent Anticancer Activity Against Medullary Thyroid Cancer via Transcriptional Inhibition of RET, VEGFR2, and IGFBP2. Mol Cancer Ther 2021; 20:665-675. [PMID: 33536187 DOI: 10.1158/1535-7163.mct-20-0386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/14/2020] [Accepted: 01/26/2021] [Indexed: 11/16/2022]
Abstract
Gain-of-function point mutations in the receptor tyrosine kinase RET, a driver oncogene in medullary thyroid carcinoma (MTC), prevent apoptosis through inhibition of ATF4, a critical transcriptional regulator of endoplasmic reticulum stress. However, the critical regulatory mechanisms driving RET-dependent oncogenesis remain elusive, and there is a clinical need to identify a transcriptional RET inhibitor. Here, we found that RET depletion decreased IGFBP2 and VEGFR2 mRNA and protein expression in MTC cells. IGFBP2 knockdown decreased cell survival and migration of MTC cells. In patients, IGFBP2 expression increased in metastatic MTC, and high IGFBP2 associated with poor overall survival. VEGFR2 protein levels were positively associated with RET expression in primary tumors, and VEGF-mediated increased cell viability was RET dependent. The small-molecule ONC201 treatment of MTC cells caused apoptotic cell death, decreased transcription of RET, VEGFR2, IGFBP2, increased mRNA levels of ATF4, and ATF4 target genes including DDIT3, BBC3, DUSP8, MKNK2, KLF9, LZTFL1, and SESN2 Moreover, IGFBP2 depletion increased ONC201-induced cell death. ONC201 inhibited tumor growth at a well-tolerated dose of 120 mg/kg/week administered by oral gavage and decreased MTC xenograft cell proliferation and angiogenesis. The protein levels of RET, IGFBP2, and VEGFR2 were decreased in ONC201-treated xenografts. Our study uncovered a novel ONC201 mechanism of action through regulation of RET and its targets, VEGFR2 and IGFBP2; this mechanism could be translated into the clinic and represent a promising strategy for the treatment of all patients with MTC, including those with TKI-refractory disease and other cancer with RET abnormalities.
Collapse
Affiliation(s)
- Rozita Bagheri-Yarmand
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ramona Dadu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lei Ye
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yaashmin Shiny Jebaraj
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jade A Martinez
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junsheng Ma
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Steven I Sherman
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michelle D Williams
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert F Gagel
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
37
|
Xie J, Shen K, Jones AT, Yang J, Tee AR, Shen MH, Yu M, Irani S, Wong D, Merrett JE, Lenchine RV, De Poi S, Jensen KB, Trim PJ, Snel MF, Kamei M, Martin SK, Fitter S, Tian S, Wang X, Butler LM, Zannettino ACW, Proud CG. Reciprocal signaling between mTORC1 and MNK2 controls cell growth and oncogenesis. Cell Mol Life Sci 2021; 78:249-270. [PMID: 32170339 PMCID: PMC11068017 DOI: 10.1007/s00018-020-03491-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/23/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022]
Abstract
eIF4E plays key roles in protein synthesis and tumorigenesis. It is phosphorylated by the kinases MNK1 and MNK2. Binding of MNKs to eIF4G enhances their ability to phosphorylate eIF4E. Here, we show that mTORC1, a key regulator of mRNA translation and oncogenesis, directly phosphorylates MNK2 on Ser74. This suppresses MNK2 activity and impairs binding of MNK2 to eIF4G. These effects provide a novel mechanism by which mTORC1 signaling impairs the function of MNK2 and thereby decreases eIF4E phosphorylation. MNK2[S74A] knock-in cells show enhanced phosphorylation of eIF4E and S6K1 (i.e., increased mTORC1 signaling), enlarged cell size, and increased invasive and transformative capacities. MNK2[Ser74] phosphorylation was inversely correlated with disease progression in human prostate tumors. MNK inhibition exerted anti-proliferative effects in prostate cancer cells in vitro. These findings define a novel feedback loop whereby mTORC1 represses MNK2 activity and oncogenic signaling through eIF4E phosphorylation, allowing reciprocal regulation of these two oncogenic pathways.
Collapse
Affiliation(s)
- Jianling Xie
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
| | - Kaikai Shen
- Medical Research Council Toxicology Unit, Leicester, UK
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ashley T Jones
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, UK
| | - Jian Yang
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, UK
| | - Andrew R Tee
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, UK
| | - Ming Hong Shen
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, UK
| | - Mengyuan Yu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Swati Irani
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Derick Wong
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
| | - James E Merrett
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
- Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, Australia
| | - Roman V Lenchine
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
- Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, Australia
| | - Stuart De Poi
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
- Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, Australia
| | - Kirk B Jensen
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
- Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, Australia
| | - Paul J Trim
- Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Marten F Snel
- Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Makoto Kamei
- Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Sally Kim Martin
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, Australia
| | - Stephen Fitter
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, Australia
| | - Shuye Tian
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuemin Wang
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia
- Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C W Zannettino
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, Australia
| | - Christopher G Proud
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia.
- Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
38
|
Di Matteo A, Belloni E, Pradella D, Cappelletto A, Volf N, Zacchigna S, Ghigna C. Alternative splicing in endothelial cells: novel therapeutic opportunities in cancer angiogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:275. [PMID: 33287867 PMCID: PMC7720527 DOI: 10.1186/s13046-020-01753-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Alternative splicing (AS) is a pervasive molecular process generating multiple protein isoforms, from a single gene. It plays fundamental roles during development, differentiation and maintenance of tissue homeostasis, while aberrant AS is considered a hallmark of multiple diseases, including cancer. Cancer-restricted AS isoforms represent either predictive biomarkers for diagnosis/prognosis or targets for anti-cancer therapies. Here, we discuss the contribution of AS regulation in cancer angiogenesis, a complex process supporting disease development and progression. We consider AS programs acting in a specific and non-redundant manner to influence morphological and functional changes involved in cancer angiogenesis. In particular, we describe relevant AS variants or splicing regulators controlling either secreted or membrane-bound angiogenic factors, which may represent attractive targets for therapeutic interventions in human cancer.
Collapse
Affiliation(s)
- Anna Di Matteo
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy
| | - Elisa Belloni
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy
| | - Davide Pradella
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy
| | - Ambra Cappelletto
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Nina Volf
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149, Trieste, Italy. .,Department of Medical, Surgical and Health Sciences, University of Trieste, 34149, Trieste, Italy.
| | - Claudia Ghigna
- Istituto di Genetica Molecolare, "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, via Abbiategrasso 207, 27100, Pavia, Italy.
| |
Collapse
|
39
|
Bessa C, Matos P, Jordan P, Gonçalves V. Alternative Splicing: Expanding the Landscape of Cancer Biomarkers and Therapeutics. Int J Mol Sci 2020; 21:ijms21239032. [PMID: 33261131 PMCID: PMC7729450 DOI: 10.3390/ijms21239032] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Alternative splicing (AS) is a critical post-transcriptional regulatory mechanism used by more than 95% of transcribed human genes and responsible for structural transcript variation and proteome diversity. In the past decade, genome-wide transcriptome sequencing has revealed that AS is tightly regulated in a tissue- and developmental stage-specific manner, and also frequently dysregulated in multiple human cancer types. It is currently recognized that splicing defects, including genetic alterations in the spliced gene, altered expression of both core components or regulators of the precursor messenger RNA (pre-mRNA) splicing machinery, or both, are major drivers of tumorigenesis. Hence, in this review we provide an overview of our current understanding of splicing alterations in cancer, and emphasize the need to further explore the cancer-specific splicing programs in order to obtain new insights in oncology. Furthermore, we also discuss the recent advances in the identification of dysregulated splicing signatures on a genome-wide scale and their potential use as biomarkers. Finally, we highlight the therapeutic opportunities arising from dysregulated splicing and summarize the current approaches to therapeutically target AS in cancer.
Collapse
Affiliation(s)
- Cláudia Bessa
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (C.B.); (P.M.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Paulo Matos
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (C.B.); (P.M.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (C.B.); (P.M.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Correspondence: (P.J.); (V.G.); Tel.: +351-217-519-380 (P.J.)
| | - Vânia Gonçalves
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (C.B.); (P.M.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Correspondence: (P.J.); (V.G.); Tel.: +351-217-519-380 (P.J.)
| |
Collapse
|
40
|
Nuclear P38: Roles in Physiological and Pathological Processes and Regulation of Nuclear Translocation. Int J Mol Sci 2020; 21:ijms21176102. [PMID: 32847129 PMCID: PMC7504396 DOI: 10.3390/ijms21176102] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
The p38 mitogen-activated protein kinase (p38MAPK, termed here p38) cascade is a central signaling pathway that transmits stress and other signals to various intracellular targets in the cytoplasm and nucleus. More than 150 substrates of p38α/β have been identified, and this number is likely to increase. The phosphorylation of these substrates initiates or regulates a large number of cellular processes including transcription, translation, RNA processing and cell cycle progression, as well as degradation and the nuclear translocation of various proteins. Being such a central signaling cascade, its dysregulation is associated with many pathologies, particularly inflammation and cancer. One of the hallmarks of p38α/β signaling is its stimulated nuclear translocation, which occurs shortly after extracellular stimulation. Although p38α/β do not contain nuclear localization or nuclear export signals, they rapidly and robustly translocate to the nucleus, and they are exported back to the cytoplasm within minutes to hours. Here, we describe the physiological and pathological roles of p38α/β phosphorylation, concentrating mainly on the ill-reviewed regulation of p38α/β substrate degradation and nuclear translocation. In addition, we provide information on the p38α/β ’s substrates, concentrating mainly on the nuclear targets and their role in p38α/β functions. Finally, we also provide information on the mechanisms of nuclear p38α/β translocation and its use as a therapeutic target for p38α/β-dependent diseases.
Collapse
|
41
|
Zheng X, Peng Q, Wang L, Zhang X, Huang L, Wang J, Qin Z. Serine/arginine-rich splicing factors: the bridge linking alternative splicing and cancer. Int J Biol Sci 2020; 16:2442-2453. [PMID: 32760211 PMCID: PMC7378643 DOI: 10.7150/ijbs.46751] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023] Open
Abstract
The serine/arginine-rich splicing factors (SRs) belong to the serine arginine-rich protein family, which plays an extremely important role in the splicing process of precursor RNA. The SRs recognize the splicing elements on precursor RNA, then recruit and assemble spliceosome to promote or inhibit the occurrence of splicing events. In tumors, aberrant expression of SRs causes abnormal splicing of RNA, contributing to proliferation, migration and apoptosis resistance of tumor cells. Here, we reviewed the vital role of SRs in various tumors and discussed the promise of analyzing mRNA alternative splicing events in tumor. Further, we highlight the challenges and discussed the perspectives for the identification of new potential targets for cancer therapy via SRs family members.
Collapse
Affiliation(s)
- Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China
| | - Qiu Peng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, 410008, China
| | - Lujuan Wang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, 410008, China
| | - Xuemei Zhang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China
| | - Lili Huang
- Laboratory of Genetics and Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region; Guangxi Birth Defects Research and Prevention Institute, Nanning, Guangxi, 530003, China
| | - Jia Wang
- Department of Immunology, Changzhi Medical College, Changzhi, Shanxi, 046000 China
| | - Zailong Qin
- Laboratory of Genetics and Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region; Guangxi Birth Defects Research and Prevention Institute, Nanning, Guangxi, 530003, China
| |
Collapse
|
42
|
Wei TH, Hsieh CL. Effect of Acupuncture on the p38 Signaling Pathway in Several Nervous System Diseases: A Systematic Review. Int J Mol Sci 2020; 21:E4693. [PMID: 32630156 PMCID: PMC7370084 DOI: 10.3390/ijms21134693] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022] Open
Abstract
Acupuncture is clinically used to treat various diseases and exerts positive local and systemic effects in several nervous system diseases. Advanced molecular and clinical studies have continually attempted to decipher the mechanisms underlying these effects of acupuncture. While a growing understanding of the pathophysiology underlying several nervous system diseases shows it to be related to inflammation and impair cell regeneration after ischemic events, the relationship between the therapeutic mechanism of acupuncture and the p38 MAPK signal pathway has yet to be elucidated. This review discusses the latest advancements in the identification of the effect of acupuncture on the p38 signaling pathway in several nervous system diseases. We electronically searched databases including PubMed, Embase, and the Cochrane Library from their inception to April 2020, using the following keywords alone or in various combinations: "acupuncture", "p38 MAPK pathway", "signaling", "stress response", "inflammation", "immune", "pain", "analgesic", "cerebral ischemic injury", "epilepsy", "Alzheimer's disease", "Parkinson's disease", "dementia", "degenerative", and "homeostasis". Manual acupuncture and electroacupuncture confer positive therapeutic effects by regulating proinflammatory cytokines, ion channels, scaffold proteins, and transcription factors including TRPV1/4, Nav, BDNF, and NADMR1; consequently, p38 regulates various phenomena including cell communication, remodeling, regeneration, and gene expression. In this review article, we found the most common acupoints for the relief of nervous system disorders including GV20, GV14, ST36, ST37, and LI4. Acupuncture exhibits dual regulatory functions of activating or inhibiting different p38 MAPK pathways, contributing to an overall improvement of clinical symptoms and function in several nervous system diseases.
Collapse
Affiliation(s)
- Tzu-Hsuan Wei
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Ching-Liang Hsieh
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
43
|
Prabhu SA, Moussa O, Miller WH, del Rincón SV. The MNK1/2-eIF4E Axis as a Potential Therapeutic Target in Melanoma. Int J Mol Sci 2020; 21:E4055. [PMID: 32517051 PMCID: PMC7312468 DOI: 10.3390/ijms21114055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
: Melanoma is a type of skin cancer that originates in the pigment-producing cells of the body known as melanocytes. Most genetic aberrations in melanoma result in hyperactivation of the mitogen activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways. We and others have shown that a specific protein synthesis pathway known as the MNK1/2-eIF4E axis is often dysregulated in cancer. The MNK1/2-eIF4E axis is a point of convergence for these signaling pathways that are commonly constitutively activated in melanoma. In this review we consider the functional implications of aberrant mRNA translation in melanoma and other malignancies. Moreover, we discuss the consequences of inhibiting the MNK1/2-eIF4E axis on the tumor and tumor-associated cells, and we provide important avenues for the utilization of this treatment modality in combination with other targeted and immune-based therapies. The past decade has seen the increased development of selective inhibitors to block the action of the MNK1/2-eIF4E pathway, which are predicted to be an effective therapy regardless of the melanoma subtype (e.g., cutaneous, acral, and mucosal).
Collapse
Affiliation(s)
- Sathyen A. Prabhu
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| | - Omar Moussa
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| | - Wilson H. Miller
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
- Department of Oncology, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
- McGill Centre for Translational Research in Cancer (MCTRC), McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
- Rossy Cancer Network, McGill University, 1980 Sherbrooke Ouest, #1101, Montreal, QC H3H 1E8, Canada
| | - Sonia V. del Rincón
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
- Department of Oncology, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
- McGill Centre for Translational Research in Cancer (MCTRC), McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
44
|
Huang AZ, Delaidelli A, Sorensen PH. RNA modifications in brain tumorigenesis. Acta Neuropathol Commun 2020; 8:64. [PMID: 32375856 PMCID: PMC7204278 DOI: 10.1186/s40478-020-00941-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
RNA modifications are emerging as critical regulators in cancer biology, thanks to their ability to influence gene expression and the predominant protein isoforms expressed during cell proliferation, migration, and other pro-oncogenic properties. The reversibility and dynamic nature of post-transcriptional RNA modifications allow cells to quickly adapt to microenvironmental changes. Recent literature has revealed that the deregulation of RNA modifications can promote a plethora of developmental diseases, including tumorigenesis. In this review, we will focus on four key post-transcriptional RNA modifications which have been identified as contributors to the pathogenesis of brain tumors: m6A, alternative polyadenylation, alternative splicing and adenosine to inosine modifications. In addition to the role of RNA modifications in brain tumor progression, we will also discuss potential opportunities to target these processes to improve the dismal prognosis for brain tumors.
Collapse
Affiliation(s)
- Albert Z Huang
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
45
|
Pinto-Díez C, Ferreras-Martín R, Carrión-Marchante R, González VM, Martín ME. Deeping in the Role of the MAP-Kinases Interacting Kinases (MNKs) in Cancer. Int J Mol Sci 2020; 21:2967. [PMID: 32340135 PMCID: PMC7215568 DOI: 10.3390/ijms21082967] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs) are involved in oncogenic transformation and can promote metastasis and tumor progression. In human cells, there are four MNKs isoforms (MNK1a/b and MNK2a/b), derived from two genes by alternative splicing. These kinases play an important role controlling the expression of specific proteins involved in cell cycle, cell survival and cell motility via eukaryotic initiation factor 4E (eIF4E) regulation, but also through other substrates such as heterogeneous nuclear ribonucleoprotein A1, polypyrimidine tract-binding protein-associated splicing factor and Sprouty 2. In this review, we provide an overview of the role of MNK in human cancers, describing the studies conducted to date to elucidate the mechanism involved in the action of MNKs, as well as the development of MNK inhibitors in different hematological cancers and solid tumors.
Collapse
Affiliation(s)
| | | | | | | | - María Elena Martín
- Grupo de Aptámeros, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Ctra. Colmenar Km. 9100, 28034 Madrid, Spain; (C.P.-D.); (R.F.-M.); (R.C.-M.); (V.M.G.)
| |
Collapse
|
46
|
Abdelaziz AM, Diab S, Islam S, Basnet SKC, Noll B, Li P, Mekonnen LB, Lu J, Albrecht H, Milne RW, Gerber C, Yu M, Wang S. Discovery of N-Phenyl-4-(1H-pyrrol-3-yl)pyrimidin-2-amine Derivatives as Potent Mnk2 Inhibitors: Design, Synthesis, SAR Analysis, and Evaluation of in vitro Anti-leukaemic Activity. Med Chem 2019; 15:602-623. [PMID: 30569866 DOI: 10.2174/1573406415666181219111511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 01/25/2023]
Abstract
BACKGROUND Aberrant expression of eukaryotic translation initiation factor 4E (eIF4E) is common in many types of cancer including acute myeloid leukaemia (AML). Phosphorylation of eIF4E by MAPK-interacting kinases (Mnks) is essential for the eIF4E-mediated oncogenic activity. As such, the pharmacological inhibition of Mnks can be an effective strategy for the treatment of cancer. METHODS A series of N-phenyl-4-(1H-pyrrol-3-yl)pyrimidin-2-amine derivatives was designed and synthesised. The Mnk inhibitory activity of these derivatives as well as their anti-proliferative activity against MV4-11 AML cells was determined. RESULTS These compounds were identified as potent Mnk2 inhibitors. Most of them demonstrated potent anti-proliferative activity against MV4-11 AML cells. The cellular mechanistic studies of the representative inhibitors revealed that they reduced the level of phosphorylated eIF4E and induced apoptosis by down-regulating the anti-apoptotic protein myeloid cell leukaemia 1 (Mcl-1) and by cleaving poly(ADP-ribose)polymerase (PARP). The lead compound 7k possessed desirable pharmacokinetic properties and oral bioavailability. CONCLUSION This work proposes that exploration of the structural diversity in the context of Nphenyl- 4-(1H-pyrrol-3-yl)pyrimidin-2-amine would offer potent and selective Mnk inhibitors.
Collapse
Affiliation(s)
- Ahmed M Abdelaziz
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sarah Diab
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Saiful Islam
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sunita K C Basnet
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Benjamin Noll
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Peng Li
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Laychiluh B Mekonnen
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Jingfeng Lu
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Hugo Albrecht
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Robert W Milne
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Cobus Gerber
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Mingfeng Yu
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Shudong Wang
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| |
Collapse
|
47
|
Kim HJ. Cell Fate Control by Translation: mRNA Translation Initiation as a Therapeutic Target for Cancer Development and Stem Cell Fate Control. Biomolecules 2019; 9:biom9110665. [PMID: 31671902 PMCID: PMC6921038 DOI: 10.3390/biom9110665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Translation of mRNA is an important process that controls cell behavior and gene regulation because proteins are the functional molecules that determine cell types and function. Cancer develops as a result of genetic mutations, which lead to the production of abnormal proteins and the dysregulation of translation, which in turn, leads to aberrant protein synthesis. In addition, the machinery that is involved in protein synthesis plays critical roles in stem cell fate determination. In the current review, recent advances in the understanding of translational control, especially translational initiation in cancer development and stem cell fate control, are described. Therapeutic targets of mRNA translation such as eIF4E, 4EBP, and eIF2, for cancer treatment or stem cell fate regulation are reviewed. Upstream signaling pathways that regulate and affect translation initiation were introduced. It is important to regulate the expression of protein for normal cell behavior and development. mRNA translation initiation is a key step to regulate protein synthesis, therefore, identifying and targeting molecules that are critical for protein synthesis is necessary and beneficial to develop cancer therapeutics and stem cells fate regulation.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Laboratory of Molecular Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea.
| |
Collapse
|
48
|
Mogilevsky M, Shimshon O, Kumar S, Mogilevsky A, Keshet E, Yavin E, Heyd F, Karni R. Modulation of MKNK2 alternative splicing by splice-switching oligonucleotides as a novel approach for glioblastoma treatment. Nucleic Acids Res 2019; 46:11396-11404. [PMID: 30329087 PMCID: PMC6265459 DOI: 10.1093/nar/gky921] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/06/2018] [Indexed: 11/14/2022] Open
Abstract
The gene encoding the kinase Mnk2 (MKNK2) is alternatively spliced to produce two isoforms-Mnk2a and Mnk2b. We previously showed that Mnk2a is downregulated in several types of cancer and acts as a tumor suppressor by activation of the p38-MAPK stress pathway, inducing apoptosis. Moreover, Mnk2a overexpression suppressed Ras-induced transformation in culture and in vivo. In contrast, the Mnk2b isoform acts as a pro-oncogenic factor. In this study, we designed modified-RNA antisense oligonucleotides and screened for those that specifically induce a strong switch in alternative splicing of the MKNK2 gene (splice switching oligonucleotides or SSOs), elevating the tumor suppressive isoform Mnk2a at the expense of the pro-oncogenic isoform Mnk2b. Induction of Mnk2a by SSOs in glioblastoma cells activated the p38-MAPK pathway, inhibited the oncogenic properties of the cells, re-sensitized the cells to chemotherapy and inhibited glioblastoma development in vivo. Moreover, inhibition of p38-MAPK partially rescued glioblastoma cells suggesting that most of the anti-oncogenic activity of the SSO is mediated by activation of this pathway. These results suggest that manipulation of MKNK2 alternative splicing by SSOs is a novel approach to inhibit glioblastoma tumorigenesis.
Collapse
Affiliation(s)
- Maxim Mogilevsky
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada, Faculty of Medicine, the Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Odelia Shimshon
- Institute for Drug Research, The School of Pharmacy, the Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Saran Kumar
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, the Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Adi Mogilevsky
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada, Faculty of Medicine, the Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Eli Keshet
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, the Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Eylon Yavin
- Institute for Drug Research, The School of Pharmacy, the Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Florian Heyd
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada, Faculty of Medicine, the Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| |
Collapse
|
49
|
Ichiyanagi O, Ito H, Naito S, Kabasawa T, Kanno H, Narisawa T, Ushijima M, Kurota Y, Ozawa M, Sakurai T, Nishida H, Kato T, Yamakawa M, Tsuchiya N. Impact of eIF4E phosphorylation at Ser209 via MNK2a on tumour recurrence after curative surgery in localized clear cell renal cell carcinoma. Oncotarget 2019; 10:4053-4068. [PMID: 31258849 PMCID: PMC6592294 DOI: 10.18632/oncotarget.27017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023] Open
Abstract
Background: We investigated the roles of eIF4E phosphorylation (Ser209) in tumour recurrence after curative nephrectomy for localized clear cell renal cell carcinoma (ccRCC). Methods: Expression of eIF4E, p eIF4E and MNKs (MAPK interacting kinases), was evaluated in surgical specimens obtained from consecutive non metastatic ccRCC patients (n = 290) by immunohistochemistry (IHC), immunoblotting, and qRT PCR at the protein and mRNA levels. In human RCC cell lines, the effects of eIF4E phosphorylation were examined using immunoblotting, proliferation, migration and invasion assays with pharmacological inhibitors (CGP57380 or ETP45835) and specific small interfering (si) RNAs against MNK1/2(a/b). Results: In postoperative follow-up (median, 7.9 y), 40 patients experienced metastatic recurrence. In multivariate Cox analyses, higher IHC expression of p eIF4E in ccRCC significantly predicted a longer recurrence-free interval. eIF4E is phosphorylated mainly by MNK2a in tumour specimens and cell lines. In 786-O and A-498 cell lines, pharmacological inhibition of MNKs decreased p-eIF4E and increased vimentin and N cadherin but did not influence proliferation. Similarly, MNK2 or MNK2a inhibition with siRNA reduced p-eIF4E and enhanced vimentin translation, cell migration and invasion in the cell lines. Conclusions: MNK2a-induced eIF4E phosphorylation may suppress metastatic recurrence of ccRCC, partially due to vimentin downregulation at the translational level, consequently leading to inhibition of epithelial–mesenchymal transition.
Collapse
Affiliation(s)
- Osamu Ichiyanagi
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan.,Department of Urology, Yamagata Prefectural Kahoku Hospital, Kahoku, Japan
| | - Hiromi Ito
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Sei Naito
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takanobu Kabasawa
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hidenori Kanno
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takafumi Narisawa
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Masaki Ushijima
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yuta Kurota
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Michinobu Ozawa
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Toshihiko Sakurai
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hayato Nishida
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tomoyuki Kato
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Mitsunori Yamakawa
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Norihiko Tsuchiya
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
50
|
Coomer AO, Black F, Greystoke A, Munkley J, Elliott DJ. Alternative splicing in lung cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194388. [PMID: 31152916 DOI: 10.1016/j.bbagrm.2019.05.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022]
Abstract
Lung cancer has the highest mortality rate of all cancers worldwide. Lung cancer is a very heterogeneous disease that is often diagnosed at later stages which have a poor prognosis. Aberrant alternative splicing patterns found in lung cancer contribute to important cell functions. These include changes in splicing for the BCL2L1, MDM2, MDM4, NUMB and MET genes during lung tumourigenesis, to affect pathways involved in apoptosis, cell proliferation and cellular cohesion. Global analyses of RNASeq datasets suggest there may be many more potentially influential aberrant splicing events that need to be investigated in lung cancer. Changes in expression of the splicing factors that regulate alternative splicing events have also been identified in lung cancer. Of these, changes in expression of QKI, RBM4, RBM5, RBM6, RBM10 and SRSF1 proteins regulate many of the most frequently referenced aberrant splicing events in lung cancer. The expanding list of genes known to be aberrantly spliced in lung cancer along with the altered expression of splicing factors that regulate them are providing new clues as to how lung cancer develops, and how these events can be exploited for better treatment. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Alice O Coomer
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom of Great Britain and Northern Ireland.
| | - Fiona Black
- Cellular Pathology Department, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom of Great Britain and Northern Ireland
| | - Alastair Greystoke
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom of Great Britain and Northern Ireland
| | - Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom of Great Britain and Northern Ireland
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|