1
|
Zhou D, Zeng Y, Luo W, Leng C, Li C. Senior-Loken Syndrome: Ocular Perspectives on Genetics, Pathogenesis, and Management. Biomolecules 2025; 15:667. [PMID: 40427560 PMCID: PMC12109206 DOI: 10.3390/biom15050667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
Senior-Loken syndrome (SLSN) is a group of rare autosomal recessive disorders caused by dysfunction of the primary cilium, primarily affecting the kidneys (typically leading to nephronophthisis) and eyes (typically leading to retinal degeneration). Moreover, patients with SLSN may experience additional multisystemic symptoms, such as developmental delay, intellectual disability, ataxia, and nystagmus. To date, eight genes have been demonstrated to cause SLSN, all encoding for proteins involved in the structure and functions of the primary cilium. This places SLSN within an expanding category of diseases known as "ciliopathies". Due to the genetic heterogeneity and significant phenotypic overlap with other ciliopathies, establishing a definitive diagnosis during the initial consultation remains a challenge for clinicians. Furthermore, current research on SLSN-related ciliopathies predominantly focuses on renal involvement, while the ocular manifestations remain insufficiently explored and lack a comprehensive review. Therefore, with the goal of offering practical guidance for clinical practice, this review aims to provide a comprehensive overview of the clinical features, along with an ocular perspective on the molecular mechanisms, genetic underpinnings, and advances in the treatment of SLSN.
Collapse
Affiliation(s)
- Di Zhou
- Center for Drug Evaluation, National Medical Products Administration, Beijing 100076, China;
| | - Yi Zeng
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (Y.Z.); (W.L.)
| | - Weihan Luo
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (Y.Z.); (W.L.)
| | - Chenyang Leng
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (Y.Z.); (W.L.)
| | - Chen Li
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (Y.Z.); (W.L.)
| |
Collapse
|
2
|
Jeon HM, Noh HS, Jeon MG, Park JH, Lee YS, Seo G, Cheon YH, Kim M, Han MK, Park JY, Lee SI. The HRAS-binding C2 domain of PLCη2 suppresses tumor-like synoviocytes and experimental arthritis in rheumatoid arthritis. Exp Mol Med 2025; 57:335-348. [PMID: 39894825 PMCID: PMC11873285 DOI: 10.1038/s12276-025-01393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
Fibroblast-like synoviocytes (FLSs), which are stromal cells that play key roles in rheumatoid arthritis (RA) pathophysiology, are characterized by a tumor-like phenotype and immunostimulatory actions. C2 domains in various proteins play roles in intracellular signaling and altering cellular characteristics, and some C2 domain-containing proteins exacerbate or alleviate certain malignant or inflammatory diseases. However, the roles of C2 domains in regulating the functions of RA FLSs remain unclear. Here we performed functional C2 domainomics with 144 C2 domain-containing viral vectors and identified the C2 domain of PLCη2 as a key regulator of RA FLSs. In mice, overexpressing PLCη2 or only its C2 domain PLCη2 (PLCη2_C2) diminished the proliferation, migration, invasion and inflammatory responses of RA FLSs, mitigating RA pathology; the absence of PLCη2 amplified these proinflammatory and destructive processes in RA FLSs in vivo. Mechanistically, PLCη2 and PLCη2_C2 participate in the pathological signaling of RA FLSs in a calcium-independent manner through protein-protein interactions. Specifically, PLCη2_C2 disrupted HRAS-RAF1 interactions, suppressing downstream signaling pathways, including the NF-κB, JAK-STAT and MAPK pathways. Collectively, these findings establish PLCη2 and PLCη2_C2 as novel inhibitory regulators in RA, suggesting promising therapeutic avenues for addressing FLS-driven disease mechanisms.
Collapse
Affiliation(s)
- Hyun Min Jeon
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Hae Sook Noh
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Min-Gyu Jeon
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Jin-Ho Park
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Young-Sun Lee
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, South Korea
| | - Gyunghwa Seo
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, South Korea
| | - Yun-Hong Cheon
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Mingyo Kim
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Myung-Kwan Han
- Department of Microbiology, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, South Korea.
| | - Sang-Il Lee
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea.
| |
Collapse
|
3
|
Daich Varela M, Jeste M, de Guimaraes TAC, Mahroo OA, Arno G, Webster AR, Michaelides M. Clinical, Ophthalmic, and Genetic Characterization of RPGRIP1-Associated Leber Congenital Amaurosis/Early-Onset Severe Retinal Dystrophy. Am J Ophthalmol 2024; 266:255-263. [PMID: 38768745 DOI: 10.1016/j.ajo.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE To present the clinical characteristics, retinal features, natural history, and genetics of RPGRIP1-associated early-onset severe retinal dystrophy (EOSRD)/Leber congenital amaurosis (LCA). DESIGN Retrospective case series. METHODS Review of clinical notes, multimodal retinal imaging, and molecular diagnosis of 18 patients (17 families) with EOSRD/LCA and disease-causing variants in RPGRIP1. RESULTS The mean age of visual symptoms onset was 0.87 ± 1 year (birth to 3 years), and the mean age at baseline visit was 11.4 ± 10.2 years (1-39 years). At the baseline visit, 44% of patients were legally blind (range, 2-39 years), and there was no significant association found between age and best-corrected visual acuity (BCVA) in cross-sectional analysis. Retinal evaluation showed an abolished electroretinogram or a cone-rod dystrophy pattern, no or minimal pigment deposits, a hyperautofluorescent ring at the posterior pole, and a largely preserved central macular architecture, with retained outer nuclear layer and ellipsoid zone island into adulthood. Eleven variants (48%) were previously unreported, and 13 families (76%) had a double-null (DN) genotype. Twelve patients (67%) had follow-up assessments over a 15.7 ± 9.5-year period. The rate of BCVA decline was 0.02 logarithm of the minimum angle of resolution (1 letter)/year. CONCLUSIONS RPGRIP1 EOSRD/LCA often presents at birth or early infancy, with nystagmus, decreased visual acuity, hyperopia, and photophobia. Patients with a DN genotype may develop symptoms earlier and have worse vision. Multimodal imaging may show a hyperautofluorescent posterior pole ring and relatively preserved central macular architecture, suggesting that the condition is a promising candidate for gene supplementation.
Collapse
Affiliation(s)
- Malena Daich Varela
- Moorfields Eye Hospital (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom
| | - Mrunmayi Jeste
- St Thomas' Hospital (M.J., O.A.M), London, United Kingdom
| | - Thales A C de Guimaraes
- Moorfields Eye Hospital (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom
| | - Omar A Mahroo
- Moorfields Eye Hospital (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom; St Thomas' Hospital (M.J., O.A.M), London, United Kingdom
| | - Gavin Arno
- Moorfields Eye Hospital (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom
| | - Andrew R Webster
- Moorfields Eye Hospital (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom
| | - Michel Michaelides
- Moorfields Eye Hospital (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom.
| |
Collapse
|
4
|
Pan YW, Ou TY, Chou YY, Kuo PL, Hsiao HP, Chiu PC, Lin JL, Lo FS, Wang CH, Chen PC, Tsai MC. Syndromic ciliopathy: a taiwanese single-center study. BMC Med Genomics 2024; 17:106. [PMID: 38671463 PMCID: PMC11046915 DOI: 10.1186/s12920-024-01880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Syndromic ciliopathies are a group of congenital disorders characterized by broad clinical and genetic overlap, including obesity, visual problems, skeletal anomalies, mental retardation, and renal diseases. The hallmark of the pathophysiology among these disorders is defective ciliary functions or formation. Many different genes have been implicated in the pathogenesis of these diseases, but some patients still remain unclear about their genotypes. METHODS The aim of this study was to identify the genetic causes in patients with syndromic ciliopathy. Patients suspected of or meeting clinical diagnostic criteria for any type of syndromic ciliopathy were recruited at a single diagnostic medical center in Southern Taiwan. Whole exome sequencing (WES) was employed to identify their genotypes and elucidate the mutation spectrum in Taiwanese patients with syndromic ciliopathy. Clinical information was collected at the time of patient enrollment. RESULTS A total of 14 cases were molecularly diagnosed with syndromic ciliopathy. Among these cases, 10 had Bardet-Biedl syndrome (BBS), comprising eight BBS2 patients and two BBS7 patients. Additionally, two cases were diagnosed with Alström syndrome, one with Oral-facial-digital syndrome type 14, and another with Joubert syndrome type 10. A total of 4 novel variants were identified. A recurrent splice site mutation, BBS2: c.534 + 1G > T, was present in all eight BBS2 patients, suggesting a founder effect. One BBS2 patient with homozygous c.534 + 1G > T mutations carried a third ciliopathic allele, TTC21B: c.264_267dupTAGA, a nonsense mutation resulting in a premature stop codon and protein truncation. CONCLUSIONS Whole exome sequencing (WES) assists in identifying molecular pathogenic variants in ciliopathic patients, as well as the genetic hotspot mutations in specific populations. It should be considered as the first-line genetic testing for heterogeneous disorders characterized by the involvement of multiple genes and diverse clinical manifestations.
Collapse
Affiliation(s)
- Yu-Wen Pan
- Department of Pediatrics, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Shengli Rd., North Dist, Tainan, 70403, Taiwan, Republic of China
| | - Tsung-Ying Ou
- Department of Pediatrics, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Rd., Dalin Township, Chiayi County, Chiayi, 62247, Taiwan, Republic of China
| | - Yen-Yin Chou
- Department of Pediatrics, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Shengli Rd., North Dist, Tainan, 70403, Taiwan, Republic of China
- Department of Genomic Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Shengli Rd., North Dist, Tainan, 70403, Taiwan, Republic of China
| | - Pao-Lin Kuo
- Department of Genomic Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Shengli Rd., North Dist, Tainan, 70403, Taiwan, Republic of China
- Department of Gynecology and Obstetrics, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Shengli Rd., North Dist, Tainan, 70403, Taiwan, Republic of China
- Department of Obstetrics and Gynecology, E-Da Hospital, No. 1, Yida Rd., Yanchao Dist, Kaohsiung, 824005, Taiwan, Republic of China
| | - Hui-Pin Hsiao
- Department of Pediatrics, Kaohsiung Medical University Chung Ho Memorial Hospital, No. 100, Ziyou 1st Rd., Sanmin Dist, Kaohsiung, 80756, Taiwan, Republic of China
| | - Pao-Chin Chiu
- Department of Pediatrics, Kaohsiung Veterans General Hospital, No. 386, Dazhong 1st Rd., Zuoying Dist, Kaohsiung, 813414, Taiwan, Republic of China
| | - Ju-Li Lin
- Department of Pediatrics, Chang Gung Children's Hospital, No. 5, Fuxing St., Guishan Dist, Taoyuan, 333423, Taiwan, Republic of China
| | - Fu-Sung Lo
- Department of Pediatrics, Chang Gung Children's Hospital, No. 5, Fuxing St., Guishan Dist, Taoyuan, 333423, Taiwan, Republic of China
| | - Chung-Hsing Wang
- Division of Genetics and Metabolism, Children's Hospital of China Medical University, No. 2, Yude Rd., North Dist, Taichung, 404327, Taiwan, Republic of China
- School of Medicine, China Medical University, No. 91, Xueshi Rd., North Dist, Taichung, 404328, Taiwan, Republic of China
| | - Peng-Chieh Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 138, Shengli Rd., North Dist, Tainan, 70403, Taiwan, Republic of China.
- Center of Clinical Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Shengli Rd., North Dist, Tainan, 70403, Taiwan, Republic of China.
| | - Meng-Che Tsai
- Department of Pediatrics, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Shengli Rd., North Dist, Tainan, 70403, Taiwan, Republic of China.
- Department of Genomic Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 138, Shengli Rd., North Dist, Tainan, 70403, Taiwan, Republic of China.
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 138, Shengli Rd., North Dist, Tainan, 70403, Taiwan, Republic of China.
| |
Collapse
|
5
|
Kalot R, Sentell Z, Kitzler TM, Torban E. Primary cilia and actin regulatory pathways in renal ciliopathies. FRONTIERS IN NEPHROLOGY 2024; 3:1331847. [PMID: 38292052 PMCID: PMC10824913 DOI: 10.3389/fneph.2023.1331847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Ciliopathies are a group of rare genetic disorders caused by defects to the structure or function of the primary cilium. They often affect multiple organs, leading to brain malformations, congenital heart defects, and anomalies of the retina or skeletal system. Kidney abnormalities are among the most frequent ciliopathic phenotypes manifesting as smaller, dysplastic, and cystic kidneys that are often accompanied by renal fibrosis. Many renal ciliopathies cause chronic kidney disease and often progress to end-stage renal disease, necessitating replacing therapies. There are more than 35 known ciliopathies; each is a rare hereditary condition, yet collectively they account for a significant proportion of chronic kidney disease worldwide. The primary cilium is a tiny microtubule-based organelle at the apex of almost all vertebrate cells. It serves as a "cellular antenna" surveying environment outside the cell and transducing this information inside the cell to trigger multiple signaling responses crucial for tissue morphogenesis and homeostasis. Hundreds of proteins and unique cellular mechanisms are involved in cilia formation. Recent evidence suggests that actin remodeling and regulation at the base of the primary cilium strongly impacts ciliogenesis. In this review, we provide an overview of the structure and function of the primary cilium, focusing on the role of actin cytoskeleton and its regulators in ciliogenesis. We then describe the key clinical, genetic, and molecular aspects of renal ciliopathies. We highlight what is known about actin regulation in the pathogenesis of these diseases with the aim to consider these recent molecular findings as potential therapeutic targets for renal ciliopathies.
Collapse
Affiliation(s)
- Rita Kalot
- Department of Medicine and Department of Physiology, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Zachary Sentell
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Thomas M. Kitzler
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Health Center, Montreal, QC, Canada
| | - Elena Torban
- Department of Medicine and Department of Physiology, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
6
|
Abstract
Phosphoinositides (PIs) are phospholipids derived from phosphatidylinositol. PIs are regulated via reversible phosphorylation, which is directed by the opposing actions of PI kinases and phosphatases. PIs constitute a minor fraction of the total cellular lipid pool but play pleiotropic roles in multiple aspects of cell biology. Genetic mutations of PI regulatory enzymes have been identified in rare congenital developmental syndromes, including ciliopathies, and in numerous human diseases, such as cancer and metabolic and neurological disorders. Accordingly, PI regulatory enzymes have been targeted in the design of potential therapeutic interventions for human diseases. Recent advances place PIs as central regulators of membrane dynamics within functionally distinct subcellular compartments. This brief review focuses on the emerging role PIs play in regulating cell signaling within the primary cilium and in directing transfer of molecules at interorganelle membrane contact sites and identifies new roles for PIs in subcellular spaces.
Collapse
Affiliation(s)
- Elizabeth Michele Davies
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Christina Anne Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Harald Alfred Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research. The Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
| |
Collapse
|
7
|
Structure of the N-terminal coiled-coil domains of the ciliary protein Rpgrip1l. iScience 2023; 26:106249. [PMID: 36915689 PMCID: PMC10006689 DOI: 10.1016/j.isci.2023.106249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/30/2022] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Rpgrip1l is one of the key ciliary proteins located at the transition zone of the primary cilium, an important organelle for cells to sense the outer environment. Mutations in the RPGRIP1L gene are associated with various ciliopathies. Here, we focused on the N-terminal coiled-coil of Rpgrip1l. By comprehensive biochemical and structural characterizations, we demonstrated that the two predicted coiled-coil regions (CC12) located at Rpgrip1l N-terminus each can form a stable parallel dimer. We further showed that overexpression of Rpgrip1l CC12 in NIH/3T3 cells significantly shortened the length of primary cilia, and this effect depended on the dimer formation. In addition, we found that CC12 of the homolog protein Rpgrip1 in mouse and human were significantly different from Rpgrip1l. Finally, we confirmed that some disease-related mutations can alter the dimeric states of CC12 of Rpgrip1l or Rpgrip1, which might explain the pathogenic mechanisms.
Collapse
|
8
|
Park K, Leroux MR. Composition, organization and mechanisms of the transition zone, a gate for the cilium. EMBO Rep 2022; 23:e55420. [PMID: 36408840 PMCID: PMC9724682 DOI: 10.15252/embr.202255420] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The cilium evolved to provide the ancestral eukaryote with the ability to move and sense its environment. Acquiring these functions required the compartmentalization of a dynein-based motility apparatus and signaling proteins within a discrete subcellular organelle contiguous with the cytosol. Here, we explore the potential molecular mechanisms for how the proximal-most region of the cilium, termed transition zone (TZ), acts as a diffusion barrier for both membrane and soluble proteins and helps to ensure ciliary autonomy and homeostasis. These include a unique complement and spatial organization of proteins that span from the microtubule-based axoneme to the ciliary membrane; a protein picket fence; a specialized lipid microdomain; differential membrane curvature and thickness; and lastly, a size-selective molecular sieve. In addition, the TZ must be permissive for, and functionally integrates with, ciliary trafficking systems (including intraflagellar transport) that cross the barrier and make the ciliary compartment dynamic. The quest to understand the TZ continues and promises to not only illuminate essential aspects of human cell signaling, physiology, and development, but also to unravel how TZ dysfunction contributes to ciliopathies that affect multiple organ systems, including eyes, kidney, and brain.
Collapse
Affiliation(s)
- Kwangjin Park
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
- Present address:
Terry Fox LaboratoryBC CancerVancouverBCCanada
- Present address:
Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
| | - Michel R Leroux
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
9
|
Chen C, Hu J, Ling K. The Role of Primary Cilia-Associated Phosphoinositide Signaling in Development. J Dev Biol 2022; 10:51. [PMID: 36547473 PMCID: PMC9785882 DOI: 10.3390/jdb10040051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
Primary cilia are microtube-based organelles that extend from the cell surface and function as biochemical and mechanical extracellular signal sensors. Primary cilia coordinate a series of signaling pathways during development. Cilia dysfunction leads to a pleiotropic group of developmental disorders, termed ciliopathy. Phosphoinositides (PIs), a group of signaling phospholipids, play a crucial role in development and tissue homeostasis by regulating membrane trafficking, cytoskeleton reorganization, and organelle identity. Accumulating evidence implicates the involvement of PI species in ciliary defects and ciliopathies. The abundance and localization of PIs in the cell are tightly regulated by the opposing actions of kinases and phosphatases, some of which are recently discovered in the context of primary cilia. Here, we review several cilium-associated PI kinases and phosphatases, including their localization along cilia, function in regulating the ciliary biology under normal conditions, as well as the connection of their disease-associated mutations with ciliopathies.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
10
|
Nassisi M, De Bartolo G, Mohand-Said S, Condroyer C, Antonio A, Lancelot ME, Bujakowska K, Smirnov V, Pugliese T, Neidhardt J, Sahel JA, Zeitz C, Audo I. Retrospective Natural History Study of RPGR-Related Cone- and Cone-Rod Dystrophies While Expanding the Mutation Spectrum of the Disease. Int J Mol Sci 2022; 23:7189. [PMID: 35806195 PMCID: PMC9266815 DOI: 10.3390/ijms23137189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/06/2023] Open
Abstract
Variants in the X-linked retinitis pigmentosa GTPase regulator gene (RPGR) and, specifically, in its retinal opening reading frame-15 isoform (RPGRORF15) may cause rod-cone (RCD), cone, and cone-rod dystrophies (CDs and CRDs). While RPGR-related RCDs have been frequently evaluated, the characteristics and progression of RPGR-related CD/CRDs are largely unknown. Therefore, the goal of our work was to perform genotype-phenotype correlations specifically in RPGRORF15-related CD/CRDs. This retrospective longitudinal study included 34 index patients and two affected relatives with a molecular diagnosis of RPGR-related CD/CRDs. Patients were recruited at the "Quinze-Vingts" Hospital, Paris, France and screened for mutations in RPGRORF15 at the Institut de la Vision, Paris, France. We identified 29 distinct variants, of which 27 were truncating. All were located in the 3' half of the RPGRORF15 transcript. Twenty of them were novel. Fifteen subjects were affected by CD, the remaining had CRD. When analyzing the longitudinal data, a progressive decline in visual acuity (VA) was noted, with more than 60% of the patients reaching VA ≥ 1 LogMar in the best eye after the fifth decade of life. To our knowledge, this is the largest described study of a cohort of CD/CRD patients affected by RPGRORF15 variants. Longitudinal data showed a rapidly progressive disease, possibly locating an optimal window of intervention for future therapies in younger ages.
Collapse
Affiliation(s)
- Marco Nassisi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, 75012 Paris, France
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Ophthalmology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
| | - Giuseppe De Bartolo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, 75012 Paris, France
| | - Saddek Mohand-Said
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, 75012 Paris, France
| | - Christel Condroyer
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
| | - Aline Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, 75012 Paris, France
| | - Marie-Elise Lancelot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
| | - Kinga Bujakowska
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Vasily Smirnov
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Exploration de la Vision et Neuro-Ophthalmologie, Centre Hospitalier Universitaire de Lille, 59000 Lille, France
- Faculté de Médecine, Université de Lille, 59000 Lille, France
| | - Thomas Pugliese
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, 75012 Paris, France
| | - John Neidhardt
- Human Genetics, Faculty VI, School of Medicine and Health Sciences, University of Oldenburg, 26129 Oldenburg, Germany;
- Research Center Neurosensory Science, University Oldenburg, 26129 Oldenburg, Germany
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, 75012 Paris, France
- Department of Ophthalmology, University of Pittsburgh Medical School, Pittsburgh, PA 15213, USA
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (M.N.); (G.D.B.); (S.M.-S.); (C.C.); (A.A.); (M.-E.L.); (K.B.); (V.S.); (T.P.); (J.-A.S.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, 75012 Paris, France
| |
Collapse
|
11
|
Blanco-Ameijeiras J, Lozano-Fernández P, Martí E. Centrosome maturation - in tune with the cell cycle. J Cell Sci 2022; 135:274149. [PMID: 35088834 DOI: 10.1242/jcs.259395] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Centrosomes are the main microtubule-organizing centres, playing essential roles in the organization of the cytoskeleton during interphase, and in the mitotic spindle, which controls chromosome segregation, during cell division. Centrosomes also act as the basal body of cilia, regulating cilium length and affecting extracellular signal reception as well as the integration of intracellular signalling pathways. Centrosomes are self-replicative and duplicate once every cell cycle to generate two centrosomes. The core support structure of the centrosome consists of two molecularly distinct centrioles. The mother (mature) centriole exhibits accessory appendages and is surrounded by both pericentriolar material and centriolar satellites, structures that the daughter (immature) centriole lacks. In this Review, we discuss what is currently known about centrosome duplication, its dialogue with the cell cycle and the sequential acquisition of specific components during centriole maturation. We also describe our current understanding of the mature centriolar structures that are required to build a cilium. Altogether, the built-in centrosome asymmetries that stem from the two centrosomes inheriting molecularly different centrioles sets the foundation for cell division being an intrinsically asymmetric process.
Collapse
Affiliation(s)
- Jose Blanco-Ameijeiras
- Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Pilar Lozano-Fernández
- Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elisa Martí
- Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| |
Collapse
|
12
|
Valente R, Alves F, Sousa-Pinto I, Ruivo R, Castro LFC. Functional or Vestigial? The Genomics of the Pineal Gland in Xenarthra. J Mol Evol 2021; 89:565-575. [PMID: 34342686 DOI: 10.1007/s00239-021-10025-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
Vestigial organs are historical echoes of past phenotypes. Determining whether a specific organ constitutes a functional or vestigial structure can be a challenging task, given that distinct levels of atrophy may arise between and within lineages. The mammalian pineal gland, an endocrine organ involved in melatonin biorhythmicity, represents a classic example, often yielding contradicting anatomical observations. In Xenarthra (sloths, anteaters, and armadillos), a peculiar mammalian order, the presence of a distinct pineal organ was clearly observed in some species (i.e., Linnaeus's two-toed sloth), but undetected in other closely related species (i.e., brown-throated sloth). In the nine-banded armadillo, contradicting evidence supports either functional or vestigial scenarios. Thus, to untangle the physiological status of the pineal gland in Xenarthra, we used a genomic approach to investigate the evolution of the gene hub responsible for melatonin synthesis and signaling. We show that both synthesis and signaling compartments are eroded and were probably lost independently among Xenarthra orders. Additionally, by expanding our analysis to 157 mammal genomes, we offer a comprehensive view showing that species with very distinctive habitats and lifestyles have convergently evolved a similar phenotype: Cetacea, Pholidota, Dermoptera, Sirenia, and Xenarthra. Our findings suggest that the recurrent inactivation of melatonin genes correlates with pineal atrophy and endorses the use of genomic analyses to ascertain the physiological status of suspected vestigial structures.
Collapse
Affiliation(s)
- Raul Valente
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.,FCUP-Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Filipe Alves
- MARE-Marine and Environmental Sciences Centre, ARDITI, Madeira, Portugal.,OOM-Oceanic Observatory of Madeira, Funchal, Portugal
| | - Isabel Sousa-Pinto
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.,FCUP-Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - L Filipe C Castro
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal. .,FCUP-Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal.
| |
Collapse
|
13
|
Chang CF, Brown KM, Yang Y, Brugmann SA. Centriolar Protein C2cd3 Is Required for Craniofacial Development. Front Cell Dev Biol 2021; 9:647391. [PMID: 34211969 PMCID: PMC8239364 DOI: 10.3389/fcell.2021.647391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
The primary cilium is a ubiquitous, microtubule-based cellular organelle. Primary cilia dysfunction results in a group of disorders termed ciliopathies. C2 domain containing 3 centriole elongation regulator (C2cd3), encodes a centriolar protein essential for ciliogenesis. Mutations in human C2CD3 are associated with the human ciliopathy Oral-Facial-Digital syndrome type 14 (OFD14). In order to better understand the etiology of ciliopathies including OFD14, we generated numerous murine models targeting C2cd3. Initial analysis revealed several tissue-specific isoforms of C2cd3, and while the loss of C2cd3 has previously been reported to result in exencephaly, tight mesencephalic flexure, pericardial edema, abnormal heart looping and a twisted body axis, further analysis revealed that genetic background may also contribute to phenotypic variation. Additional analyses of a conditional allelic series targeting C-terminal PKC-C2 domains or the N-terminal C2CD3N-C2 domain of C2cd3 revealed a variable degree of phenotypic severity, suggesting that while the N-terminal C2CD3N-C2 domain was critical for early embryonic development as a whole, there was also a craniofacial specific role for the C2CD3N-C2 domains. Together, through generation of novel models and evaluation of C2cd3 expression, these data provide valuable insight into mechanisms of pathology for craniofacial ciliopathies that can be further explored in the future.
Collapse
Affiliation(s)
- Ching-Fang Chang
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kari M Brown
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Yanfen Yang
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Samantha A Brugmann
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Shriners Children's Hospital, Cincinnati, OH, United States
| |
Collapse
|
14
|
Conduit SE, Davies EM, Fulcher AJ, Oorschot V, Mitchell CA. Superresolution Microscopy Reveals Distinct Phosphoinositide Subdomains Within the Cilia Transition Zone. Front Cell Dev Biol 2021; 9:634649. [PMID: 33996795 PMCID: PMC8120242 DOI: 10.3389/fcell.2021.634649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Primary cilia are evolutionary conserved microtubule-based organelles that protrude from the surface of most mammalian cells. Phosphoinositides (PI) are membrane-associated signaling lipids that regulate numerous cellular events via the recruitment of lipid-binding effectors. The temporal and spatial membrane distribution of phosphoinositides is regulated by phosphoinositide kinases and phosphatases. Recently phosphoinositide signaling and turnover has been observed at primary cilia. However, the precise localization of the phosphoinositides to specific ciliary subdomains remains undefined. Here we use superresolution microscopy (2D stimulated emission depletion microscopy) to map phosphoinositide distribution at the cilia transition zone. PI(3,4,5)P3 and PI(4,5)P2 localized to distinct subregions of the transition zone in a ring-shape at the inner transition zone membrane. Interestingly, the PI(3,4,5)P3 subdomain was more distal within the transition zone relative to PtdIns(4,5)P2. The phosphoinositide effector kinase pAKT(S473) localized in close proximity to these phosphoinositides. The inositol polyphosphate 5-phosphatase, INPP5E, degrades transition zone phosphoinositides, however, studies of fixed cells have reported recombinant INPP5E localizes to the ciliary axoneme, distant from its substrates. Notably, here using live cell imaging and optimized fixation/permeabilization protocols INPP5E was found concentrated at the cilia base, in a distribution characteristic of the transition zone in a ring-shaped domain of similar dimensions to the phosphoinositides. Collectively, this superresolution map places the phosphoinositides in situ with the transition zone proteins and reveals that INPP5E also likely localizes to a subdomain of the transition zone membrane, where it is optimally situated to control local phosphoinositide metabolism.
Collapse
Affiliation(s)
- Sarah E Conduit
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Elizabeth M Davies
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, VIC, Australia
| | - Viola Oorschot
- Monash Ramaciotti Centre for Structural Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
15
|
Conduit SE, Vanhaesebroeck B. Phosphoinositide lipids in primary cilia biology. Biochem J 2020; 477:3541-3565. [PMID: 32970140 PMCID: PMC7518857 DOI: 10.1042/bcj20200277] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Primary cilia are solitary signalling organelles projecting from the surface of most cell types. Although the ciliary membrane is continuous with the plasma membrane it exhibits a unique phospholipid composition, a feature essential for normal cilia formation and function. Recent studies have illustrated that distinct phosphoinositide lipid species localise to specific cilia subdomains, and have begun to build a 'phosphoinositide map' of the cilium. The abundance and localisation of phosphoinositides are tightly regulated by the opposing actions of lipid kinases and lipid phosphatases that have also been recently discovered at cilia. The critical role of phosphoinositides in cilia biology is highlighted by the devastating consequences of genetic defects in cilia-associated phosphoinositide regulatory enzymes leading to ciliopathy phenotypes in humans and experimental mouse and zebrafish models. Here we provide a general introduction to primary cilia and the roles phosphoinositides play in cilia biology. In addition to increasing our understanding of fundamental cilia biology, this rapidly expanding field may inform novel approaches to treat ciliopathy syndromes caused by deregulated phosphoinositide metabolism.
Collapse
Affiliation(s)
- Sarah E. Conduit
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, U.K
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, U.K
| |
Collapse
|
16
|
The Genetic and Endoplasmic Reticulum-Mediated Molecular Mechanisms of Primary Open-Angle Glaucoma. Int J Mol Sci 2020; 21:ijms21114171. [PMID: 32545285 PMCID: PMC7312987 DOI: 10.3390/ijms21114171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Glaucoma is a heterogenous, chronic, progressive group of eye diseases, which results in irreversible loss of vision. There are several types of glaucoma, whereas the primary open-angle glaucoma (POAG) constitutes the most common type of glaucoma, accounting for three-quarters of all glaucoma cases. The pathological mechanisms leading to POAG pathogenesis are multifactorial and still poorly understood, but it is commonly known that significantly elevated intraocular pressure (IOP) plays a crucial role in POAG pathogenesis. Besides, genetic predisposition and aggregation of abrogated proteins within the endoplasmic reticulum (ER) lumen and subsequent activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-dependent unfolded protein response (UPR) signaling pathway may also constitute important factors for POAG pathogenesis at the molecular level. Glaucoma is commonly known as a ‘silent thief of sight’, as it remains asymptomatic until later stages, and thus its diagnosis is frequently delayed. Thereby, detailed knowledge about the glaucoma pathophysiology is necessary to develop both biochemical and genetic tests to improve its early diagnosis as well as develop a novel, ground-breaking treatment strategy, as currently used medical therapies against glaucoma are limited and may evoke numerous adverse side-effects in patients.
Collapse
|
17
|
Rare Human Diseases: Model Organisms in Deciphering the Molecular Basis of Primary Ciliary Dyskinesia. Cells 2019; 8:cells8121614. [PMID: 31835861 PMCID: PMC6952885 DOI: 10.3390/cells8121614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a recessive heterogeneous disorder of motile cilia, affecting one per 15,000-30,000 individuals; however, the frequency of this disorder is likely underestimated. Even though more than 40 genes are currently associated with PCD, in the case of approximately 30% of patients, the genetic cause of the manifested PCD symptoms remains unknown. Because motile cilia are highly evolutionarily conserved organelles at both the proteomic and ultrastructural levels, analyses in the unicellular and multicellular model organisms can help not only to identify new proteins essential for cilia motility (and thus identify new putative PCD-causative genes), but also to elucidate the function of the proteins encoded by known PCD-causative genes. Consequently, studies involving model organisms can help us to understand the molecular mechanism(s) behind the phenotypic changes observed in the motile cilia of PCD affected patients. Here, we summarize the current state of the art in the genetics and biology of PCD and emphasize the impact of the studies conducted using model organisms on existing knowledge.
Collapse
|
18
|
Baehr W, Hanke-Gogokhia C, Sharif A, Reed M, Dahl T, Frederick JM, Ying G. Insights into photoreceptor ciliogenesis revealed by animal models. Prog Retin Eye Res 2018; 71:26-56. [PMID: 30590118 DOI: 10.1016/j.preteyeres.2018.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
Photoreceptors are polarized neurons, with very specific subcellular compartmentalization and unique requirements for protein expression and trafficking. Each photoreceptor contains an outer segment, the site of photon capture that initiates vision, an inner segment that houses the biosynthetic machinery and a synaptic terminal for signal transmission to downstream neurons. Outer segments and inner segments are connected by a connecting cilium (CC), the equivalent of a transition zone (TZ) of primary cilia. The connecting cilium is part of the basal body/axoneme backbone that stabilizes the outer segment. This report will update the reader on late developments in photoreceptor ciliogenesis and transition zone formation, specifically in mouse photoreceptors, focusing on early events in photoreceptor ciliogenesis. The connecting cilium, an elongated and narrow structure through which all outer segment proteins and membrane components must traffic, functions as a gate that controls access to the outer segment. Here we will review genes and their protein products essential for basal body maturation and for CC/TZ genesis, sorted by phenotype. Emphasis is given to naturally occurring mouse mutants and gene knockouts that interfere with CC/TZ formation and ciliogenesis.
Collapse
Affiliation(s)
- Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA.
| | - Christin Hanke-Gogokhia
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Ali Sharif
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Michelle Reed
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Tiffanie Dahl
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Jeanne M Frederick
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| |
Collapse
|
19
|
Dharmat R, Eblimit A, Robichaux MA, Zhang Z, Nguyen TMT, Jung SY, He F, Jain A, Li Y, Qin J, Overbeek P, Roepman R, Mardon G, Wensel TG, Chen R. SPATA7 maintains a novel photoreceptor-specific zone in the distal connecting cilium. J Cell Biol 2018; 217:2851-2865. [PMID: 29899041 PMCID: PMC6080925 DOI: 10.1083/jcb.201712117] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/09/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022] Open
Abstract
Photoreceptor-specific ciliopathies often affect a structure that is considered functionally homologous to the ciliary transition zone (TZ) called the connecting cilium (CC). However, it is unclear how mutations in certain ciliary genes disrupt the photoreceptor CC without impacting the primary cilia systemically. By applying stochastic optical reconstruction microscopy technology in different genetic models, we show that the CC can be partitioned into two regions: the proximal CC (PCC), which is homologous to the TZ of primary cilia, and the distal CC (DCC), a photoreceptor-specific extension of the ciliary TZ. This specialized distal zone of the CC in photoreceptors is maintained by SPATA7, which interacts with other photoreceptor-specific ciliary proteins such as RPGR and RPGRIP1. The absence of Spata7 results in the mislocalization of DCC proteins without affecting the PCC protein complexes. This collapse results in destabilization of the axonemal microtubules, which consequently results in photoreceptor degeneration. These data provide a novel mechanism to explain how genetic disruption of ubiquitously present ciliary proteins exerts tissue-specific ciliopathy phenotypes.
Collapse
Affiliation(s)
- Rachayata Dharmat
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Aiden Eblimit
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Michael A Robichaux
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Zhixian Zhang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Thanh-Minh T Nguyen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Feng He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Antrix Jain
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Jun Qin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Paul Overbeek
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Graeme Mardon
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Rui Chen
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
20
|
Joseph N, Al-Jassar C, Johnson CM, Andreeva A, Barnabas DD, Freund SMV, Gergely F, van Breugel M. Disease-Associated Mutations in CEP120 Destabilize the Protein and Impair Ciliogenesis. Cell Rep 2018; 23:2805-2818. [PMID: 29847808 PMCID: PMC5990496 DOI: 10.1016/j.celrep.2018.04.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/15/2018] [Accepted: 04/24/2018] [Indexed: 01/10/2023] Open
Abstract
Ciliopathies are a group of genetic disorders caused by a failure to form functional cilia. Due to a lack of structural information, it is currently poorly understood how ciliopathic mutations affect protein functionality to give rise to the underlying disease. Using X-ray crystallography, we show that the ciliopathy-associated centriolar protein CEP120 contains three C2 domains. The point mutations V194A and A199P, which cause Joubert syndrome (JS) and Jeune asphyxiating thoracic dystrophy (JATD), respectively, both reduce the thermostability of the second C2 domain by targeting residues that point toward its hydrophobic core. Genome-engineered cells homozygous for these mutations have largely normal centriole numbers but show reduced CEP120 levels, compromised recruitment of distal centriole markers, and deficient cilia formation. Our results provide insight into the disease mechanism of two ciliopathic mutations in CEP120, identify putative binding partners of CEP120 C2B, and suggest a complex genotype-phenotype relation of the CEP120 ciliopathy alleles.
Collapse
Affiliation(s)
- Nimesh Joseph
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Caezar Al-Jassar
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher M Johnson
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Antonina Andreeva
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Deepak D Barnabas
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stefan M V Freund
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
| | - Mark van Breugel
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
21
|
Patnaik SR, Zhang X, Biswas L, Akhtar S, Zhou X, Kusuluri DK, Reilly J, May-Simera H, Chalmers S, McCarron JG, Shu X. RPGR protein complex regulates proteasome activity and mediates store-operated calcium entry. Oncotarget 2018; 9:23183-23197. [PMID: 29796181 PMCID: PMC5955404 DOI: 10.18632/oncotarget.25259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/07/2018] [Indexed: 11/25/2022] Open
Abstract
Ciliopathies are a group of genetically heterogeneous disorders, characterized by defects in cilia genesis or maintenance. Mutations in the RPGR gene and its interacting partners, RPGRIP1 and RPGRIP1L, cause ciliopathies, but the function of their proteins remains unclear. Here we show that knockdown (KD) of RPGR, RPGRIP1 or RPGRIP1L in hTERT-RPE1 cells results in abnormal actin cytoskeleton organization. The actin cytoskeleton rearrangement is regulated by the small GTPase RhoA via the planar cell polarity (PCP) pathway. RhoA activity was upregulated in the absence of RPGR, RPGRIP1 or RPGRIP1L proteins. In RPGR, RPGRIP1 or RPGRIP1L KD cells, we observed increased levels of DVl2 and DVl3 proteins, the core components of the PCP pathway, due to impaired proteasomal activity. RPGR, RPGRIP1 or RPGRIP1L KD cells treated with thapsigargin (TG), an inhibitor of sarcoendoplasmic reticulum Ca2+- ATPases, showed impaired store-operated Ca2+ entry (SOCE), which is mediated by STIM1 and Orai1 proteins. STIM1 was not localized to the ER-PM junction upon ER store depletion in RPGR, RPGRIP1 or RPGRIP1L KD cells. Our results demonstrate that the RPGR protein complex is required for regulating proteasomal activity and for modulating SOCE, which may contribute to the ciliopathy phenotype.
Collapse
Affiliation(s)
- Sarita Rani Patnaik
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
- Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - Xun Zhang
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| | - Lincoln Biswas
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| | - Saeed Akhtar
- Cornea Research Chair, Department of Optometry, King Saud University, Riyadh 11433, Kingdom of Saudi Arabia
| | - Xinzhi Zhou
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| | - Deva Krupakar Kusuluri
- Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - James Reilly
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| | - Helen May-Simera
- Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - Susan Chalmers
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - John G. McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| |
Collapse
|
22
|
Garcia G, Raleigh DR, Reiter JF. How the Ciliary Membrane Is Organized Inside-Out to Communicate Outside-In. Curr Biol 2018; 28:R421-R434. [PMID: 29689227 PMCID: PMC6434934 DOI: 10.1016/j.cub.2018.03.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cilia, organelles that move to execute functions like fertilization and signal to execute functions like photoreception and embryonic patterning, are composed of a core of nine-fold doublet microtubules overlain by a membrane. Distinct types of cilia display distinct membrane morphologies, ranging from simple domed cylinders to the highly ornate invaginations and membrane disks of photoreceptor outer segments. Critical for the ability of cilia to signal, both the protein and the lipid compositions of ciliary membranes are different from those of other cellular membranes. This specialization presents a unique challenge for the cell as, unlike membrane-bounded organelles, the ciliary membrane is contiguous with the surrounding plasma membrane. This distinct ciliary membrane is generated in concert with multiple membrane remodeling events that comprise the process of ciliogenesis. Once the cilium is formed, control of ciliary membrane composition relies on discrete molecular machines, including a barrier to membrane proteins entering the cilium at a specialized region of the base of the cilium called the transition zone and a trafficking adaptor that controls G protein-coupled receptor (GPCR) localization to the cilium called the BBSome. The ciliary membrane can be further remodeled by the removal of membrane proteins by the release of ciliary extracellular vesicles that may function in intercellular communication, removal of unneeded proteins or ciliary disassembly. Here, we review the structures and transport mechanisms that control ciliary membrane composition, and discuss how membrane specialization enables the cilium to function as the antenna of the cell.
Collapse
Affiliation(s)
- Galo Garcia
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - David R Raleigh
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Radiation Oncology, University of California, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
23
|
The Role of the Microglial Cx3cr1 Pathway in the Postnatal Maturation of Retinal Photoreceptors. J Neurosci 2018; 38:4708-4723. [PMID: 29669747 DOI: 10.1523/jneurosci.2368-17.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 11/21/2022] Open
Abstract
Microglia are the resident immune cells of the CNS, and their response to infection, injury and disease is well documented. More recently, microglia have been shown to play a role in normal CNS development, with the fractalkine-Cx3cr1 signaling pathway of particular importance. This work describes the interaction between the light-sensitive photoreceptors and microglia during eye opening, a time of postnatal photoreceptor maturation. Genetic removal of Cx3cr1 (Cx3cr1GFP/GFP ) led to an early retinal dysfunction soon after eye opening [postnatal day 17 (P17)] and cone photoreceptor loss (P30 onward) in mice of either sex. This dysfunction occurred at a time when fractalkine expression was predominantly outer retinal, when there was an increased microglial presence near the photoreceptor layer and increased microglial-cone photoreceptor contacts. Photoreceptor maturation and outer segment elongation was coincident with increased opsin photopigment expression in wild-type retina, while this was aberrant in the Cx3cr1GFP/GFP retina and outer segment length was reduced. A beadchip array highlighted Cx3cr1 regulation of genes involved in the photoreceptor cilium, a key structure that is important for outer segment elongation. This was confirmed with quantitative PCR with specific cilium-related genes, Rpgr and Rpgrip1, downregulated at eye opening (P14). While the overall cilium structure was unaffected, expression of Rpgr, Rpgrip1, and centrin were restricted to more proximal regions of the transitional zone. This study highlighted a novel role for microglia in postnatal neuronal development within the retina, with loss of fractalkine-Cx3cr1 signaling leading to an altered distribution of cilium proteins, failure of outer segment elongation and ultimately cone photoreceptor loss.SIGNIFICANCE STATEMENT Microglia are involved in CNS development and disease. This work highlights the role of microglia in postnatal development of the light-detecting photoreceptor neurons within the mouse retina. Loss of the microglial Cx3cr1 signaling pathway resulted in specific alterations in the cilium, a key structure in photoreceptor outer segment elongation. The distribution of key components of the cilium transitional zone, Rpgr, Rpgrip1, and centrin, were altered in retinae lacking Cx3cr1 with reduced outer segment length and cone photoreceptor death observed at later postnatal ages. This work identifies a novel role for microglia in the postnatal maturation of retinal photoreceptors.
Collapse
|
24
|
Cep120 promotes microtubule formation through a unique tubulin binding C2 domain. J Struct Biol 2018; 203:62-70. [PMID: 29398280 DOI: 10.1016/j.jsb.2018.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 02/05/2023]
Abstract
Centrioles are microtubule-based structures that play essential roles in cell division and cilia biogenesis. Cep120 is an important protein for correct centriole formation and mutations in the Cep120 gene cause severe human diseases like Joubert syndrome and complex ciliopathies. Here, we show that Cep120 contains three consecutive C2 domains that are followed by a coiled-coil dimerization domain. Surprisingly, unlike the classical C2 domains, all three Cep120 C2 domains lack calcium- and phospholipid-binding activities. However, biophysical and biochemical assays revealed that the N-terminal Cep120 C2 domain (C2A) binds to both tubulin and microtubules, and promotes microtubule formation. Structural analyses coupled with mutagenesis identified a highly conserved, positively charged residue patch on the surface of Cep120 C2A, which mediates the interaction with tubulin and microtubules. Together, our results establish Cep120 C2A as a unique microtubule-binding domain. They further provide insights into the molecular mechanism of Cep120 during centriole biogenesis.
Collapse
|
25
|
Vetter IR. Interface analysis of small GTP binding protein complexes suggests preferred membrane orientations. Biol Chem 2017; 398:637-651. [PMID: 28002022 DOI: 10.1515/hsz-2016-0287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/12/2016] [Indexed: 11/15/2022]
Abstract
Crystal structures of small GTP binding protein complexes with their effectors and regulators reveal that one particularly flat side of the G domain that contains helix α4 and the C-terminal helix α5 is practically devoid of contacts. Although this observation seems trivial as the main binding targets are the switch I and II regions opposite of this side, the fact that all interacting proteins, even the largest ones, seem to avoid occupying this area (except for Ran, that does not localize to membranes) is very striking. An orientation with this 'flat' side parallel to the membrane was proposed before and would allow simultaneous interaction of the lipidated C-terminus and positive charges in the α4 helix with the membrane while being bound to effector or regulator molecules. Furthermore, this 'flat' side might be involved in regulatory mechanisms: a Ras dimer that is found in different crystal forms interacts exactly at this side. Additional interface analysis of GTPase complexes nicely confirms the effect of different flexibilities of the GTP and GDP forms. Besides Ran proteins, guanine nucleotide exchange factors (GEFs) bury the largest surface areas to provide the binding energy to open up the switch regions for nucleotide exchange.
Collapse
Affiliation(s)
- Ingrid R Vetter
- Max Planck Institute of Molecular Physiology, Department of Mechanistic Cell Biology, Otto-Hahn-Str. 11, D-44227 Dortmund
| |
Collapse
|
26
|
Disease mechanisms of X-linked retinitis pigmentosa due to RP2 and RPGR mutations. Biochem Soc Trans 2017; 44:1235-1244. [PMID: 27911705 DOI: 10.1042/bst20160148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 01/24/2023]
Abstract
Photoreceptor degeneration is the prominent characteristic of retinitis pigmentosa (RP), a heterogeneous group of inherited retinal dystrophies resulting in blindness. Although abnormalities in many pathways can cause photoreceptor degeneration, one of the most important causes is defective protein transport through the connecting cilium, the structure that connects the biosynthetic inner segment with the photosensitive outer segment of the photoreceptors. The majority of patients with X-linked RP have mutations in the retinitis pigmentosa GTPase regulator (RPGR) or RP2 genes, the protein products of which are both components of the connecting cilium and associated with distinct mechanisms of protein delivery to the outer segment. RP2 and RPGR proteins are associated with severe diseases ranging from classic RP to atypical forms. In this short review, we will summarise current knowledge generated by experimental studies and knockout animal models, compare and discuss the prominent hypotheses about the two proteins' functions in retinal cell biology.
Collapse
|
27
|
Assis LHP, Silva-Junior RMP, Dolce LG, Alborghetti MR, Honorato RV, Nascimento AFZ, Melo-Hanchuk TD, Trindade DM, Tonoli CCC, Santos CT, Oliveira PSL, Larson RE, Kobarg J, Espreafico EM, Giuseppe PO, Murakami MT. The molecular motor Myosin Va interacts with the cilia-centrosomal protein RPGRIP1L. Sci Rep 2017; 7:43692. [PMID: 28266547 PMCID: PMC5339802 DOI: 10.1038/srep43692] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/30/2017] [Indexed: 12/31/2022] Open
Abstract
Myosin Va (MyoVa) is an actin-based molecular motor abundantly found at the centrosome. However, the role of MyoVa at this organelle has been elusive due to the lack of evidence on interacting partners or functional data. Herein, we combined yeast two-hybrid screen, biochemical studies and cellular assays to demonstrate that MyoVa interacts with RPGRIP1L, a cilia-centrosomal protein that controls ciliary signaling and positioning. MyoVa binds to the C2 domains of RPGRIP1L via residues located near or in the Rab11a-binding site, a conserved site in the globular tail domain (GTD) from class V myosins. According to proximity ligation assays, MyoVa and RPGRIP1L can interact near the cilium base in ciliated RPE cells. Furthermore, we showed that RPE cells expressing dominant-negative constructs of MyoVa are mostly unciliated, providing the first experimental evidence about a possible link between this molecular motor and cilia-related processes.
Collapse
Affiliation(s)
- L H P Assis
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, SP, Brazil.,Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - R M P Silva-Junior
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - L G Dolce
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, SP, Brazil.,Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - M R Alborghetti
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - R V Honorato
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - A F Z Nascimento
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, SP, Brazil.,Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - T D Melo-Hanchuk
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - D M Trindade
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - C C C Tonoli
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - C T Santos
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - P S L Oliveira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - R E Larson
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - J Kobarg
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - E M Espreafico
- Department of Cell and Molecular Biology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - P O Giuseppe
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - M T Murakami
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, SP, Brazil
| |
Collapse
|
28
|
Wanka H, Lutze P, Staar D, Peters B, Morch A, Vogel L, Chilukoti RK, Homuth G, Sczodrok J, Bäumgen I, Peters J. (Pro)renin receptor (ATP6AP2) depletion arrests As4.1 cells in the G0/G1 phase thereby increasing formation of primary cilia. J Cell Mol Med 2017; 21:1394-1410. [PMID: 28215051 PMCID: PMC5487920 DOI: 10.1111/jcmm.13069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/24/2016] [Indexed: 01/07/2023] Open
Abstract
The (pro)renin receptor [(P)RR, ATP6AP2] is a multifunctional transmembrane protein that activates local renin-angiotensin systems, but also interacts with Wnt pathways and vacuolar H+ -ATPase (V-ATPase) during organogenesis. The aim of this study was to characterize the role of ATP6AP2 in the cell cycle in more detail. ATP6AP2 down-regulation by siRNA in renal As4.1 cells resulted in a reduction in the rate of proliferation and a G0/G1 phase cell cycle arrest. We identified a number of novel target genes downstream of ATP6AP2 knock-down that were related to the primary cilium (Bbs-1, Bbs-3, Bbs-7, Rabl5, Ttc26, Mks-11, Mks-5, Mks-2, Tctn2, Nme7) and the cell cycle (Pierce1, Clock, Ppif). Accordingly, the number of cells expressing the primary cilium was markedly increased. We found no indication that these effects were dependent of V-ATPase activity, as ATP6AP2 knock-down did not affect lysosomal pH and bafilomycin A neither influenced the ciliary expression pattern nor the percentage of ciliated cells. Furthermore, ATP6AP2 appears to be essential for mitosis. ATP6AP2 translocated from the endoplasmatic reticulum to mitotic spindle poles (pro-, meta- and anaphase) and the central spindle bundle (telophase) and ATP6AP2 knock-down results in markedly deformed spindles. We conclude that ATP6AP2 is necessary for cell division, cell cycle progression and mitosis. ATP6AP2 also inhibits ciliogenesis, thus promoting proliferation and preventing differentiation.
Collapse
Affiliation(s)
- Heike Wanka
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Philipp Lutze
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Doreen Staar
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Barbara Peters
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Anica Morch
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Lukas Vogel
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Ravi Kumar Chilukoti
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst Moritz Arndt-University Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst Moritz Arndt-University Greifswald, Greifswald, Germany
| | - Jaroslaw Sczodrok
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Inga Bäumgen
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Jörg Peters
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| |
Collapse
|
29
|
Mutations in human C2CD3 cause skeletal dysplasia and provide new insights into phenotypic and cellular consequences of altered C2CD3 function. Sci Rep 2016; 6:24083. [PMID: 27094867 PMCID: PMC4837335 DOI: 10.1038/srep24083] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 03/16/2016] [Indexed: 01/12/2023] Open
Abstract
Ciliopathies are a group of genetic disorders caused by defective assembly or dysfunction of the primary cilium, a microtubule-based cellular organelle that plays a key role in developmental signalling. Ciliopathies are clinically grouped in a large number of overlapping disorders, including the orofaciodigital syndromes (OFDS), the short rib polydactyly syndromes and Jeune asphyxiating thoracic dystrophy. Recently, mutations in the gene encoding the centriolar protein C2CD3 have been described in two families with a new sub-type of OFDS (OFD14), with microcephaly and cerebral malformations. Here we describe a third family with novel compound heterozygous C2CD3 mutations in two fetuses with a different clinical presentation, dominated by skeletal dysplasia with no microcephaly. Analysis of fibroblast cultures derived from one of these fetuses revealed a reduced ability to form cilia, consistent with previous studies in C2cd3-mutant mouse and chicken cells. More detailed analyses support a role for C2CD3 in basal body maturation; but in contrast to previous mouse studies the normal recruitment of the distal appendage protein CEP164 suggests that this protein is not sufficient for efficient basal body maturation and subsequent axonemal extension in a C2CD3-defective background.
Collapse
|
30
|
Extended-Synaptotagmins (E-Syts); the extended story. Pharmacol Res 2016; 107:48-56. [PMID: 26926095 DOI: 10.1016/j.phrs.2016.01.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 01/24/2016] [Accepted: 01/24/2016] [Indexed: 12/29/2022]
Abstract
The Extended-Synaptotagmin (E-Syt) membrane proteins were only recently discovered, but have already been implicated in a range of interrelated cellular functions, including calcium and receptor signaling, and membrane lipid transport. However, despite their evolutionary conservation and detailed studies of their molecular actions, we still have little idea of how and when these proteins are required in cellular and organism physiology. Here we review our present understanding of the E-Syts and discuss the molecular functions and in vivo requirements for these proteins.
Collapse
|
31
|
Abstract
This study shows that the prenylated C‐terminus of RPGR can bind to PDE6δ with high affinity, suggesting two distinct binding sites of the RPGR/PDE6δ complex. The serine residue at the −3 position relative to the prenylated cysteine seems to play a key role in defining the selectivity of PDE6δ towards ciliary prenylated cargo.
Collapse
|
32
|
Kim P, Cheng F, Zhao J, Zhao Z. ccmGDB: a database for cancer cell metabolism genes. Nucleic Acids Res 2015; 44:D959-68. [PMID: 26519468 PMCID: PMC4702820 DOI: 10.1093/nar/gkv1128] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/15/2015] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence has demonstrated that rewiring of metabolism in cells is an important hallmark of cancer. The percentage of patients killed by metabolic disorder has been estimated to be 30% of the advanced-stage cancer patients. Thus, a systematic annotation of cancer cell metabolism genes is imperative. Here, we present ccmGDB (Cancer Cell Metabolism Gene DataBase), a comprehensive annotation database for cell metabolism genes in cancer, available at http://bioinfo.mc.vanderbilt.edu/ccmGDB. We assembled, curated, and integrated genetic, genomic, transcriptomic, proteomic, biological network and functional information for over 2000 cell metabolism genes in more than 30 cancer types. In total, we integrated over 260 000 somatic alterations including non-synonymous mutations, copy number variants and structural variants. We also integrated RNA-Seq data in various primary tumors, gene expression microarray data in over 1000 cancer cell lines and protein expression data. Furthermore, we constructed cancer or tissue type-specific, gene co-expression based protein interaction networks and drug-target interaction networks. Using these systematic annotations, the ccmGDB portal site provides 6 categories: gene summary, phenotypic information, somatic mutations, gene and protein expression, gene co-expression network and drug pharmacological information with a user-friendly interface for browsing and searching. ccmGDB is developed and maintained as a useful resource for the cancer research community.
Collapse
Affiliation(s)
- Pora Kim
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Feixiong Cheng
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Junfei Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| |
Collapse
|
33
|
Raghupathy RK, Gautier P, Soares DC, Wright AF, Shu X. Evolutionary Characterization of the Retinitis Pigmentosa GTPase Regulator Gene. Invest Ophthalmol Vis Sci 2015; 56:6255-64. [PMID: 26431479 PMCID: PMC5841567 DOI: 10.1167/iovs.15-17726] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
PURPOSE The evolutionary conservation of the retinitis pigmentosa GTPase regulator (RPGR) gene was examined across vertebrate and invertebrate lineages to elucidate its function. METHODS Orthologous RPGR sequences from vertebrates and invertebrates were selected. Multiple sequence alignments, phylogenetic analyses, synteny, and gene structure comparisons were carried out. Expression of the alternatively spliced constitutive (RPGR(const) or RPGR(ex1-19)) and RPGR(ORF15) isoforms was examined in developing and adult zebrafish. RESULTS Phylogenetic analyses and syntenic relationships were consistent with the selected sequences being true orthologues, although whole genome duplications in teleost fish resulted in a more complex picture. The splice form RPGR(const) was present in all vertebrate and invertebrate species but the defining carboxyl (C)-terminal exon of RPGR(ORF15) was absent from all invertebrates. The regulator of chromosome condensation (RCC1)-like domain adopts a seven-bladed β-propeller structure, which was present in both major splice forms and strongly conserved across evolution. The repetitive acidic region of RPGR(ORF15) showed a high rate of in-frame deletions/insertions across nine primate species, compared with flanking sequences, consistent with an unstable and rapidly evolving region. In zebrafish, RPGR(const) transcripts were most strongly expressed in early development, while the RPGR(ORF15) isoform showed highest expression in adult eye. CONCLUSIONS The regulator of chromosome condensation 1-like domain of RPGR was conserved in vertebrates and invertebrates, but RPGR(ORF15) was unique to vertebrates, consistent with a proposed role in the ciliary-based transport of cargoes such as rhodopsin, which is ∼10 times more abundant in vertebrate than invertebrate photoreceptors. The repetitive acidic region of RPGR(ORF15) shows a rapid rate of evolution, consistent with a mutation "hot spot."
Collapse
Affiliation(s)
| | - Philippe Gautier
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Dinesh C. Soares
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan F. Wright
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| |
Collapse
|
34
|
Superresolution Pattern Recognition Reveals the Architectural Map of the Ciliary Transition Zone. Sci Rep 2015; 5:14096. [PMID: 26365165 PMCID: PMC4568515 DOI: 10.1038/srep14096] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/18/2015] [Indexed: 12/31/2022] Open
Abstract
The transition zone (TZ) of primary cilia serves as a diffusion barrier to regulate ciliogenesis and receptor localization for key signaling events such as sonic hedgehog signaling. Its gating mechanism is poorly understood due to the tiny volume accommodating a large number of ciliopathy-associated molecules. Here we performed stimulated emission depletion (STED) imaging of collective samples and recreated superresolved relative localizations of eight representative species of ciliary proteins using position averages and overlapped with representative electron microscopy (EM) images, defining an architectural foundation at the ciliary base. Upon this framework, transmembrane proteins TMEM67 and TCTN2 were accumulated at the same axial level as MKS1 and RPGRIP1L, suggesting that their regulation roles for tissue-specific ciliogenesis occur at a specific level of the TZ. CEP290 is surprisingly localized at a different axial level bridging the basal body (BB) and other TZ proteins. Upon this molecular architecture, two reservoirs of intraflagellar transport (IFT) particles, correlating with phases of ciliary growth, are present: one colocalized with the transition fibers (TFs) while the other situated beyond the distal edge of the TZ. Together, our results reveal an unprecedented structural framework of the TZ, facilitating our understanding in molecular screening and assembly at the ciliary base.
Collapse
|
35
|
Megaw RD, Soares DC, Wright AF. RPGR: Its role in photoreceptor physiology, human disease, and future therapies. Exp Eye Res 2015; 138:32-41. [PMID: 26093275 PMCID: PMC4553903 DOI: 10.1016/j.exer.2015.06.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 12/21/2022]
Abstract
Mammalian photoreceptors contain specialised connecting cilia that connect the inner (IS) to the outer segments (OS). Dysfunction of the connecting cilia due to mutations in ciliary proteins are a common cause of the inherited retinal dystrophy retinitis pigmentosa (RP). Mutations affecting the Retinitis Pigmentosa GTPase Regulator (RPGR) protein is one such cause, affecting 10-20% of all people with RP and the majority of those with X-linked RP. RPGR is located in photoreceptor connecting cilia. It interacts with a wide variety of ciliary proteins, but its exact function is unknown. Recently, there have been important advances both in our understanding of RPGR function and towards the development of a therapy. This review summarises the existing literature on human RPGR function and dysfunction, and suggests that RPGR plays a role in the function of the ciliary gate, which controls access of both membrane and soluble proteins to the photoreceptor outer segment. We discuss key models used to investigate and treat RPGR disease and suggest that gene augmentation therapy offers a realistic therapeutic approach, although important questions still remain to be answered, while cell replacement therapy based on retinal progenitor cells represents a more distant prospect.
Collapse
Affiliation(s)
- Roly D Megaw
- Scottish Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, United Kingdom.
| | - Dinesh C Soares
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.
| | - Alan F Wright
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.
| |
Collapse
|
36
|
The Role of RPGR and Its Interacting Proteins in Ciliopathies. J Ophthalmol 2015; 2015:414781. [PMID: 26124960 PMCID: PMC4466403 DOI: 10.1155/2015/414781] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/13/2015] [Accepted: 04/19/2015] [Indexed: 11/28/2022] Open
Abstract
Ciliopathies encompass a group of genetic disorders characterized by defects in the formation, maintenance, or function of cilia. Retinitis pigmentosa (RP) is frequently one of the clinical features presented in diverse ciliopathies. RP is a heterogeneous group of inherited retinal disorders, characterized by the death of photoreceptors and affecting more than one million individuals worldwide. The retinitis pigmentosa GTPase regulator (RPGR) gene is mutated in up to 20% of all RP patients. RPGR protein has different interacting partners to function in ciliary protein trafficking. In this review, we specifically focus on RPGR and its two interacting proteins: RPGRIP1 and RPGRIP1L. We summarize the function of the three proteins and highlight recent studies that provide insight into the cellular function of those proteins.
Collapse
|
37
|
Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ, Ping XL, Chen YS, Wang WJ, Jin KX, Wang X, Huang CM, Fu Y, Ge XM, Song SH, Jeong HS, Yanagisawa H, Niu Y, Jia GF, Wu W, Tong WM, Okamoto A, He C, Rendtlew Danielsen JM, Wang XJ, Yang YG. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res 2014; 24:1403-19. [PMID: 25412662 PMCID: PMC4260349 DOI: 10.1038/cr.2014.151] [Citation(s) in RCA: 907] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 12/25/2022] Open
Abstract
The role of Fat Mass and Obesity-associated protein (FTO) and its substrate N6-methyladenosine (m6A) in mRNA processing and adipogenesis remains largely unknown. We show that FTO expression and m6A levels are inversely correlated during adipogenesis. FTO depletion blocks differentiation and only catalytically active FTO restores adipogenesis. Transcriptome analyses in combination with m6A-seq revealed that gene expression and mRNA splicing of grouped genes are regulated by FTO. M6A is enriched in exonic regions flanking 5′- and 3′-splice sites, spatially overlapping with mRNA splicing regulatory serine/arginine-rich (SR) protein exonic splicing enhancer binding regions. Enhanced levels of m6A in response to FTO depletion promotes the RNA binding ability of SRSF2 protein, leading to increased inclusion of target exons. FTO controls exonic splicing of adipogenic regulatory factor RUNX1T1 by regulating m6A levels around splice sites and thereby modulates differentiation. These findings provide compelling evidence that FTO-dependent m6A demethylation functions as a novel regulatory mechanism of RNA processing and plays a critical role in the regulation of adipogenesis.
Collapse
Affiliation(s)
- Xu Zhao
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ying Yang
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Bao-Fa Sun
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yue Shi
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xin Yang
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Wen Xiao
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ya-Juan Hao
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiao-Li Ping
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yu-Sheng Chen
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Wen-Jia Wang
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Kang-Xuan Jin
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xing Wang
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Chun-Min Huang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yu Fu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Qinghuayuan 1, Beijing 100084, China
| | - Xiao-Meng Ge
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Shu-Hui Song
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Hyun Seok Jeong
- Research Center for Advanced Science and Technology, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroyuki Yanagisawa
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yamei Niu
- Department of Pathology, Center for Experimental Animal Research, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Gui-Fang Jia
- Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Wu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Qinghuayuan 1, Beijing 100084, China
| | - Wei-Min Tong
- Department of Pathology, Center for Experimental Animal Research, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Akimitsu Okamoto
- 1] Research Center for Advanced Science and Technology, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan [2] RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Chuan He
- 1] Department of Chemical Biology, Beijing National Laboratory for Molecular Sciences, Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China [2] Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Jannie M Rendtlew Danielsen
- 1] Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China [2] The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - Xiu-Jie Wang
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun-Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Acaemy of Sciences, No. 1-7 Beichen West Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
38
|
Tu S, Okamoto SI, Lipton SA, Xu H. Oligomeric Aβ-induced synaptic dysfunction in Alzheimer's disease. Mol Neurodegener 2014; 9:48. [PMID: 25394486 PMCID: PMC4237769 DOI: 10.1186/1750-1326-9-48] [Citation(s) in RCA: 414] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/08/2014] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating disease characterized by synaptic and neuronal loss in the elderly. Compelling evidence suggests that soluble amyloid-β peptide (Aβ) oligomers induce synaptic loss in AD. Aβ-induced synaptic dysfunction is dependent on overstimulation of N-methyl-D-aspartate receptors (NMDARs) resulting in aberrant activation of redox-mediated events as well as elevation of cytoplasmic Ca2+, which in turn triggers downstream pathways involving phospho-tau (p-tau), caspases, Cdk5/dynamin-related protein 1 (Drp1), calcineurin/PP2B, PP2A, Gsk-3β, Fyn, cofilin, and CaMKII and causes endocytosis of AMPA receptors (AMPARs) as well as NMDARs. Dysfunction in these pathways leads to mitochondrial dysfunction, bioenergetic compromise and consequent synaptic dysfunction and loss, impaired long-term potentiation (LTP), and cognitive decline. Evidence also suggests that Aβ may, at least in part, mediate these events by causing an aberrant rise in extrasynaptic glutamate levels by inhibiting glutamate uptake or triggering glutamate release from glial cells. Consequent extrasynaptic NMDAR (eNMDAR) overstimulation then results in synaptic dysfunction via the aforementioned pathways. Consistent with this model of Aβ-induced synaptic loss, Aβ synaptic toxicity can be partially ameliorated by the NMDAR antagonists (such as memantine and NitroMemantine). PSD-95, an important scaffolding protein that regulates synaptic distribution and activity of both NMDA and AMPA receptors, is also functionally disrupted by Aβ. PSD-95 dysregulation is likely an important intermediate step in the pathological cascade of events caused by Aβ. In summary, Aβ-induced synaptic dysfunction is a complicated process involving multiple pathways, components and biological events, and their underlying mechanisms, albeit as yet incompletely understood, may offer hope for new therapeutic avenues.
Collapse
Affiliation(s)
- Shichun Tu
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
39
|
The ciliopathy gene Rpgrip1l is essential for hair follicle development. J Invest Dermatol 2014; 135:701-709. [PMID: 25398052 PMCID: PMC4340706 DOI: 10.1038/jid.2014.483] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/27/2014] [Accepted: 10/27/2014] [Indexed: 01/01/2023]
Abstract
The primary cilium is essential for skin morphogenesis through regulating the Notch, Wnt, and hedgehog signaling pathways. Prior studies on the functions of primary cilia in the skin were based on the investigations of genes that are essential for cilium formation. However, none of these ciliogenic genes has been linked to ciliopathy, a group of disorders caused by abnormal formation or function of cilia. To determine whether there is a genetic and molecular link between ciliopathies and skin morphogenesis, we investigated the role of RPGRIP1L, a gene mutated in Joubert (JBTS) and Meckel (MKS) syndromes, two severe forms of ciliopathy, in the context of skin development. We found that RPGRIP1L is essential for hair follicle morphogenesis. Specifically, disrupting the Rpgril1 gene in mice resulted in reduced proliferation and differentiation of follicular keratinocytes, leading to hair follicle developmental defects. These defects were associated with significantly decreased primary cilium formation and attenuated hedgehog signaling. In contrast, we found that hair follicle induction and polarization and the development of interfollicular epidermis were unaffected. This study indicates that RPGRIP1L, a ciliopathy gene, is essential for hair follicle morphogenesis likely through regulating primary cilia formation and the hedgehog signaling pathway.
Collapse
|