1
|
Chen Y, Yin J, Liu Y, Huang Y, Zong W, Tan R. Molecular mechanism of the effect of ZnCl 2 and MgCl 2 solution on the conformation of the tau 267-312 monomer. SOFT MATTER 2025; 21:3092-3100. [PMID: 40165595 DOI: 10.1039/d4sm01546k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease is generally believed to be caused by abnormal aggregation of tau protein; however, there remains a lack of understanding about the aggregation process of tau protein in a solution environment. To explore the conformational properties of the tau protein monomer (tau267-312) in the presence of zinc and magnesium ions, we performed all-atom molecular dynamics simulations of tau267-312 in solutions of zinc chloride and magnesium chloride at different concentrations and compared these results with those obtained in pure water. The calculation results show that the β-sheet content increases significantly in the presence of zinc and magnesium ions, which causes a more compact structure for the tau protein monomers. Furthermore, it was found that stronger interactions between residues, as well as alterations in hydrophilic and hydrophobic interactions, are molecular mechanisms driving structural changes within the tau protein monomers. These findings suggest that zinc and magnesium ions facilitate a more stable conformation and promote the aggregation of tau protein monomers, which is important for understanding the aggregation and folding process of tau protein in the environment of saline solution.
Collapse
Affiliation(s)
- Yipeng Chen
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, 330038, China.
| | - Jiantao Yin
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, 330038, China.
| | - Yanhui Liu
- College of Physics, Guizhou University, Guiyang, 550025, China
| | - Yue Huang
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, 330038, China.
| | - Wenjun Zong
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, 330038, China.
| | - Rongri Tan
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, 330038, China.
| |
Collapse
|
2
|
Lobyntseva A, Ganaiem M, Ivashko‐Pachima Y, Barnstable C, Weisinger B, Parabucki A, Segal Y, Shohami E, Gozes I. Extremely Low-Frequency and Low-Intensity Electromagnetic Field Technology (ELF-EMF) Sculpts Microtubules. Eur J Neurosci 2025; 61:e70023. [PMID: 39966100 PMCID: PMC11835790 DOI: 10.1111/ejn.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/11/2025] [Accepted: 02/01/2025] [Indexed: 02/20/2025]
Abstract
Aberrant microtubule dynamics coupled with a reduction in Tau-microtubule interaction are at the core of neuronal injuries resulting in microtubule disruption and aggregates of abnormally phosphorylated Tau. These pathological Tau aggregates define tauopathies such as Alzheimer's disease (AD), as well as the pathological sequelae following traumatic brain injury (TBI), stroke and spinal cord injury (SCI). We hypothesized that differential applications of extremely low-frequency and low-intensity electromagnetic field (ELF-EMF) will change microtubule function. To examine our hypothesis, we pre-applied ELF-EMF to a neuroblastoma neuronal cell line later exposed to 4 h of zinc intoxication, modelling Tau-microtubule dissociation. ELF-EMF (40 Hz and 1 G; multiple exposure schedules) enhanced microtubule dynamics and increased Tau-microtubule interaction in the face of zinc toxicity. Complementing these preconditioning neuroprotective effects, concomitant 1 h treatment protocols comparing 3.9 or 40 Hz and 1 G exposure, indicated effects on Tau phosphorylation accentuated with 40 Hz and reduction in beta tubulin isotypes, depending on electromagnetic frequencies, most pronounced at 3.9 Hz. Our results discovered ELF-EMF modulation on the microtubule cytoskeleton essential for brain health.
Collapse
Affiliation(s)
- Alexandra Lobyntseva
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Sagol School of Neuroscience and Adams Super Center for Brain StudiesTel Aviv UniversityTel AvivIsrael
| | - Maram Ganaiem
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Sagol School of Neuroscience and Adams Super Center for Brain StudiesTel Aviv UniversityTel AvivIsrael
| | - Yanina Ivashko‐Pachima
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Sagol School of Neuroscience and Adams Super Center for Brain StudiesTel Aviv UniversityTel AvivIsrael
| | - Colin J. Barnstable
- Department of Neural and Behavioral SciencesPenn State College of MedicineHersheyPennsylvaniaUSA
| | | | | | | | - Esther Shohami
- Institute for Drug ResearchThe Hebrew University of JerusalemJerusalemIsrael
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Sagol School of Neuroscience and Adams Super Center for Brain StudiesTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
3
|
Yang H, Tan H, Wen H, Xin P, Liu Y, Deng Z, Xu Y, Gao F, Zhang L, Ye Z, Zhang Z, Chen Y, Wang Y, Sun J, Lam JWY, Zhao Z, Kwok RTK, Qiu Z, Tang BZ. Recent Progress in Nanomedicine for the Diagnosis and Treatment of Alzheimer's Diseases. ACS NANO 2024; 18:33792-33826. [PMID: 39625718 DOI: 10.1021/acsnano.4c11966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes memory loss and progressive and permanent deterioration of cognitive function. The most challenging issue in combating AD is its complicated pathogenesis, which includes the deposition of amyloid β (Aβ) plaques, intracellular hyperphosphorylated tau protein, neurofibrillary tangles (NFT), etc. Despite rapid advancements in mechanistic research and drug development for AD, the currently developed drugs only improve cognitive ability and temporarily relieve symptoms but cannot prevent the development of AD. Moreover, the blood-brain barrier (BBB) creates a huge barrier to drug delivery in the brain. Therefore, effective diagnostic tools and treatments are urgently needed. In recent years, nanomedicine has provided opportunities to overcome the challenges and limitations associated with traditional diagnostics or treatments. Various types of nanoparticles (NPs) play an essential role in nanomedicine for the diagnosis and treatment of AD, acting as drug carriers to improve targeting and bioavailability across/bypass the BBB or acting as drugs directly on AD lesions. This review categorizes different types of NPs and summarizes their applications in nanomedicine for the diagnosis and treatment of AD. It also discusses the challenges associated with clinical applications and explores the latest developments and prospects of nanomedicine for AD.
Collapse
Affiliation(s)
- Han Yang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Haozhe Tan
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Haifei Wen
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Peikun Xin
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yanling Liu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ziwei Deng
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yanning Xu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Feng Gao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Liping Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ziyue Ye
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Zicong Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yunhao Chen
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yueze Wang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Jianwei Sun
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Jacky W Y Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ryan T K Kwok
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| |
Collapse
|
4
|
Wu J, Wu J, Chen T, Cai J, Ren R. Protein aggregation and its affecting mechanisms in neurodegenerative diseases. Neurochem Int 2024; 180:105880. [PMID: 39396709 DOI: 10.1016/j.neuint.2024.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Protein aggregation serves as a critical pathological marker in a spectrum of neurodegenerative diseases (NDs), including the formation of amyloid β (Aβ) and Tau neurofibrillary tangles in Alzheimer's disease, as well as α-Synuclein (α-Syn) aggregates in Parkinson's disease, Parkinson's disease-related dementia (PDD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). A significant proportion of patients with amyotrophic lateral sclerosis (ALS) exhibit TDP-43 aggregates. Moreover, a confluence of brain protein pathologies, such as Aβ, Tau, α-Syn, and TDP-43, has been identified in individual NDs cases, highlighting the intricate interplay among these proteins that is garnering heightened scrutiny. Importantly, protein aggregation is modulated by an array of factors, with burgeoning evidence suggesting that it frequently results from perturbations in protein homeostasis, influenced by the cellular membrane milieu, metal ion concentrations, post-translational modifications, and genetic mutations. This review delves into the pathological underpinnings of protein aggregation across various NDs and elucidates the intercommunication among disparate proteins within the same disease context. Additionally, we examine the pathogenic mechanisms by which diverse factors impinge upon protein aggregation, offering fresh perspectives for the future therapeutic intervention of NDs.
Collapse
Affiliation(s)
- Junyun Wu
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Jianan Wu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Tao Chen
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Jing Cai
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| | - Reng Ren
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
5
|
Olsen T, Refsum H, Eiser AR. Hyperhomocysteinemia Is Associated With a Myriad of Age-Related Illnesses: A Potential Role for Metal Toxicity. Mayo Clin Proc 2024; 99:1362-1368. [PMID: 38935017 PMCID: PMC11374489 DOI: 10.1016/j.mayocp.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/15/2024] [Accepted: 04/24/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Pharmacology, University of Oxford, Oxford, UK
| | - Arnold R Eiser
- Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
6
|
Kastal Z, Balabán A, Vida S, Kállay C, Nagy L, Várnagy K, Sóvágó I. Copper(II), Nickel(II) and Zinc(II) Complexes of Peptide Fragments of Tau Protein. Molecules 2024; 29:2171. [PMID: 38792033 PMCID: PMC11123990 DOI: 10.3390/molecules29102171] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Copper(II), nickel(II) and zinc(II) complexes of various peptide fragments of tau protein were studied by potentiometric and spectroscopic techniques. All peptides contained one histidyl residue and represented the sequences of tau(91-97) (Ac-AQPHTEI-NH2), tau(385-390) (Ac-KTDHGA-NH2) and tau(404-409) (Ac-SPRHLS-NH2). Imidazole-N donors of histidine were the primary metal binding sites for all peptides and all metal ions, but in the case of copper(II) and nickel(II), the deprotonated amide groups were also involved in metal binding by increasing pH. The most stable complexes were formed with copper(II) ions, but the presence of prolyl residues resulted in significant changes in the thermodynamic stability and speciation of the systems. It was also demonstrated that nickel(II) and especially zinc(II) complexes have relatively low thermodynamic stability with these peptides. The copper(II)-catalyzed oxidation of the peptides was also studied. In the presence of H2O2, the fragmentation of peptides was detected in all cases. In the simultaneous presence of H2O2 and ascorbic acid, the fragmentation of the peptide is less preferred, and the formation of 2-oxo-histidine also occurs.
Collapse
Affiliation(s)
- Zsuzsa Kastal
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Z.K.); (C.K.); (K.V.)
| | - Adrienn Balabán
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Z.K.); (C.K.); (K.V.)
| | - Szilvia Vida
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Z.K.); (C.K.); (K.V.)
| | - Csilla Kállay
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Z.K.); (C.K.); (K.V.)
| | - Lajos Nagy
- Department of Applied Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
| | - Katalin Várnagy
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Z.K.); (C.K.); (K.V.)
| | - Imre Sóvágó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Z.K.); (C.K.); (K.V.)
| |
Collapse
|
7
|
Lu X, Lu J, Li S, Feng S, Wang Y, Cui L. The Role of Liquid-Liquid Phase Separation in the Accumulation of Pathological Proteins: New Perspectives on the Mechanism of Neurodegenerative Diseases. Aging Dis 2024; 16:769-786. [PMID: 38739933 PMCID: PMC11964424 DOI: 10.14336/ad.2024.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/20/2024] [Indexed: 05/16/2024] Open
Abstract
It is widely accepted that living organisms form highly dynamic membrane-less organelles (MLOS) with various functions through phase separation, and the indispensable role that phase separation plays in the mechanisms of normal physiological functions and pathogenesis is gradually becoming clearer. Pathological aggregates, regarded as hallmarks of neurodegenerative diseases, have been revealed to be closely related to aberrant phase separation. Specific proteins are assembled into condensates and transform into insoluble inclusions through aberrant phase separation, contributing to the development of diseases. In this review, we present an overview of the progress of phase separation research, involving its biological mechanisms and the status of research in neurodegenerative diseases, focusing on five main disease-specific proteins, tau, TDP-43, FUS, α-Syn and HTT, and how exactly these proteins reside within dynamic liquid-like compartments and thus turn into solid deposits. Further studies will yield new perspectives for understanding the aggregation mechanisms and potential therapeutic strategies, and future research directions are anticipated.
Collapse
Affiliation(s)
- Xingyu Lu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Jiongtong Lu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Shengnan Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Sifan Feng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- The Marine Biomedical Research Institute of Guangdong, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
8
|
Abdul Vahid A, Oliyantakath Hassan MS, Sahayaraj AE, Babu AT, Kizhakkeduth ST, Vijayan V. Modulation of Primary and Secondary Processes in Tau Fibril Formation by Salt-Induced Dynamics. ACS Chem Neurosci 2024; 15:1242-1253. [PMID: 38433380 DOI: 10.1021/acschemneuro.3c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
The initial stages of amyloid fibrilization begin with the monomers populating aggregation-prone conformers. Characterization of such aggregation-prone conformers is crucial in the study of neurodegenerative diseases. The current study characterizes the aggregation pathway of two tau protein constructs that have been recently demonstrated to form Alzheimer's (AD) fibril structures with divalent ions and chronic traumatic encephalopathy (CTE) fibril structures with monovalent ions. The results highlight the involvement of identical residues in both the primary and secondary processes of both AD and CTE fibril propagation. Nuclear magnetic resonance relaxation experiments reveal increased flexibility of the motifs 321KCGS within R3 and 364PGGGN within R4 in the presence of MgCl2/NaCl, correlating with faster aggregation kinetics and indicating efficient primary nucleation. Notably, the seeded aggregation kinetics of the tau monomers in the presence and absence of metal ions are strikingly different. This correlates with the overall sign of the 15N-ΔR2 profile specifying the dominant mechanism involved in the process of aggregation.
Collapse
Affiliation(s)
- Arshad Abdul Vahid
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Vithura, Thiruvananthapuram695551,India
| | | | - Allwin Ebenezer Sahayaraj
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Vithura, Thiruvananthapuram695551,India
| | - Ann Teres Babu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Vithura, Thiruvananthapuram695551,India
| | - Safwa T Kizhakkeduth
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Vithura, Thiruvananthapuram695551,India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Vithura, Thiruvananthapuram695551,India
| |
Collapse
|
9
|
Schmued L, Maloney B, Schmued C, Lahiri DK. Treatment with 1, 10 Phenanthroline-5-Amine Reduced Amyloid Burden in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2024; 97:239-247. [PMID: 38073385 PMCID: PMC10789349 DOI: 10.3233/jad-221285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent age-related dementia, and, despite numerous attempts to halt or reverse its devastating progression, no effective therapeutics have yet been confirmed clinically. However, one class of agents that has shown promise is certain metal chelators. OBJECTIVE For the novel assessment of the effect of oral administration of 1,10-phenanthroline-5-amine (PAA) on the severity of amyloid plaque load, we used a transgenic (Tg) mouse model with inserted human autosomally dominant (familial) AD genes: amyloid-β protein precursor (AβPP) and tau. METHODS AβPP/Tau transgenic mice that model AD were allotted into one of two groups. The control group received no treatment while the experimental group received PAA in their drinking water starting at 4 months of age. All animals were sacrificed at 1 year of age and their brains were stained with two different markers of amyloid plaques, Amylo-Glo+ and HQ-O. RESULTS The control animals exhibited numerous dense core plaques throughout the neo- and allo- cortical brain regions. The experimental group treated with PAA, however, showed 62% of the amyloid plaque burden seen in the control group. CONCLUSIONS Oral daily dosing with PAA will significantly reduce the amyloid plaque burden in transgenic mice that model AD. The underlying mechanism for this protection is not fully known; however, one proposed mechanism involves inhibiting the "metal-seeding" of Aβ.
Collapse
Affiliation(s)
| | - Bryan Maloney
- Department of Psychiatry, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Debomoy K. Lahiri
- Department of Psychiatry, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Departments of Medical & Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
10
|
Zhong H, Liu H, Liu H. Molecular Mechanism of Tau Misfolding and Aggregation: Insights from Molecular Dynamics Simulation. Curr Med Chem 2024; 31:2855-2871. [PMID: 37031392 DOI: 10.2174/0929867330666230409145247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/01/2023] [Accepted: 02/27/2023] [Indexed: 04/10/2023]
Abstract
Tau dysfunction has a close association with many neurodegenerative diseases, which are collectively referred to as tauopathies. Neurofibrillary tangles (NFTs) formed by misfolding and aggregation of tau are the main pathological process of tauopathy. Therefore, uncovering the misfolding and aggregation mechanism of tau protein will help to reveal the pathogenic mechanism of tauopathies. Molecular dynamics (MD) simulation is well suited for studying the dynamic process of protein structure changes. It provides detailed information on protein structure changes over time at the atomic resolution. At the same time, MD simulation can also simulate various conditions conveniently. Based on these advantages, MD simulations are widely used to study conformational transition problems such as protein misfolding and aggregation. Here, we summarized the structural features of tau, the factors affecting its misfolding and aggregation, and the applications of MD simulations in the study of tau misfolding and aggregation.
Collapse
Affiliation(s)
- Haiyang Zhong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Huanxiang Liu
- Faculty of Applied Science, Macao Polytechnic University, Macao, SAR, 999078, China
| |
Collapse
|
11
|
Teppang KL, Zhao Q, Yang J. Development of fluorophores for the detection of oligomeric aggregates of amyloidogenic proteins found in neurodegenerative diseases. Front Chem 2023; 11:1343118. [PMID: 38188930 PMCID: PMC10766704 DOI: 10.3389/fchem.2023.1343118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease and Parkinson's disease are the two most common neurodegenerative diseases globally. These neurodegenerative diseases have characteristic late-stage symptoms allowing for differential diagnosis; however, they both share the presence of misfolded protein aggregates which appear years before clinical manifestation. Historically, research has focused on the detection of higher-ordered aggregates (or amyloids); however, recent evidence has shown that the oligomeric state of these protein aggregates plays a greater role in disease pathology, resulting in increased efforts to detect oligomers to aid in disease diagnosis. In this review, we summarize some of the exciting new developments towards the development of fluorescent probes that can detect oligomeric aggregates of amyloidogenic proteins present in Alzheimer's and Parkinson's disease patients.
Collapse
Affiliation(s)
| | | | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
12
|
Whitney K, Song WM, Sharma A, Dangoor DK, Farrell K, Krassner MM, Ressler HW, Christie TD, Walker RH, Nirenberg MJ, Zhang B, Frucht SJ, Riboldi GM, Crary JF, Pereira AC. Single-cell transcriptomic and neuropathologic analysis reveals dysregulation of the integrated stress response in progressive supranuclear palsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567587. [PMID: 38014079 PMCID: PMC10680842 DOI: 10.1101/2023.11.17.567587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Progressive supranuclear palsy (PSP) is a sporadic neurodegenerative tauopathy variably affecting brainstem and cortical structures and characterized by tau inclusions in neurons and glia. The precise mechanism whereby these protein aggregates lead to cell death remains unclear. To investigate the contribution of these different cellular abnormalities to PSP pathogenesis, we performed single-nucleus RNA sequencing and analyzed 45,559 high quality nuclei targeting the subthalamic nucleus and adjacent structures from human post-mortem PSP brains with varying degrees of pathology compared to controls. Cell-type specific differential expression and pathway analysis identified both common and discrete changes in numerous pathways previously implicated in PSP and other neurodegenerative disorders. This included EIF2 signaling, an adaptive pathway activated in response to diverse stressors, which was the top activated pathway in vulnerable cell types. Using immunohistochemistry, we found that activated eIF2α was positively correlated with tau pathology burden in vulnerable brain regions. Multiplex immunofluorescence localized activated eIF2α positivity to hyperphosphorylated tau (p-tau) positive neurons and ALDH1L1-positive astrocytes, supporting the increased transcriptomic EIF2 activation observed in these vulnerable cell types. In conclusion, these data provide insights into cell-type-specific pathological changes in PSP and support the hypothesis that failure of adaptive stress pathways play a mechanistic role in the pathogenesis and progression of PSP.
Collapse
|
13
|
Hu J, Sha W, Yuan S, Wu J, Huang Y. Aggregation, Transmission, and Toxicity of the Microtubule-Associated Protein Tau: A Complex Comprehension. Int J Mol Sci 2023; 24:15023. [PMID: 37834471 PMCID: PMC10573976 DOI: 10.3390/ijms241915023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The microtubule-associated protein tau is an intrinsically disordered protein containing a few short and transient secondary structures. Tau physiologically associates with microtubules (MTs) for its stabilization and detaches from MTs to regulate its dynamics. Under pathological conditions, tau is abnormally modified, detaches from MTs, and forms protein aggregates in neuronal and glial cells. Tau protein aggregates can be found in a number of devastating neurodegenerative diseases known as "tauopathies", such as Alzheimer's disease (AD), frontotemporal dementia (FTD), corticobasal degeneration (CBD), etc. However, it is still unclear how the tau protein is compacted into ordered protein aggregates, and the toxicity of the aggregates is still debated. Fortunately, there has been considerable progress in the study of tau in recent years, particularly in the understanding of the intercellular transmission of pathological tau species, the structure of tau aggregates, and the conformational change events in the tau polymerization process. In this review, we summarize the concepts of tau protein aggregation and discuss the views on tau protein transmission and toxicity.
Collapse
Affiliation(s)
- Jiaxin Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Wenchi Sha
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Shuangshuang Yuan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
14
|
Minckley TF, Salvagio LA, Fudge DH, Verhey K, Markus SM, Qin Y. Zn2+ decoration of microtubules arrests axonal transport and displaces tau, doublecortin, and MAP2C. J Cell Biol 2023; 222:e202208121. [PMID: 37326602 PMCID: PMC10276529 DOI: 10.1083/jcb.202208121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/31/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Intracellular Zn2+ concentrations increase via depolarization-mediated influx or intracellular release, but the immediate effects of Zn2+ signals on neuron function are not fully understood. By simultaneous recording of cytosolic Zn2+ and organelle motility, we find that elevated Zn2+ (IC50 ≈ 5-10 nM) reduces both lysosomal and mitochondrial motility in primary rat hippocampal neurons and HeLa cells. Using live-cell confocal microscopy and in vitro single-molecule TIRF imaging, we reveal that Zn2+ inhibits activity of motor proteins (kinesin and dynein) without disrupting their microtubule binding. Instead, Zn2+ directly binds to microtubules and selectively promotes detachment of tau, DCX, and MAP2C, but not MAP1B, MAP4, MAP7, MAP9, or p150glued. Bioinformatic predictions and structural modeling show that the Zn2+ binding sites on microtubules partially overlap with the microtubule binding sites of tau, DCX, dynein, and kinesin. Our results reveal that intraneuronal Zn2+ regulates axonal transport and microtubule-based processes by interacting with microtubules.
Collapse
Affiliation(s)
- Taylor F. Minckley
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | | | - Dylan H. Fudge
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Kristen Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Steven M. Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Yan Qin
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| |
Collapse
|
15
|
Moreira GG, Gomes CM. Tau liquid-liquid phase separation is modulated by the Ca 2+ -switched chaperone activity of the S100B protein. J Neurochem 2023; 166:76-86. [PMID: 36621842 DOI: 10.1111/jnc.15756] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/03/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023]
Abstract
Aggregation of the microtubule-associated protein tau is implicated in several neurodegenerative tauopathies including Alzheimer's disease (AD). Recent studies evidenced tau liquid-liquid phase separation (LLPS) into droplets as an early event in tau pathogenesis with the potential to enhance aggregation. Tauopathies like AD are accompanied by sustained neuroinflammation and the release of alarmins at early stages of inflammatory responses encompass protective functions. The Ca2+ -binding S100B protein is an alarmin augmented in AD that was recently implicated as a proteostasis regulator acting as a chaperone-type protein, inhibiting aggregation and toxicity through interactions of amyloidogenic clients with a regulatory surface exposed upon Ca2+ -binding. Here we expand the regulatory functions of S100B over protein condensation phenomena by reporting its Ca2+ -dependent activity as a modulator of tau LLPS induced by crowding agents (PEG) and metal ions (Zn2+ ). We observe that apo S100B has a negligible effect on PEG-induced tau demixing but that Ca2+ -bound S100B prevents demixing, resulting in a shift of the phase diagram boundary to higher crowding concentrations. Also, while incubation with apo S100B does not compromise tau LLPS, addition of Ca2+ results in a sharp decrease in turbidity, indicating that interactions with S100B-Ca2+ promote transition of tau to the mixed phase. Further, electrophoretic analysis and FLIM-FRET studies revealed that S100B incorporates into tau liquid droplets, suggesting an important stabilizing and chaperoning role contributing to minimize toxic tau aggregates. Resorting to Alexa488-labeled tau we observed that S100B-Ca2+ reduces the formation of tau fluorescent droplets, without compromising liquid-like behavior and droplet fusion events. The Zn2+ -binding properties of S100B also contribute to regulate Zn2+ -promoted tau LLPS as droplets are decreased by Zn2+ buffering by S100B, in addition to the Ca2+ -triggered interactions with tau. Altogether this work uncovers the versatility of S100B as a proteostasis regulator acting on protein condensation phenomena of relevance across the neurodegeneration continuum.
Collapse
Affiliation(s)
- Guilherme G Moreira
- BioISI-Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudio M Gomes
- BioISI-Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
16
|
Wang B, Fang T, Chen H. Zinc and Central Nervous System Disorders. Nutrients 2023; 15:2140. [PMID: 37432243 DOI: 10.3390/nu15092140] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Zinc (Zn2+) is the second most abundant necessary trace element in the human body, exerting a critical role in many physiological processes such as cellular proliferation, transcription, apoptosis, growth, immunity, and wound healing. It is an essential catalyst ion for many enzymes and transcription factors. The maintenance of Zn2+ homeostasis is essential for the central nervous system, in which Zn2+ is abundantly distributed and accumulates in presynaptic vesicles. Synaptic Zn2+ is necessary for neural transmission, playing a pivotal role in neurogenesis, cognition, memory, and learning. Emerging data suggest that disruption of Zn2+ homeostasis is associated with several central nervous system disorders including Alzheimer's disease, depression, Parkinson's disease, multiple sclerosis, schizophrenia, epilepsy, and traumatic brain injury. Here, we reviewed the correlation between Zn2+ and these central nervous system disorders. The potential mechanisms were also included. We hope that this review can provide new clues for the prevention and treatment of nervous system disorders.
Collapse
Affiliation(s)
- Bangqi Wang
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China
| | - Tianshu Fang
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
17
|
Yatoui D, Tsvetkov PO, La Rocca R, Baksheeva VE, Allegro D, Breuzard G, Ferracci G, Byrne D, Devred F. Binding of two zinc ions promotes liquid-liquid phase separation of Tau. Int J Biol Macromol 2022; 223:1223-1229. [PMID: 36375666 DOI: 10.1016/j.ijbiomac.2022.11.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Tau is a naturally disordered microtubule associated protein which forms intraneuronal aggregates in several neurodegenerative diseases including Alzheimer's disease (AD). It was reported that zinc interaction with tau protein can trigger its aggregation. Recently we identified three zinc binding sites located in the N-terminal part, repeat region and the C-terminal part of tau. Here we characterized zinc binding to each of the three sites using isothermal titration calorimetry (ITC) and determined the impact of each site on aggregation using dynamic light scattering (DLS) assays. First, we confirmed the presence of three zinc binding sites on tau and determined the thermodynamic parameters of binding of zinc to these sites. We found a high-affinity zinc binding site located in the repeat region of tau and two N- and C-terminus binding sites with a lower binding constant for zinc. Second, we showed that tau aggregation necessitates zinc binding to the high affinity site in the R2R3 region, while LLPS necessitates zinc binding to any two binding sites. With regard to the role of zinc ions in the aggregation of proteins in neurodegenerative diseases, these findings bring new insights to the understanding of the aggregation mechanism of tau protein induced by zinc.
Collapse
Affiliation(s)
- Dahbia Yatoui
- Aix Marseille Univ, CNRS, INP, Institute of Neurophysiopathol, Faculté des Sciences Médicales et Paramédicales, Marseille, France
| | - Philipp O Tsvetkov
- Aix Marseille Univ, CNRS, INP, Institute of Neurophysiopathol, Faculté des Sciences Médicales et Paramédicales, Marseille, France.
| | - Romain La Rocca
- Aix Marseille Univ, CNRS, INP, Institute of Neurophysiopathol, Faculté des Sciences Médicales et Paramédicales, Marseille, France
| | - Viktoriia E Baksheeva
- Aix Marseille Univ, CNRS, INP, Institute of Neurophysiopathol, Faculté des Sciences Médicales et Paramédicales, Marseille, France
| | - Diane Allegro
- Aix Marseille Univ, CNRS, INP, Institute of Neurophysiopathol, Faculté des Sciences Médicales et Paramédicales, Marseille, France
| | - Gilles Breuzard
- Aix Marseille Univ, CNRS, INP, Institute of Neurophysiopathol, Faculté des Sciences Médicales et Paramédicales, Marseille, France
| | - Géraldine Ferracci
- Aix Marseille Univ, CNRS, INP, Institute of Neurophysiopathol, Faculté des Sciences Médicales et Paramédicales, Marseille, France
| | - Deborah Byrne
- Institut de Microbiologie de la Méditerranée, CNRS, FR3479, Aix-Marseille Université, 13402 Marseille, France
| | - François Devred
- Aix Marseille Univ, CNRS, INP, Institute of Neurophysiopathol, Faculté des Sciences Médicales et Paramédicales, Marseille, France.
| |
Collapse
|
18
|
Juan SMA, Daglas M, Gunn AP, Lago L, Adlard PA. Characterization of the spatial distribution of metals and profile of metalloprotein complexes in a mouse model of repetitive mild traumatic brain injury. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6865363. [PMID: 36460052 DOI: 10.1093/mtomcs/mfac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
Metal dyshomeostasis is a well-established consequence of neurodegenerative diseases and traumatic brain injury. While the significance of metals continues to be uncovered in many neurological disorders, their implication in repetitive mild traumatic brain injury remains uncharted. To address this gap, we characterized the spatial distribution of metal levels (iron, zinc, and copper) using laser ablation-inductively coupled plasma-mass spectrometry, the profile of metal-binding proteins via size exclusion chromatography-inductively coupled plasma-mass spectrometry and the expression of the major iron storing protein ferritin via western blotting. Using a mouse model of repetitive mild traumatic brain injury, 3-month-old male and female C57Bl6 mice received one or five impacts (48 h apart). At 1 month following 5× TBI (traumatic brain injury), iron and ferritin levels were significantly elevated in the contralateral cortex. There was a trend toward increased iron levels in the entire contralateral hemisphere and a reduction in contralateral cortical iron-binding proteins following 1× TBI. No major changes in zinc levels were seen in both hemispheres following 5× or 1× TBI, although there was a reduction in ipsilateral zinc-binding proteins following 5× TBI and a contralateral increase in zinc-binding proteins following 1× TBI. Copper levels were significantly increased in both hemispheres following 5× TBI, without changes in copper-binding proteins. This study shows for the first time that repetitive mild TBI (r-mTBI) leads to metal dyshomeostasis, highlighting its potential involvement in promoting neurodegeneration, which provides a rationale for examining the benefit of metal-targeting drugs, which have shown promising results in neurodegenerative conditions and single TBI, but have yet to be tested following r-mTBI.
Collapse
Affiliation(s)
- Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Adam P Gunn
- Neuropathology Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Larissa Lago
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| |
Collapse
|
19
|
Wu X, Xu P, Shi X, Shang J, Chen X, Guo A, Wang F, Yin Z. Intra-articular injection of clioquinol ameliorates osteoarthritis in a rabbit model. Front Med (Lausanne) 2022; 9:1028575. [DOI: 10.3389/fmed.2022.1028575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Osteoarthritis (OA) is characterized by the degeneration of articular cartilage. Decreased autophagy is tightly associated with chondrocyte death, which contributes to the progression of OA. Thus, pharmacological activation of autophagy may be a promising therapeutic approach for OA. Here, we discovered that clioquinol, an antibiotic, significantly induces autophagy in OA chondrocytes from human tissue and rabbit model. Meanwhile, clioquinol can also augment the expression of extracellular matrix (ECM) components and suppress inflammatory mediators to improve OA microenvironment. Intra-articular injection of clioquinol can greatly prevent or slow down the development of this disease in a trauma-induced rabbit model of osteoarthritis. Such protective effect induced by clioquinol was at least in part explained by decreasing chondrocyte apoptosis and increasing autophagy. This study reveals the therapeutic potential of clioquinol in OA treatment.
Collapse
|
20
|
Sun ZD, Hu JX, Wu JR, Zhou B, Huang YP. Toxicities of amyloid-beta and tau protein are reciprocally enhanced in the Drosophila model. Neural Regen Res 2022; 17:2286-2292. [PMID: 35259851 PMCID: PMC9083152 DOI: 10.4103/1673-5374.336872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Extracellular aggregation of amyloid-beta (Aβ) and intracellular tau tangles are two major pathogenic hallmarks and critical factors of Alzheimer’s disease. A linear interaction between Aβ and tau protein has been characterized in several models. Aβ induces tau hyperphosphorylation through a complex mechanism; however, the master regulators involved in this linear process are still unclear. In our study with Drosophila melanogaster, we found that Aβ regulated tau hyperphosphorylation and toxicity by activating c-Jun N-terminal kinase. Importantly, Aβ toxicity was dependent on tau hyperphosphorylation, and flies with hypophosphorylated tau were insulated against Aβ-induced toxicity. Strikingly, tau accumulation reciprocally interfered with Aβ degradation and correlated with the reduction in mRNA expression of genes encoding Aβ-degrading enzymes, including dNep1, dNep3, dMmp2, dNep4, and dIDE. Our results indicate that Aβ and tau protein work synergistically to further accelerate Alzheimer’s disease progression and may be considered as a combined target for future development of Alzheimer’s disease therapeutics.
Collapse
Affiliation(s)
- Zhen-Dong Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China
| | - Jia-Xin Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China
| | - Jia-Rui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yun-Peng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang Province, China
| |
Collapse
|
21
|
Aβ and Tau Interact with Metal Ions, Lipid Membranes and Peptide-Based Amyloid Inhibitors: Are These Common Features Relevant in Alzheimer’s Disease? Molecules 2022; 27:molecules27165066. [PMID: 36014310 PMCID: PMC9414153 DOI: 10.3390/molecules27165066] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022] Open
Abstract
In the last two decades, the amyloid hypothesis, i.e., the abnormal accumulation of toxic Aβ assemblies in the brain, has been considered the mainstream concept sustaining research in Alzheimer’s Disease (AD). However, the course of cognitive decline and AD development better correlates with tau accumulation rather than amyloid peptide deposition. Moreover, all clinical trials of amyloid-targeting drug candidates have been unsuccessful, implicitly suggesting that the amyloid hypothesis needs significant amendments. Accumulating evidence supports the existence of a series of potentially dangerous relationships between Aβ oligomeric species and tau protein in AD. However, the molecular determinants underlying pathogenic Aβ/tau cross interactions are not fully understood. Here, we discuss the common features of Aβ and tau molecules, with special emphasis on: (i) the critical role played by metal dyshomeostasis in promoting both Aβ and tau aggregation and oxidative stress, in AD; (ii) the effects of lipid membranes on Aβ and tau (co)-aggregation at the membrane interface; (iii) the potential of small peptide-based inhibitors of Aβ and tau misfolding as therapeutic tools in AD. Although the molecular mechanism underlying the direct Aβ/tau interaction remains largely unknown, the arguments discussed in this review may help reinforcing the current view of a synergistic Aβ/tau molecular crosstalk in AD and stimulate further research to mechanism elucidation and next-generation AD therapeutics.
Collapse
|
22
|
Zhang Y, Gao H, Zheng W, Xu H. Current understanding of the interactions between metal ions and Apolipoprotein E in Alzheimer's disease. Neurobiol Dis 2022; 172:105824. [PMID: 35878744 DOI: 10.1016/j.nbd.2022.105824] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia in the elderly, is a chronic and progressive neurodegenerative disorder with no effective disease-modifying treatments to date. Studies have shown that an imbalance in brain metal ions, such as zinc, copper, and iron, is closely related to the onset and progression of AD. Many efforts have been made to understand metal-related mechanisms and therapeutic strategies for AD. Emerging evidence suggests that interactions of brain metal ions and apolipoprotein E (ApoE), which is the strongest genetic risk factor for late-onset AD, may be one of the mechanisms for neurodegeneration. Here, we summarize the key points regarding how metal ions and ApoE contribute to the pathogenesis of AD. We further describe the interactions between metal ions and ApoE in the brain and propose that their interactions play an important role in neuropathological alterations and cognitive decline in AD.
Collapse
Affiliation(s)
- Yanhui Zhang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Huiling Gao
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wei Zheng
- Department of Histology and Embryology, China Medical University, Shenyang, China
| | - He Xu
- Department of Anatomy, Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen, China.
| |
Collapse
|
23
|
Xiao G. Molecular physiology of zinc in Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100899. [PMID: 35276390 DOI: 10.1016/j.cois.2022.100899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
New research in Drosophila melanogaster has revealed the molecular mechanisms of zinc involvement in many biological processes. A newly discovered Metallothionein is predicted to have a higher zinc specificity than the other isoforms. Zinc negatively regulates tyrosine hydroxylase activity by antagonizing iron binding, thus rendering the enzyme ineffective or non-functional. The identification of a new chaperone of the protein disulfide isomerase family provided mechanistic insight into the protein trafficking defects caused by zinc dyshomeostasis in the secretory pathway. Insect models of tumor pathogenesis indicate that zinc regulates the structural stabilization of cells by transcriptionally regulating matrix metalloproteinases while zinc dyshomeostasis in the secretory pathway modulates cell signaling through endoplastic recticulum stress.
Collapse
Affiliation(s)
- Guiran Xiao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
24
|
Bai R, Guo J, Ye XY, Xie Y, Xie T. Oxidative stress: The core pathogenesis and mechanism of Alzheimer's disease. Ageing Res Rev 2022; 77:101619. [PMID: 35395415 DOI: 10.1016/j.arr.2022.101619] [Citation(s) in RCA: 342] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/21/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023]
Abstract
As the number of patients with Alzheimer's disease (AD) increases, it brings great suffering to their families and causes a heavy socioeconomic burden to society. A vast amount of funds and a mass of research have been devoted to elucidating the pathology of AD. However, the main pathogenesis is still elusive, and its mechanism is not completely clear. Research on the mechanisms of AD mainly focuses on the amyloid cascade, tau protein, neuroinflammation, metal ions, and oxidative stress hypotheses. Oxidative stress is as a bridge that connects the different hypotheses and mechanisms of AD. It is a process that causes neuronal damage and occurs in various pathways. Oxidative stress plays a critical role in AD and can even be considered a crucial central factor in the pathogenesis of AD. Previous reviews have also summarized the role of oxidative stress in AD, but these mainly review a specific signaling pathway. Taking oxidative stress as the central point, this review comprehensively expands on the roles of oxidative stress that are involved in the pathogenesis of AD. The vivid and easy-to-understand figures systematically clarify the connected roles of oxidative stress in AD and allow readers to further understand oxidative stress and AD.
Collapse
Affiliation(s)
- Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Jianan Guo
- College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
25
|
La Rocca R, Tsvetkov PO, Golovin AV, Allegro D, Barbier P, Malesinski S, Guerlesquin F, Devred F. Identification of the three zinc-binding sites on tau protein. Int J Biol Macromol 2022; 209:779-784. [PMID: 35421417 DOI: 10.1016/j.ijbiomac.2022.04.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 01/01/2023]
Abstract
Tau protein has been extensively studied due to its key roles in microtubular cytoskeleton regulation and in the formation of aggregates found in some neurodegenerative diseases. Recently it has been shown that zinc is able to induce tau aggregation by interacting with several binding sites. However, the precise location of these sites and the molecular mechanism of zinc-induced aggregation remain unknown. Here we used Nuclear Magnetic Resonance (NMR) to identify zinc binding sites on tau. These experiments revealed three distinct zinc binding sites on tau, located in the N-terminal part, the repeat region and the C-terminal part. Further analysis enabled us to show that the N-terminal and the C-terminal sites are independent of each other. Using molecular simulations, we proposed a model of each site in a complex with zinc. Given the clinical importance of zinc in tau aggregation, our findings pave the way for designing potential therapies for tauopathies.
Collapse
Affiliation(s)
- Romain La Rocca
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Médecine, Marseille, France.
| | - Philipp O Tsvetkov
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Médecine, Marseille, France; Aix Marseille Univ, CNRS, PINT, Plateforme INteractome Timone, Fac Médecine, Marseille, France.
| | - Andrey V Golovin
- Bioengineering and Bioinformatics Department, M. V. Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russian Federation; Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8, Moscow 119992, Russia; National Research University HSE, Myasnitskaya Str. 20, Moscow 101000, Russia.
| | - Diane Allegro
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Médecine, Marseille, France.
| | - Pascale Barbier
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Médecine, Marseille, France.
| | - Soazig Malesinski
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Médecine, Marseille, France.
| | - Françoise Guerlesquin
- Aix-Marseille Univ, CNRS, UMR 7255, Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Marseille, France.
| | - François Devred
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Fac Médecine, Marseille, France; Aix Marseille Univ, CNRS, PINT, Plateforme INteractome Timone, Fac Médecine, Marseille, France.
| |
Collapse
|
26
|
Gao YY, Zhong T, Wang LQ, Zhang N, Zeng Y, Hu JY, Dang HB, Chen J, Liang Y. Zinc enhances liquid-liquid phase separation of Tau protein and aggravates mitochondrial damages in cells. Int J Biol Macromol 2022; 209:703-715. [PMID: 35405154 DOI: 10.1016/j.ijbiomac.2022.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 01/22/2023]
Abstract
Intraneuronal neurofibrillary tangles composed of Tau aggregates have been widely accepted as an important pathological hallmark of Alzheimer's disease. Liquid-liquid phase separation (LLPS) of Tau can lead to its aggregation, and Tau aggregation can then be enhanced by zinc. However, it is unclear whether zinc modulates the formation of Tau stress granules in cells. We herein report that zinc promotes the formation of stress granules containing a pathological mutant ΔK280 of full-length human Tau. Furthermore, zinc promotes LLPS of ΔK280 of full-length Tau, shifting the equilibrium phase boundary to a lower protein concentration, and modulates the liquid nature of droplets formed by this pathological mutation. Zinc also promotes pathological phosphorylation of ΔK280 in neuronal cells, and aggravates mitochondrial damage and elevates reactive oxygen species production induced by Tau aggregation. Importantly, we show that treatment of cells with zinc increases the interaction between full-length Tau and G3BP1 inside stress granules to promote the formation of Tau filaments and increase Tau toxicity in neuronal cells. Collectively, these results demonstrate how Tau condensation and mitochondrial damages induced by Tau aggregation are enhanced by zinc to deteriorate the pathogenesis of Alzheimer's disease, bridging the gap between Tau LLPS and aggregation in neuronal cells.
Collapse
Affiliation(s)
- Ying-Ying Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Tao Zhong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Li-Qiang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Na Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yan Zeng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Ji-Ying Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Hai-Bin Dang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; Wuhan University Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
27
|
Roy J, Wong KY, Aquili L, Uddin MS, Heng BC, Tipoe GL, Wong KH, Fung ML, Lim LW. Role of melatonin in Alzheimer's disease: From preclinical studies to novel melatonin-based therapies. Front Neuroendocrinol 2022; 65:100986. [PMID: 35167824 DOI: 10.1016/j.yfrne.2022.100986] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
Melatonin and novel melatonin-based therapies such as melatonin-containing hybrid molecules, melatonin analogues, and melatonin derivatives have been investigated as potential therapeutics against Alzheimer's disease (AD) pathogenesis. In this review, we examine the developmental trends of melatonin therapies for AD from 1997 to 2021. We then highlight the neuroprotective mechanisms of melatonin therapy derived from preclinical studies. These mechanisms include the alleviation of amyloid-related burden, neurofibrillary tangle accumulation, oxidative stress, neuroinflammation, apoptosis, mitochondrial dysfunction, and impaired neuroplasticity and neurotransmission. We further illustrate the beneficial effects of melatonin on behavior in animal models of AD. Next, we discuss the clinical effects of melatonin on sleep, cognition, behavior, psychiatric symptoms, electroencephalography findings, and molecular biomarkers in patients with mild cognitive impairment and AD. We then explore the effectiveness of novel melatonin-based therapies. Lastly, we discuss the limitations of current melatonin therapies for AD and suggest two emerging research themes for future study.
Collapse
Affiliation(s)
- Jaydeep Roy
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kan Yin Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Luca Aquili
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; College of Science, Health, Engineering and Education, Discipline of Psychology, Murdoch University, Perth, Australia
| | - Md Sahab Uddin
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Boon Chin Heng
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Peking University School of Stomatology, Beijing, China
| | - George Lim Tipoe
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kah Hui Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Man Lung Fung
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
28
|
Chen Q, Lai C, Chen F, Ding Y, Zhou Y, Su S, Ni R, Tang Z. Emodin Protects SH-SY5Y Cells Against Zinc-Induced Synaptic Impairment and Oxidative Stress Through the ERK1/2 Pathway. Front Pharmacol 2022; 13:821521. [PMID: 35197857 PMCID: PMC8859424 DOI: 10.3389/fphar.2022.821521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/20/2022] [Indexed: 11/30/2022] Open
Abstract
Zinc is an essential trace element important for the physiological function of the central nervous system. The abnormal accumulation of zinc inside neurons may induce mitochondrial dysfunction and oxidative stress, which contribute to many brain diseases. We hypothesized that natural anthraquinone derivative emodin can protect against neurotoxicity induced by pathological concentrations of zinc via the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway and alleviate oxidative stress and mitochondrial dysfunction. Human neuroblastoma (SH-SY5Y 26 cells) was treated with zinc sulfate and different concentrations of emodin, and changes in the levels of ETK1/2 expression, oxidative stress (DCFH-DA staining), mitochondrial function (JC-1 staining), lipid peroxidation (4-hydroxynonenal staining), and DNA oxidation (8-hydroxy-2-deoxyguanosine staining) were examined. Emodin ameliorated zinc-induced altered expression of levels of phosphorylated ERK1/2 (not total ETK1/2) and synaptic proteins (presynaptic SNAP 25, synaptophysin and postsynaptic PSD95) in SH-SY5Y cells. Moreover, emodin inhibited the generation of reactive oxygen species and oxidative stress and facilitated the collapse of mitochondrial membrane potential (ΔΨm) in SH-SY5Y cells. In conclusion, our results indicated that emodin exerts neuroprotective effects against zinc by normalizing synaptic impairment by decreasing the phosphorylation of ERK1/2, reducing reactive oxygen species and protecting mitochondrial function.
Collapse
Affiliation(s)
- Qian Chen
- Department of Obstetrics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chencen Lai
- Preparation Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Fa Chen
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Department of Miao Medicine, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanting Ding
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yiyuan Zhou
- Department of Obstetrics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Songbai Su
- Preparation Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Zhi Tang
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| |
Collapse
|
29
|
Lippi SLP, Neely CLC, Amaya AL. Trace concentrations, heavy implications: Influences of biometals on major brain pathologies of Alzheimer's disease. Int J Biochem Cell Biol 2021; 143:106136. [PMID: 34906694 DOI: 10.1016/j.biocel.2021.106136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that involves accumulation of toxic protein species, notably amyloid-β (Aβ)plaques and neurofibrillary tau tangles that are associated with cognitive decline. These proteins can bind metal ions, ultimately affecting their structure and function. In this review, we discuss key biometals such as zinc, copper, and iron that interact with protein species involved in AD, mainly Aβ, tau, and the late-onset AD risk factor Apolipoprotein E (APOE). These metals interact with Aβ and tau proteins, affecting their aggregation and toxicity. The allele variants of APOE also have different interactions with these metals, affecting APOE protein expression and aggregation of AD protein species.
Collapse
Affiliation(s)
- Stephen L P Lippi
- Angelo State University, Department of Psychology, San Angelo, TX, USA.
| | - Caroline L C Neely
- Massachusetts General Hospital, Department of Neurosurgery, Boston, MA, USA
| | - Anthony L Amaya
- University of Texas at San Antonio, Department of Chemistry, San Antonio, TX, USA
| |
Collapse
|
30
|
Clioquinol Decreases Levels of Phosphorylated, Truncated, and Oligomerized Tau Protein. Int J Mol Sci 2021; 22:ijms222112063. [PMID: 34769495 PMCID: PMC8584684 DOI: 10.3390/ijms222112063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
The neuropathological hallmarks of Alzheimer's disease (AD) are senile plaques (SPs), which are composed of amyloid β protein (Aβ), and neurofibrillary tangles (NFTs), which consist of highly phosphorylated tau protein. As bio-metal imbalance may be involved in the formation of NFT and SPs, metal regulation may be a direction for AD treatment. Clioquinol (CQ) is a metal-protein attenuating compound with mild chelating effects for Zn2+ and Cu2+, and CQ can not only detach metals from SPs, but also decrease amyloid aggregation in the brain. Previous studies suggested that Cu2+ induces the hyperphosphorylation of tau. However, the effects of CQ on tau were not fully explored. To examine the effects of CQ on tau metabolism, we used a human neuroblastoma cell line, M1C cells, which express wild-type tau protein (4R0N) via tetracycline-off (TetOff) induction. In a morphological study and ATP assay, up to 10 μM CQ had no effect on cell viability; however, 100 μM CQ had cytotoxic effects. CQ decreased accumulation of Cu+ in the M1C cells (39.4% of the control), and both total and phosphorylated tau protein. It also decreased the activity of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) (37.3% and 60.7% levels of the control, respectively), which are tau kinases. Of note, activation of protein phosphatase 2A (PP2A), which is a tau phosphatase, was also observed after CQ treatment. Fractionation experiments demonstrated a reduction of oligomeric tau in the tris insoluble, sarkosyl soluble fraction by CQ treatment. CQ also decreased caspase-cleaved tau, which accelerated the aggregation of tau protein. CQ activated autophagy and proteasome pathways, which are considered important for the degradation of tau protein. Although further studies are needed to elucidate the mechanisms responsible for the effects of CQ on tau, CQ may shed light on possible AD therapeutics.
Collapse
|
31
|
Balogh BD, Szunyog G, Lukács M, Szakács B, Sóvágó I, Várnagy K. Thermodynamics and structural characterization of the nickel(II) and zinc(II) complexes of various peptide fragments of tau protein. Dalton Trans 2021; 50:14411-14420. [PMID: 34569575 DOI: 10.1039/d1dt02324a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nickel(II) and zinc(II) complexes of various peptide fragments of tau protein have been investigated by potentiometric, UV-Vis, CD and ESI-MS techniques. The peptides include the native fragment tau(9-16) (Ac-EVMEDHAG-NH2), and the Gln/Lys and Tyr/Ala mutated peptides (Ac-KGGYTMHK-NH2 and Ac-KGGATMHK-NH2) of tau(26-33). Similar to copper(II) the complexes of a chimeric peptide containing both His14 and His32 residues in one molecule (Ac-EDHAGTMHQD-NH2) were also studied. The metal binding ability of the R3 domain was studied by using the native fragment tau(326-333) (Ac-GNIHHKPG-NH2), and its two mutants (Ac-GNIHHKAG-NH2) and (Ac-GNGHHKPG-NH2) and the corresponding 1-histidine mutants (Ac-GNGAHKPG-NH2 and Ac-GNGHAKPG-NH2). The results of this study reveal that the histidyl residues of the N-terminal and R3 regions of tau protein can effectively bind nickel(II) and zinc(II) ions. In the case of nickel(II) and zinc(II) the M-Nim coordinated complexes are the major species in the physiological pH range and their stability is significantly enhanced by the presence of Glu and Asp residues in the neighbourhood of the His14 site. For all studied peptides, nickel(II) ions are able to promote the deprotonation and coordination of amide groups preceding histidine resulting in the exclusive formation of square planar (Nim,3N-) complexes in alkaline solutions. The native fragment of the R3 region and its mutants containing two adjacent histidine moieties also bind only one nickel(II) ion with the His330 residue being the primary metal binding site. Exclusive binding of the independent imidazole side chains (His14 and His32 sites) cannot prevent the hydrolysis of zinc(II) in a slightly basic solution but the adjacent histidines of the R3 domain can promote the formation of amide coordinated zinc(II) complexes.
Collapse
Affiliation(s)
- Bettina Diána Balogh
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032, Debrecen, Hungary.
| | - Györgyi Szunyog
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032, Debrecen, Hungary.
| | - Márton Lukács
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032, Debrecen, Hungary.
| | - Bence Szakács
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032, Debrecen, Hungary.
| | - Imre Sóvágó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032, Debrecen, Hungary.
| | - Katalin Várnagy
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032, Debrecen, Hungary.
| |
Collapse
|
32
|
Wang J, Anastasia A, Bains H, Giza JI, Clossey DG, Deng J, Neubert TA, Rice WJ, Lee FS, Hempstead BL, Bracken C. Zinc induced structural changes in the intrinsically disordered BDNF Met prodomain confer synaptic elimination. Metallomics 2021; 12:1208-1219. [PMID: 32744273 DOI: 10.1039/d0mt00108b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human brain derived neurotrophic factor (BDNF) encodes a protein product consisting of a C-terminal mature domain (mature BDNF) and an N-terminal prodomain, which is an intrinsically disordered protein. A common single nucleotide polymorphism in humans results in a methionine substitution for valine at position 66 of the prodomain, and is associated with memory deficits, depression and anxiety disorders. The BDNF Met66 prodomain, but not the Val66 prodomain, promotes rapid structural remodeling of hippocampal neurons' growth cones and dendritic spines by interacting directly with the SorCS2 receptor. While it has been reported that the Met66 and Val66 prodomains exhibit only modest differences in structural propensities in the apo state, here we show that Val66 and Met66 prodomains differentially bind zinc (Zn). Zn2+ binds with higher affinity and more broadly impacts residues on the Met66 prodomain compared to the Val66 prodomain as shown by NMR and ITC. Zn2+ binding to the Met66 and Val66 prodomains results in distinct conformational and macroscopic differences observed by NMR, light scattering and cryoEM. To determine if Zn2+ mediated conformational change in the Met66 prodomain is required for biological effect, we mutated His40, a Zn2+ binding site, and observed a loss of Met66 prodomain bioactivity. As the His40 site is distant from the known region of the prodomain involved in receptor binding, we suggest that Met66 prodomain bioactivity involves His40 mediated stabilization of the multimeric structure. Our results point to the necessity of a Zn2+-mediated higher order molecular assembly of the Met66 prodomain to mediate neuronal remodeling.
Collapse
Affiliation(s)
- Jing Wang
- Weill Cornell Medicine, Department of Biochemistry, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Since the discovery of manifest Zn deficiency in 1961, the increasing number of studies demonstrated the association between altered Zn status and multiple diseases. In this chapter, we provide a review of the most recent advances on the role of Zn in health and disease (2010-20), with a special focus on the role of Zn in neurodegenerative and neurodevelopmental disorders, diabetes and obesity, male and female reproduction, as well as COVID-19. In parallel with the revealed tight association between ASD risk and severity and Zn status, the particular mechanisms linking Zn2+ and ASD pathogenesis like modulation of synaptic plasticity through ProSAP/Shank scaffold, neurotransmitter metabolism, and gut microbiota, have been elucidated. The increasing body of data indicate the potential involvement of Zn2+ metabolism in neurodegeneration. Systemic Zn levels in Alzheimer's and Parkinson's disease were found to be reduced, whereas its sequestration in brain may result in modulation of amyloid β and α-synuclein processing with subsequent toxic effects. Zn2+ was shown to possess adipotropic effects through the role of zinc transporters, zinc finger proteins, and Zn-α2-glycoprotein in adipose tissue physiology, underlying its particular role in pathogenesis of obesity and diabetes mellitus type 2. Recent findings also contribute to further understanding of the role of Zn2+ in spermatogenesis and sperm functioning, as well as oocyte development and fertilization. Finally, Zn2+ was shown to be the potential adjuvant therapy in management of novel coronavirus infection (COVID-19), underlining the perspectives of zinc in management of old and new threats.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia.
| |
Collapse
|
34
|
Lopes de Andrade V, Marreilha dos Santos AP, Aschner M. NEUROTOXICITY OF METAL MIXTURES. ADVANCES IN NEUROTOXICOLOGY 2021; 5:329-364. [PMID: 34263093 PMCID: PMC8276944 DOI: 10.1016/bs.ant.2020.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Environmental exposures and/or alterations in the homeostasis of essential transition metals (ETM), such as Fe, Cu, Zn or Mn, are known to contribute to neurodegenerative diseases (ND), such as Alzheimer's Disease (AD) and Parkinson's Disease (PD). Aberrant ETM homeostasis leads to altered distributions, as significant amounts may accumulate in specific brain areas, while causing metal deficiency in others. The disruption of processes reliant on the interplay between these ETM, may lead to loss of metal balance and the ensuing neurotoxicity via shared mechanisms, such as the induction of oxidative stress (OS). Both ETM imbalance and OS may play a role, via complex positive loop processes, in primary neuropathological signatures of AD, such as the accumulation of amyloid plaques and neurofibrillary tangles (NTF), and in PD, α-Syn aggregation and loss of dopamine(DA)rgic neurons. The association between ETM imbalance and ND is rarely approached under the view that metals such as Fe, Cu, Zn and Mn, can act as dangerous endogenous neurotoxic mixtures when their control mechanisms became disrupted. In fact, their presence as mixtures implies intricacies, which should be kept in mind when developing therapies for complex disorders of metal dyshomeostasis, which commonly occur in ND.
Collapse
Affiliation(s)
- Vanda Lopes de Andrade
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa. Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ana Paula Marreilha dos Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa. Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Michael Aschner
- Albert Einstein College of Medicine. Einstein Center of Toxicology.1300 Morris Park Avenue. Bronx, NY 10461
| |
Collapse
|
35
|
Balogh BD, Szakács B, Di Natale G, Tabbì G, Pappalardo G, Sóvágó I, Várnagy K. Copper (II) binding properties of an octapeptide fragment from the R3 region of tau protein: A combined potentiometric, spectroscopic and mass spectrometric study. J Inorg Biochem 2021; 217:111358. [PMID: 33588277 DOI: 10.1016/j.jinorgbio.2021.111358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/16/2021] [Indexed: 12/25/2022]
Abstract
The copper(II) complexes of a peptide fragment of the R3 domain of tau protein (tau(326-333) Ac-GNIHHKPG-NH2) and its mutants (Ac-GNGHHKPG-NH2, Ac-GNIHHKAG-NH2, Ac-GNGAHKPG-NH2 and Ac-GNGHAKPG-NH2) have been studied by potentiometric and spectroscopic (UV-Vis, CD) methods. ESR spectroscopy and mass spectrometry were also used to prove the coordination mode of the mononuclear complexes and the formation of dinuclear species, respectively. It has been demonstrated that the (326-333) fragment of tau protein is a versatile and effective ligand for copper(II) coordination. The versatility of copper(II) binding is related to the presence of two adjacent histidyl residues in the sequence, which results in the coexistence of mononuclear, bis(ligand) and dinuclear complexes at different metal to ligand ratios. The 1:1 mononuclear complexes are, however, the dominant species with all peptides and the imidazole-N and one to three deprotonated amide nitrogen atoms towards the N-terminal side of the histidyl residue have been suggested as metal binding sites. This binding mode allows the formation of coordination isomers because any of the two histidine moieties can be the primary anchoring site. It is evident from the CD spectroscopic measurements that the isomers are present in almost equal concentration. The copper(II) binding affinity of the native fragment of tau protein is comparable to that of a similar 2-histidine fragment of amyloid-β mutant, Ac-SGAEGHHQK-NH2 but the comparison with an independent histidyl residue (H32) from the N-terminal region of the protein reveals the predominance of H32 over the histidines in the R3 domain.
Collapse
Affiliation(s)
- Bettina Diána Balogh
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Bence Szakács
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Giuseppe Di Natale
- CNR-Istituto di Cristallografia (IC), s.s. Catania, Via Paolo Gaifami 18, I-95126 Catania, Italy
| | - Giovanni Tabbì
- CNR-Istituto di Cristallografia (IC), s.s. Catania, Via Paolo Gaifami 18, I-95126 Catania, Italy
| | - Giuseppe Pappalardo
- CNR-Istituto di Cristallografia (IC), s.s. Catania, Via Paolo Gaifami 18, I-95126 Catania, Italy
| | - Imre Sóvágó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Katalin Várnagy
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
| |
Collapse
|
36
|
Chidambaram H, Chinnathambi S. Role of cysteines in accelerating Tau filament formation. J Biomol Struct Dyn 2020; 40:4366-4375. [PMID: 33317395 DOI: 10.1080/07391102.2020.1856720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease is majorly associated with intracellular accumulation of Tau into paired helical filaments and tangles. The self-aggregated dimeric and oligomeric species of Tau formed are more toxic to neuronal cells and acts as seeds for filament formation. The two cysteine residues and the two hexapeptide regions of full-length Tau play a key role in initialization and filament formation during Tau aggregation. The role of cysteine residues in Tau aggregation has been studied by in-vitro aggregation assay that was measured by Thioflavin S fluorescence to observe the kinetics of aggregation. In this study, we have performed in-vitro aggregation assay with recombinant full-length Tau and the cysteine mutants to understand the mechanism of cysteine independent Tau aggregation. Here, we report that cysteine mutant full-length Tau can aggregate to form filaments under in-vitro conditions. To visualize the polymorphisms of Tau and cysteine mutants under different aggregation conditions anionic cofactor, heparin was employed. Wild-type Tau showed rapid aggregation to form oligomers and filaments. On the other hand, the cysteine mutant delayed the initial Tau aggregation. This indicates the importance of cysteine residues in accelerating initial Tau nucleation for its aggregation. The filament morphology of wild-type and cysteine mutant Tau has been characterized using transmission electron microscopy and high-resolution transmission electron microscopy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hariharakrishnan Chidambaram
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
37
|
Soeda Y, Takashima A. New Insights Into Drug Discovery Targeting Tau Protein. Front Mol Neurosci 2020; 13:590896. [PMID: 33343298 PMCID: PMC7744460 DOI: 10.3389/fnmol.2020.590896] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Microtubule-associated protein tau is characterized by the fact that it is an intrinsically disordered protein due to its lack of a stable conformation and high flexibility. Intracellular inclusions of fibrillar forms of tau with a β-sheet structure accumulate in the brain of patients with Alzheimer's disease and other tauopathies. Accordingly, detachment of tau from microtubules and transition of tau from a disordered state to an abnormally aggregated state are essential events preceding the onset of tau-related diseases. Many reports have shown that this transition is caused by post-translational modifications, including hyperphosphorylation and acetylation. The misfolded tau is self-assembled and forms a tau oligomer before the appearance of tau inclusions. Animal and pathological studies using human samples have demonstrated that tau oligomer formation contributes to neuronal loss. During the progression of tauopathies, tau seeds are released from cells and incorporated into other cells, leading to the propagation of pathological tau aggregation. Accumulating evidence suggests several potential approaches for blocking tau-mediated toxicity: (1) direct inhibition of pathological tau aggregation and (2) inhibition of tau post-translational modifications that occur prior to pathological tau aggregation, (3) inhibition of tau propagation and (4) stabilization of microtubules. In addition to traditional low-molecular-weight compounds, newer drug discovery approaches such as the development of medium-molecular-weight drugs (peptide- or oligonucleotide-based drugs) and high-molecular-weight drugs (antibody-based drugs) provide alternative pathways to preventing the formation of abnormal tau. Of particular interest are recent studies suggesting that tau droplet formation by liquid-liquid phase separation may be the initial step in aberrant tau aggregation, as well results that implicate roles for tau in dendritic and nuclear functions. Here, we review the mechanisms through which drugs can target tau and consider recent clinical trials for the treatment of tauopathies. In addition, we discuss the utility of these newer strategies and propose future directions for research on tau-targeted therapeutics.
Collapse
Affiliation(s)
- Yoshiyuki Soeda
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| |
Collapse
|
38
|
Narayanan SE, Rehuman NA, Harilal S, Vincent A, Rajamma RG, Behl T, Uddin MS, Ashraf GM, Mathew B. Molecular mechanism of zinc neurotoxicity in Alzheimer's disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43542-43552. [PMID: 32909132 DOI: 10.1007/s11356-020-10477-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Zinc (Zn) is an essential trace element for most organisms, including human beings. It plays a crucial role in several physiological processes such as catalytic reaction of enzymes, cellular growth, differentiation and metabolism, intracellular signaling, and modulation of nucleic acid structure. Zn containing above 50 metalloenzymes is responsible for proteins, receptors, and hormones synthesis and has a critical role in neurodevelopment. Zn also regulates excitatory and inhibitory neurotransmitters such as glutamate and GABA and is found in high concentration in the synaptic terminals of hippocampal mossy fibers that maintains cognitive function. It regulates LTP and LTD by regulation of AMPA and NMDA receptors. But an excess or deficiency of Zn becomes neurotoxic or cause impairment in growth or sexual maturation. There is mounting evidence that supports this idea of Zn becoming neurotoxic and being involved in the pathogenesis of AD. Zn dyshomeostasis in AD is an area that needs attention as moderate concentration of Zn is involved in the memory regulation via regulation of amyloid plaque. Dyshomeostasis of Zn is involved in the pathogenesis of diseases like AD, ALS, depression, PD, and schizophrenia.
Collapse
Affiliation(s)
- Siju Ellickal Narayanan
- P.G. Department of Pharmacology, College of Pharmaceutical Sciences, Govt. Medical College, Kannur, 670503, India
| | - Nisha Abdul Rehuman
- Department of Pharmaceutical Chemistry, Dr. Joseph Mar Thoma Institute of Pharmaceutical Sciences & Research, Kayamkulam, Kerala, 690503, India
| | - Seetha Harilal
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Anju Vincent
- P.G. Department of Pharmacology, College of Pharmaceutical Sciences, Govt. Medical College, Kannur, 670503, India
| | | | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, Kerala, 678557, India.
| |
Collapse
|
39
|
Lei P, Ayton S, Bush AI. The essential elements of Alzheimer's disease. J Biol Chem 2020; 296:100105. [PMID: 33219130 PMCID: PMC7948403 DOI: 10.1074/jbc.rev120.008207] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
Treatments for Alzheimer’s disease (AD) directed against the prominent amyloid plaque neuropathology are yet to be proved effective despite many phase 3 clinical trials. There are several other neurochemical abnormalities that occur in the AD brain that warrant renewed emphasis as potential therapeutic targets for this disease. Among those are the elementomic signatures of iron, copper, zinc, and selenium. Here, we review these essential elements of AD for their broad potential to contribute to Alzheimer’s pathophysiology, and we also highlight more recent attempts to translate these findings into therapeutics. A reinspection of large bodies of discovery in the AD field, such as this, may inspire new thinking about pathogenesis and therapeutic targets.
Collapse
Affiliation(s)
- Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
40
|
|
41
|
Moynier F, Borgne ML, Laoud E, Mahan B, Mouton-Ligier F, Hugon J, Paquet C. Copper and zinc isotopic excursions in the human brain affected by Alzheimer's disease. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2020; 12:e12112. [PMID: 33102682 PMCID: PMC7571480 DOI: 10.1002/dad2.12112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 01/18/2023]
Abstract
Introduction Alzheimer's disease (AD) is neuropathologically marked by amyloid beta (Aβ) plaques and neurofibrillary tangles. Little is known about isotopic compositions of human AD brains. Here we study this in comparison with control subjects for copper and zinc. Methods We use mass‐spectrometry methods, developed to study extraterrestrial materials, to compare the copper and zinc isotopic composition of 10 AD and 10 control brains. Results Copper and zinc natural isotopic compositions of AD brains are statistically different compared to controls, and correlate with Braak stages. Discussion The distribution of natural copper and zinc isotopes in AD is not affected by the diet, but is a consequence of Aβ plaques and tau fibril accumulation. This is well predicted by the changes of the chemical bonding environment caused by the development of Aβ lesions and accumulation of tau proteins. Future work will involve testing whether these changes affect brain functions and are propagated to body fluids.
Collapse
Affiliation(s)
- Frédéric Moynier
- Institut de Physique du Globe de Paris Université de Paris CNRS Paris France
| | - Marie Le Borgne
- Unité 1148, Institut National de la Santé et de la Recherche Médicale (INSERM) Hôpital Xavier Bichat GHU Nord APHP Département Hospitalo-Universitaire DHU FIRE Université de Paris Paris France
| | - Esther Laoud
- Institut de Physique du Globe de Paris Université de Paris CNRS Paris France
| | - Brandon Mahan
- Earth and Environmental Sciences James Cook University Townsville Queensland Australia
| | - Francois Mouton-Ligier
- Centre de Neurologie Cognitive Hopital Lariboisière Fernand-Widal GHU Nord APHP Université de Paris, and Inserm Paris France
| | - Jacques Hugon
- Centre de Neurologie Cognitive Hopital Lariboisière Fernand-Widal GHU Nord APHP Université de Paris, and Inserm Paris France
| | - Claire Paquet
- Centre de Neurologie Cognitive Hopital Lariboisière Fernand-Widal GHU Nord APHP Université de Paris, and Inserm Paris France
| |
Collapse
|
42
|
Xie Z, Wu H, Zhao J. Multifunctional roles of zinc in Alzheimer’s disease. Neurotoxicology 2020; 80:112-123. [DOI: 10.1016/j.neuro.2020.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
|
43
|
Xue J, Wang HL, Xiao G. Transferrin1 modulates rotenone-induced Parkinson's disease through affecting iron homeostasis in Drosophila melanogaster. Biochem Biophys Res Commun 2020; 531:305-311. [PMID: 32800558 DOI: 10.1016/j.bbrc.2020.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction and oxidative stress are pathophysiologic mechanisms implicated in Parkinson's disease (PD). In recent years, environmental toxins are employed to increase oxidative stress mediated neuropathology and sporadic PD. Disruption of iron homeostasis has been implicated in PD patients for many years, but the functional role of iron in sporadic PD pathogenesis is still not well clarified in vivo. To address this question, we set out to investigate the effect of iron on a Drosophila rotenone model of sporadic PD. Iron homeostasis is maintained by many transporters. We found that inhibition of transferrin1 (Tsf1) expression in the central nervous system (CNS) results in reduced iron levels in brains and significantly ameliorates the neurodegenerative phenotypes of rotenone exposure Drosophila; moreover, the rotenone induced reactive oxygen species (ROS) levels in the brain, the damaged complex I activity and the decreased ATP generation were dramatically rescued by Tsf1 knockdown. Further study indicated that all the rescue effects of Tsf1 knockdown on sporadic PD could be inhibited by malvolio (Mvl) overexpression, an iron transporter responsible for iron uptake. These results imply that Tsf1 knockdown in the CNS could attenuate rotenone toxicity by decreasing the ROS levels in brains through reducing iron levels, and manipulation of iron transporters in brains may provide a novel therapeutic strategy for sporadic PD.
Collapse
Affiliation(s)
- Jinsong Xue
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Guiran Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
44
|
Activity-dependent neuroprotective protein (ADNP)-end-binding protein (EB) interactions regulate microtubule dynamics toward protection against tauopathy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 177:65-90. [PMID: 33453943 DOI: 10.1016/bs.pmbts.2020.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The 1102-amino-acid activity-dependent neuroprotective protein (ADNP) was originally discovered by expression cloning through the immunological identification of its 8-amino-acid sequence NAPVSIPQ (NAP), constituting the smallest active neuroprotective fragment of the protein. ADNP expression is essential for brain formation and cognitive function and is dysregulated in a variety of neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and schizophrenia). ADNP has been found to be mutated in autism, with an estimated prevalence of 0.17% (together, these autism cases now constitute ADNP syndrome cases) and our recent results showed somatic mutations in ADNP in Alzheimer's disease brains correlating with tauopathy. Furthermore, Adnp haploinsufficiency in mice causes an age-dependent reduction in cognitive functions coupled with tauopathy-like features such as an increased formation of tangle-like structures, defective axonal transport, and Tau hyperphosphorylation. ADNP and its derived peptides, NAP and SKIP, directly interact with end-binding proteins (EBs), which decorate plus-tips of the growing axonal cytoskeleton-microtubules (MTs). Functionally, NAP and SKIP are neuroprotective and stimulate axonal transport. Clinical trials have suggested the potential efficacy of NAP (davunetide, CP201) for improving cognitive performance/functional activities of daily living in amnestic mild cognitive impairment (aMCI) and schizophrenia patients, respectively. However, NAP was not found to be an effective treatment (though well-tolerated) for progressive supranuclear palsy (PSP) patients. Here we review the molecular mechanism of NAP activity on MTs and how NAP modulates the MT-Tau-EBs crosstalk. We offer a molecular explanation for the different protective potency of NAP in selected tauopathies (aMCI vs. PSP) expressing different ratios/pathologies of the alternatively spliced Tau mRNA and its resulting protein (aMCI expressing similar quantities of the dynamic Tau 3-MT binding isoform (Tau3R) and the Tau 4-MT binding isoform (Tau4R) and PSP enriched in Tau4R pathology). We reveal the direct effect of truncated ADNPs (resulting from de novo autism and newly discovered Alzheimer's disease-related somatic mutations) on MT dynamics. We show that the peptide SKIP affects MT dynamics and MT-Tau association. Since MT impairment is linked with neurodegenerative and neurodevelopmental conditions, the current study implicates a paucity/dysregulation of MT-interacting endogenous proteins, like ADNP, as a contributing mechanism and provides hope for NAP and SKIP as MT-modulating drug candidates.
Collapse
|
45
|
Lippi SLP, Kakalec PA, Smith ML, Flinn JM. Wheel-Running Behavior Is Negatively Impacted by Zinc Administration in a Novel Dual Transgenic Mouse Model of AD. Front Neurosci 2020; 14:854. [PMID: 32922260 PMCID: PMC7456872 DOI: 10.3389/fnins.2020.00854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a neurocognitive disorder that impacts both the brain and behavior. Metal ions, including zinc (Zn), have been seen to play an important role in AD-related pathology. In this study, we show alterations in wheel-running behavior both early and late in disease progression in a novel dual Tg mouse model of AD. This mouse includes both amyloid and tau pathology through its cross with the J20 (hAPP) and P301L (Tau) parentage. Animals were given either lab water or water that had been supplemented with 10 ppm Zn. Wheel running was assessed through individually housing mice and measuring wheel-running activity in both the light and dark cycles. Dual Tg mice showed significantly less activity in the first part of the dark cycle than WT mice at both 3.5 and 7 months of age (p < 0.05). Dual Tg mice given Zn water showed less activity compared to dual Tg mice on lab water, tau mice on Zn water, or WT mice given either lab or Zn water (p < 0.05) at 7 months. Female mice in this study consistently showed higher activity compared to male mice in all groups whereas Zn led to reduced activity. Daily activity rhythm was altered in both the tau and dual Tg mice, and Zn impacted this alteration through effects on amyloid, tau, and through circadian pathways.
Collapse
Affiliation(s)
| | | | | | - Jane M Flinn
- George Mason University, Fairfax, VA, United States
| |
Collapse
|
46
|
Gorantla NV, Das R, Balaraman E, Chinnathambi S. Transition metal nickel prevents Tau aggregation in Alzheimer's disease. Int J Biol Macromol 2020; 156:1359-1365. [DOI: 10.1016/j.ijbiomac.2019.11.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/24/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022]
|
47
|
Iqbal G, Braidy N, Ahmed T. Blood-Based Biomarkers for Predictive Diagnosis of Cognitive Impairment in a Pakistani Population. Front Aging Neurosci 2020; 12:223. [PMID: 32848704 PMCID: PMC7396488 DOI: 10.3389/fnagi.2020.00223] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/22/2020] [Indexed: 12/27/2022] Open
Abstract
Numerous studies have identified an association between age-related cognitive impairment (CI) and oxidative damage, accumulation of metals, amyloid levels, tau, and deranged lipid profile. There is a concerted effort to establish the reliability of these blood-based biomarkers for predictive diagnosis of CI and its progression. We assessed the serum levels of high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides, total cholesterol, selected metals (Cu, Al, Zn, Pb, Mn, Cad), and total-tau and amyloid beta-42 protein in mild (n = 71), moderate (n = 86) and severe (n = 25) cognitively impaired patients and compared them with age-matched healthy controls (n = 90) from Pakistan. We found that a decrease in HDL cholesterol (correlation coefficient r = 0.467) and amyloid beta-42 (r = 0.451) were associated with increased severity of CI. On the other hand, an increase in cholesterol ratio (r = -0.562), LDL cholesterol (r = -0.428), triglycerides, and total-tau (r = -0.443) were associated with increased severity of CI. Increases in cholesterol ratio showed the strongest association and correlated with increases in tau concentration (r = 0.368), and increased triglycerides were associated with decreased amyloid beta-42 (r = -0.345). Increased Cu levels showed the strongest association with tau increase and increased Zn and Pb levels showed the strongest association with reduced amyloid beta-42 levels. Receiver Operating Characteristic (ROC) showed the cutoff values of blood metals (Al, Pb, Cu, Cad, Zn, and Mn), total-tau, and amyloid beta-42 with sensitivity and specificity. Our data show for the first time that blood lipids, metals (particularly Cu, Zn, Pb, and Al), serum amyloid-beta-42/tau proteins modulate each other's levels and can be collectively used as a predictive marker for CI.
Collapse
Affiliation(s)
- Ghazala Iqbal
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Nady Braidy
- Centre for Healthy Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
48
|
François-Moutal L, Perez-Miller S, Scott DD, Miranda VG, Mollasalehi N, Khanna M. Corrigendum: Structural Insights Into TDP-43 and Effects of Post-translational Modifications. Front Mol Neurosci 2020; 13:45. [PMID: 32300293 PMCID: PMC7143466 DOI: 10.3389/fnmol.2020.00045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/06/2020] [Indexed: 12/04/2022] Open
Affiliation(s)
- Liberty François-Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - David D Scott
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - Victor G Miranda
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| | - Niloufar Mollasalehi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States.,Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States.,Center for Innovation in Brain Science, Tucson, AZ, United States
| |
Collapse
|
49
|
Singh V, Xu L, Boyko S, Surewicz K, Surewicz WK. Zinc promotes liquid-liquid phase separation of tau protein. J Biol Chem 2020; 295:5850-5856. [PMID: 32229582 DOI: 10.1074/jbc.ac120.013166] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/21/2020] [Indexed: 12/14/2022] Open
Abstract
Tau is a microtubule-associated protein that plays a major role in Alzheimer's disease (AD) and other tauopathies. Recent reports indicate that, in the presence of crowding agents, tau can undergo liquid-liquid phase separation (LLPS), forming highly dynamic liquid droplets. Here, using recombinantly expressed proteins, turbidimetry, fluorescence microscopy imaging, and fluorescence recovery after photobleaching (FRAP) assays, we show that the divalent transition metal zinc strongly promotes this process, shifting the equilibrium phase boundary to lower protein or crowding agent concentrations. We observed no tau LLPS-promoting effect for any other divalent transition metal ions tested, including Mn2+, Fe2+, Co2+, Ni2+, and Cu2+ We also demonstrate that multiple zinc-binding sites on tau are involved in the LLPS-promoting effect and provide insights into the mechanism of this process. Zinc concentration is highly elevated in AD brains, and this metal ion is believed to be an important player in the pathogenesis of this disease. Thus, the present findings bring a new dimension to understanding the relationship between zinc homeostasis and the pathogenic process in AD and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Virender Singh
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Ling Xu
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Solomiia Boyko
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Krystyna Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Witold K Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
50
|
Rao SS, Lago L, Gonzalez de Vega R, Bray L, Hare DJ, Clases D, Doble PA, Adlard PA. Characterising the spatial and temporal brain metal profile in a mouse model of tauopathy. Metallomics 2020; 12:301-313. [PMID: 31904058 DOI: 10.1039/c9mt00267g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A dysregulation in the homeostasis of metals such as copper, iron and zinc is speculated to be involved in the pathogenesis of tauopathies, which includes Alzheimer's disease (AD). In particular, there is a growing body of evidence to support a role for iron in facilitating the hyperphosphorylation and aggregation of the tau protein into neurofibrillary tangles (NFTs) - a primary neuropathological hallmark of tauopathies. Therefore, the aim of this study was to characterize the spatial and temporal brain metallomic profile in a mouse model of tauopathy (rTg(tauP301L)4510), so as to provide some insight into the potential interaction between tau pathology and iron. Using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), our results revealed an age-dependent increase in brain iron levels in both WT and rTg(tauP301L)4510 mice. In addition, size exclusion chromatography-ICP-MS (SEC-ICP-MS) revealed significant age-related changes in iron bound to metalloproteins such as ferritin. The outcomes from this study may provide valuable insight into the inter-relationship between iron and tau in ageing and neurodegeneration.
Collapse
Affiliation(s)
- Shalini S Rao
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, The Melbourne Dementia Research Centre, Parkville, Victoria, Australia.
| | - Larissa Lago
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, The Melbourne Dementia Research Centre, Parkville, Victoria, Australia.
| | | | - Lisa Bray
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, The Melbourne Dementia Research Centre, Parkville, Victoria, Australia.
| | - Dominic J Hare
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, The Melbourne Dementia Research Centre, Parkville, Victoria, Australia.
| | - David Clases
- The Atomic Medicine Initiative, University of Technology Sydney, Sydney, NSW, Australia
| | - Philip A Doble
- The Atomic Medicine Initiative, University of Technology Sydney, Sydney, NSW, Australia
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, The Melbourne Dementia Research Centre, Parkville, Victoria, Australia.
| |
Collapse
|