1
|
Chen J, Chitrakar R, Baugh LR. DAF-18/PTEN protects LIN-35/Rb from CLP-1/CAPN-mediated cleavage to promote starvation resistance. Life Sci Alliance 2025; 8:e202403147. [PMID: 40199585 PMCID: PMC11979363 DOI: 10.26508/lsa.202403147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
Starvation resistance is a fundamental trait with profound influence on fitness and disease risk. DAF-18, the Caenorhabditis elegans ortholog of the tumor suppressor PTEN, promotes starvation resistance. PTEN is a dual phosphatase, and DAF-18 promotes starvation resistance as a lipid phosphatase by antagonizing insulin/IGF and PI3K signaling, activating the tumor suppressor DAF-16/FoxO. However, if or how DAF-18/PTEN protein-phosphatase activity promotes starvation resistance is unknown. Using genetic, genomic, bioinformatic, and biochemical approaches, we identified the C. elegans retinoblastoma/RB protein homolog, LIN-35/Rb, as a critical mediator of the effect of DAF-18/PTEN on starvation resistance. We show that DAF-18/PTEN protects LIN-35/Rb from cleavage by the μ-Calpain homolog CLP-1/CAPN, and that LIN-35/Rb together with the repressive DREAM complex promotes starvation resistance. We conclude that the tumor suppressors DAF-18/PTEN and LIN-35/Rb function in a linear pathway, with LIN-35/Rb and the rest of the DREAM complex functioning as a transcriptional effector of DAF-18/PTEN protein-phosphatase activity resulting in repression of germline gene expression. This work is significant for revealing a network of tumor suppressors that promote survival during cellular and developmental quiescence.
Collapse
Affiliation(s)
- Jingxian Chen
- Department of Biology, Duke University, Durham, NC, USA
| | | | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Cai X, Sun R, Yang L, Yao N, Sun Y, Zhang G, Ge W, Zhou Y, Gui Z, Wang Y, Zheng H, Xu D, Zhao Y, Nie X, Liu Z, Zhang H, Hu P, Cheng H, Xue Z, Wang J, Yu J, Chen C, Luo D, Zhu J, Liu T, Zhang Y, Wu Q, Guo Q, Chen W, Wang J, Wei W, Lin X, Yao J, Wang G, Peng L, Liu S, Wang Z, Liu H, Wang J, Wu F, Yuan Z, Gong T, Lv Y, Xiang J, Zhu Y, Xie L, Ge M, Guan H, Guo T. Proteomic analysis reveals modulation of key proteins in follicular thyroid cancer progression. Chin Med J (Engl) 2025:00029330-990000000-01557. [PMID: 40394764 DOI: 10.1097/cm9.0000000000003645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Cytopathology cannot be used to reliably distinguish follicular thyroid adenoma (FTA) from follicular thyroid carcinoma (FTC), the second most common form of thyroid cancer, because they exhibit nearly identical cellular morphology. Given the challenges in diagnosis and treatment, this study aims to identify the mechanisms underlying FTC is essential. METHODS Using parallel reaction monitoring-mass spectrometry (PRM-MS) assays, we identified and quantified 94 differentially expressed protein candidates from a retrospective cohort of 1085 FTC and FTA tissue samples from 18 clinical centers. Of these targeted proteins, those with the potential for distinguishing FTC from FTA were prioritized using machine learning. Co-immunoprecipitation (co-IP) and immunofluorescence co-localization assays, as well as gene interference, overexpression, and immunohistochemistry (IHC) experiments, were used to investigate the interactions and cellular functions of selected proteins. RESULTS Using machine learning models and feature selection methods, 30 of the 94 candidates were prioritized as key proteins. Co-IP and immunofluorescence co-localization assays using FTC cell lines revealed interactions among insulin-like growth factor 2 receptor (IGF2R), major vault protei (MVP), histone deacetylase 1 (HDAC1), and histone H1.5 (H1-5). Gene interference and overexpression experiments in FTC-133 cells confirmed the promotional role of these proteins in cell proliferation. IHC assays of patient samples further confirmed elevated expression of these four proteins in FTC compared with that in FTA. CONCLUSIONS Our findings underscore the utility of advanced proteomic techniques in elucidating the molecular underpinnings of FTC, highlighting the potential significance of IGF2R, MVP, HDAC1, and H1-5 in FTC progression, and providing a foundation for the exploration of targeted therapies.
Collapse
Affiliation(s)
- Xue Cai
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310030, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Rui Sun
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Liang Yang
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310030, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Nan Yao
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310030, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yaoting Sun
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310030, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Guangmei Zhang
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310030, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd. Hangzhou, Zhejiang 310024, China
| | - Yan Zhou
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310030, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Zhiqiang Gui
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Haitao Zheng
- Department of Thyroid Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Dong Xu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yongfu Zhao
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhiyan Liu
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Pingping Hu
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310030, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Honghan Cheng
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310030, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Zhangzhi Xue
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310030, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Jiatong Wang
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310030, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Jing Yu
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310030, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Dingcun Luo
- Department of Surgical Oncology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China
| | - Jingqiang Zhu
- Division of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tong Liu
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Yifeng Zhang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital; Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Shanghai 200072, China
| | - Qijun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Qiaonan Guo
- Department of Pathology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Wanyuan Chen
- Department of Pathology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310006, China
| | - Jianbiao Wang
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Wenjun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiangfeng Lin
- Department of Thyroid Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Jincao Yao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Guangzhi Wang
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, China
| | - Li Peng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Shuyi Liu
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200235, China
| | - Zhihong Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Hanqing Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiaxi Wang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Fan Wu
- Department of Surgical Oncology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China
| | - Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Tingting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yangfan Lv
- Department of Pathology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jingjing Xiang
- Department of Pathology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China
| | - Yi Zhu
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310030, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lei Xie
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Minghua Ge
- Otolaryngology and Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310006, China
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Tiannan Guo
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310030, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
3
|
Pulito C, Vaccarella S, Palcau AC, Ganci F, Brandi R, Frascolla C, Sacconi A, Canu V, Benedetti A, De Pascale V, Donzelli S, Fisch AS, Manciocco V, Covello R, Pimpinelli F, Morrone A, Fazi F, Pellini R, Muti P, Meens J, Karamboulas C, Nichols AC, Strano S, Klinghammer K, Tinhofer I, Ailles L, Fontemaggi G, Blandino G. MicroRNA-mediated PTEN downregulation as a novel non-genetic mechanism of acquired resistance to PI3Kα inhibitors of head & neck squamous cell carcinoma. Drug Resist Updat 2025; 81:101251. [PMID: 40382983 DOI: 10.1016/j.drup.2025.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
AIMS Head and neck squamous cell carcinomas (HNSCCs) frequently harbor alterations in the PI3K signalling axis and, particularly, in the PIK3CA gene. The promising rationale of using PI3K inhibitors for the treatment of HNSCC has, however, clashed with the spontaneous development of resistance over time. METHODS To identify valuable targets for overcoming acquired resistance to PI3Kα inhibitors in HNSCC, we performed microRNA profiling on a cohort of HNSCC PDXs that were treated with alpelisib, including both responsive and resistant tumors. Using CRISPR/Cas9, siRNA, and PTEN-/- isogenic and alpelisib-resistant cell models, we examined the role of PTEN in resistance acquisition. Phospho-proteomic analysis identified PTEN-dependent phosphorylation events, while PI3Kα inhibitor-resistant organoids were used to assess PLK1 inhibitor efficacy. RESULTS We identified microRNAs altered in resistant PDXs, including members of the miR-17-92 cluster. Mechanistically, we observed that the hyperactive c-Myc was recruited to MIR17HG regulatory regions in alpelisib-resistant cells, sustaining miR-17-5p, miR-19b-3p, and miR-20a-5p expression, which downregulated PTEN. PTEN knockout or depletion conferred alpelisib resistance in HNSCC cells. We identified PTEN-dependent phosphorylation events, such as p-PLK1-T210, involved in resistance. Interestingly, pharmacological inhibition of PLK1 strongly reduced the viability of PI3Kα-resistant organoids derived from HNSCC PDXs and cell line models. CONCLUSION Overall, this study unveils a novel, microRNA-driven, non-genetic mechanism contributing to acquired resistance to PI3Kα inhibitors in HNSCC. Indeed, linking hyperactive c-Myc to sustain miR-17-92 expression and consequent PTEN downregulation, we also propose that targeting PTEN-dependent downstream effectors, such as PLK1, may offer a powerful therapeutic strategy for resistant HNSCC.
Collapse
Affiliation(s)
- Claudio Pulito
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Sebastiano Vaccarella
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Alina Catalina Palcau
- Microbiology and Virology Unit, San Gallicano Dermatological Institute IRCSS, Rome 00144, Italy
| | - Federica Ganci
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Renata Brandi
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Carlotta Frascolla
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Valeria Canu
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Anna Benedetti
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Valentina De Pascale
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Sara Donzelli
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Anne-Sophie Fisch
- Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Valentina Manciocco
- Department of Otorhinolaryngology, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Renato Covello
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology Unit, San Gallicano Dermatological Institute IRCSS, Rome 00144, Italy
| | - Aldo Morrone
- Scientific Director Office, IRCCS San Gallicano Dermatology Institute, Rome 00144, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Raul Pellini
- Department of Otorhinolaryngology, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Paola Muti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan La Statale, Milan 20122, Italy
| | - Jalna Meens
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Christina Karamboulas
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Anthony C Nichols
- Department of Otolaryngology - Head and Neck Surgery, Western University, London, Ontario, Canada
| | - Sabrina Strano
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Konrad Klinghammer
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingeborg Tinhofer
- Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laurie Ailles
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Giulia Fontemaggi
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy.
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy.
| |
Collapse
|
4
|
Batan D, Tseropoulos G, Kirkpatrick BE, Bishop C, Bera K, Khang A, Weiser-Evans M, Anseth KS. PTEN Regulates Myofibroblast Activation in Valvular Interstitial Cells Based on Subcellular Localization. Adv Biol (Weinh) 2025:e2400540. [PMID: 40229965 DOI: 10.1002/adbi.202400540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/03/2025] [Indexed: 04/16/2025]
Abstract
Aortic valve stenosis (AVS) is characterized by altered mechanics of the valve leaflets, which disrupts blood flow through the aorta and can cause left ventricle hypotrophy. These changes in the valve tissue result in the activation of resident valvular interstitial cells (VICs) into myofibroblasts, which have increased levels of αSMA in their stress fibers. The persistence of VIC myofibroblast activation is a hallmark of AVS. In recent years, the tumor suppressor gene phosphatase and tensin homolog (PTEN) has emerged as an important player in the regulation of fibrosis in various tissues (e.g., lung, skin), which motivated to investigate PTEN as a potential protective factor against matrix-induced myofibroblast activation in VICs. In aortic valve samples from humans, high levels of PTEN are found in healthy tissue and low levels of PTEN in diseased tissue. Then, using pharmacological inducers to treat VIC cultures, it is observed that PTEN overexpression prevented stiffness-induced myofibroblast activation, whereas genetic and pharmacological inhibition of PTEN further activated myofibroblasts. The increased nuclear PTEN localization is also observed in VICs cultured on stiff matrices, and nuclear PTEN also correlated with smaller nuclei, altered expression of histones, and a quiescent fibroblast phenotype. Together, these results suggest that PTEN not only suppresses VIC activation, but functions to promote quiescence, and can serve as a potential pharmacological target for the treatment of AVS.
Collapse
Affiliation(s)
- Dilara Batan
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, 80303, USA
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado, 80303, USA
| | - Georgios Tseropoulos
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, 80303, USA
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado, 80303, USA
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, 80303, USA
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, Colorado, 80045, USA
| | - Carrie Bishop
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, 80303, USA
| | - Kaustav Bera
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, 80303, USA
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado, 80303, USA
| | - Alex Khang
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, 80303, USA
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado, 80303, USA
| | - Mary Weiser-Evans
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Medical Campus, 12700 East 19th Avenue, C281, Research Complex 2, Room 7101, Aurora, Colorado, 80045, USA
- Center for Fibrosis Research and Translation, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, 80045, USA
- Department of Medicine, Cardiovascular Pulmonary Research Program, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, 80303, USA
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado, 80303, USA
| |
Collapse
|
5
|
Li W, Wang X, Liu J, Liu B, Hao Y. Crosstalk Between Plk1 and PTEN in Mitosis Affects Chromosomal Stability. DNA Cell Biol 2025. [PMID: 40117175 DOI: 10.1089/dna.2024.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
The mitotic phase involves the distribution and regulation of genetic material. Defects in gene regulation can lead to serious errors in genetic transmission, such as increased instability of chromosomes, thereby increasing susceptibility to cancer and promoting its development. The maintenance of chromosome stability depends on several mechanisms, such as efficient DNA repair, proper sister chromatid separation, and timely cytokinesis. The serine/threonine kinase Plk1 is a key molecule in maintaining chromosome stability, participating in multiple stages of precise regulation during mitosis, including promoting entry into mitosis, facilitating centrosome maturation and bipolar spindle formation, promoting sister chromatid separation, and facilitating cytokinesis. Several proteins can regulate the kinase activity of Plk1 through protein-protein interactions, coordinating the genetic stability of the cell, including the kinases Aurora A, c-Abl, and Chk1 as well as the phosphatase phosphatase and tension homolog (PTEN). PTEN has been described as an essential regulator of Plk1 for dephosphorylation and chromosomal stability during cell division, and Plk1 may directly interact with and phosphorylate PTEN at centromeres. Here, we review the bidirectional interplay between Plk1 and PTEN and how it contributes to genomic stability during mitosis.
Collapse
Affiliation(s)
- Wei Li
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
- Department of Disease Prevention and Control, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xianning Wang
- College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Jiannan Liu
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Bing Liu
- Department of Disease Prevention and Control, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yongjian Hao
- Department of Disease Prevention and Control, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
6
|
Chen J, Chitrakar R, Baugh LR. DAF-18/PTEN protects LIN-35/Rb from CLP-1/CAPN-mediated cleavage to promote starvation resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638677. [PMID: 40027768 PMCID: PMC11870551 DOI: 10.1101/2025.02.17.638677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Starvation resistance is a fundamental trait with profound influence on fitness and disease risk. DAF-18, the C. elegans ortholog of the tumor suppressor PTEN, promotes starvation resistance. PTEN is a dual phosphatase, and DAF-18 promotes starvation resistance as a lipid phosphatase by antagonizing insulin/IGF and PI3K signaling, activating the tumor suppressor DAF-16/FoxO. However, if or how DAF-18/PTEN protein-phosphatase activity promotes starvation resistance is unknown. Using genetic, genomic, bioinformatic, and biochemical approaches, we identified the C. elegans retinoblastoma/RB protein homolog, LIN-35/Rb, as a critical mediator of the effect of DAF-18/PTEN on starvation resistance. We show that DAF-18/PTEN protects LIN-35/Rb from cleavage by the μ-Calpain homolog CLP-1/CAPN, and that LIN-35/Rb together with the repressive DREAM complex promote starvation resistance. We conclude that the tumor suppressors DAF-18/PTEN and LIN-35/Rb function in a linear pathway, with LIN-35/Rb and the rest of the DREAM complex functioning as a transcriptional effector of DAF-18/PTEN protein-phosphatase activity resulting in repression of germline gene expression. This work is significant for revealing a network of tumor suppressors that promote survival during cellular and developmental quiescence.
Collapse
|
7
|
Arribas YA, Baudon B, Rotival M, Suárez G, Bonté PE, Casas V, Roubert A, Klein P, Bonnin E, Mchich B, Legoix P, Baulande S, Sadacca B, Diharce J, Waterfall JJ, Etchebest C, Carrascal M, Goudot C, Quintana-Murci L, Burbage M, Merlotti A, Amigorena S. Transposable element exonization generates a reservoir of evolving and functional protein isoforms. Cell 2024; 187:7603-7620.e22. [PMID: 39667937 DOI: 10.1016/j.cell.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 05/26/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
Alternative splicing enhances protein diversity in different ways, including through exonization of transposable elements (TEs). Recent transcriptomic analyses identified thousands of unannotated spliced transcripts with exonizing TEs, but their contribution to the proteome and biological relevance remains unclear. Here, we use transcriptome assembly, ribosome profiling, and proteomics to describe a population of 1,227 unannotated TE exonizing isoforms generated by mRNA splicing and recurrent in human populations. Despite being shorter and lowly expressed, these isoforms are shared between individuals and efficiently translated. Functional analyses show stable expression, specific cellular localization, and, in some cases, modified functions. Exonized TEs are rich in ancient genes, whereas the involved splice sites are recent and can be evolutionarily conserved. In addition, exonized TEs contribute to the secondary structure of the emerging isoforms, supporting their functional relevance. We conclude that TE-spliced isoforms represent a diversity reservoir of functional proteins on which natural selection can act.
Collapse
Affiliation(s)
- Yago A Arribas
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Blandine Baudon
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Maxime Rotival
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, 75015 Paris, France
| | - Guadalupe Suárez
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Pierre-Emmanuel Bonté
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Vanessa Casas
- Biological and Environmental Proteomics, Institut d'Investigacions Biomèdiques de Barcelona-CSIC, IDIBAPS, Roselló 161, 6a planta, 08036 Barcelona, Spain
| | - Apollinaire Roubert
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Paul Klein
- INSERM U830, PSL Research University, Institute Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Elisa Bonnin
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Basma Mchich
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB UMR_S1134, 74014 Paris, France
| | - Patricia Legoix
- Institut Curie, Centre de Recherche, Genomics of Excellence Platform, PSL Research University, Paris Cedex 05, France
| | - Sylvain Baulande
- Institut Curie, Centre de Recherche, Genomics of Excellence Platform, PSL Research University, Paris Cedex 05, France
| | - Benjamin Sadacca
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France; INSERM U830, PSL Research University, Institute Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Julien Diharce
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB UMR_S1134, 74014 Paris, France
| | - Joshua J Waterfall
- INSERM U830, PSL Research University, Institute Curie Research Center, Paris, France; Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Catherine Etchebest
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB UMR_S1134, 74014 Paris, France
| | - Montserrat Carrascal
- Biological and Environmental Proteomics, Institut d'Investigacions Biomèdiques de Barcelona-CSIC, IDIBAPS, Roselló 161, 6a planta, 08036 Barcelona, Spain
| | - Christel Goudot
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Lluís Quintana-Murci
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, 75015 Paris, France; Chair Human Genomics and Evolution, Collège de France, 75005 Paris, France
| | - Marianne Burbage
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Antonela Merlotti
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France
| | - Sebastian Amigorena
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, 75005 Paris, France.
| |
Collapse
|
8
|
Batan D, Tseropoulos G, Kirkpatrick BE, Bera K, Khang A, Weiser-Evans M, Anseth KS. PTEN Regulates Myofibroblast Activation in Valvular Interstitial Cells based on Subcellular Localization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601424. [PMID: 39005262 PMCID: PMC11244890 DOI: 10.1101/2024.06.30.601424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Aortic valve stenosis (AVS) is characterized by altered mechanics of the valve leaflets, which disrupts blood flow through the aorta and can cause left ventricle hypotrophy. These changes in the valve tissue result in activation of resident valvular interstitial cells (VICs) into myofibroblasts, which have increased levels of αSMA in their stress fibers. The persistence of VIC myofibroblast activation is a hallmark of AVS. In recent years, the tumor suppressor gene phosphatase and tensin homolog (PTEN) has emerged as an important player in the regulation of fibrosis in various tissues (e.g., lung, skin), which motivated us to investigate PTEN as a potential protective factor against matrix-induced myofibroblast activation in VICs. In aortic valve samples from humans, we found high levels of PTEN in healthy tissue and low levels of PTEN in diseased tissue. Then, using pharmacological inducers to treat VIC cultures, we observed PTEN overexpression prevented stiffness-induced myofibroblast activation, whereas genetic and pharmacological inhibition of PTEN further activated myofibroblasts. We also observed increased nuclear PTEN localization in VICs cultured on stiff matrices, and nuclear PTEN also correlated with smaller nuclei, altered expression of histones and a quiescent fibroblast phenotype. Together, these results suggest that PTEN not only suppresses VIC activation, but functions to promote quiescence, and could serve as a potential pharmacological target for the treatment of AVS.
Collapse
|
9
|
Wei R, Hitomi M, Sadler T, Yehia L, Calvetti D, Scott J, Eng C. Quantitative evaluation of DNA damage repair dynamics to elucidate predictors of autism vs. cancer in individuals with germline PTEN variants. PLoS Comput Biol 2024; 20:e1012449. [PMID: 39356721 PMCID: PMC11472915 DOI: 10.1371/journal.pcbi.1012449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/14/2024] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
Persons with germline variants in the tumor suppressor gene phosphatase and tensin homolog, PTEN, are molecularly diagnosed with PTEN hamartoma tumor syndrome (PHTS). PHTS confers high risks of specific malignancies, and up to 23% of the patients are diagnosed with autism spectrum disorder (ASD) and/or developmental delay (DD). The accurate prediction of these two seemingly disparate phenotypes (cancer vs. ASD/DD) for PHTS at the individual level remains elusive despite the available statistical prevalence of specific phenotypes of the syndrome at the population level. The pleiotropy of the syndrome may, in part, be due to the alterations of the key multi-functions of PTEN. Maintenance of genome integrity is one of the key biological functions of PTEN, but no integrative studies have been conducted to quantify the DNA damage response (DDR) in individuals with PHTS and to relate to phenotypes and genotypes. In this study, we used 43 PHTS patient-derived lymphoblastoid cell lines (LCLs) to investigate the associations between DDR and PTEN genotypes and/or clinical phenotypes ASD/DD vs. cancer. The dynamics of DDR of γ-irradiated LCLs were analyzed using the exponential decay mathematical model to fit temporal changes in γH2AX levels which report the degree of DNA damage. We found that PTEN nonsense variants are associated with less efficient DNA damage repair ability resulting in higher DNA damage levels at 24 hours after irradiation compared to PTEN missense variants. Regarding PHTS phenotypes, LCLs from PHTS individuals with ASD/DD showed faster DNA damage repairing rate than those from patients without ASD/DD or cancer. We also applied the reaction-diffusion partial differential equation (PDE) mathematical model, a cell growth model with a DNA damage term, to accurately describe the DDR process in the LCLs. For each LCL, we can derive parameters of the PDE. Then we averaged the numerical results by PHTS phenotypes. By performing simple subtraction of two subgroup average results, we found that PHTS-ASD/DD is associated with higher live cell density at lower DNA damage level but lower cell density level at higher DNA damage level compared to LCLs from individuals with PHTS-cancer and PHTS-neither.
Collapse
Affiliation(s)
- Ruipeng Wei
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Nutrition and Systems Biology and Bioinformatics Program, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Masahiro Hitomi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Tammy Sadler
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Daniela Calvetti
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University College of Arts and Sciences, Cleveland, Ohio, United States of America
| | - Jacob Scott
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, United States of America
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
10
|
Upreti A, Padula SL, Weaver JM, Wagner BD, Kneller AM, Petulla AL, Lachke SA, Robinson ML. A Transcriptomics Analysis of the Regulation of Lens Fiber Cell Differentiation in the Absence of FGFRs and PTEN. Cells 2024; 13:1222. [PMID: 39056803 PMCID: PMC11274593 DOI: 10.3390/cells13141222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Adding 50% vitreous humor to the media surrounding lens explants induces fiber cell differentiation and a significant immune/inflammatory response. While Fgfr loss blocks differentiation in lens epithelial explants, this blockage is partially reversed by deleting Pten. To investigate the functions of the Fgfrs and Pten during lens fiber cell differentiation, we utilized a lens epithelial explant system and conducted RNA sequencing on vitreous humor-exposed explants lacking Fgfrs, or Pten or both Fgfrs and Pten. We found that Fgfr loss impairs both vitreous-induced differentiation and inflammation while the additional loss of Pten restores these responses. Furthermore, transcriptomic analysis suggested that PDGFR-signaling in FGFR-deficient explants is required to mediate the rescue of vitreous-induced fiber differentiation in explants lacking both Fgfrs and Pten. The blockage of β-crystallin induction in explants lacking both Fgfrs and Pten in the presence of a PDGFR inhibitor supports this hypothesis. Our findings demonstrate that a wide array of genes associated with fiber cell differentiation are downstream of FGFR-signaling and that the vitreous-induced immune responses also depend on FGFR-signaling. Our data also demonstrate that many of the vitreous-induced gene-expression changes in Fgfr-deficient explants are rescued in explants lacking both Fgfrs and Pten.
Collapse
Affiliation(s)
- Anil Upreti
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA; (A.U.); (S.L.P.); (J.M.W.)
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Stephanie L. Padula
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA; (A.U.); (S.L.P.); (J.M.W.)
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Jacob M. Weaver
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA; (A.U.); (S.L.P.); (J.M.W.)
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Brad D. Wagner
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Allison M. Kneller
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Anthony L. Petulla
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Michael L. Robinson
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA; (A.U.); (S.L.P.); (J.M.W.)
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA; (B.D.W.); (A.M.K.); (A.L.P.)
| |
Collapse
|
11
|
Gambini D, Ferrero S, Bulfamante G, Pisani L, Corbo M, Kuhn E. Cerebellar phenotypes in germline PTEN mutation carriers. Neuropathol Appl Neurobiol 2024; 50:e12970. [PMID: 38504418 DOI: 10.1111/nan.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/21/2024]
Abstract
PTEN hamartoma tumour syndrome (PHTS) comprises different hereditary conditions caused by germline PTEN mutations, predisposing to the development of multiple hamartomas in many body tissues and also increasing the risk of some types of cancer. Cerebellar involvement in PHTS patients has been long known due to the development of a pathognomonic cerebellar hamartoma (known as dysplastic gangliocytoma of the cerebellum or Lhermitte-Duclos disease). Recently, a crucial role of the cerebellum has been highlighted in the pathogenesis of autism spectrum disorders, now recognised as a phenotype expressed in a variable percentage of PHTS children. In addition, rare PTEN variants are indeed identified in medulloblastoma as well, even if they are less frequent than other germline gene mutations. The importance of PTEN and its downstream signalling enzymatic pathways, PI3K/AKT/mTOR, has been studied at different levels in both human clinical settings and animal models, not only leading to a better understanding of the pathogenesis of different disorders but, most importantly, to identify potential targets for specific therapies. In particular, PTEN integrity makes an important contribution to the normal development of tissue architecture in the nervous system, including the cerebellum. Thus, in patients with PTEN germline mutations, the cerebellum is an affected organ that is increasingly recognised in different disorders, whereas, in animal models, cerebellar Pten loss causes a variety of functional and histological alterations. In this review, we summarise the range of cerebellar involvement observed in PHTS and its relationships with germline PTEN mutations, along with the phenotypes expressed by murine models with PTEN deficiency in cerebellar tissue.
Collapse
Affiliation(s)
- Donatella Gambini
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Stefano Ferrero
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gaetano Bulfamante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Human Pathology and Molecular Pathology Unit, TOMA Advanced Biomedical Assays, Busto Arsizio, Italy
| | - Luigi Pisani
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Elisabetta Kuhn
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
12
|
Ha SE, Paramanantham A, Kim HH, Bhosale PB, Park MY, Abusaliya A, Heo JD, Lee WS, Kim GS. Comprehensive transcriptomic profiling of liver cancer identifies that histone and PTEN are major regulators of SCU‑induced antitumor activity. Oncol Lett 2024; 27:94. [PMID: 38288037 PMCID: PMC10823307 DOI: 10.3892/ol.2024.14227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 11/16/2023] [Indexed: 01/31/2024] Open
Abstract
Worldwide, liver cancer is the most frequent fatal malignancy. Liver cancer prognosis is poor because patients frequently receive advanced-stage diagnoses. The current study aimed to establish the potential pharmacological targets and the biological networks of scutellarein (SCU) in liver cancer, a natural product known to have low toxicity and side effects. To identify the differentially expressed genes between SCU-treated and SCU-untreated HepG2 cells, RNA sequencing (RNA-seq) was carried out. A total of 463 genes were revealed to have differential expression, of which 288 were upregulated and 175 were downregulated in the group that had received SCU treatment compared with a control group. Gene Ontology (GO) enrichment analysis of associated biological process terms revealed they were mostly involved in the regulation of protein heterodimerization activity and nucleosomes. Interaction of protein-protein network analysis using Search Tool for the Retrieval of Interacting Genes/Proteins resulted in two crucial interacting hub targets; namely, histone H1-4 and protein tyrosine phosphatase receptor type C. Additionally, the crucial targets were validated using western blotting. Overall, the present study demonstrated that the use of RNA-seq data, with bioinformatics tools, can provide a valuable resource to identify the pharmacological targets that could have important biological roles in liver cancer.
Collapse
Affiliation(s)
- Sang Eun Ha
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju, Gyeongsangnam-do 52834, Republic of Korea
| | - Anjugam Paramanantham
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65201, USA
| | - Hun Hwan Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
| | - Min Yeong Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
| | - Abuyaseer Abusaliya
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
| | - Jeong Doo Heo
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju, Gyeongsangnam-do 52834, Republic of Korea
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Health Sciences and Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
| |
Collapse
|
13
|
Liu D, Yehia L, Dhawan A, Ni Y, Eng C. Cell-free DNA fragmentomics and second malignant neoplasm risk in patients with PTEN hamartoma tumor syndrome. Cell Rep Med 2024; 5:101384. [PMID: 38242121 PMCID: PMC10897513 DOI: 10.1016/j.xcrm.2023.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Individuals with PTEN hamartoma tumor syndrome (PHTS) harbor pathogenic germline PTEN variants that confer a significantly increased lifetime risk of various organ-specific cancers including second primary malignant neoplasms (SMNs). Currently, there are no reliable biomarkers that can predict individual-level cancer risk. Despite the highly promising value of cell-free DNA (cfDNA) as a biomarker for underlying sporadic cancers, the utility of cfDNA in individuals with known cancer-associated germline variants and subclinical cancers remains poorly understood. We perform ultra-low-pass whole-genome sequencing (ULP-WGS) of cfDNA from plasma samples from patients with PHTS and cancer as well as those without cancer. Analysis of cfDNA reveals that patients with PHTS and SMNs have distinct cfDNA size distribution, aberrant genome-wide fragmentation, and differential fragment end motif frequencies. Our work provides evidence that cfDNA profiles may be used as a marker for SMN risk in patients with PHTS.
Collapse
Affiliation(s)
- Darren Liu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrew Dhawan
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ying Ni
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA; Center for Immunotherapy and Precision Immuno-oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA; Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
14
|
Hitomi M, Venegas J, Kang SC, Eng C. Differential cell cycle checkpoint evasion by PTEN germline mutations associated with dichotomous phenotypes of cancer versus autism spectrum disorder. Oncogene 2023; 42:3698-3707. [PMID: 37907589 DOI: 10.1038/s41388-023-02867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Individuals with a PTEN germline mutation receive the molecular diagnosis of PTEN hamartoma tumor syndrome (PHTS). PHTS displays a complex spectrum of clinical phenotypes including harmartomas, predisposition to cancers, and autism spectrum disorder (ASD). Clear-cut genotype-phenotype correlations are yet to be established due to insufficient information on the PTEN function being impacted by mutations. To fill this knowledge gap, we compared functional impacts of two selected missense PTEN mutant alleles, G132D and M134R, each respectively being associated with distinct clinical phenotype, ASD or thyroid cancer without ASD using gene-edited human induced pluripotent stem cells (hiPSCs). In homozygous hiPSCs, PTEN expression was severely reduced by M134R mutation due to shortened protein half-life. G132D suppressed PTEN expression to a lesser extent than Μ134R mutation without altering protein half-life. When challenged with γ-irradiation, G132D heterozygous cells exited radiation-induced G2 arrest earlier than wildtype and M134R heterozygous hiPSCs despite the similar DNA damage levels as the latter two. Immunoblotting analyses suggested that γ-irradiation induced apoptosis in G132D heterozygous cells to lesser degrees than in the hiPSCs of other genotypes. These data suggest that ASD-associated G132D allele promotes genome instability by premature cell cycle reentry with incomplete DNA repair.
Collapse
Affiliation(s)
- Masahiro Hitomi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, The Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Juan Venegas
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Shin Chung Kang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, The Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
- Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Genetics and Genome Science, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA.
| |
Collapse
|
15
|
Chakraborty S, Karmakar S, Basu M, Kal S, Ghosh MK. The E3 ubiquitin ligase CHIP drives monoubiquitylation-mediated nuclear import of the tumor suppressor PTEN. J Cell Sci 2023; 136:jcs260950. [PMID: 37676120 DOI: 10.1242/jcs.260950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023] Open
Abstract
Monoubiquitylation is a principal mechanism driving nuclear translocation of the protein PTEN (phosphatase and tensin homolog deleted on chromosome ten). In this study, we describe a novel mechanism wherein the protein CHIP (C-terminus of Hsc70-interacting protein) mediates PTEN monoubiquitylation, leading to its nuclear import. Western blot analysis revealed a rise in both nuclear and total cellular PTEN levels under monoubiquitylation-promoting conditions, an effect that was abrogated by silencing CHIP expression. We established time-point kinetics of CHIP-mediated nuclear translocation of PTEN using immunocytochemistry and identified a role of karyopherin α1 (KPNA1) in facilitating nuclear transport of monoubiquitylated PTEN. We further established a direct interaction between CHIP and PTEN inside the nucleus, with CHIP participating in either polyubiquitylation or monoubiquitylation of nuclear PTEN. Finally, we showed that oxidative stress enhanced CHIP-mediated nuclear import of PTEN, which resulted in increased apoptosis, and decreased cell viability and proliferation, whereas CHIP knockdown counteracted these effects. To the best of our knowledge, this is the first report elucidating non-canonical roles for CHIP on PTEN, which we establish here as a nuclear interacting partner of CHIP.
Collapse
Affiliation(s)
- Shrabastee Chakraborty
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091 and 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091 and 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas 743372, India
| | - Satadeepa Kal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091 and 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091 and 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Brewer T, Yehia L, Bazeley P, Eng C. Integrating somatic CNV and gene expression in breast cancers from women with PTEN hamartoma tumor syndrome. NPJ Genom Med 2023; 8:14. [PMID: 37407629 DOI: 10.1038/s41525-023-00361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
Women with germline PTEN variants (PTEN hamartoma tumor syndrome, PHTS) have up to 85% lifetime risk of female breast cancer (BC). We previously showed that PHTS-derived BCs are distinct from sporadic BCs both at the clinical and genomic levels. In this study, we examined somatic copy number variations (CNV) and transcriptome data to further characterize the somatic landscape of PHTS-derived BCs. We analyzed exome sequencing data from 44 BCs from women with PHTS for CNV. The control group comprised of 558 women with sporadic BCs from The Cancer Genome Atlas (TCGA) dataset. Here, we found that PHTS-derived BCs have several distinct CNV peaks compared to TCGA. Furthermore, RNA sequencing data revealed that PHTS-derived BCs have a distinct immunologic cell type signature, which points toward cancer immune evasion. Transcriptomic data also revealed PHTS-derived BCs with pathogenic germline PTEN variants appear to have vitamin E degradation as a key pathway associated with tumorigenesis. In conclusion, our study revealed distinct CNV x transcript features in PHTS-derived BCs, which further facilitate understanding of BC biology arising in the setting of germline PTEN mutations.
Collapse
Affiliation(s)
- Takae Brewer
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Peter Bazeley
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
17
|
Hameed J S F, Devarajan A, M S DP, Bhattacharyya A, Shirude MB, Dutta D, Karmakar P, Mukherjee A. PTEN-negative endometrial cancer cells protect their genome through enhanced DDB2 expression associated with augmented nucleotide excision repair. BMC Cancer 2023; 23:399. [PMID: 37142958 PMCID: PMC10157935 DOI: 10.1186/s12885-023-10892-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 04/26/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Endometrial cancer (EC) arises from uterine endometrium tissue and is the most prevalent cancer of the female reproductive tract in developed countries. It has been predicted that the global prevalence of EC will increase in part because of its positive association with economic growth and lifestyle. The majority of EC presented with endometrioid histology and mutations in the tumor suppressor gene PTEN, resulting in its loss of function. PTEN negatively regulates the PI3K/Akt/mTOR axis of cell proliferation and thus serves as a tumorigenesis gatekeeper. Through its chromatin functions, PTEN is also implicated in genome maintenance procedures. However, our comprehension of how DNA repair occurs in the absence of PTEN function in EC is inadequate. METHODS We utilized The Cancer Genome Atlas (TCGA) data analysis to establish a correlation between PTEN and DNA damage response genes in EC, followed by a series of cellular and biochemical assays to elucidate a molecular mechanism utilizing the AN3CA cell line model for EC. RESULTS The TCGA analyses demonstrated an inverse correlation between the expression of the damage sensor protein of nucleotide excision repair (NER), DDB2, and PTEN in EC. The transcriptional activation of DDB2 is mediated by the recruitment of active RNA polymerase II to the DDB2 promoter in the PTEN-null EC cells, revealing a correlation between increased DDB2 expression and augmented NER activity in the absence of PTEN. CONCLUSION Our study indicated a causal relationship between NER and EC that may be exploited in disease management.
Collapse
Affiliation(s)
- Fathima Hameed J S
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anjali Devarajan
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Devu Priya M S
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Ahel Bhattacharyya
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Mayur Balkrishna Shirude
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Rajiv Gandhi Centre for Biotechnology, Regenerative Biology Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Debasree Dutta
- Rajiv Gandhi Centre for Biotechnology, Regenerative Biology Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata, West Bengal, 700 032, India
| | - Ananda Mukherjee
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
18
|
Langdon CG. Nuclear PTEN's Functions in Suppressing Tumorigenesis: Implications for Rare Cancers. Biomolecules 2023; 13:biom13020259. [PMID: 36830628 PMCID: PMC9953540 DOI: 10.3390/biom13020259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) encodes a tumor-suppressive phosphatase with both lipid and protein phosphatase activity. The tumor-suppressive functions of PTEN are lost through a variety of mechanisms across a wide spectrum of human malignancies, including several rare cancers that affect pediatric and adult populations. Originally discovered and characterized as a negative regulator of the cytoplasmic, pro-oncogenic phosphoinositide-3-kinase (PI3K) pathway, PTEN is also localized to the nucleus where it can exert tumor-suppressive functions in a PI3K pathway-independent manner. Cancers can usurp the tumor-suppressive functions of PTEN to promote oncogenesis by disrupting homeostatic subcellular PTEN localization. The objective of this review is to describe the changes seen in PTEN subcellular localization during tumorigenesis, how PTEN enters the nucleus, and the spectrum of impacts and consequences arising from disrupted PTEN nuclear localization on tumor promotion. This review will highlight the immediate need in understanding not only the cytoplasmic but also the nuclear functions of PTEN to gain more complete insights into how important PTEN is in preventing human cancers.
Collapse
Affiliation(s)
- Casey G. Langdon
- Department of Pediatrics, Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; ; Tel.: +1-(843)-792-9289
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
19
|
Misra S, Chowdhury SG, Ghosh G, Mukherjee A, Karmakar P. Both phosphorylation and phosphatase activity of PTEN are required to prevent replication fork progression during stress by inducing heterochromatin. Mutat Res 2022; 825:111800. [PMID: 36155262 DOI: 10.1016/j.mrfmmm.2022.111800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
PTEN is a tumor suppressor protein frequently altered in various cancers. PTEN-null cells have a characteristic of rapid proliferation with an unstable genome. Replication stress is one of the causes of the accumulation of genomic instability if not sensed by the cellular signaling. Though PTEN-null cells have shown to be impaired in replication progression and stalled fork recovery, the association between the catalytic function of PTEN regulated by posttranslational modulation and cellular response to replication stress has not been studied explicitly. To understand molecular mechanism, we find that PTEN-null cells display unrestrained replication fork progression with accumulation of damaged DNA after treatment with aphidicolin which can be rescued by ectopic expression of full-length PTEN, as evident from DNA fiber assay. Moreover, the C-terminal phosphorylation (Ser 380, Thr 382/383) of PTEN is essential for its chromatin association and sensing replication stress that, in response, induce cell cycle arrest. Further, we observed that PTEN induces HP1α expression and H3K9me3 foci formation in a C-terminal phosphorylation-dependent manner. However, phosphatase dead PTEN cannot sense replication stress though it can be associated with chromatin. Together, our results suggest that DNA replication perturbation by aphidicolin enables chromatin association of PTEN through C-terminal phosphorylation, induces heterochromatin formation by stabilizing and up-regulating H3K9me3 foci and augments CHK1 activation. Thereby, PTEN prevents DNA replication fork elongation and simultaneously causes G1-S phase cell cycle arrest to limit cell proliferation in stress conditions. Thus PTEN act as stress sensing protein during replication arrest to maintain genomic stability.
Collapse
Affiliation(s)
- Sandip Misra
- PG Department of Microbiology, Bidhannagar College, EB-2 Sector-1, Saltlake, Kolkata, India
| | | | - Ginia Ghosh
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Ananda Mukherjee
- Rajiv Gandhi Centre for Biotechnology,Thiruvananthapuram 695 014, Kerala, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India.
| |
Collapse
|
20
|
Fischer T, Hartmann O, Reissland M, Prieto-Garcia C, Klann K, Pahor N, Schülein-Völk C, Baluapuri A, Polat B, Abazari A, Gerhard-Hartmann E, Kopp HG, Essmann F, Rosenfeldt M, Münch C, Flentje M, Diefenbacher ME. PTEN mutant non-small cell lung cancer require ATM to suppress pro-apoptotic signalling and evade radiotherapy. Cell Biosci 2022; 12:50. [PMID: 35477555 PMCID: PMC9044846 DOI: 10.1186/s13578-022-00778-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/27/2022] [Indexed: 12/13/2022] Open
Abstract
Background Despite advances in treatment of patients with non-small cell lung cancer, carriers of certain genetic alterations are prone to failure. One such factor frequently mutated, is the tumor suppressor PTEN. These tumors are supposed to be more resistant to radiation, chemo- and immunotherapy. Results We demonstrate that loss of PTEN led to altered expression of transcriptional programs which directly regulate therapy resistance, resulting in establishment of radiation resistance. While PTEN-deficient tumor cells were not dependent on DNA-PK for IR resistance nor activated ATR during IR, they showed a significant dependence for the DNA damage kinase ATM. Pharmacologic inhibition of ATM, via KU-60019 and AZD1390 at non-toxic doses, restored and even synergized with IR in PTEN-deficient human and murine NSCLC cells as well in a multicellular organotypic ex vivo tumor model. Conclusion PTEN tumors are addicted to ATM to detect and repair radiation induced DNA damage. This creates an exploitable bottleneck. At least in cellulo and ex vivo we show that low concentration of ATM inhibitor is able to synergise with IR to treat PTEN-deficient tumors in genetically well-defined IR resistant lung cancer models.
Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00778-7.
Collapse
Affiliation(s)
- Thomas Fischer
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany.,Department of Biochemistry and Molecular Biology, Protein Stability and Cancer Group, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Centre Mainfranken, Würzburg, Germany
| | - Oliver Hartmann
- Department of Biochemistry and Molecular Biology, Protein Stability and Cancer Group, University of Würzburg, Würzburg, Germany.,Mildred Scheel Early Career Center, Würzburg, Germany
| | - Michaela Reissland
- Department of Biochemistry and Molecular Biology, Protein Stability and Cancer Group, University of Würzburg, Würzburg, Germany.,Mildred Scheel Early Career Center, Würzburg, Germany
| | - Cristian Prieto-Garcia
- Department of Biochemistry and Molecular Biology, Protein Stability and Cancer Group, University of Würzburg, Würzburg, Germany.,Mildred Scheel Early Career Center, Würzburg, Germany
| | - Kevin Klann
- Protein Quality Control Group, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | - Nikolett Pahor
- Department of Biochemistry and Molecular Biology, Protein Stability and Cancer Group, University of Würzburg, Würzburg, Germany.,Mildred Scheel Early Career Center, Würzburg, Germany
| | | | - Apoorva Baluapuri
- Department of Biochemistry and Molecular Biology, Cancer Systems Biology Group, Würzburg, Germany
| | - Bülent Polat
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Cancer Centre Mainfranken, Würzburg, Germany
| | - Arya Abazari
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Elena Gerhard-Hartmann
- Comprehensive Cancer Centre Mainfranken, Würzburg, Germany.,Institute for Pathology, University of Würzburg, Würzburg, Germany
| | | | - Frank Essmann
- Institute for Clinical Pharmacology, Robert Bosch Hospital, Stuttgart, Germany
| | - Mathias Rosenfeldt
- Comprehensive Cancer Centre Mainfranken, Würzburg, Germany.,Institute for Pathology, University of Würzburg, Würzburg, Germany
| | - Christian Münch
- Protein Quality Control Group, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Markus E Diefenbacher
- Department of Biochemistry and Molecular Biology, Protein Stability and Cancer Group, University of Würzburg, Würzburg, Germany. .,Mildred Scheel Early Career Center, Würzburg, Germany. .,Comprehensive Cancer Centre Mainfranken, Würzburg, Germany. .,Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
21
|
CMAHP promotes metastasis by reducing ubiquitination of Snail and inducing angiogenesis via GM-CSF overexpression in gastric cancer. Oncogene 2022; 41:159-172. [PMID: 34716430 DOI: 10.1038/s41388-021-02087-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022]
Abstract
Pseudogenes are generally considered "junk" DNA or "genomic fossils" generated during the evolution process that lack biological activity. However, accumulating reports indicate that pseudogenes have biological functions critical for cancer development. Experiments from the current study showed marked overexpression of the cytidine monophospho-N-acetylneuraminic acid hydroxylase pseudogene (CMAHP) in gastric cancer, which was associated with poor overall survival. However, the mechanisms underlying the activity of CMAHP in tumor development are largely unknown. Gene Set Enrichment Analysis (GSEA) revealed that CMAHP-correlated genes are significantly involved in epithelial-mesenchymal transition (EMT) and angiogenesis. Functional studies further confirmed that CMAHP mediates metastasis and angiogenesis in vitro and in vivo. Furthermore, CMAHP promoted cancer cell migration, invasion, and metastasis through Snail overexpression, which decreased ubiquitination mediated by NF-κB signaling. Angiogenesis is known to be induced by granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulation. CMAHP increased GM-CSF transactivation via promoting direct binding of c-Jun to the -1981/-1975 region of the GM-CSF promoter. Notably, CMAHP interacts with Histone H1.4 promoting histone acetylation to enhance c-Jun and RelA (p65) expression. Our collective findings provide novel evidence that CMAHP contributes to tumor progression and modulates metastasis and angiogenesis in gastric cancer.
Collapse
|
22
|
Choi BH, Colon TM, Lee E, Kou Z, Dai W. CBX8 interacts with chromatin PTEN and is involved in regulating mitotic progression. Cell Prolif 2021; 54:e13110. [PMID: 34592789 PMCID: PMC8560621 DOI: 10.1111/cpr.13110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/14/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Besides its role in regulating phosphatidylinositol-3 kinase (PI3K) signalling in the cytosol, PTEN also has a nuclear function. In this study, we attempted to understand the mechanism of chromatin PTEN in suppressing chromosomal instability during cell division. MATERIALS AND METHODS Immunocoprecipitation, ectopic expression, and deletional analyses were used to identify the physical interaction between Chromobox Homolog protein 8 (CBX8) and PTEN, as well as the functional domain(s) of PTEN mediating the interaction. Cell synchronization followed by immunoblotting was employed to study cell cycle regulation of CBX8 and the functional interaction between chromatin PTEN and CBX8. Small interfering RNAs (siRNAs) were used to study the role of PTEN and CBX8 in modulating histone epigenetic markers during the cell cycle. RESULTS Polycomb group (PcG) proteins including CBXs function to repress gene expression in a wide range of organisms including mammals. We recently showed that PTEN interacted with CBX8, a component of Polycomb Repressing Complex 1 (PRC1), and that CBX8 co-localized with PTEN in the nucleus. CBX8 levels were high, coinciding with its phosphorylation in mitosis. Phosphorylation of CBX8 was associated with monoubiquitinated PTEN and phosphorylated-BubR1 on chromatin. Moreover, CBX8 played an important role in cell proliferation and mitotic progression. Significantly, downregulation of either PTEN or CBX8 induced H3K27Me3 epigenetic marker in mitotic cells. CONCLUSION CBX8 is a new component that physically interacts with chromatin PTEN, playing an important role in regulating mitotic progression.
Collapse
Affiliation(s)
- Byeong Hyeok Choi
- Department of Environmental MedicineNew York University Grossman School of MedicineNew YorkNYUSA
| | - Tania Marlyn Colon
- Department of Environmental MedicineNew York University Grossman School of MedicineNew YorkNYUSA
| | - Eunji Lee
- Department of Environmental MedicineNew York University Grossman School of MedicineNew YorkNYUSA
| | - Ziyue Kou
- Department of Environmental MedicineNew York University Grossman School of MedicineNew YorkNYUSA
| | - Wei Dai
- Department of Environmental MedicineNew York University Grossman School of MedicineNew YorkNYUSA
- Department of Biochemistry and Molecular PharmacologyNew York University Langone Medical CenterNew YorkNYUSA
| |
Collapse
|
23
|
Misra S, Ghosh G, Chowdhury SG, Karmakar P. Non-canonical function of nuclear PTEN and its implication on tumorigenesis. DNA Repair (Amst) 2021; 107:103197. [PMID: 34359000 DOI: 10.1016/j.dnarep.2021.103197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/13/2021] [Accepted: 07/26/2021] [Indexed: 01/13/2023]
Abstract
Suppression of genomic instability is the key to prevent tumor development. PTEN is a unique tumor suppressor protein having both lipid and protein phosphatase activities. Interestingly though it is a cytoplasmic protein, but a significant pool of PTEN can also be localized in nucleus. The function of cytoplasmic PTEN is well defined and extensively studied in various literatures focusing mainly on the negative regulation of oncogenic PI-3Kinase-AKT pathway but functional regulation of nuclear PTEN is less defined and therefore it is a fascinating subject of research in cancer biology. Post-translation modulation of PTEN such as phosphorylation, sumorylation, acetylation and methylation also regulates its cellular localization, protein-protein association and catalytic function. Loss or mutation in PTEN is associated with the development of tumors in various tissues from the brain to prostate. Here we have summarized the role of nuclear PTEN and its epigenetic modulation in various DNA metabolic pathways, for example, DNA damage response, DNA repair, DNA replication, DNA segregation etc. Further, pathways involved in nuclear PTEN degradation are also discussed. Additionally, we also emphasize probable potential targets associated with PTEN pathway for chemotherapeutic purpose.
Collapse
Affiliation(s)
- Sandip Misra
- PG Department of Microbiology, Bidhannagar College, EB-2 Sector-1, Saltlake, Kolkata, India
| | - Ginia Ghosh
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | | | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India.
| |
Collapse
|
24
|
Abbas A, Padmanabhan R, Eng C. Metabolic stress regulates genome-wide transcription in a PTEN-dependent manner. Hum Mol Genet 2021; 29:2736-2745. [PMID: 32744308 DOI: 10.1093/hmg/ddaa168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/19/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022] Open
Abstract
PTEN is implicated in a wide variety of pathophysiological conditions and traditionally studied in the context of the PIK3-AKT-mTOR axis. Recent studies from our group and others have reported a novel role of PTEN in the regulation of transcription at the genome-wide scale. This emerging role of PTEN on global transcriptional regulation is providing a better understanding of various diseases, including cancer. Because cancer progression is an energy-demanding process and PTEN is known to regulate metabolic processes, we sought to understand the role of PTEN in transcriptional regulation under metabolic stress, a condition often developing in the tumor microenvironment. In the present study, we demonstrate that PTEN modulates genome-wide RNA Polymerase II occupancy in cells undergoing glucose deprivation. The glucose-deprived PTEN null cells were found to continue global gene transcription, which may activate a survival mode. However, cells with constitutive PTEN expression slow transcription, an evolutionary mechanism that may save cellular energy and activate programmed cell death pathways, in the absence of glucose. Interestingly, alternative exon usage by PTEN null cells is increased under metabolic stress in contrast to PTEN-expressing cells. Overall, our study demonstrates distinct mechanisms involved in PTEN-dependent genome-wide transcriptional control under metabolic stress. Our findings provide a new insight in understanding tumor pathology and how PTEN loss of function, whether by genetic or non-genetic mechanisms, can contribute to a favorable transcriptional program employed by tumor cells to escape apoptosis, hence developing more aggressive and metastatic phenotypes.
Collapse
Affiliation(s)
- Ata Abbas
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44116, USA
| | - Roshan Padmanabhan
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Genetics and Genome Sciences.,Germline High Risk Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44116, USA
| |
Collapse
|
25
|
Fry AL, Webster AK, Burnett J, Chitrakar R, Baugh LR, Hubbard EJA. DAF-18/PTEN inhibits germline zygotic gene activation during primordial germ cell quiescence. PLoS Genet 2021; 17:e1009650. [PMID: 34288923 PMCID: PMC8294487 DOI: 10.1371/journal.pgen.1009650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Quiescence, an actively-maintained reversible state of cell cycle arrest, is not well understood. PTEN is one of the most frequently lost tumor suppressors in human cancers and regulates quiescence of stem cells and cancer cells. The sole PTEN ortholog in Caenorhabditis elegans is daf-18. In a C. elegans loss-of-function mutant for daf-18, primordial germ cells (PGCs) divide inappropriately in L1 larvae hatched into starvation conditions, in a TOR-dependent manner. Here, we further investigated the role of daf-18 in maintaining PGC quiescence in L1 starvation. We found that maternal or zygotic daf-18 is sufficient to maintain cell cycle quiescence, that daf-18 acts in the germ line and soma, and that daf-18 affects timing of PGC divisions in fed animals. Importantly, our results also implicate daf-18 in repression of germline zygotic gene activation, though not in germline fate specification. However, TOR is less important to germline zygotic gene expression, suggesting that in the absence of food, daf-18/PTEN prevents inappropriate germline zygotic gene activation and cell division by distinct mechanisms.
Collapse
Affiliation(s)
- Amanda L. Fry
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, United States of America
| | - Amy K. Webster
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - Julia Burnett
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, United States of America
| | - Rojin Chitrakar
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - L. Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
| | - E. Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, United States of America
| |
Collapse
|
26
|
Longo F, Klann E. Reciprocal control of translation and transcription in autism spectrum disorder. EMBO Rep 2021; 22:e52110. [PMID: 33977633 PMCID: PMC8183409 DOI: 10.15252/embr.202052110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/20/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and the presence of restricted patterns of interest and repetitive behaviors. ASD is genetically heterogeneous and is believed to be caused by both inheritable and de novo gene variations. Studies have revealed an extremely complex genetic landscape of ASD, favoring the idea that mutations in different clusters of genes interfere with interconnected downstream signaling pathways and circuitry, resulting in aberrant behavior. In this review, we describe a select group of candidate genes that represent both syndromic and non-syndromic forms of ASD and encode proteins that are important in transcriptional and translational regulation. We focus on the interplay between dysregulated translation and transcription in ASD with the hypothesis that dysregulation of each synthetic process triggers a feedback loop to act on the other, which ultimately exacerbates ASD pathophysiology. Finally, we summarize findings from interdisciplinary studies that pave the way for the investigation of the cooperative impact of different genes and pathways underlying the development of ASD.
Collapse
Affiliation(s)
| | - Eric Klann
- Center for Neural ScienceNew York UniversityNew YorkNYUSA
| |
Collapse
|
27
|
PTEN in prefrontal cortex is essential in regulating depression-like behaviors in mice. Transl Psychiatry 2021; 11:185. [PMID: 33771972 PMCID: PMC7998021 DOI: 10.1038/s41398-021-01312-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic stress is an environmental risk factor for depression and causes neuronal atrophy in the prefrontal cortex (PFC) and other brain regions. It is still unclear about the molecular mechanism underlying the behavioral alterations and neuronal atrophy induced by chronic stress. We here report that phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a mediator for chronic stress-induced depression-like behaviors and neuronal atrophy in mice. One-month chronic restraint stress (CRS) up-regulated PTEN signaling pathway in the PFC of mice as indicated by increasing levels of PTEN, p-MEK, and p-ERK but decreasing levels of p-AKT. Over-expression of Pten in the PFC led to an increase of depression-like behaviors, whereas genetic inactivation or knockdown of Pten in the PFC prevented the CRS-induced depression-like behaviors. In addition, systemic administration of PTEN inhibitor was also able to prevent these behaviors. Cellular examination showed that Pten over-expression or the CRS treatment resulted in PFC neuron atrophy, and this atrophy was blocked by genetic inactivation of Pten or systemic administration of PTEN inhibitor. Furthermore, possible causal link between Pten and glucocorticoids was examined. In chronic dexamethasone (Dex, a glucocorticoid agonist) treatment-induced depression model, increased PTEN levels were observed, and depression-like behaviors and PFC neuron atrophy were attenuated by the administration of PTEN inhibitor. Our results indicate that PTEN serves as a key mediator in chronic stress-induced neuron atrophy as well as depression-like behaviors, providing molecular evidence supporting the synaptic plasticity theory of depression.
Collapse
|
28
|
Abstract
In over two decades since the discovery of phosphatase and tensin homologue deleted on chromosome 10 (PTEN), nearly 18,000 publications have attempted to elucidate its functions and roles in normal physiology and disease. The frequent disruption of PTEN in cancer cells was a strong indication that it had critical roles in tumour suppression. Germline PTEN mutations have been identified in patients with heterogeneous tumour syndromic diseases, known as PTEN hamartoma tumour syndrome (PHTS), and in some individuals with autism spectrum disorders (ASD). Today we know that by limiting oncogenic signalling through the phosphoinositide 3-kinase (PI3K) pathway, PTEN governs a number of processes including survival, proliferation, energy metabolism, and cellular architecture. Some of the most exciting recent advances in the understanding of PTEN biology and signalling have revisited its unappreciated roles as a protein phosphatase, identified non-enzymatic scaffold functions, and unravelled its nuclear function. These discoveries are certain to provide a new perspective on its full tumour suppressor potential, and knowledge from this work will lead to new anti-cancer strategies that exploit PTEN biology. In this review, we will highlight some outstanding questions and some of the very latest advances in the understanding of the tumour suppressor PTEN.
Collapse
Affiliation(s)
- Jonathan Tak-Sum Chow
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Lyubitelev AV, Kirpichnikov MP, Studitsky VM. The Role of Linker Histones in Carcinogenesis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Fiuji H, Nassiri M. Gene expression profiling of chromosome 10 in PTEN-knockout (−/−) human neural and mesenchymal stem cells: A system biology study. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Ferrand J, Rondinelli B, Polo SE. Histone Variants: Guardians of Genome Integrity. Cells 2020; 9:E2424. [PMID: 33167489 PMCID: PMC7694513 DOI: 10.3390/cells9112424] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Chromatin integrity is key for cell homeostasis and for preventing pathological development. Alterations in core chromatin components, histone proteins, recently came into the spotlight through the discovery of their driving role in cancer. Building on these findings, in this review, we discuss how histone variants and their associated chaperones safeguard genome stability and protect against tumorigenesis. Accumulating evidence supports the contribution of histone variants and their chaperones to the maintenance of chromosomal integrity and to various steps of the DNA damage response, including damaged chromatin dynamics, DNA damage repair, and damage-dependent transcription regulation. We present our current knowledge on these topics and review recent advances in deciphering how alterations in histone variant sequence, expression, and deposition into chromatin fuel oncogenic transformation by impacting cell proliferation and cell fate transitions. We also highlight open questions and upcoming challenges in this rapidly growing field.
Collapse
Affiliation(s)
| | | | - Sophie E. Polo
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, 75013 Paris, France; (J.F.); (B.R.)
| |
Collapse
|
32
|
Amin R, Tripathi K, Sanderson RD. Nuclear Heparanase Regulates Chromatin Remodeling, Gene Expression and PTEN Tumor Suppressor Function. Cells 2020; 9:cells9092038. [PMID: 32899927 PMCID: PMC7564302 DOI: 10.3390/cells9092038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023] Open
Abstract
Heparanase (HPSE) is an endoglycosidase that cleaves heparan sulfate and has been shown in various cancers to promote metastasis, angiogenesis, osteolysis, and chemoresistance. Although heparanase is thought to act predominantly extracellularly or within the cytoplasm, it is also present in the nucleus, where it may function in regulating gene transcription. Using myeloma cell lines, we report here that heparanase enhances chromatin accessibility and confirm a previous report that it also upregulates the acetylation of histones. Employing the Multiple Myeloma Research Foundation CoMMpass database, we demonstrate that patients expressing high levels of heparanase display elevated expression of proteins involved in chromatin remodeling and several oncogenic factors compared to patients expressing low levels of heparanase. These signatures were consistent with the known function of heparanase in driving tumor progression. Chromatin opening and downstream target genes were abrogated by inhibition of heparanase. Enhanced levels of heparanase in myeloma cells led to a dramatic increase in phosphorylation of PTEN, an event known to stabilize PTEN, leading to its inactivity and loss of tumor suppressor function. Collectively, this study demonstrates that heparanase promotes chromatin opening and transcriptional activity, some of which likely is through its impact on diminishing PTEN tumor suppressor activity.
Collapse
|
33
|
Fan X, Kraynak J, Knisely JPS, Formenti SC, Shen WH. PTEN as a Guardian of the Genome: Pathways and Targets. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036194. [PMID: 31932469 DOI: 10.1101/cshperspect.a036194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Faithful transmission of genetic information is only possible with the structural and functional integrity of the genome. PTEN has been recognized as a guardian of the genome since the identification of its noncanonical localization and function in the nucleus. Yet, the role of PTEN in guarding the genome relies on integration of diverse mechanisms elicited by its canonical activity in antagonizing PI3K as well as emerging noncanonical functions. In the nucleus, PTEN maintains the structural integrity of chromosomes and the architecture of heterochromatin by physically interacting with chromosomal and nucleosomal components. PTEN also controls the functional integrity of key genetic transmission machineries by promoting proper assembly of the replisome and mitotic spindles. Deregulation of PTEN signaling impairs genome integrity, leading to spontaneous replication/mitotic stress and subsequent stress tolerance. Identification of novel targets of PTEN signaling and illumination of the interplay of diverse PTEN pathways in genome maintenance will help us better understand mechanisms underlying tumor evolution and therapeutic resistance.
Collapse
Affiliation(s)
- Xinyi Fan
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| | - Jeffrey Kraynak
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| | - Jonathan P S Knisely
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| | - Wen H Shen
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| |
Collapse
|
34
|
Jaini R, Loya MG, King AT, Thacker S, Sarn NB, Yu Q, Stark GR, Eng C. Germline PTEN mutations are associated with a skewed peripheral immune repertoire in humans and mice. Hum Mol Genet 2020; 29:2353-2364. [PMID: 32588888 PMCID: PMC7424751 DOI: 10.1093/hmg/ddaa118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/08/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
Individuals with germline mutations in the gene encoding phosphatase and tensin homolog on chromosome ten (PTEN) are diagnosed with PTEN hamartoma tumor syndrome (PHTS) and are at high risk for developing breast, thyroid and other cancers and/or autoimmunity or neurodevelopmental issues including autism spectrum disorders. Although well recognized as a tumor suppressor, involvement of PTEN mutations in mediating such a diverse range of phenotypes indicates a more central involvement for PTEN in immunity than previously recognized. To address this, sequencing of the T-cell receptor variable-region β-chain was performed on peripheral blood from PHTS patients. Based on patient findings, we performed mechanistic studies in two Pten knock-in murine models, distinct from each other in cell compartment-specific predominance of Pten. We found that PTEN mutations in humans and mice are associated with a skewed T- and B-cell gene repertoire, characterized by increased prevalence of high-frequency clones. Immunological characterization showed that Pten mutants have increased B-cell proliferation and a proclivity towards increased T-cell reactivity upon Toll-like-receptor stimulation. Furthermore, decreases in nuclear but not cytoplasmic Pten levels associated with a reduction in expression of the autoimmune regulator (Aire), a critical mediator of central immune tolerance. Mechanistically, we show that nuclear PTEN most likely regulates Aire expression via its emerging role in splicing regulation. We conclude that germline disruption of PTEN, both in human and mouse, results in compromised central immune tolerance processes that may significantly impact individual stress responses and therefore predisposition to autoimmunity and cancer.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Cell Proliferation/genetics
- Disease Models, Animal
- Female
- Gene Knock-In Techniques
- Germ-Line Mutation/genetics
- Hamartoma Syndrome, Multiple/blood
- Hamartoma Syndrome, Multiple/genetics
- Hamartoma Syndrome, Multiple/immunology
- Hamartoma Syndrome, Multiple/pathology
- Humans
- Immune Tolerance/genetics
- Male
- Mice
- PTEN Phosphohydrolase/genetics
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Toll-Like Receptors/genetics
- Toll-Like Receptors/immunology
- Transcription Factors/genetics
- AIRE Protein
Collapse
Affiliation(s)
- Ritika Jaini
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Matthew G Loya
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alexander T King
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stetson Thacker
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicholas B Sarn
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Qi Yu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - George R Stark
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
35
|
Fusco N, Sajjadi E, Venetis K, Gaudioso G, Lopez G, Corti C, Rocco EG, Criscitiello C, Malapelle U, Invernizzi M. PTEN Alterations and Their Role in Cancer Management: Are We Making Headway on Precision Medicine? Genes (Basel) 2020; 11:E719. [PMID: 32605290 PMCID: PMC7397204 DOI: 10.3390/genes11070719] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/27/2020] [Accepted: 06/27/2020] [Indexed: 12/15/2022] Open
Abstract
Alterations in the tumor suppressor phosphatase and tensin homolog (PTEN) occur in a substantial proportion of solid tumors. These events drive tumorigenesis and tumor progression. Given its central role as a downregulator of the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, PTEN is deeply involved in cell growth, proliferation, and survival. This gene is also implicated in the modulation of the DNA damage response and in tumor immune microenvironment modeling. Despite the actionability of PTEN alterations, their role as biomarkers remains controversial in clinical practice. To date, there is still a substantial lack of validated guidelines and/or recommendations for PTEN testing. Here, we provide an update on the current state of knowledge on biologic and genetic alterations of PTEN across the most frequent solid tumors, as well as on their actual and/or possible clinical applications. We focus on possible tailored schemes for cancer patients' clinical management, including risk assessment, diagnosis, prognostication, and treatment.
Collapse
Affiliation(s)
- Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.V.); (E.G.R.)
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Elham Sajjadi
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Konstantinos Venetis
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.V.); (E.G.R.)
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
- Doctoral Program in Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Gabriella Gaudioso
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20131 Milan, Italy; (G.G.); (G.L.); (C.C.)
| | - Gianluca Lopez
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20131 Milan, Italy; (G.G.); (G.L.); (C.C.)
| | - Chiara Corti
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20131 Milan, Italy; (G.G.); (G.L.); (C.C.)
| | - Elena Guerini Rocco
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.V.); (E.G.R.)
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Carmen Criscitiello
- New Drugs and Early Drug Development for Innovative Therapies Division, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Umberto Malapelle
- Department of Public Health, University Federico II, 80138 Naples, Italy;
| | - Marco Invernizzi
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy;
| |
Collapse
|
36
|
Ho J, Cruise ES, Dowling RJO, Stambolic V. PTEN Nuclear Functions. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036079. [PMID: 31712221 DOI: 10.1101/cshperspect.a036079] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
For years, clinical and basic researchers have been aware of the presence of PTEN in the nucleus in cell culture, animal models, and both healthy and diseased human tissues. Despite the early recognition of nuclear PTEN, the understanding of the mechanisms of its nuclear localization, function in the nucleus, and importance in biology and human disease has been lacking. Over the last decade, emerging concepts for the complex involvement of nuclear PTEN in a variety of processes, including genome maintenance and DNA repair, cell-cycle control, gene expression, and DNA replication, are illuminating what could prove to be the key path toward a full understanding of PTEN function in health and disease. Dysregulation of nuclear PTEN is now considered an important aspect of the etiology of many pathologic conditions, prompting reconsideration of the therapeutic approaches aimed at countering the consequences of PTEN deficiency. This new knowledge is fueling the development of innovative therapeutic modalities for a broad spectrum of human conditions, from cancer and metabolic diseases, to neurological disorders and autism.
Collapse
Affiliation(s)
- Jason Ho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Edward S Cruise
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ryan J O Dowling
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Vuk Stambolic
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
37
|
Zebrafish pten Genes Play Relevant but Distinct Roles in Antiviral Immunity. Vaccines (Basel) 2020; 8:vaccines8020199. [PMID: 32357549 PMCID: PMC7349019 DOI: 10.3390/vaccines8020199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
The PTEN (phosphatase and TENsin homolog on chromosome 10) gene encodes a bifunctional phosphatase that acts as a tumor suppressor. However, PTEN has been implicated in different immune processes, including autophagy, inflammation, regulation of natural killer (NK) cell cytolytic activity and type I interferon responses. Unlike mammals, zebrafish possess two pten genes (ptena and ptenb). This study explores the involvement of both zebrafish pten genes in antiviral defense. Although ptena−/− and ptenb−/− larvae were more susceptible to Spring viremia of carp virus (SVCV), the viral replication rate was lower in the mutant larvae than in the wild-type larvae. We observed that both mutant lines showed alterations in the transcription of numerous genes, including those related to the type I interferon (IFN) system, cytolytic activity, autophagy and inflammation, and some of these genes were regulated in opposite ways depending on which pten gene was mutated. Even though the lower replication rate of SVCV could be associated with impaired autophagy in the mutant lines, the higher mortality observed in the ptena−/− and ptenb−/− larvae does not seem to be associated with an uncontrolled inflammatory response.
Collapse
|
38
|
Abstract
Germline pathogenic phosphatase and tensin homolog (PTEN) mutations cause PTEN hamartoma tumor syndrome (PHTS), characterized by various benign and malignant tumors of the thyroid, breast, endometrium, and other organs. Patients with PHTS may present with other clinical features such as macrocephaly, intestinal polyposis, cognitive changes, and pathognomonic skin changes. Clinically, deregulation of PTEN function is implicated in other human diseases in addition to many types of human cancer. PTEN is an important phosphatase that counteracts one of the most critical cancer pathways: the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathways. Although PTEN can dephosphorylate lipids and proteins, it also has functions independent of phosphatase activity in normal and pathological states. It is positively and negatively regulated at the transcriptional level as well as posttranslationally by phosphorylation, ubiquitylation, oxidation, and acetylation. Although most of its tumor-suppressor activity is likely to be caused by lipid dephosphorylation at the plasma membrane, PTEN also resides in the cytoplasm and nucleus, and its subcellular distribution is under strict control. In this review, we highlight our current knowledge of PTEN function and recent discoveries in understanding PTEN function regulation and how this can be exploited therapeutically for cancer treatment.
Collapse
Affiliation(s)
- Joanne Ngeow
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798.,Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore 169610.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Germline High Risk Cancer Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
39
|
Abbas A, Padmanabhan R, Romigh T, Eng C. PTEN modulates gene transcription by redistributing genome-wide RNA polymerase II occupancy. Hum Mol Genet 2020; 28:2826-2834. [PMID: 31127935 PMCID: PMC6735678 DOI: 10.1093/hmg/ddz112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/27/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Control of gene expression is one of the most complex yet continuous physiological processes impacting cellular homeostasis. RNA polymerase II (Pol II) transcription is tightly regulated at promoter-proximal regions by intricate dynamic processes including Pol II pausing, release into elongation and premature termination. Pol II pausing is a phenomenon where Pol II complex pauses within 30–60 nucleotides after initiating the transcription. Negative elongation factor (NELF) and DRB sensitivity inducing factor (DSIF) contribute in the establishment of Pol II pausing, and positive transcription elongation factor b releases (P-TEFb) paused complex after phosphorylating DSIF that leads to dissociation of NELF. Pol II pausing is observed in most expressed genes across the metazoan. The precise role of Pol II pausing is not well understood; however, it’s required for integration of signals for gene regulation. In the present study, we investigated the role of phosphatase and tensin homolog (PTEN) in genome-wide transcriptional regulation using PTEN overexpression and PTEN knock-down models. Here we identify that PTEN alters the expression of hundreds of genes, and its restoration establishes genome-wide Pol II promoter-proximal pausing in PTEN null cells. Furthermore, PTEN re-distributes Pol II occupancy across the genome and possibly impacts Pol II pause duration, release and elongation rate in order to enable precise gene regulation at the genome-wide scale. Our observations demonstrate an imperative role of PTEN in global transcriptional regulation that will provide a new direction to understand PTEN-associated pathologies and its management.
Collapse
Affiliation(s)
- Ata Abbas
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Roshan Padmanabhan
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Todd Romigh
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Germline High Risk Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
40
|
Lauria A, Peirone S, Giudice MD, Priante F, Rajan P, Caselle M, Oliviero S, Cereda M. Identification of altered biological processes in heterogeneous RNA-sequencing data by discretization of expression profiles. Nucleic Acids Res 2020; 48:1730-1747. [PMID: 31889184 PMCID: PMC7038995 DOI: 10.1093/nar/gkz1208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/31/2022] Open
Abstract
Heterogeneity is a fundamental feature of complex phenotypes. So far, genomic screenings have profiled thousands of samples providing insights into the transcriptome of the cell. However, disentangling the heterogeneity of these transcriptomic Big Data to identify defective biological processes remains challenging. Here we present GSECA, a method exploiting the bimodal behavior of RNA-sequencing gene expression profiles to identify altered gene sets in heterogeneous patient cohorts. Using simulated and experimental RNA-sequencing data sets, we show that GSECA provides higher performances than other available algorithms in detecting truly altered biological processes in large cohorts. Applied to 5941 samples from 14 different cancer types, GSECA correctly identified the alteration of the PI3K/AKT signaling pathway driven by the somatic loss of PTEN and verified the emerging role of PTEN in modulating immune-related processes. In particular, we showed that, in prostate cancer, PTEN loss appears to establish an immunosuppressive tumor microenvironment through the activation of STAT3, and low PTEN expression levels have a detrimental impact on patient disease-free survival. GSECA is available at https://github.com/matteocereda/GSECA.
Collapse
Affiliation(s)
- Andrea Lauria
- Department of Life Science and System Biology, Università degli Studi di Torino, via Accademia Albertina 13, 10123 Turin, Italy
- IIGM - Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, Candiolo (TO) 10060, Italy
| | - Serena Peirone
- IIGM - Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, Candiolo (TO) 10060, Italy
- Department of Physics and INFN, Università degli Studi di Torino, via P.Giuria 1, 10125 Turin, Italy
| | - Marco Del Giudice
- IIGM - Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, Candiolo (TO) 10060, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Str. Prov.le 142, km 3.95, Candiolo (TO) 10060, Italy
| | - Francesca Priante
- IIGM - Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, Candiolo (TO) 10060, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Str. Prov.le 142, km 3.95, Candiolo (TO) 10060, Italy
| | - Prabhakar Rajan
- Centre for Cell and Molecular Biology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- The Alan Turing Institute, British Library, 96 Euston Road, London, NW1 2DB, UK
| | - Michele Caselle
- Department of Physics and INFN, Università degli Studi di Torino, via P.Giuria 1, 10125 Turin, Italy
| | - Salvatore Oliviero
- Department of Life Science and System Biology, Università degli Studi di Torino, via Accademia Albertina 13, 10123 Turin, Italy
- IIGM - Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, Candiolo (TO) 10060, Italy
| | - Matteo Cereda
- IIGM - Italian Institute for Genomic Medicine, c/o IRCCS, Str. Prov.le 142, km 3.95, Candiolo (TO) 10060, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Str. Prov.le 142, km 3.95, Candiolo (TO) 10060, Italy
| |
Collapse
|
41
|
Abstract
The tumor suppressor phosphatase and tension homolog (PTEN) is frequently mutated in human cancers, and it functions in multiple ways to safeguard cells from tumorigenesis. In the cytoplasm, PTEN antagonizes the PI3K/AKT pathway and suppresses cellular proliferation and survival. In the nucleus, PTEN is indispensable for the maintenance of genomic stability. In addition, PTEN loss leads to extensive changes in gene expression at the transcriptional level. The linker histone H1, generally considered as a transcriptional repressor, binds to the nucleosome to form a structure named the chromatosome. The dynamics between H1 and chromatin play an important role in determining gene expression. Here, we summarize the current understanding of roles of PTEN in controlling chromatin dynamics and global gene expression, which is crucial function of nuclear PTEN. We will also introduce the recent discovery of the PTEN family members and their functions.
Collapse
Affiliation(s)
- Jingyi Yang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
42
|
Sun Z, Lu J, Wu M, Li M, Bai L, Shi Z, Hao L, Wu Y. Deficiency of PTEN leads to aberrant chromosome segregation through downregulation of MAD2. Mol Med Rep 2019; 20:4235-4243. [PMID: 31545428 PMCID: PMC6797992 DOI: 10.3892/mmr.2019.10668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/20/2019] [Indexed: 11/07/2022] Open
Abstract
Proper spindle formation and accurate chromosome segregation are essential for ensuring mitotic fidelity. Phosphatase and tensin homolog (PTEN) is a multifunctional protein, which is able to maintain the stability of the genome and chromosomes. The present study described an essential role of PTEN in regulating chromosome segregation to prevent gross genomic instability via regulation of mitotic arrest deficient 2 (MAD2). PTEN knockdown induced cell cycle arrest and abnormal chromosome segregation, which manifested as the formation of anaphase bridges, lagging chromosomes and premature chromatid separation. In addition, MAD2 was identified as a potential target of PTEN. Furthermore, the present study revealed that PTEN knockdown resulted in MAD2 degradation via the ubiquitin-proteasomal pathway, while restoration of MAD2 expression partially ameliorated the mitotic defects induced by PTEN loss. The results from the present study proposed a novel mechanism by which PTEN maintains chromosome stability.
Collapse
Affiliation(s)
- Zhuo Sun
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Jinqi Lu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Muyu Wu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Mingyan Li
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Lu Bai
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Zhenduo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Yongping Wu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
43
|
Abbas A, Romigh T, Eng C. PTEN interacts with RNA polymerase II to dephosphorylate polymerase II C-terminal domain. Oncotarget 2019; 10:4951-4959. [PMID: 31452836 PMCID: PMC6697640 DOI: 10.18632/oncotarget.27128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/17/2019] [Indexed: 11/25/2022] Open
Abstract
Gene transcription is a highly complex and strictly regulated process. RNA polymerase II (Pol II) C-terminal domain (CTD) undergoes massive cycles of phosphorylation and dephosphorylation during the process of gene transcription. These post-translational modifications of CTD provide an interactive platform for various factors required for transcription initiation, elongation, termination, and co-transcriptional RNA processing. Pol II CTD kinases and phosphatases are key regulators and any deviation may cause genome-wide transcriptional dysregulation leading to various pathological conditions including cancer. PTEN, a well known tumor suppressor, is one of the most commonly somatically altered in diverse malignancies. When mutated in the germline, PTEN causes cancer predisposition. Numerous studies have demonstrated that PTEN regulates the expression of hundreds of genes, however, no mechanism is known so far. PTEN is a dual specificity phosphatase, using both lipid and protein as substrates. In the present study, we demonstrate that PTEN interacts with the RNA Pol II and that PTEN expression is inversely correlated with global phosphorylation of Pol II CTD. Furthermore, PTEN dephosphorylates Pol II CTD in vitro with a significant specificity for Ser5p. Interestingly, ChIP-seq data analysis revealed that PTEN globally binds to promoter proximal regions, and PTEN loss increases genome-wide Pol II Ser5p occupancy, suggest that PTEN is a Pol II CTD phosphatase. Our observations demonstrate an unexplored function of PTEN with the potential of global transcriptional regulation, adding a new dimension to somatic carcinogenesis and germline cancer predisposition.
Collapse
Affiliation(s)
- Ata Abbas
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, 44195 OH, USA.,Present address: Division of Hematology Oncology, Department of Medicine, Case Western Reserve University, Cleveland, 44106 OH, USA
| | - Todd Romigh
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, 44195 OH, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, 44195 OH, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, 44195 OH, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, 44116 OH, USA.,Germline High Risk Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, 44116 OH, USA
| |
Collapse
|
44
|
Wahane S, Halawani D, Zhou X, Zou H. Epigenetic Regulation Of Axon Regeneration and Glial Activation in Injury Responses. Front Genet 2019; 10:640. [PMID: 31354788 PMCID: PMC6629966 DOI: 10.3389/fgene.2019.00640] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Injury to the nervous system triggers a multicellular response in which epigenetic mechanisms play an important role in regulating cell type-specific transcriptional changes. Here, we summarize recent progress in characterizing neuronal intrinsic and extrinsic chromatin reconfigurations and epigenetic changes triggered by axonal injury that shape neuroplasticity and glial functions. We specifically discuss regeneration-associated transcriptional modules comprised of transcription factors and epigenetic regulators that control axon growth competence. We also review epigenetic regulation of neuroinflammation and astroglial responses that impact neural repair. These advances provide a framework for developing epigenetic strategies to maximize adaptive alterations while minimizing maladaptive stress responses in order to enhance axon regeneration and achieve functional recovery after injury.
Collapse
Affiliation(s)
- Shalaka Wahane
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Dalia Halawani
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiang Zhou
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongyan Zou
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
45
|
Palumbo E, Zhao B, Xue B, Uversky VN, Davé V. Analyzing aggregation propensities of clinically relevant PTEN mutants: a new culprit in pathogenesis of cancer and other PTENopathies. J Biomol Struct Dyn 2019; 38:2253-2266. [PMID: 31232187 DOI: 10.1080/07391102.2019.1630005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While studies on pathological protein aggregation are largely limited to neurodegenerative disease, emerging evidence suggests that other diseases are also associated with pathogenic protein aggregation. For example, tumor suppressor protein p53, and its mutant conformers, undergo protein aggregation, exacerbating the cancer phenotype. These findings raise the possibility that inactivation of tumor suppressors via protein aggregation may participate in cancer and other disease pathologies. Since tumor suppressor protein PTEN has similar functions to p53, and is mutated in multiple diseases, we examined the aggregation propensity of PTEN wild-type and 1523 clinically relevant PTEN mutants. Applying computational tools to PTEN mutation databases revealed that PTEN wild-type protein can aggregate under physiological conditions, and 274 distinct PTEN mutants had increased aggregation propensity. To understand the mechanism underlying PTEN conformer aggregation, we analyzed the physicochemical properties of these 274 PTEN mutants and defined their aggregation potential. We conclude that increased aggregation propensity of select PTEN mutants may contribute to disease phenotypes. Our studies have built the foundation for interrogating the aggregation potential of these select mutants in cancers and in PTENopathies. Elucidating the pathogenic mechanisms associated with aggregation-prone PTEN conformers will aid in developing therapies that target PTEN-aggregates in multiple diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Emily Palumbo
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Bi Zhao
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, USA.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Vrushank Davé
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
46
|
Steinbach N, Hasson D, Mathur D, Stratikopoulos EE, Sachidanandam R, Bernstein E, Parsons RE. PTEN interacts with the transcription machinery on chromatin and regulates RNA polymerase II-mediated transcription. Nucleic Acids Res 2019; 47:5573-5586. [PMID: 31169889 PMCID: PMC6582409 DOI: 10.1093/nar/gkz272] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 03/11/2019] [Accepted: 04/18/2019] [Indexed: 11/22/2022] Open
Abstract
Regulation of RNA polymerase II (RNAPII)-mediated transcription controls cellular phenotypes such as cancer. Phosphatase and tensin homologue deleted on chromosome ten (PTEN), one of the most commonly altered tumor suppressors in cancer, affects transcription via its role in antagonizing the PI3K/AKT signaling pathway. Using co-immunoprecipitations and proximal ligation assays we provide evidence that PTEN interacts with AFF4, RNAPII, CDK9, cyclin T1, XPB and CDK7. Using ChIP-seq, we show that PTEN co-localizes with RNAPII and binds to chromatin in promoter and putative enhancer regions identified by histone modifications. Furthermore, we show that loss of PTEN affects RNAPII occupancy in gene bodies and further correlates with gene expression changes. Interestingly, PTEN binds to promoters and negatively regulates the expression of genes involved in transcription including AFF4 and POL2RA, which encodes a subunit of RNAPII. Loss of PTEN also increased cells' sensitivity to transcription inhibition via small molecules, which could provide a strategy to target PTEN-deficient cancers. Overall, our work describes a previously unappreciated role of nuclear PTEN, which by interacting with the transcription machinery in the context of chromatin exerts an additional layer of regulatory control on RNAPII-mediated transcription.
Collapse
Affiliation(s)
- Nicole Steinbach
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Author afMadison Avenue, New York, NY 10029, USA
| | - Dan Hasson
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Author afMadison Avenue, New York, NY 10029, USA
| | - Deepti Mathur
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Author afMadison Avenue, New York, NY 10029, USA
| | - Elias E Stratikopoulos
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Author afMadison Avenue, New York, NY 10029, USA
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Author afMadison Avenue, New York, NY 10029, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Author afMadison Avenue, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Ramon E Parsons
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Author afMadison Avenue, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| |
Collapse
|
47
|
Zhang J, Lee YR, Dang F, Gan W, Menon AV, Katon JM, Hsu CH, Asara JM, Tibarewal P, Leslie NR, Shi Y, Pandolfi PP, Wei W. PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage. Cancer Discov 2019; 9:1306-1323. [PMID: 31217297 DOI: 10.1158/2159-8290.cd-18-0083] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/05/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
The function of PTEN in the cytoplasm largely depends on its lipid-phosphatase activity, though which it antagonizes the PI3K-AKT oncogenic pathway. However, molecular mechanisms underlying the role of PTEN in the nucleus remain largely elusive. Here, we report that DNA double-strand breaks (DSB) promote PTEN interaction with MDC1 upon ATM-dependent phosphorylation of T/S398-PTEN. Importantly, DNA DSBs enhance NSD2 (MMSET/WHSC1)-mediated dimethylation of PTEN at K349, which is recognized by the tudor domain of 53BP1 to recruit PTEN to DNA-damage sites, governing efficient repair of DSBs partly through dephosphorylation of γH2AX. Of note, inhibiting NSD2-mediated methylation of PTEN, either through expressing methylation-deficient PTEN mutants or through inhibiting NSD2, sensitizes cancer cells to combinatorial treatment with a PI3K inhibitor and DNA-damaging agents in both cell culture and in vivo xenograft models. Therefore, our study provides a novel molecular mechanism for PTEN regulation of DSB repair in a methylation- and protein phosphatase-dependent manner. SIGNIFICANCE: NSD2-mediated dimethylation of PTEN is recognized by the 53BP1 tudor domain to facilitate PTEN recruitment into DNA-damage sites, governing efficient repair of DNA DSBs. Importantly, inhibiting PTEN methylation sensitizes cancer cells to combinatorial treatment with a PI3K inhibitor combined with DNA-damaging agents in both cell culture and in vivo xenograft models.This article is highlighted in the In This Issue feature, p. 1143.
Collapse
Affiliation(s)
- Jinfang Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China.,Medical Research Institute, Wuhan University, Wuhan, P.R. China.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Yu-Ru Lee
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, Massachusetts.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Wenjian Gan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Archita Venugopal Menon
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, Massachusetts.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jesse M Katon
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, Massachusetts
| | - Chih-Hung Hsu
- Department of Public Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.,Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Priyanka Tibarewal
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, United Kingdom.,UCL Cancer Institute, University College London, London, United Kingdom
| | - Nicholas R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, United Kingdom
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Boston, Massachusetts. .,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
48
|
Ma J, Benitez JA, Li J, Miki S, Ponte de Albuquerque C, Galatro T, Orellana L, Zanca C, Reed R, Boyer A, Koga T, Varki NM, Fenton TR, Nagahashi Marie SK, Lindahl E, Gahman TC, Shiau AK, Zhou H, DeGroot J, Sulman EP, Cavenee WK, Kolodner RD, Chen CC, Furnari FB. Inhibition of Nuclear PTEN Tyrosine Phosphorylation Enhances Glioma Radiation Sensitivity through Attenuated DNA Repair. Cancer Cell 2019; 35:504-518.e7. [PMID: 30827889 PMCID: PMC6424615 DOI: 10.1016/j.ccell.2019.01.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/10/2018] [Accepted: 01/28/2019] [Indexed: 11/21/2022]
Abstract
Ionizing radiation (IR) and chemotherapy are standard-of-care treatments for glioblastoma (GBM) patients and both result in DNA damage, however, the clinical efficacy is limited due to therapeutic resistance. We identified a mechanism of such resistance mediated by phosphorylation of PTEN on tyrosine 240 (pY240-PTEN) by FGFR2. pY240-PTEN is rapidly elevated and bound to chromatin through interaction with Ki-67 in response to IR treatment and facilitates the recruitment of RAD51 to promote DNA repair. Blocking Y240 phosphorylation confers radiation sensitivity to tumors and extends survival in GBM preclinical models. Y240F-Pten knockin mice showed radiation sensitivity. These results suggest that FGFR-mediated pY240-PTEN is a key mechanism of radiation resistance and is an actionable target for improving radiotherapy efficacy.
Collapse
Affiliation(s)
- Jianhui Ma
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Jorge A Benitez
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Jie Li
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shunichiro Miki
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Claudio Ponte de Albuquerque
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Thais Galatro
- Department of Neurology, Laboratory of Molecular and Cellular Biology, LIM15, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Laura Orellana
- Science for Life Laboratory, 17121 Stockholm, Sweden; Theoretical and Computational Biophysics, Department of Theoretical Physics, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden; Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 114 18 Stockholm, Sweden
| | - Ciro Zanca
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Rachel Reed
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Antonia Boyer
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Tomoyuki Koga
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Nissi M Varki
- Department of Pathology, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Tim R Fenton
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Suely Kazue Nagahashi Marie
- Department of Neurology, Laboratory of Molecular and Cellular Biology, LIM15, School of Medicine, University of São Paulo, São Paulo, Brazil; Center for Studies of Cellular and Molecular Therapy (NAP-NETCEM-NUCEL), University of São Paulo, São Paulo, Brazil
| | - Erik Lindahl
- Science for Life Laboratory, 17121 Stockholm, Sweden; Theoretical and Computational Biophysics, Department of Theoretical Physics, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden; Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, 114 18 Stockholm, Sweden
| | - Timothy C Gahman
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Andrew K Shiau
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Huilin Zhou
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - John DeGroot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erik P Sulman
- Departments of Radiation Oncology, Translational Molecular Pathology, and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, San Diego Branch, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pathology, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
49
|
Moore S, Berger ND, Luijsterburg MS, Piett CG, Stanley FKT, Schräder CU, Fang S, Chan JA, Schriemer DC, Nagel ZD, van Attikum H, Goodarzi AA. The CHD6 chromatin remodeler is an oxidative DNA damage response factor. Nat Commun 2019; 10:241. [PMID: 30651562 PMCID: PMC6335469 DOI: 10.1038/s41467-018-08111-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
Cell survival after oxidative DNA damage requires signaling, repair and transcriptional events often enabled by nucleosome displacement, exchange or removal by chromatin remodeling enzymes. Here, we show that Chromodomain Helicase DNA-binding protein 6 (CHD6), distinct to other CHD enzymes, is stabilized during oxidative stress via reduced degradation. CHD6 relocates rapidly to DNA damage in a manner dependent upon oxidative lesions and a conserved N-terminal poly(ADP-ribose)-dependent recruitment motif, with later retention requiring the double chromodomain and central core. CHD6 ablation increases reactive oxygen species persistence and impairs anti-oxidant transcriptional responses, leading to elevated DNA breakage and poly(ADP-ribose) induction that cannot be rescued by catalytic or double chromodomain mutants. Despite no overt epigenetic or DNA repair abnormalities, CHD6 loss leads to impaired cell survival after chronic oxidative stress, abnormal chromatin relaxation, amplified DNA damage signaling and checkpoint hypersensitivity. We suggest that CHD6 is a key regulator of the oxidative DNA damage response. Oxidative DNA damage is associated with nucleosome respacing and transcriptional changes requiring chromatin remodeling enzymes. Here, the authors reveal that the CHD6 remodeler is a DNA damage response factor that relocates to damaged sites and promotes cell survival following oxidative damage.
Collapse
Affiliation(s)
- Shaun Moore
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - N Daniel Berger
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Cortt G Piett
- Harvard University, School of Public Health, Boston, MA, 02115, USA
| | - Fintan K T Stanley
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Christoph U Schräder
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Shujuan Fang
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jennifer A Chan
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - David C Schriemer
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Zachary D Nagel
- Harvard University, School of Public Health, Boston, MA, 02115, USA
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Aaron A Goodarzi
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
50
|
Yehia L, Ngeow J, Eng C. PTEN-opathies: from biological insights to evidence-based precision medicine. J Clin Invest 2019; 129:452-464. [PMID: 30614812 DOI: 10.1172/jci121277] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tumor suppressor phosphatase and tensin homolog (PTEN) classically counteracts the PI3K/AKT/mTOR signaling cascade. Germline pathogenic PTEN mutations cause PTEN hamartoma tumor syndrome (PHTS), featuring various benign and malignant tumors, as well as neurodevelopmental disorders such as autism spectrum disorder. Germline and somatic mosaic mutations in genes encoding components of the PI3K/AKT/mTOR pathway downstream of PTEN predispose to syndromes with partially overlapping clinical features, termed the "PTEN-opathies." Experimental models of PTEN pathway disruption uncover the molecular and cellular processes influencing clinical phenotypic manifestations. Such insights not only teach us about biological mechanisms in states of health and disease, but also enable more accurate gene-informed cancer risk assessment, medical management, and targeted therapeutics. Hence, the PTEN-opathies serve as a prototype for bedside to bench, and back to the bedside, practice of evidence-based precision medicine.
Collapse
Affiliation(s)
- Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Joanne Ngeow
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore.,Oncology Academic Program, Duke-NUS Graduate Medical School, Singapore
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|