1
|
Huang Y, Sun S, Yang X, Li X, Zhou Y, Liu S, Niu Y, Fu L. SESN2 mediates resistance training-induced improvements in exercise performance and energy metabolism in C57BL/6J mice. Exp Cell Res 2025; 450:114617. [PMID: 40425138 DOI: 10.1016/j.yexcr.2025.114617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/23/2025] [Accepted: 05/24/2025] [Indexed: 05/29/2025]
Abstract
Long-term resistance training promotes skeletal muscle hypertrophy and boosts energy metabolism. The stress-inducible protein, SESN2 is a mediator of aerobic training benefits. However, whether SESN2 mediates resistance training to promote skeletal muscle hypertrophy and energy metabolism remains elusive. In this study, eight-week-old C57BL/6J male wild-type (WT) and SESN2-/- mice were subjected to resistance training intervention for 12 weeks. Our results revealed that SESN2 deficiency weakened the effects of resistance training on the increase of grip strength, maximum load capacity, time to exhaustion, and grid suspension time. SESN2 promoted skeletal muscle hypertrophy by inhibiting protein degradation in response to resistance training. Moreover, SESN2 ablation blocked the resistance training-induced improvements in oxygen consumption, carbon dioxide production and energy expenditure. Glycolysis and tricarboxylic acid cycle in skeletal muscle of SESN2-/- mice remain unchanged after resistance training. Furthermore, SESN2 deletion did not alter the expression of key metabolic enzymes in glycolysis and tricarboxylic acid cycle in both atrophied skeletal muscle and resistance exercise preconditioned muscle. These results imply that the SESN2 is a crucial regulator in facilitating the beneficial effects of resistance training on exercise performance, skeletal muscle mass and energy metabolism. This study contributes to the understanding of the mechanisms by which resistance training promotes skeletal muscle energy metabolism.
Collapse
Affiliation(s)
- Yating Huang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Shiqi Sun
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Xuege Yang
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Xiuru Li
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Yanshuo Zhou
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Sujuan Liu
- Department of Histology and Developmental Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Yanmei Niu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China
| | - Li Fu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin 300070, China; Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
2
|
Chen P, Jia F, Wang M, Yang S. Analysis of the mechanism of skeletal muscle atrophy from the pathway of decreased protein synthesis. Front Physiol 2025; 16:1533394. [PMID: 40352150 PMCID: PMC12061715 DOI: 10.3389/fphys.2025.1533394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/18/2025] [Indexed: 05/14/2025] Open
Abstract
Skeletal muscle atrophy is associated with denervation, cancer, diabetes, aging, immobilization, and inflammation, which can significantly impair mobility. It is primarily attributable to increased protein catabolism alongside reduced protein synthesis, although the precise mechanisms underlying this process are not yet fully known. Unlike in the pathway driving increased catabolism, fewer studies have explored the mechanism underpinning muscle atrophy under reduced protein synthesis. Therefore, this study aimed to focus on summarizing relevant studies on the reduction of protein synthesis leading to skeletal muscle atrophy, as driven by alterations in pathways such as the insulin-like growth factor-1-phosphatidylinositol 3-kinase-protein kinase B-rapamycin signaling pathway, glycogen synthase kinase-3, glucocorticoids, 5'-adenosine monophosphate-activated protein kinase, branched-chain amino acid sensors, myostatin, long-term proinflammatory factors, oxidative stress and mitochondrial dysfunction, calciumion concentration, activating transcription factor 4, and glycyl-tRNA synthetase alterations. Consolidating these data will provide a foundation and theoretical basis for further investigation into the mechanisms of muscle atrophy from the perspective of reduced protein synthesis pathways.
Collapse
Affiliation(s)
| | | | | | - Shengbo Yang
- Department of Anatomy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Preston AE, Frost JN, Teh MR, Badat M, Armitage AE, Norfo R, Wideman SK, Hanifi M, White N, Roy NB, Babbs C, Ghesquiere B, Davies J, Howden AJ, Sinclair LV, Hughes JR, Kassouf M, Beagrie R, Higgs DR, Drakesmith H. Ancient genomic linkage of α-globin and Nprl3 couples metabolism with erythropoiesis. Nat Commun 2025; 16:2749. [PMID: 40128524 PMCID: PMC11933693 DOI: 10.1038/s41467-025-57683-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/28/2025] [Indexed: 03/26/2025] Open
Abstract
Red blood cell development from erythroid progenitors requires profound reshaping of metabolism and gene expression. How these transcriptional and metabolic alterations are coupled is unclear. Nprl3 (an inhibitor of mTORC1) has remained in synteny with the α-globin genes for >500 million years, and harbours most of the a-globin enhancers. However, whether Nprl3 serves an erythroid role is unknown. We found that while haematopoietic progenitors require basal Nprl3 expression, erythroid Nprl3 expression is further boosted by the α-globin enhancers. This lineage-specific upregulation is required for sufficient erythropoiesis. Loss of Nprl3 affects erythroblast metabolism via elevating mTORC1 signalling, suppressing autophagy and disrupting glycolysis. Broadly consistent with these murine findings, human NPRL3-knockout erythroid progenitors produce fewer enucleated cells and demonstrate dysregulated mTORC1 signalling in response to nutrient availability and erythropoietin. Therefore, we propose that the anciently conserved linkage of NprI3, α-globin and their associated enhancers has coupled metabolic and developmental control of erythropoiesis.
Collapse
Affiliation(s)
- Alexandra E Preston
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Joe N Frost
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Megan R Teh
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mohsin Badat
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London and Barts Health, Whitechapel, London, UK
| | - Andrew E Armitage
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Ruggiero Norfo
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Interdepartmental Centre for Stem Cells and Regenerative Medicine, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sarah K Wideman
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Muhammad Hanifi
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Natasha White
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Noémi Ba Roy
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Bart Ghesquiere
- Metabolomics Expertise Center, VIB Center for Cancer Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - James Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Oxford National Institute of Health Research Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Andrew Jm Howden
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Linda V Sinclair
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mira Kassouf
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rob Beagrie
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Hal Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Haidurov A, Zheltukhin AO, Snezhkina AV, Krasnov GS, Kudryavtseva AV, Budanov AV. p53-regulated SESN1 and SESN2 regulate cell proliferation and cell death through control of STAT3. Cell Commun Signal 2025; 23:105. [PMID: 39985075 PMCID: PMC11846189 DOI: 10.1186/s12964-025-02104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
Sestrin1 and Sestrin2 (SESN1&2) are evolutionarily conserved, stress-responsive proteins that regulate cell growth and viability. The primary target of Sestrins is the mTORC1 protein kinase, an activator of anabolic processes and an autophagy inhibitor. Our previous studies showed that inactivating SESN1&2 in lung adenocarcinoma A549 cells accelerates cell proliferation and confers resistance to cell death without affecting mTORC1 activity, suggesting that SESN1&2 modulate cellular processes via mTORC1-independent mechanisms. This work describes a new mechanism through which SESN1&2 regulate cell proliferation and death by suppressing the STAT3 transcription factor. Normally activated in response to stress and inflammation, STAT3 is frequently overactivated in human cancers. This overactivation promotes the expression of pro-proliferative and anti-apoptotic genes that drive carcinogenesis. We demonstrate that SESN1&2 inactivation stimulates STAT3 by downregulating the PTPRD phosphatase, a protein responsible for STAT3 dephosphorylation. Our study demonstrates that SESN1&2 deficiency may cause STAT3 activation and facilitate carcinogenesis and drug resistance, making SESN1&2 reactivation a potential cancer treatment strategy.
Collapse
Affiliation(s)
- Alexander Haidurov
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Andrei O Zheltukhin
- Engelhardt Institute of Molecular Biology, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russia
| | - Anastasiya V Snezhkina
- Engelhardt Institute of Molecular Biology, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russia
| | - Andrei V Budanov
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
5
|
Amemiya Y, Ioi Y, Araki M, Kontani K, Maki M, Shibata H, Takahara T. Calmodulin enhances mTORC1 signaling by preventing TSC2-Rheb binding. J Biol Chem 2025; 301:108122. [PMID: 39716490 PMCID: PMC11787510 DOI: 10.1016/j.jbc.2024.108122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/19/2024] [Accepted: 12/15/2024] [Indexed: 12/25/2024] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) functions as a master regulator of cell growth and proliferation. We previously demonstrated that intracellular calcium ion (Ca2+) concentration modulates the mTORC1 pathway via binding of the Ca2+ sensor protein calmodulin (CaM) to tuberous sclerosis complex 2 (TSC2), a critical negative regulator of mTORC1. However, the precise molecular mechanism by which Ca2+/CaM modulates mTORC1 activity remains unclear. Here, we performed a binding assay based on nano-luciferase reconstitution, a method for detecting weak interactions between TSC2 and its target, Ras homolog enriched in the brain (Rheb), an activator of mTORC1. CaM inhibited the binding of TSC2 to Rheb in a Ca2+-dependent manner. Live-cell imaging analysis indicated increased interaction between the CaM-binding region of TSC2 and CaM in response to elevated intracellular Ca2+ levels. Furthermore, treatment with carbachol, an acetylcholine analog, elevated intracellular Ca2+ levels and activated mTORC1. Notably, carbachol-induced activation of mTORC1 was inhibited by CaM inhibitors, corroborating the role of Ca2+/CaM in promoting the mTORC1 pathway. Consistent with the effect of Ca2+/CaM on the TSC2-Rheb interaction, increased intracellular Ca2+ concentration promoted the dissociation of TSC2 from lysosomes without affecting Akt-dependent phosphorylation of TSC2, suggesting that the regulatory mechanism of TSC2 by Ca2+/CaM is distinct from the previously established action mechanism of TSC2. Collectively, our findings offer mechanistic insights into TSC2-Rheb regulation mediated by Ca2+/CaM, which links Ca2+ signaling to mTORC1 activation.
Collapse
Affiliation(s)
- Yuna Amemiya
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yuichiro Ioi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Makoto Araki
- Department of Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | - Kenji Kontani
- Department of Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | - Masatoshi Maki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hideki Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Terunao Takahara
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| |
Collapse
|
6
|
Ke Y, Peng X, Song C, Fang X, Wang Y, Zhang C. Animal amino acid sensor - A review. Anim Biosci 2025; 38:198-208. [PMID: 39210799 PMCID: PMC11725744 DOI: 10.5713/ab.24.0366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/20/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Cell growth and metabolism necessitate the involvement of amino acids, which are sensed and integrated by the mammalian target of rapamycin complex 1 (mTORC1). However, the molecular mechanisms underlying amino acid sensing remain poorly understood. Research indicates that amino acids are detected by specific sensors, with the signals being relayed to mTORC1 indirectly. This paper reviews the structures and biological functions of the amino acid sensors identified thus far. Additionally, it evaluates the potential role these sensors play in the developmental changes of the livestock production.
Collapse
Affiliation(s)
- Yongding Ke
- School of Life Science, Jiangsu Normal University, Jiangsu 221116,
China
| | - Xinyu Peng
- School of Life Science, Jiangsu Normal University, Jiangsu 221116,
China
| | - Chengchuang Song
- School of Life Science, Jiangsu Normal University, Jiangsu 221116,
China
| | - Xingtang Fang
- School of Life Science, Jiangsu Normal University, Jiangsu 221116,
China
| | - Yanhong Wang
- School of Life Science, Jiangsu Normal University, Jiangsu 221116,
China
| | - Chunlei Zhang
- School of Life Science, Jiangsu Normal University, Jiangsu 221116,
China
| |
Collapse
|
7
|
Ma Y, Lv W, Guo Y, Yin T, Bai Y, Liu Z, Chen C, WenjuanYang, Feng J, Qian W, Tang R, Su Y, Shan S, Dong H, Bao Y, Qu L. Histone demethylases in autophagy and inflammation. Cell Commun Signal 2025; 23:24. [PMID: 39806430 PMCID: PMC11727796 DOI: 10.1186/s12964-024-02006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Autophagy dysfunction is associated with changes in autophagy-related genes. Various factors are connected to autophagy, and the mechanism regulating autophagy is highly complicated. Epigenetic changes, such as aberrant expression of histone demethylase, are actively associated not only with oncogenesis but also with inflammatory responses. Among post-translational modifications, histone lysine methylation holds significant importance. There are over 30 members of histone lysine demethylases (KDMs), which act as epigenetic regulators in physiological processes and diseases. Importantly, KDMs are abnormally expressed in the regulation of cellular autophagy and inflammation, representing a crucial mechanism affecting inflammation-related diseases. This article reviewed the function of KDMs proteins in autophagy and inflammation. Specifically, It focused on the specific regulatory mechanisms underlying the activation or inhibition of autophagy, as well as their abnormal expression in inflammatory responses. By analyzing each KDM in epigenetic modification, this review provides a reliable theoretical basis for clinical decision marking regarding autophagy abnormalities and inflammatory diseases.
Collapse
Affiliation(s)
- Yaoyao Ma
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China
| | - Wenting Lv
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Yi Guo
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China
| | - Tong Yin
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Yujie Bai
- Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Ziqi Liu
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Chao Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - WenjuanYang
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Jiayi Feng
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China
| | - Wenbin Qian
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Ruiling Tang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Yanting Su
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Hubei, 437000, China
| | - Shigang Shan
- School of Public Health and Nursing, Hubei University of Science and Technology, Hubei, 437000, China
| | - Huifen Dong
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China.
| | - Yongfen Bao
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
| | - Lihua Qu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
- 3Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Hubei, 430071, China.
| |
Collapse
|
8
|
Hong J, Liu W, Xiao X, Gajendran B, Ben-David Y. Targeting pivotal amino acids metabolism for treatment of leukemia. Heliyon 2024; 10:e40492. [PMID: 39654725 PMCID: PMC11626780 DOI: 10.1016/j.heliyon.2024.e40492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Metabolic reprogramming is a crucial characteristic of cancer, allowing cancer cells to acquire metabolic properties that support their survival, immune evasion, and uncontrolled proliferation. Consequently, targeting cancer metabolism has become an essential therapeutic strategy. Abnormal amino acid metabolism is not only a key aspect of metabolic reprogramming but also plays a significant role in chemotherapy resistance and immune evasion, particularly in leukemia. Changes in amino acid metabolism in tumor cells are typically driven by a combination of signaling pathways and transcription factors. Current approaches to targeting amino acid metabolism in leukemia include inhibiting amino acid transporters, blocking amino acid biosynthesis, and depleting specific amino acids to induce apoptosis in leukemic cells. Different types of leukemic cells rely on the exogenous supply of specific amino acids, such as asparagine, glutamine, arginine, and tryptophan. Therefore, disrupting the supply of these amino acids may represent a vulnerability in leukemia. This review focuses on the pivotal role of amino acids in leukemia metabolism, their impact on leukemic stem cells, and their therapeutic potential.
Collapse
Affiliation(s)
- Jiankun Hong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Babu Gajendran
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, 550014, PR China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou Province, PR China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| |
Collapse
|
9
|
Galhuber M, Thedieck K. ODE-based models of signaling networks in autophagy. CURRENT OPINION IN SYSTEMS BIOLOGY 2024; 39:100519. [DOI: 10.1016/j.coisb.2024.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Tucker SK, Eberhart JK. The convergence of mTOR signaling and ethanol teratogenesis. Reprod Toxicol 2024; 130:108720. [PMID: 39306261 DOI: 10.1016/j.reprotox.2024.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Ethanol is one of the most common teratogens and causes of human developmental disabilities. Fetal alcohol spectrum disorders (FASD), which describes the wide range of deficits due to prenatal ethanol exposure, are estimated to affect between 1.1 % and 5.0 % of births in the United States. Ethanol dysregulates numerous cellular mechanisms such as programmed cell death (apoptosis), protein synthesis, autophagy, and various aspects of cell signaling, all of which contribute to FASD. The mechanistic target of rapamycin (mTOR) regulates these cellular mechanisms via sensing of nutrients like amino acids and glucose, DNA damage, and growth factor signaling. Despite an extensive literature on ethanol teratogenesis and mTOR signaling, there has been less attention paid to their interaction. Here, we discuss the impact of ethanol teratogenesis on mTORC1's ability to coordinate growth factor and amino acid sensing with protein synthesis, autophagy, and apoptosis. Notably, the effect of ethanol exposure on mTOR signaling depends on the timing and dose of ethanol as well as the system studied. Overall, the overlap between the functions of mTORC1 and the phenotypes observed in FASD suggest a mechanistic interaction. However, more work is required to fully understand the impact of ethanol teratogenesis on mTOR signaling.
Collapse
Affiliation(s)
- Scott K Tucker
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX, USA
| | - Johann K Eberhart
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX, USA.
| |
Collapse
|
11
|
Akbay B, Omarova Z, Trofimov A, Sailike B, Karapina O, Molnár F, Tokay T. Double-Edge Effects of Leucine on Cancer Cells. Biomolecules 2024; 14:1401. [PMID: 39595578 PMCID: PMC11591885 DOI: 10.3390/biom14111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Leucine is an essential amino acid that cannot be produced endogenously in the human body and therefore needs to be obtained from dietary sources. Leucine plays a pivotal role in stimulating muscle protein synthesis, along with isoleucine and valine, as the group of branched-chain amino acids, making them one of the most popular dietary supplements for athletes and gym-goers. The individual effects of leucine, however, have not been fully clarified, as most of the studies so far have focused on the grouped effects of branched-chain amino acids. In recent years, leucine and its metabolites have been shown to stimulate muscle protein synthesis mainly via the mammalian target of the rapamycin complex 1 signaling pathway, thereby improving muscle atrophy in cancer cachexia. Interestingly, cancer research suggests that leucine may have either anti-cancer or pro-tumorigenic effects. In the current manuscript, we aim to review leucine's roles in muscle protein synthesis, tumor suppression, and tumor progression, specifically summarizing the molecular mechanisms of leucine's action. The role of leucine is controversial in hepatocellular carcinoma, whereas its pro-tumorigenic effects have been demonstrated in breast and pancreatic cancers. In summary, leucine being used as nutritional supplement for athletes needs more attention, as its pro-oncogenic effects may have been identified by recent studies. Anti-cancer or pro-tumorigenic effects of leucine in various cancers should be further investigated to achieve clear conclusions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tursonjan Tokay
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr 53, Astana 010000, Kazakhstan; (B.A.); (Z.O.); (A.T.); (B.S.); (O.K.); (F.M.)
| |
Collapse
|
12
|
Jiang C, Tan X, Liu N, Yan P, Hou T, Wei W. Nutrient sensing of mTORC1 signaling in cancer and aging. Semin Cancer Biol 2024; 106-107:1-12. [PMID: 39153724 DOI: 10.1016/j.semcancer.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is indispensable for preserving cellular and organismal homeostasis by balancing the anabolic and catabolic processes in response to various environmental cues, such as nutrients, growth factors, energy status, oxygen levels, and stress. Dysregulation of mTORC1 signaling is associated with the progression of many types of human disorders including cancer, age-related diseases, neurodegenerative disorders, and metabolic diseases. The way mTORC1 senses various upstream signals and converts them into specific downstream responses remains a crucial question with significant impacts for our perception of the related physiological and pathological process. In this review, we discuss the recent molecular and functional insights into the nutrient sensing of the mTORC1 signaling pathway, along with the emerging role of deregulating nutrient-mTORC1 signaling in cancer and age-related disorders.
Collapse
Affiliation(s)
- Cong Jiang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xiao Tan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ning Liu
- International Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Peiqiang Yan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Hou
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Fernandes SA, Angelidaki DD, Nüchel J, Pan J, Gollwitzer P, Elkis Y, Artoni F, Wilhelm S, Kovacevic-Sarmiento M, Demetriades C. Spatial and functional separation of mTORC1 signalling in response to different amino acid sources. Nat Cell Biol 2024; 26:1918-1933. [PMID: 39385049 PMCID: PMC11567901 DOI: 10.1038/s41556-024-01523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024]
Abstract
Amino acid (AA) availability is a robust determinant of cell growth through controlling mechanistic/mammalian target of rapamycin complex 1 (mTORC1) activity. According to the predominant model in the field, AA sufficiency drives the recruitment and activation of mTORC1 on the lysosomal surface by the heterodimeric Rag GTPases, from where it coordinates the majority of cellular processes. Importantly, however, the teleonomy of the proposed lysosomal regulation of mTORC1 and where mTORC1 acts on its effector proteins remain enigmatic. Here, by using multiple pharmacological and genetic means to perturb the lysosomal AA-sensing and protein recycling machineries, we describe the spatial separation of mTORC1 regulation and downstream functions in mammalian cells, with lysosomal and non-lysosomal mTORC1 phosphorylating distinct substrates in response to different AA sources. Moreover, we reveal that a fraction of mTOR localizes at lysosomes owing to basal lysosomal proteolysis that locally supplies new AAs, even in cells grown in the presence of extracellular nutrients, whereas cytoplasmic mTORC1 is regulated by exogenous AAs. Overall, our study substantially expands our knowledge about the topology of mTORC1 regulation by AAs and hints at the existence of distinct, Rag- and lysosome-independent mechanisms that control its activity at other subcellular locations. Given the importance of mTORC1 signalling and AA sensing for human ageing and disease, our findings will probably pave the way towards the identification of function-specific mTORC1 regulators and thus highlight more effective targets for drug discovery against conditions with dysregulated mTORC1 activity in the future.
Collapse
Affiliation(s)
- Stephanie A Fernandes
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Graduate School of Ageing Research, Cologne, Germany
| | | | - Julian Nüchel
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jiyoung Pan
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Graduate School of Ageing Research, Cologne, Germany
| | | | - Yoav Elkis
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Filippo Artoni
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Graduate School of Ageing Research, Cologne, Germany
| | - Sabine Wilhelm
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Constantinos Demetriades
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Cologne Graduate School of Ageing Research, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Hu H, Lu X, He Y, Li J, Wang S, Luo Z, Wang Y, Wei J, Huang H, Duan C, Sun N. Sestrin2 in POMC neurons modulates energy balance and obesity related metabolic disorders via mTOR signaling. J Nutr Biochem 2024; 133:109703. [PMID: 39025457 DOI: 10.1016/j.jnutbio.2024.109703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Sestrin2 is a highly conserved protein that can be induced under various stress conditions. Researches have revealed that the signaling pathway of the mammalian target of rapamycin (mTOR) is essential in modulating both glucose and lipid metabolism. However, the precise involvement of Sestrin2 in the hypothalamus, particularly in pro-opiomelanocortin (POMC) neurons, in control of energy homeostasis remains uncertain. In this study, we aimed to investigate the functional role of Sestrin2 in hypothalamic POMC neurons in regulation of energy balance, as well as revealing the underlying mechanisms. Therefore, cre-dependent AAV virus encoding or silencing Sestrin2 was injected into the hypothalamic ARC of pomc-cre transgenic mice. The results demonstrated that Sestrin2 overexpression in POMC neurons ameliorated high-fat diet (HFD)-induced obesity and increased energy expenditure. Conversely, Sestrin2 deficiency in POMC neurons predisposed mice to HFD induced obesity. Additionally, the thermogenesis of brown adipose tissue and lipolysis of inguinal white adipose tissue were both enhanced by the increased sympathetic nerve innervation in Sestrin2 overexpressed mice. Further exploration revealed that Sestrin2 overexpression inhibited the mTOR signaling pathway in hypothalamic POMC neurons, which may account for the alleviation of systematic metabolic disturbance induced by HFD in these mice. Collectively, our findings demonstrate that Sestrin2 in POMC neurons plays a pivotal role in maintaining energy balance in a context of HFD-induced obesity by inhibiting the mTOR pathway, providing new insights into how hypothalamic neurons respond to nutritional signals to protect against obesity-associated metabolic dysfunction.
Collapse
Affiliation(s)
- Huiling Hu
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoxia Lu
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuqing He
- Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Li
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Shoujie Wang
- Center for Precision Medicine, Platform of Metabolomics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhijun Luo
- Emergency Department, The Seventh Affiliated Hospital, Southern Medical University, Foshan, China
| | - Ying Wang
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Wei
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hao Huang
- Department of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Chaohui Duan
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Nannan Sun
- Department of Obstetrics and Gynecology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Bettedi L, Zhang Y, Yang S, Lilly MA. Unveiling GATOR2 Function: Novel Insights from Drosophila Research. Cells 2024; 13:1795. [PMID: 39513902 PMCID: PMC11545208 DOI: 10.3390/cells13211795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The multiprotein Target of Rapamycin (TOR) Complex 1 (TORC1) is a serine/threonine kinase that stimulates anabolic metabolism and suppresses catabolism. Deregulation of TORC1 is implicated in various human pathologies, including cancer, epilepsy, and neurodegenerative disorders. The Gap Activity Towards Rags (GATOR) complex contains two subcomplexes: GATOR1, which inhibits TORC1 activity; and GATOR2, which counteracts GATOR1s function. Structural and biochemical studies have elucidated how GATOR1 regulates TORC1 activity by acting as a GTPase activating protein for Rag GTPase. However, while cryogenic electron microscopy has determined that the structure of the multi-protein GATOR2 complex is conserved from yeast to humans, how GATOR2 inhibits GATOR1 remains unclear. Here, we describe recent whole-animal studies in Drosophila that have yielded novel insights into GATOR2 function, including identifying a novel role for the GATOR2 subunit WDR59, redefining the core proteins sufficient for GATOR2 activity, and defining a TORC1-independent role for GATOR2 in the regulation of the lysosomal autophagic endomembrane system. Additionally, the recent characterization of a novel methionine receptor in Drosophila that acts through the GATOR2 complex suggests an attractive model for the evolution of species-specific nutrient sensors. Research on GATOR2 function in Drosophila highlights how whole-animal genetic models can be used to dissect intracellular signaling pathways to identify tissue-specific functions and functional redundancies that may be missed in studies confined to rapidly proliferating cell lines.
Collapse
Affiliation(s)
- Lucia Bettedi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (L.B.); (S.Y.)
| | - Yingbiao Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China;
| | - Shu Yang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (L.B.); (S.Y.)
| | - Mary A. Lilly
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (L.B.); (S.Y.)
| |
Collapse
|
16
|
Sousa JN, Sousa BVDO, Santos EPD, Ribeiro GHM, Pereira APM, Guimarães VHD, Queiroz LDRP, Motta-Santos D, Farias LC, Guimarães ALS, de Paula AMB, Santos SHS. Effects of gallic acid and physical training on liver damage, force, and anxiety in obese mice: Hepatic modulation of Sestrin 2 (SESN2) and PGC-α expression. Gene 2024; 926:148606. [PMID: 38788813 DOI: 10.1016/j.gene.2024.148606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Obesity and overweight are multifactorial diseases affecting more than one-third of the world's population. Physical inactivity contributes to a positive energy balance and the onset of obesity. Exercise combined with a balanced diet is an effective non-pharmacological strategy to improve obesity-related disorders. Gallic acid (GA), is a natural endogenous polyphenol found in a variety of fruits, vegetables, and wines, with beneficial effects on energetic homeostasis. The present study aims to investigate the effects of exercise training on obese mice supplemented with GA. Animal experimentation was performed with male Swiss mice divided into five groups: ST (standard control), HFD (obese control), HFD + GA (GA supplement), HFD + Trained (training), and HFD + GA + Trained (GA and training). The groups are treated for eight weeks with 200 mg/kg/body weight of the feed compound and, if applicable, physical training. The main findings of the present study show that GA supplementation improves liver fat, body weight, adiposity, and plasma insulin levels. In addition, animals treated with the GA and a physical training program demonstrate reduced levels of anxiety. Gene expression analyses show that Sesn2 is activated via PGC-1α independent of the GATOR2 protein, which is activated by GA in the context of physical activity. These data are corroborated by molecular docking analysis, demonstrating the interaction of GA with GATOR2. The present study contributes to understanding the metabolic effects of GA and physical training and demonstrates a new hepatic mechanism of action via Sestrin 2 and PGC-1α.
Collapse
Affiliation(s)
- Jaciara Neves Sousa
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Berenilde Valéria de Oliveira Sousa
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Eduardo Pinheiro Dos Santos
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Guilherme Henrique Mendes Ribeiro
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Post graduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Ana Paula Maciel Pereira
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Post graduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Victor Hugo Dantas Guimarães
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Lorena Dos Reis Pereira Queiroz
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Daisy Motta-Santos
- Sports Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucyana Conceição Farias
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - André Luiz Sena Guimarães
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Alfredo Maurício Batista de Paula
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Post graduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
17
|
Rooban S, Senghor KA, Vinodhini V, Kumar J. Sestrin2 at the crossroads of cardiovascular disease and diabetes: A comprehensive review. OBESITY MEDICINE 2024; 51:100558. [DOI: 10.1016/j.obmed.2024.100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Xavier A, Dikic I. Feeding cancer to death - a triad of aromatic acids reduces tumor growth. Cell Death Differ 2024; 31:1239-1241. [PMID: 39266718 PMCID: PMC11445509 DOI: 10.1038/s41418-024-01372-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Affiliation(s)
- Audrey Xavier
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
19
|
Haidurov A, Budanov AV. Locked in Structure: Sestrin and GATOR-A Billion-Year Marriage. Cells 2024; 13:1587. [PMID: 39329768 PMCID: PMC11429811 DOI: 10.3390/cells13181587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Sestrins are a conserved family of stress-responsive proteins that play a crucial role in cellular metabolism, stress response, and ageing. Vertebrates have three Sestrin genes (SESN1, SESN2, and SESN3), while invertebrates encode only one. Initially identified as antioxidant proteins that regulate cell viability, Sestrins are now recognised as crucial inhibitors of the mechanistic target of rapamycin complex 1 kinase (mTORC1), a central regulator of anabolism, cell growth, and autophagy. Sestrins suppress mTORC1 through an inhibitory interaction with the GATOR2 protein complex, which, in concert with GATOR1, signals to inhibit the lysosomal docking of mTORC1. A leucine-binding pocket (LBP) is found in most vertebrate Sestrins, and when bound with leucine, Sestrins do not bind GATOR2, prompting mTORC1 activation. This review examines the evolutionary conservation of Sestrins and their functional motifs, focusing on their origins and development. We highlight that the most conserved regions of Sestrins are those involved in GATOR2 binding, and while analogues of Sestrins exist in prokaryotes, the unique feature of eukaryotic Sestrins is their structural presentation of GATOR2-binding motifs.
Collapse
Affiliation(s)
- Alexander Haidurov
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, D02 R590 Dublin, Ireland
| | - Andrei V. Budanov
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, D02 R590 Dublin, Ireland
| |
Collapse
|
20
|
Chen F, Peng S, Li C, Yang F, Yi Y, Chen X, Xu H, Cheng B, Xu Y, Xie X. Nitidine chloride inhibits mTORC1 signaling through ATF4-mediated Sestrin2 induction and targets IGF2R for lysosomal degradation. Life Sci 2024; 353:122918. [PMID: 39034027 DOI: 10.1016/j.lfs.2024.122918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
AIMS Nitidine chloride (NC), a natural phytochemical alkaloid derived from Zanthoxylum nitidum (Roxb.) DC, exhibits multiple bioactivities, including antitumor, anti-inflammatory, and other therapeutic effects. However, the primary targets of NC and the mechanism of action (MOA) have not been explicitly defined. METHODS We explored the effects of NC on mTORC1 signaling by immunoblotting and fluorescence microscopy in wild-type and gene knockout cell lines generated by the CRISPR/Cas9 gene editing technique. We identified IGF2R as a direct target of NC via the drug affinity-responsive target stability (DARTS) method. We investigated the antitumor effects of NC using a mouse melanoma B16 tumor xenograft model. KEY FINDINGS NC inhibits mTORC1 activity by targeting amino acid-sensing signaling through activating transcription factor 4 (ATF4)-mediated Sestrin2 induction. NC directly binds to IGF2R and promotes its lysosomal degradation. Moreover, NC displayed potent cytotoxicity against various cancer cells and inhibited B16 tumor xenografts. SIGNIFICANCE NC inhibits mTORC1 signaling through nutrient sensing and directly targets IGF2R for lysosomal degradation, providing mechanistic insights into the MOA of NC.
Collapse
Affiliation(s)
- Fengzhi Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shujun Peng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Canrong Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Fan Yang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuguo Yi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xinyu Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Haolun Xu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Baicheng Cheng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yumin Xu
- Department of Infectious Diseases & Department of Hospital Infection Management, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoduo Xie
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
21
|
Reifenberg P, Zimmer A. Branched-chain amino acids: physico-chemical properties, industrial synthesis and role in signaling, metabolism and energy production. Amino Acids 2024; 56:51. [PMID: 39198298 PMCID: PMC11358235 DOI: 10.1007/s00726-024-03417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Branched-chain amino acids (BCAAs)-leucine (Leu), isoleucine (Ile), and valine (Val)-are essential nutrients with significant roles in protein synthesis, metabolic regulation, and energy production. This review paper offers a detailed examination of the physico-chemical properties of BCAAs, their industrial synthesis, and their critical functions in various biological processes. The unique isomerism of BCAAs is presented, focusing on analytical challenges in their separation and quantification as well as their solubility characteristics, which are crucial for formulation and purification applications. The industrial synthesis of BCAAs, particularly using bacterial strains like Corynebacterium glutamicum, is explored, alongside methods such as genetic engineering aimed at enhancing production, detailing the enzymatic processes and specific precursors. The dietary uptake, distribution, and catabolism of BCAAs are reviewed as fundamental components of their physiological functions. Ultimately, their multifaceted impact on signaling pathways, immune function, and disease progression is discussed, providing insights into their profound influence on muscle protein synthesis and metabolic health. This comprehensive analysis serves as a resource for understanding both the basic and complex roles of BCAAs in biological systems and their industrial application.
Collapse
Affiliation(s)
- Philipp Reifenberg
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich‑Weiss‑Strasse 4, 64287, Darmstadt, Germany
| | - Aline Zimmer
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany.
| |
Collapse
|
22
|
Liu X, Guo B, Li Q, Nie J. mTOR in metabolic homeostasis and disease. Exp Cell Res 2024; 441:114173. [PMID: 39047807 DOI: 10.1016/j.yexcr.2024.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The ability to maintain cellular metabolic homeostasis is critical to life, in which mTOR plays an important role. This kinase integrates upstream nutrient signals and performs essential functions in physiology and metabolism by increasing metabolism and suppressing autophagy. Thus, dysregulation of mTOR activity leads to diseases, especially metabolic diseases such as cancer, type 2 diabetes and neurological disorders. Therefore, inhibition of overactivated mTOR becomes a rational approach to treat a variety of metabolic diseases. In this review, we discuss how mTOR responds to upstream signals and how mTOR regulates metabolic processes, including protein, nucleic acid, and lipid metabolism. Furthermore, we discuss the possible causes and consequences of dysregulated mTOR signaling activity, and summarize relevant applications, such as inhibition of mTOR activity to treat these diseases. This review will advance our comprehensive knowledge of the association between mTOR and metabolic homeostasis, which has significant ramifications for human health.
Collapse
Affiliation(s)
- Xuejia Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Bin Guo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qiye Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jing Nie
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
23
|
Li G, Li Z, Liu J. Amino acids regulating skeletal muscle metabolism: mechanisms of action, physical training dosage recommendations and adverse effects. Nutr Metab (Lond) 2024; 21:41. [PMID: 38956658 PMCID: PMC11220999 DOI: 10.1186/s12986-024-00820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Maintaining skeletal muscle mass is important for improving muscle strength and function. Hence, maximizing lean body mass (LBM) is the primary goal for both elite athletes and fitness enthusiasts. The use of amino acids as dietary supplements is widespread among athletes and physically active individuals. Extensive literature analysis reveals that branched-chain amino acids (BCAA), creatine, glutamine and β-alanine may be beneficial in regulating skeletal muscle metabolism, enhancing LBM and mitigating exercise-induced muscle damage. This review details the mechanisms of these amino acids, offering insights into their efficacy as supplements. Recommended dosage and potential side effects are then outlined to aid athletes in making informed choices and safeguard their health. Lastly, limitations within the current literature are addressed, highlighting opportunities for future research.
Collapse
Affiliation(s)
- Guangqi Li
- School of Physical Education, Northeast Normal university, No. 5268, Renmin Street, Changchun city, Jilin province, 130024, People's Republic of China
| | - Zhaojun Li
- Gaomi Municipal Center for Disease Control and Prevention, Gaomi city, Shandong, People's Republic of China
| | - Junyi Liu
- School of Physical Education, Northeast Normal university, No. 5268, Renmin Street, Changchun city, Jilin province, 130024, People's Republic of China.
| |
Collapse
|
24
|
Lin P, Sledziona J, Akkaya-Colak KB, Mihaylova MM, Lane AN. Determination of fatty acid uptake and desaturase activity in mammalian cells by NMR-based stable isotope tracing. Anal Chim Acta 2024; 1303:342511. [PMID: 38609261 PMCID: PMC11016156 DOI: 10.1016/j.aca.2024.342511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Mammalian cells both import exogenous fatty acids and synthesize them de novo. Palmitate, the end product of fatty acid synthase (FASN) is a substrate for stearoyl-CoA desaturases (Δ-9 desaturases) that introduce a single double bond into fatty acyl-CoA substrates such as palmitoyl-CoA and stearoyl-CoA. This process is particularly upregulated in lipogenic tissues and cancer cells. Tracer methodology is needed to determine uptake versus de novo synthesis of lipids and subsequent chain elongation and desaturation. Here we describe an NMR method to determine the uptake of 13C-palmitate from the medium into HCT116 human colorectal cancer cells, and the subsequent desaturation and incorporation into complex lipids. RESULTS Exogenous 13C16-palmitate was absorbed from the medium by HCT116 cells and incorporated primarily into complex glycerol lipids. Desaturase activity was determined from the quantification of double bonds in acyl chains, which was greatly reduced by ablation of the major desaturase SCD1. SIGNIFICANCE The NMR approach requires minimal sample preparation, is non-destructive, and provides direct information about the level of saturation and incorporation of fatty acids into complex lipids.
Collapse
Affiliation(s)
- Penghui Lin
- Center for Environmental and Systems Biochemistry, Dept. of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - James Sledziona
- Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Rd, Columbus, OH, 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Kubra B Akkaya-Colak
- Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Rd, Columbus, OH, 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Maria M Mihaylova
- Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Rd, Columbus, OH, 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, Dept. of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
25
|
Khan A, Zahid MA, Shahab M, Al-Zoubi RM, Shkoor M, Benameur T, Agouni A. Investigating the role of functional mutations in leucine binding to Sestrin2 in aging and age-associated degenerative pathologies using structural and molecular simulation approaches. J Biomol Struct Dyn 2024:1-13. [PMID: 38686915 DOI: 10.1080/07391102.2024.2335289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Leucine is the native known ligand of Sestrin2 (Sesn2) and its interaction with Sesn2 is particularly important, as it influences the activity of mTOR in aging and its associated pathologies. It is important to find out how leucine interacts with Sesn2 and how mutations in the binding pocket of leucine affect the binding of leucine. Therefore, this study was committed to investigating the impact of non-synonymous mutations by incorporating a broad spectrum of simulation techniques, from molecular dynamics to free energy calculations. Our study was designed to model the atomic-scale interactions between leucine and mutant forms of Sesn2. Our results demonstrated that the interaction paradigm for the mutants has been altered thus showing a significant decline in the hydrogen bonding network. Moreover, these mutations compromised the dynamic stability by altering the conformational flexibility, sampling time, and leucine-induced structural constraints that consequently caused variation in the binding and structural stability. Molecular dynamics-based flexibility analysis revealed that the regions 217-339 and 371-380 demonstrated a higher fluctuation. Noteworthy, these regions correspond to a linker (217-339) and a loop (371-380) that cover the leucine binding cavity that is critical for the 'latch' mechanism in the N-terminal, which is essential for leucine binding. Further validation of reduced binding and modified internal motions caused by the mutants was obtained through binding free energy calculations, principal components analysis (PCA), and free energy landscape (FEL) analysis. By unraveling the molecular intricacies of Sesn2-leucine interactions and their mutations, we hope to pave the way for innovative strategies to combat the inevitable tide of aging and its associated diseases.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Muhammad Ammar Zahid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Muhammad Shahab
- Department of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing, China
| | - Raed M Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Department of Chemistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohanad Shkoor
- Department of Chemistry, College of Arts and Science, Qatar University, Doha, Qatar
| | - Tarek Benameur
- College of Medicine, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
- Office of Vice President for Research and Graduate Studies, Qatar University, Doha, Qatar
| |
Collapse
|
26
|
Mora S, Mann G, Adegoke OAJ. Sex differences in cachexia and branched-chain amino acid metabolism following chemotherapy in mice. Physiol Rep 2024; 12:e16003. [PMID: 38631892 PMCID: PMC11023815 DOI: 10.14814/phy2.16003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Chemotherapy is a major contributor to cachexia, but studies often investigate male animals. Here, we investigated whether sex modifies the effects of chemotherapy on cachexia and BCAA metabolism. Ten-week-old CD2F1 male and female mice were treated with the chemotherapy drug cocktail folfiri (50 mg/kg 5-fluorouracil, 90 mg/kg leucovorin, and 24 mg/kg CPT11) (drug) or vehicle twice a week for 6 weeks. Insulin tolerance tests were conducted and BCAA levels and metabolism were measured in plasma and tissues. Drug treatment reduced body and skeletal muscle weights and anabolic signaling in both sexes, with females showing worsened outcomes (p < 0.05 for all). Drug treatment increased plasma BCAA only in males, but BCAA concentrations in the skeletal muscle of both sexes were decreased; this decrease was more profound in males (p = 0.0097). In addition, muscle expression of the BCAA transporter LAT1 was reduced; this reduction was more severe in females (p = 0.0264). In both sexes, the (inhibitory) phosphorylation of BCKD-E1αser293 was increased along with decreased BCKD activity. In the liver, drug treatment increased BCAA concentrations and LAT1 expression, but BCKD activity was suppressed in both sexes (p < 0.05 for all). Our results demonstrate that altered BCAA metabolism may contribute to chemotherapy-induced cachexia in a sex-dependent manner.
Collapse
Affiliation(s)
- Stephen Mora
- Muscle Health Research Centre, School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| | - Gagandeep Mann
- Muscle Health Research Centre, School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| | - Olasunkanmi A. J. Adegoke
- Muscle Health Research Centre, School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| |
Collapse
|
27
|
Liu X, Nishikubo K, Ohgaki R, Okanishi H, Okuda S, Xu M, Kanai Y. Identification of tumor-suppressive miRNAs that target amino acid transporter LAT1 and exhibit anti-proliferative effects on cholangiocarcinoma cells. J Pharmacol Sci 2024; 154:301-311. [PMID: 38485348 DOI: 10.1016/j.jphs.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
Amino acid transporter LAT1 is highly upregulated in various cancer types, including cholangiocarcinoma (CHOL), and contributes to the rapid proliferation of cancer cells and disease progression. However, the molecular mechanisms underlying the pathological upregulation of LAT1 remain largely unknown. This study pursued the possibility of miRNA-mediated regulation of the LAT1 expression in CHOL cells. Using online target prediction methods, we extracted five candidate miRNAs commonly predicted to regulate the LAT1 expression. Three of them, miR-194-5p, miR-122-5p, and miR-126-3p, were significantly downregulated in CHOL cancer compared to normal tissues. Correlation analysis revealed weak-to-moderate negative correlations between the expression of these miRNAs and LAT1 mRNA in CHOL cancer tissues. We selected miR-194-5p and miR-122-5p for further analyses and found that both miRNAs functionally target 3'UTR of LAT1 mRNA by a luciferase-based reporter assay. Transfection of the miRNA mimics significantly suppressed the LAT1 expression at mRNA and protein levels and inhibited the proliferation of CHOL cells, with a trend of affecting intracellular amino acids and amino acid-related signaling pathways. This study indicates that the decreased expression of these LAT1-targeting tumor-suppressive miRNAs contributes to the upregulation of LAT1 and the proliferation of CHOL cells, highlighting their potential for developing novel cancer therapeutics and diagnostics.
Collapse
Affiliation(s)
- Xingming Liu
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kou Nishikubo
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryuichi Ohgaki
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hiroki Okanishi
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Suguru Okuda
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Minhui Xu
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
28
|
Mora S, Adegoke OAJ. Maintenance of the branched-chain amino acid transporter LAT1 counteracts myotube atrophy following chemotherapy. Am J Physiol Cell Physiol 2024; 326:C866-C879. [PMID: 38284122 DOI: 10.1152/ajpcell.00537.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Prevention/management of cachexia remains a critical issue in muscle wasting conditions. The branched-chain amino acids (BCAA) have anabolic properties in skeletal muscle, but their use in treating cachexia has minimal benefits. This may be related to altered BCAA metabolism consequent to the use of chemotherapy, a main cancer treatment. Since this topic is minimally studied, we investigated the effect of chemotherapy on BCAA concentrations, transporter expression, and their metabolism. L6 myotubes were treated with vehicle (1.4 μL/mL DMSO) or a chemotherapy drug cocktail, FOLFIRI [CPT-11 (20 μg/mL), leucovorin (10 μg/mL), and 5-fluorouracil (50 μg/mL)] for 24-48 h. Chemotherapy reduced myotube diameter (-43%), myofibrillar protein content (-50%), and phosphorylation of the mechanistic target of rapamycin complex 1 (mTORC1) substrate S6K1thr389 (-80%). Drug-treated myotubes exhibited decreased BCAA concentrations (-52%) and expression of their transporter, L-type amino acid transporter 1 (LAT1; -67%). BCAA transaminase BCAT2 level was increased, but there was a reduction in PP2CM (-54%), along with increased inhibitory phosphorylation of BCKD-E1αser293 (+98%), corresponding with decreased BCKD enzyme activity (-23%) in chemotherapy-treated myotubes. Decreases in BCAA concentrations were a later response, preceded by decreases in LAT1 and BCKD activity. Although supplementation with the BCAA restored myotube BCAA levels, it had minimal effects on preventing the loss of myofibrillar proteins. However, RNAi-mediated depletion of neural precursor cell-expressed developmentally downregulated gene 4 (NEdd4), the protein ligase responsible for ubiquitin-dependent degradation of LAT1, attenuated the effects of chemotherapy on BCAA concentrations, anabolic signaling, protein synthesis, and myofibrillar protein abundance. Thus, if our findings are validated in preclinical models, interventions regulating muscle amino acid transporters might represent a promising strategy to treat cachexia.NEW & NOTEWORTHY This is the first study to attenuate chemotherapy-induced myotube atrophy by manipulating a BCAA transporter. Our findings suggest that positive regulation of amino acid transporters may be a promising strategy to treat cachexia.
Collapse
Affiliation(s)
- Stephen Mora
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Olasunkanmi A J Adegoke
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Hua Z, Chen B, Gong B, Lin M, Ma Y, Li Z. SESN1 functions as a new tumor suppressor gene via Toll-like receptor signaling pathway in neuroblastoma. CNS Neurosci Ther 2024; 30:e14664. [PMID: 38516781 PMCID: PMC10958400 DOI: 10.1111/cns.14664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
AIMS Neuroblastoma (NB) is the most common extracranial solid tumor in children, with a 5-year survival rate of <50% in high-risk patients. MYCN amplification is an important factor that influences the survival rate of high-risk patients. Our results indicated MYCN regulates the expression of SESN1. Therefore, this study aimed to investigate the role and mechanisms of SESN1 in NB. METHODS siRNAs or overexpression plasmids were used to change MYCN, SESN1, or MyD88's expression. The role of SESN1 in NB cell proliferation, migration, and invasion was elucidated. Xenograft mice models were built to evaluate SESN1's effect in vivo. The correlation between SESN1 expression and clinicopathological data of patients with NB was analyzed. RNA-Seq was done to explore SESN1's downstream targets. RESULTS SESN1 was regulated by MYCN in NB cells. Knockdown SESN1 promoted NB cell proliferation, cell migration, and cell invasion, and overexpressing SESN1 had opposite functions. Knockdown SESN1 promoted tumor growth and shortened tumor-bearing mice survival time. Low expression of SESN1 had a positive correlation with poor prognosis in patients with NB. RNA-Seq showed that Toll-like receptor (TLR) signaling pathway, and PD-L1 expression and PD-1 checkpoint pathway in cancer were potential downstream targets of SESN1. Knockdown MyD88 or TLRs inhibitor HCQ reversed the effect of knockdown SESN1 in NB cells. High expression of SESN1 was significantly associated with a higher immune score and indicated an active immune microenvironment for patients with NB. CONCLUSIONS SESN1 functions as a new tumor suppressor gene via TLR signaling pathway in NB.
Collapse
Affiliation(s)
- Zhongyan Hua
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Bo Chen
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Baocheng Gong
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Meizhen Lin
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Yifan Ma
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Zhijie Li
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
30
|
Zhou Y, Zhang Y, Botchway BOA, Huang M, Liu X. Sestrin2 can alleviate endoplasmic reticulum stress to improve traumatic brain injury by activating AMPK/mTORC1 signaling pathway. Metab Brain Dis 2024; 39:439-452. [PMID: 38047978 DOI: 10.1007/s11011-023-01323-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023]
Abstract
Traumatic brain injury (TBI), as a serious central nervous system disease, can result in severe neurological dysfunction or even disability and death of patients. The early and effective intervention of secondary brain injury can improve the prognosis of TBI. Endoplasmic reticulum (ER) stress is one of the main reasons to recover TBI. ER stress inhibition may be beneficial in treating TBI. Sestrin2 is a crucial regulator of ER stress, and its activation can significantly improve TBI. In this paper, we analyze the biological function of sestrin2, the latest findings on ER stress, and the relationship between ER stress and TBI. We elucidate the relationship of sestrin2 inhibiting ER stress via activating the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin complex 1 (MTORC1) signaling. Finally, we elaborate on the possible role of sestrin2 in TBI and explain how its activation potentially improves TBI.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, 312000, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, 312000, China
| | | | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, 312000, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, 312000, China.
| |
Collapse
|
31
|
Fang H, Shi X, Wan J, Zhong X. Role of sestrins in metabolic and aging-related diseases. Biogerontology 2024; 25:9-22. [PMID: 37516672 DOI: 10.1007/s10522-023-10053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Sestrins are a type of highly conserved stress-inducing protein that has antioxidant and mTORC1 inhibitory functions. Metabolic dysfunction and aging are the main risk factors for development of human diseases, such as diabetes, neurodegenerative diseases, and cancer. Sestrins have important roles in regulating glucose and lipid metabolism, anti-tumor functions, and aging by inhibiting the reactive oxygen species and mechanistic target of rapamycin complex 1 pathways. In this review, the structure and biological functions of sestrins are summarized, and how sestrins are activated and contribute to regulation of the downstream signal pathways of metabolic and aging-related diseases are discussed in detail with the goal of providing new ideas and therapeutic targets for the treatment of related diseases.
Collapse
Affiliation(s)
- Huan Fang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou, 646000, China
| | - Xiaomin Shi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou, 646000, China.
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou, 646000, China.
| |
Collapse
|
32
|
Ivanova I, Shen K. Structures and Functions of the Human GATOR1 Complex. Subcell Biochem 2024; 104:269-294. [PMID: 38963491 PMCID: PMC11997690 DOI: 10.1007/978-3-031-58843-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Eukaryotic cells coordinate available nutrients with their growth through the mechanistic target of rapamycin complex 1 (mTORC1) pathway, in which numerous evolutionarily conserved protein complexes survey and transmit nutrient inputs toward mTORC1. mTORC1 integrates these inputs and activates downstream anabolic or catabolic programs that are in tune with cellular needs, effectively maintaining metabolic homeostasis. The GAP activity toward Rags-1 (GATOR1) protein complex is a critical negative regulator of the mTORC1 pathway and, in the absence of amino acid inputs, is activated to turn off mTORC1 signaling. GATOR1-mediated inhibition of mTORC1 signaling is tightly regulated by an ensemble of protein complexes that antagonize or promote its activity in response to the cellular nutrient environment. Structural, biochemical, and biophysical studies of the GATOR1 complex and its interactors have advanced our understanding of how it regulates cellular metabolism when amino acids are limited. Here, we review the current research with a focus on GATOR1 structure, its enzymatic mechanism, and the growing group of proteins that regulate its activity. Finally, we discuss the implication of GATOR1 dysregulation in physiology and human diseases.
Collapse
Affiliation(s)
- Ilina Ivanova
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kuang Shen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
33
|
Tamura K, Kitazawa H, Sugita S, Hashizume K, Iwashita M, Ishigami T, Minegishi Y, Shimotoyodome A, Ota N. Tyrosine Is a Booster of Leucine-Induced Muscle Anabolic Response. Nutrients 2023; 16:84. [PMID: 38201913 PMCID: PMC10780460 DOI: 10.3390/nu16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Leucine (Leu), an essential amino acid, is known to stimulate protein synthesis in the skeletal muscle via mTOR complex 1 (mTORC1) activation. However, the intrinsic contribution of other amino acids to Leu-mediated activation of mTORC1 signaling remains unexplored. This study aimed to identify amino acids that can promote mTORC1 activity in combination with Leu and to assess the effectiveness of these combinations in vitro and in vivo. We found that tyrosine (Tyr) enhanced Leu-induced phosphorylation of S6 kinase (S6K), an indicator of mTORC1 activity, although it exerted no such effect individually. This booster effect was observed in C2C12 cells, isolated murine muscle, and the skeletal muscles of mice orally administered the amino acids. To explore the molecular mechanisms underlying this Tyr-mediated booster effect, the expression of the intracellular Leu sensors, Sestrin1 and 2, was suppressed, and the cells were treated with Leu and Tyr. This suppression enabled Tyr alone to induce S6K phosphorylation and enhanced the booster effect, suggesting that Tyr possibly contributes to mTORC1 activation when Sestrin-GAP activity toward Rags 2 (GATOR2) is dissociated through Sestrin knockdown or the binding of Sestrins to Leu. Collectively, these results indicate that Tyr is a key regulator of Leu-mediated protein synthesis.
Collapse
Affiliation(s)
- Kotaro Tamura
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan; (K.T.); (S.S.)
| | - Hidefumi Kitazawa
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan; (K.T.); (S.S.)
| | - Satoshi Sugita
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan; (K.T.); (S.S.)
| | - Kohjiro Hashizume
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan; (K.T.); (S.S.)
| | - Masazumi Iwashita
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan; (K.T.); (S.S.)
| | - Takaaki Ishigami
- Processing Development Research, Kao Corporation, Wakayama-shi, Wakayama 640-8580, Japan
| | - Yoshihiko Minegishi
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan; (K.T.); (S.S.)
| | - Akira Shimotoyodome
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan; (K.T.); (S.S.)
| | - Noriyasu Ota
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan; (K.T.); (S.S.)
| |
Collapse
|
34
|
Xie Y, Zhao G, Lei X, Cui N, Wang H. Advances in the regulatory mechanisms of mTOR in necroptosis. Front Immunol 2023; 14:1297408. [PMID: 38164133 PMCID: PMC10757967 DOI: 10.3389/fimmu.2023.1297408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
The mammalian target of rapamycin (mTOR), an evolutionarily highly conserved serine/threonine protein kinase, plays a prominent role in controlling gene expression, metabolism, and cell death. Programmed cell death (PCD) is indispensable for maintaining homeostasis by removing senescent, defective, or malignant cells. Necroptosis, a type of PCD, relies on the interplay between receptor-interacting serine-threonine kinases (RIPKs) and the membrane perforation by mixed lineage kinase domain-like protein (MLKL), which is distinguished from apoptosis. With the development of necroptosis-regulating mechanisms, the importance of mTOR in the complex network of intersecting signaling pathways that govern the process has become more evident. mTOR is directly responsible for the regulation of RIPKs. Autophagy is an indirect mechanism by which mTOR regulates the removal and interaction of RIPKs. Another necroptosis trigger is reactive oxygen species (ROS) produced by oxidative stress; mTOR regulates necroptosis by exploiting ROS. Considering the intricacy of the signal network, it is reasonable to assume that mTOR exerts a bifacial effect on necroptosis. However, additional research is necessary to elucidate the underlying mechanisms. In this review, we summarized the mechanisms underlying mTOR activation and necroptosis and highlighted the signaling pathway through which mTOR regulates necroptosis. The development of therapeutic targets for various diseases has been greatly advanced by the expanding knowledge of how mTOR regulates necroptosis.
Collapse
Affiliation(s)
- Yawen Xie
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guoyu Zhao
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xianli Lei
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hao Wang
- Department of Critical Care Medicine, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Khalil MI, Ali MM, Holail J, Houssein M. Growth or death? Control of cell destiny by mTOR and autophagy pathways. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 185:39-55. [PMID: 37944568 DOI: 10.1016/j.pbiomolbio.2023.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
One of the central regulators of cell growth, proliferation, and metabolism is the mammalian target of rapamycin, mTOR, which exists in two structurally and functionally different complexes: mTORC1 and mTORC2; unlike m TORC2, mTORC1 is activated in response to the sufficiency of nutrients and is inhibited by rapamycin. mTOR complexes have critical roles not only in protein synthesis, gene transcription regulation, proliferation, tumor metabolism, but also in the regulation of the programmed cell death mechanisms such as autophagy and apoptosis. Autophagy is a conserved catabolic mechanism in which damaged molecules are recycled in response to nutrient starvation. Emerging evidence indicates that the mTOR signaling pathway is frequently activated in tumors. In addition, dysregulation of autophagy was associated with the development of a variety of human diseases, such as cancer and aging. Since mTOR can inhibit the induction of the autophagic process from the early stages of autophagosome formation to the late stage of lysosome degradation, the use of mTOR inhibitors to regulate autophagy could be considered a potential therapeutic option. The present review sheds light on the mTOR and autophagy signaling pathways and the mechanisms of regulation of mTOR-autophagy.
Collapse
Affiliation(s)
- Mahmoud I Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, 11072809, Lebanon; Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Mohamad M Ali
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23, Uppsala, Sweden.
| | - Jasmine Holail
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| | - Marwa Houssein
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, 11072809, Lebanon.
| |
Collapse
|
36
|
Zhang W, Jiang H, Wu G, Huang P, Wang H, An H, Liu S, Zhang W. The pathogenesis and potential therapeutic targets in sepsis. MedComm (Beijing) 2023; 4:e418. [PMID: 38020710 PMCID: PMC10661353 DOI: 10.1002/mco2.418] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is defined as "a life-threatening organ dysfunction caused by dysregulated host systemic inflammatory and immune response to infection." At present, sepsis continues to pose a grave healthcare concern worldwide. Despite the use of supportive measures in treating traditional sepsis, such as intravenous fluids, vasoactive substances, and oxygen plus antibiotics to eradicate harmful pathogens, there is an ongoing increase in both the morbidity and mortality associated with sepsis during clinical interventions. Therefore, it is urgent to design specific pharmacologic agents for the treatment of sepsis and convert them into a novel targeted treatment strategy. Herein, we provide an overview of the molecular mechanisms that may be involved in sepsis, such as the inflammatory response, immune dysfunction, complement deactivation, mitochondrial damage, and endoplasmic reticulum stress. Additionally, we highlight important targets involved in sepsis-related regulatory mechanisms, including GSDMD, HMGB1, STING, and SQSTM1, among others. We summarize the latest advancements in potential therapeutic drugs that specifically target these signaling pathways and paramount targets, covering both preclinical studies and clinical trials. In addition, this review provides a detailed description of the crosstalk and function between signaling pathways and vital targets, which provides more opportunities for the clinical development of new treatments for sepsis.
Collapse
Affiliation(s)
- Wendan Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Honghong Jiang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Gaosong Wu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Pengli Huang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Haonan Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Huazhasng An
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghaiChina
- The Research Center for Traditional Chinese MedicineShanghai Institute of Infectious Diseases and BiosecurityShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
37
|
Alfatah M, Cui L, Goh CJH, Cheng TYN, Zhang Y, Naaz A, Wong JH, Lewis J, Poh WJ, Arumugam P. Metabolism of glucose activates TORC1 through multiple mechanisms in Saccharomyces cerevisiae. Cell Rep 2023; 42:113205. [PMID: 37792530 DOI: 10.1016/j.celrep.2023.113205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/30/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
Target of Rapamycin Complex 1 (TORC1) is a conserved eukaryotic protein complex that links the presence of nutrients with cell growth. In Saccharomyces cerevisiae, TORC1 activity is positively regulated by the presence of amino acids and glucose in the medium. However, the mechanisms underlying nutrient-induced TORC1 activation remain poorly understood. By utilizing an in vivo TORC1 activation assay, we demonstrate that differential metabolism of glucose activates TORC1 through three distinct pathways in yeast. The first "canonical Rag guanosine triphosphatase (GTPase)-dependent pathway" requires conversion of glucose to fructose 1,6-bisphosphate, which activates TORC1 via the Rag GTPase heterodimer Gtr1GTP-Gtr2GDP. The second "non-canonical Rag GTPase-dependent pathway" requires conversion of glucose to glucose 6-phosphate, which activates TORC1 via a process that involves Gtr1GTP-Gtr2GTP and mitochondrial function. The third "Rag GTPase-independent pathway" requires complete glycolysis and vacuolar ATPase reassembly for TORC1 activation. We have established a roadmap to deconstruct the link between glucose metabolism and TORC1 activation.
Collapse
Affiliation(s)
- Mohammad Alfatah
- Bioinformatics Institute, A(∗)STAR, 30 Biopolis Street, Singapore 138671, Singapore.
| | - Liang Cui
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
| | - Corinna Jie Hui Goh
- Bioinformatics Institute, A(∗)STAR, 30 Biopolis Street, Singapore 138671, Singapore
| | | | - Yizhong Zhang
- Bioinformatics Institute, A(∗)STAR, 30 Biopolis Street, Singapore 138671, Singapore
| | - Arshia Naaz
- Genome Institute of Singapore, A(∗)STAR, 60 Biopolis Street, Genome #02-01, Singapore 138672, Singapore
| | - Jin Huei Wong
- Bioinformatics Institute, A(∗)STAR, 30 Biopolis Street, Singapore 138671, Singapore
| | - Jacqueline Lewis
- Institute of Molecular and Cellular Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Wei Jie Poh
- Bioinformatics Institute, A(∗)STAR, 30 Biopolis Street, Singapore 138671, Singapore
| | - Prakash Arumugam
- Singapore Institute of Food and Biotechnology Innovation, A(∗)STAR, 31 Biopolis Way, Singapore 138669, Singapore; Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore.
| |
Collapse
|
38
|
Sousa JN, Queiroz LDRP, de Paula AMB, Guimarães ALS, Lescano CH, Aguilar CM, Pires de Oliveira I, Santos SHS. Gallic acid as a Sestrin (SESN2) activator and potential obesity therapeutic agent: A molecular docking study. Gene 2023; 883:147683. [PMID: 37536400 DOI: 10.1016/j.gene.2023.147683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Sestrins (SESNs) are a family of evolutionarily conserved proteins among mammals. They have several body homeostatic functions such as antioxidant, metabolic, and anti-aging, and are required to regenerate hyperoxidized forms of peroxiredoxins and reactive oxygen species. Sestrin 2 has been studied as a therapeutic agent in obesity treatment. Gallic acid (GA) is a triphenolic compound with beneficial biological activities including anti-inflammatory, antidiabetic, antihypertensive, and antioxidant effects. Recent studies demonstrated the GA's ability to reduce body weight gain and improve glycemic parameters. In this sense, the present study aims to investigate the GA activating potential of Sestrin using the molecular docking method. The 3D structure of gallic acid was retrieved from the NCBI PubChem database and the chemical structure of the Sestrin2 protein from the RCSB Protein Data Bank (5DJ4). The docking calculus was performed via UCSF Chimera and AutoDock Vinaprograms. The results showed that amino acids Arg390, Glu451, Trp444, Thr386, Arg448, Thr374, Tyr375, Asn376, Thr377, Leu389, His454, Ser450, His86, and Val455 are very important for GA stabilization, resembling the interactions that permit Leucine to activate SESN2. In this context, the obesity therapeutic property of GA can be understood from a Sestrin activating process through amino acid metabolism.
Collapse
Affiliation(s)
- Jaciara Neves Sousa
- Laboratory of Health Science, Postgraduate Program in Health Science, UniversidadeEstadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Lorena Dos Reis Pereira Queiroz
- Laboratory of Health Science, Postgraduate Program in Health Science, UniversidadeEstadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Alfredo Maurício Batista de Paula
- Laboratory of Health Science, Postgraduate Program in Health Science, UniversidadeEstadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - André Luiz Sena Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, UniversidadeEstadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Caroline Honaiser Lescano
- Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Charles Martins Aguilar
- Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Ivan Pires de Oliveira
- Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Science, UniversidadeEstadual de Montes Claros (Unimontes), Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
39
|
Zhang X, Luo Z, Li J, Lin Y, Li Y, Li W. Sestrin2 in diabetes and diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1274686. [PMID: 37920252 PMCID: PMC10619741 DOI: 10.3389/fendo.2023.1274686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Diabetes is a global health problem which is accompanied with multi-systemic complications. It is of great significance to elucidate the pathogenesis and to identify novel therapies of diabetes and diabetic complications. Sestrin2, a stress-inducible protein, is primarily involved in cellular responses to various stresses. It plays critical roles in regulating a series of cellular events, such as oxidative stress, mitochondrial function and endoplasmic reticulum stress. Researches investigating the correlations between Sestrin2, diabetes and diabetic complications are increasing in recent years. This review incorporates recent findings, demonstrates the diverse functions and regulating mechanisms of Sestrin2, and discusses the potential roles of Sestrin2 in the pathogenesis of diabetes and diabetic complications, hoping to highlight a promising therapeutic direction.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zirui Luo
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Jiahong Li
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yaxuan Lin
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yu Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
40
|
Agaoglu MO, Agaoglu Z, Yucel KY, Ozturk FH, Caglar T. Evaluation of maternal serum sestrin-2 levels in intrauterine growth restriction. Ir J Med Sci 2023; 192:2259-2264. [PMID: 36877413 DOI: 10.1007/s11845-023-03329-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Sestrin-2 (SESN2) is a antioxidant protein that can be activated by a number of conditions, including DNA damage and hypoxia. AIMS Our objective was to evaluate maternal serum SESN2 levels in patients with intrauterine growth restriction (IUGR) and its association with adverse perinatal outcomes. METHODS This prospective study included a total of 87 pregnant women admitted to our tertiary care center between 2018 August and 2019 July. The study group consisted of a total of 44 patients who had been diagnosed with IUGR. Forty-three low-risk and gestational age-matched pregnant women were taken as control group. Demographic data, maternal serum SESN2 levels, and maternal-neonatal outcomes were evaluated. SESN2 levels were analyzed by the enzyme-linked immunosorbent assay (ELISA) method and compared between groups. RESULTS Maternal serum SESN2 levels were significantly higher in the IUGR group compared to control group (22.38 ng/ml vs. 13.0 ng/ml, p < 0.001). In correlation analysis, a negative significant correlation was found between SESN2 levels and gestational week at delivery (r = - 0.387, p < 0.001). The ideal cut-off value for detecting IUGR was 9.5 ng/ml, and the area under the curve was 0.719 (95%CI: 0.610-0.827). Birth interval, gestational week at birth, birth weight, and 1-5-min Apgar scores were lower in the IUGR group (p < 0.001). CONCLUSIONS Maternal serum SESN2 levels are elevated in IUGR and are associated with adverse neonatal outcome. Considering that SESN2 is involved in pathogenesis, it can be used as a new marker for the evaluation of IUGR.
Collapse
Affiliation(s)
- Merve Ozturk Agaoglu
- Department of Perinatology, Turkish Ministry of Health Ankara City Hospital, Ankara, Turkey.
| | - Zahid Agaoglu
- Department of Perinatology, Turkish Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Kadriye Yakut Yucel
- Department of Perinatology, Turkish Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Filiz Halıcı Ozturk
- Department of Perinatology, Turkish Ministry of Health Ankara City Hospital, Ankara, Turkey
| | - Turhan Caglar
- Department of Perinatology, Turkish Ministry of Health Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
41
|
Preston AE, Frost JN, Badat M, Teh M, Armitage AE, Norfo R, Wideman SK, Hanifi M, White N, Roy N, Ghesquiere B, Babbs C, Kassouf M, Davies J, Hughes JR, Beagrie R, Higgs DR, Drakesmith H. Ancient genomic linkage couples metabolism with erythroid development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.558944. [PMID: 37808769 PMCID: PMC10557585 DOI: 10.1101/2023.09.25.558944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Generation of mature cells from progenitors requires tight coupling of differentiation and metabolism. During erythropoiesis, erythroblasts are required to massively upregulate globin synthesis then clear extraneous material and enucleate to produce erythrocytes1-3. Nprl3 has remained in synteny with the α-globin genes for >500 million years4, and harbours the majority of the α-globin enhancers5. Nprl3 is a highly conserved inhibitor of mTORC1, which controls cellular metabolism. However, whether Nprl3 itself serves an erythroid role is unknown. Here, we show that Nprl3 is a key regulator of erythroid metabolism. Using Nprl3-deficient fetal liver and adult competitive bone marrow - fetal liver chimeras, we show that NprI3 is required for sufficient erythropoiesis. Loss of Nprl3 elevates mTORC1 signalling, suppresses autophagy and disrupts erythroblast glycolysis and redox control. Human CD34+ progenitors lacking NPRL3 produce fewer enucleated cells and demonstrate dysregulated mTORC1 signalling in response to nutrient availability and erythropoietin. Finally, we show that the α-globin enhancers upregulate NprI3 expression, and that this activity is necessary for optimal erythropoiesis. Therefore, the anciently conserved linkage of NprI3, α-globin and their associated enhancers has enabled coupling of metabolic and developmental control in erythroid cells. This may enable erythropoiesis to adapt to fluctuating nutritional and environmental conditions.
Collapse
Affiliation(s)
- Alexandra E Preston
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Joe N Frost
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Mohsin Badat
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Megan Teh
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Andrew E Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Ruggiero Norfo
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Sarah K Wideman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Muhammad Hanifi
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Natasha White
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Noémi Roy
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Bart Ghesquiere
- Metabolomics Expertise Center, VIB Center for Cancer Biology, 3000 Leuven, Belgium
- Metabolomics Expertise Center, Department of Oncology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Mira Kassouf
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - James Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Rob Beagrie
- Chromatin and Disease Group, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
42
|
Livneh I, Cohen-Kaplan V, Fabre B, Abramovitch I, Lulu C, Nataraj NB, Lazar I, Ziv T, Yarden Y, Zohar Y, Gottlieb E, Ciechanover A. Regulation of nucleo-cytosolic 26S proteasome translocation by aromatic amino acids via mTOR is essential for cell survival under stress. Mol Cell 2023; 83:3333-3346.e5. [PMID: 37738964 DOI: 10.1016/j.molcel.2023.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 09/24/2023]
Abstract
The proteasome is responsible for removal of ubiquitinated proteins. Although several aspects of its regulation (e.g., assembly, composition, and post-translational modifications) have been unraveled, studying its adaptive compartmentalization in response to stress is just starting to emerge. We found that following amino acid starvation, the proteasome is translocated from its large nuclear pool to the cytoplasm-a response regulated by newly identified mTOR-agonistic amino acids-Tyr, Trp, and Phe (YWF). YWF relay their signal upstream of mTOR through Sestrin3 by disrupting its interaction with the GATOR2 complex. The triad activates mTOR toward its downstream substrates p62 and transcription factor EB (TFEB), affecting both proteasomal and autophagic activities. Proteasome translocation stimulates cytosolic proteolysis which replenishes amino acids, thus enabling cell survival. In contrast, nuclear sequestration of the proteasome following mTOR activation by YWF inhibits this proteolytic adaptive mechanism, leading to cell death, which establishes this newly identified pathway as a key stress-coping mechanism.
Collapse
Affiliation(s)
- Ido Livneh
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel; Institute of Pathology, Rambam Health Care Campus, Haifa 3109601, Israel.
| | - Victoria Cohen-Kaplan
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Bertrand Fabre
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Ifat Abramovitch
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Chen Lulu
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | | | - Ikrame Lazar
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Tamar Ziv
- Smoler Proteomic Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yaniv Zohar
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel; Institute of Pathology, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Eyal Gottlieb
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Aaron Ciechanover
- The Rappaport Faculty of Medicine and Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel.
| |
Collapse
|
43
|
Ruocco C, Malavazos AE, Ragni M, Carruba MO, Valerio A, Iacobellis G, Nisoli E. Amino acids contribute to adaptive thermogenesis. New insights into the mechanisms of action of recent drugs for metabolic disorders are emerging. Pharmacol Res 2023; 195:106892. [PMID: 37619907 DOI: 10.1016/j.phrs.2023.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Adaptive thermogenesis is the heat production by muscle contractions (shivering thermogenesis) or brown adipose tissue (BAT) and beige fat (non-shivering thermogenesis) in response to external stimuli, including cold exposure. BAT and beige fat communicate with peripheral organs and the brain through a variegate secretory and absorption processes - controlling adipokines, microRNAs, extracellular vesicles, and metabolites - and have received much attention as potential therapeutic targets for managing obesity-related disorders. The sympathetic nervous system and norepinephrine-releasing adipose tissue macrophages (ATM) activate uncoupling protein 1 (UCP1), expressed explicitly in brown and beige adipocytes, dissolving the electrochemical gradient and uncoupling tricarboxylic acid cycle and the electron transport chain from ATP production. Mounting evidence has attracted attention to the multiple effects of dietary and endogenously synthesised amino acids in BAT thermogenesis and metabolic phenotype in animals and humans. However, the mechanisms implicated in these processes have yet to be conclusively characterized. In the present review article, we aim to define the principal investigation areas in this context, including intestinal microbiota constitution, adipose autophagy modulation, and secretome and metabolic fluxes control, which lead to increased brown/beige thermogenesis. Finally, also based on our recent epicardial adipose tissue results, we summarise the evidence supporting the notion that the new dual and triple agonists of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon (GCG) receptor - with never before seen weight loss and insulin-sensitizing efficacy - promote thermogenic-like amino acid profiles in BAT with robust heat production and likely trigger sympathetic activation and adaptive thermogenesis by controlling amino acid metabolism and ATM expansion in BAT and beige fat.
Collapse
Affiliation(s)
- Chiara Ruocco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alexis Elias Malavazos
- Endocrinology Unit, Clinical Nutrition and Cardiovascular Prevention Service, IRCCS Policlinico San Donato, Piazza Edmondo Malan, 2, San Donato Milanese, 20097 Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, via della Commenda, 10, 20122 Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Michele O Carruba
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa, 11, 25123 Brescia, Italy
| | - Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami, 1400 NW 12th Ave, Miami, FL, USA
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy.
| |
Collapse
|
44
|
Ning B, Hang S, Zhang W, Mao C, Li D. An update on the bridging factors connecting autophagy and Nrf2 antioxidant pathway. Front Cell Dev Biol 2023; 11:1232241. [PMID: 37621776 PMCID: PMC10445655 DOI: 10.3389/fcell.2023.1232241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Macroautophagy/autophagy is a lysosome-dependent catabolic pathway for the degradation of intracellular proteins and organelles. Autophagy dysfunction is related to many diseases, including lysosomal storage diseases, cancer, neurodegenerative diseases, cardiomyopathy, and chronic metabolic diseases, in which increased reactive oxygen species (ROS) levels are also observed. ROS can randomly oxidize proteins, lipids, and DNA, causing oxidative stress and damage. Cells have developed various antioxidant pathways to reduce excessive ROS and maintain redox homeostasis. Treatment targeting only one aspect of diseases with autophagy dysfunction and oxidative stress shows very limited effects. Herein, identifying the bridging factors that can regulate both autophagy and antioxidant pathways is beneficial for dual-target therapies. This review intends to provide insights into the current identified bridging factors that connect autophagy and Nrf2 antioxidant pathway, as well as their tight interconnection with each other. These factors could be potential dual-purpose targets for the treatment of diseases implicated in both autophagy dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Baike Ning
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Shuqi Hang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wenhe Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Caiwen Mao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Dan Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
45
|
Kanzaki K, Wada M. Effects of Leucine Ingestion and Contraction on the Sestrin/GATOR2 Pathway and mTORC1 Activation in Rat Fast-Twitch muscle. J Nutr 2023; 153:2228-2236. [PMID: 37328110 DOI: 10.1016/j.tjnut.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Leucine activates the mechanistic/mammalian target of rapamycin complex 1 (mTORC1) in mammalian skeletal muscle. Recent studies have shown that Sestrin, a leucine sensor, might play a role in this process. However, it remains unknown whether Sestrin dissociates from GATOR2 in a dose- and time-dependent manner and whether an acute bout of muscle contraction augments this dissociation. OBJECTIVE This study aimed to examine the effects of leucine ingestion and muscle contraction on the interaction between Sestrin1/2 and GATOR2 and on mTORC1 activation. METHODS Male Wistar rats were randomly assigned to control (C), leucine 3 (L3), or leucine 10 (L10) groups. Intact gastrocnemius muscles were subjected to 30 repetitive unilateral contractions. The L3 and L10 groups were then orally administered 3 and 10 mmol/kg body weight of L-leucine 2 h after the end of the contractions, respectively. Blood and muscle samples were collected 30, 60, or 120 min after the administration. RESULTS The blood and muscle leucine concentrations increased in a dose-dependent manner. The ratio of phosphorylated ribosomal protein S6 kinase (S6K) to total S6K (which indicates mTORC1 signaling activation) was markedly increased by muscle contraction and increased in a dose-dependent manner only in rested muscle. Leucine ingestion but not muscle contraction increased Sestrin1 dissociation from GATOR2 and Sestrin2 association with GATOR2. A negative relationship was observed between the blood and muscle leucine concentrations and the Sestrin1 association with GATOR2. CONCLUSIONS The results suggest that Sestrin1, but not Sestrin2, regulates leucine-related mTORC1 activation via its dissociation from GATOR2 and that acute exercise-induced mTORC1 activation involves pathways other than the leucine-related Sestrin1/GATOR2 pathway.
Collapse
Affiliation(s)
- Keita Kanzaki
- Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Okayama, Japan.
| | - Masanobu Wada
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
46
|
Martín-Blázquez R, Calhoun AC, Sadd BM, Cameron SA. Gene expression in bumble bee larvae differs qualitatively between high and low concentration imidacloprid exposure levels. Sci Rep 2023; 13:9415. [PMID: 37296299 PMCID: PMC10256756 DOI: 10.1038/s41598-023-36232-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Neonicotinoid pesticides negatively impact bumble bee health, even at sublethal concentrations. Responses to the neonicotinoid imidacloprid have been studied largely at individual adult and colony levels, focusing mostly on behavioral and physiological effects. Data from developing larvae, whose health is critical for colony success, are deficient, particularly at the molecular level where transcriptomes can reveal disruption of fundamental biological pathways. We investigated gene expression of Bombus impatiens larvae exposed through food provisions to two field-realistic imidacloprid concentrations (0.7 and 7.0 ppb). We hypothesized both concentrations would alter gene expression, but the higher concentration would have greater qualitative and quantitative effects. We found 678 genes differentially expressed under both imidacloprid exposures relative to controls, including mitochondrial activity, development, and DNA replication genes. However, more genes were differentially expressed with higher imidacloprid exposure; uniquely differentially expressed genes included starvation response and cuticle genes. The former may partially result from reduced pollen use, monitored to verify food provision use and provide additional context to results. A smaller differentially expressed set only in lower concentration larvae, included neural development and cell growth genes. Our findings show varying molecular consequences under different field-realistic neonicotinoid concentrations, and that even low concentrations may affect fundamental biological processes.
Collapse
Affiliation(s)
- Rubén Martín-Blázquez
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Evolutionary Ecology, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Isla de la Cartuja, Seville, Spain.
| | - Austin C Calhoun
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Sydney A Cameron
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
47
|
Kozak J, Jonak K. Association between the antioxidant properties of SESN proteins and anti-cancer therapies. Amino Acids 2023:10.1007/s00726-023-03281-6. [PMID: 37284849 PMCID: PMC10372130 DOI: 10.1007/s00726-023-03281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
Since the beginning of SESN protein development, they have attracted highly progressive attention due to their regulatory role in multiple signalling pathways. Through their antioxidant activity and autophagy regulation implication, they can function as powerful antioxidants to reduce oxidative stress in cells. SESN proteins received special attention in the field of regulation of reactive oxygen species level in the cell and its interplay with signalling pathways determining energy and nutrient homeostasis. Since perturbations in these pathways are implicated in cancer onset and development, SESNs might constitute potential novel therapeutic targets of broad interest. In this review, we discuss the impact of SESN proteins on anti-cancer therapy based on naturally occurring compounds and conventionally used drugs that influence oxidative stress and autophagy-induced cellular signalling pathways. The significant changes in reactive oxygen species level and nutrient status in cancer cells generate subsequent biological effect through the regulation of SESN-dependent pathways. Thus, SESN may serve as the key molecule for regulating anti-cancer drugs' induced cellular response.
Collapse
Affiliation(s)
- Joanna Kozak
- Chair of Fundamental Sciences, Department of Human Anatomy, Medical University of Lublin, Kazimierza Jaczewskiego 4, 20-090, Lublin, Poland.
| | - Katarzyna Jonak
- Department of Foreign Languages, Interfaculty Centre for Didactics, Medical University of Lublin, 20-081, Lublin, Poland
| |
Collapse
|
48
|
Xie Y, Lei X, Zhao G, Guo R, Cui N. mTOR in programmed cell death and its therapeutic implications. Cytokine Growth Factor Rev 2023; 71-72:66-81. [PMID: 37380596 DOI: 10.1016/j.cytogfr.2023.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Mechanistic target of rapamycin (mTOR), a highly conserved serine/threonine kinase, is involved in cellular metabolism, protein synthesis, and cell death. Programmed cell death (PCD) assists in eliminating aging, damaged, or neoplastic cells, and is indispensable for sustaining normal growth, fighting pathogenic microorganisms, and maintaining body homeostasis. mTOR has crucial functions in the intricate signaling pathway network of multiple forms of PCD. mTOR can inhibit autophagy, which is part of PCD regulation. Cell survival is affected by mTOR through autophagy to control reactive oxygen species production and the degradation of pertinent proteins. Additionally, mTOR can regulate PCD in an autophagy-independent manner by affecting the expression levels of related genes and phosphorylating proteins. Therefore, mTOR acts through both autophagy-dependent and -independent pathways to regulate PCD. It is conceivable that mTOR exerts bidirectional regulation of PCD, such as ferroptosis, according to the complexity of signaling pathway networks, but the underlying mechanisms have not been fully explained. This review summarizes the recent advances in understanding mTOR-mediated regulatory mechanisms in PCD. Rigorous investigations into PCD-related signaling pathways have provided prospective therapeutic targets that may be clinically beneficial for treating various diseases.
Collapse
Affiliation(s)
- Yawen Xie
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xianli Lei
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guoyu Zhao
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ran Guo
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
49
|
Entrialgo-Cadierno R, Cueto-Ureña C, Welch C, Feliu I, Macaya I, Vera L, Morales X, Michelina SV, Scaparone P, Lopez I, Darbo E, Erice O, Vallejo A, Moreno H, Goñi-Salaverri A, Lara-Astiaso D, Halberg N, Cortes-Dominguez I, Guruceaga E, Ambrogio C, Lecanda F, Vicent S. The phospholipid transporter PITPNC1 links KRAS to MYC to prevent autophagy in lung and pancreatic cancer. Mol Cancer 2023; 22:86. [PMID: 37210549 DOI: 10.1186/s12943-023-01788-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND The discovery of functionally relevant KRAS effectors in lung and pancreatic ductal adenocarcinoma (LUAD and PDAC) may yield novel molecular targets or mechanisms amenable to inhibition strategies. Phospholipids availability has been appreciated as a mechanism to modulate KRAS oncogenic potential. Thus, phospholipid transporters may play a functional role in KRAS-driven oncogenesis. Here, we identified and systematically studied the phospholipid transporter PITPNC1 and its controlled network in LUAD and PDAC. METHODS Genetic modulation of KRAS expression as well as pharmacological inhibition of canonical effectors was completed. PITPNC1 genetic depletion was performed in in vitro and in vivo LUAD and PDAC models. PITPNC1-deficient cells were RNA sequenced, and Gene Ontology and enrichment analyses were applied to the output data. Protein-based biochemical and subcellular localization assays were run to investigate PITPNC1-regulated pathways. A drug repurposing approach was used to predict surrogate PITPNC1 inhibitors that were tested in combination with KRASG12C inhibitors in 2D, 3D, and in vivo models. RESULTS PITPNC1 was increased in human LUAD and PDAC, and associated with poor patients' survival. PITPNC1 was regulated by KRAS through MEK1/2 and JNK1/2. Functional experiments showed PITPNC1 requirement for cell proliferation, cell cycle progression and tumour growth. Furthermore, PITPNC1 overexpression enhanced lung colonization and liver metastasis. PITPNC1 regulated a transcriptional signature which highly overlapped with that of KRAS, and controlled mTOR localization via enhanced MYC protein stability to prevent autophagy. JAK2 inhibitors were predicted as putative PITPNC1 inhibitors with antiproliferative effect and their combination with KRASG12C inhibitors elicited a substantial anti-tumour effect in LUAD and PDAC. CONCLUSIONS Our data highlight the functional and clinical relevance of PITPNC1 in LUAD and PDAC. Moreover, PITPNC1 constitutes a new mechanism linking KRAS to MYC, and controls a druggable transcriptional network for combinatorial treatments.
Collapse
Affiliation(s)
- Rodrigo Entrialgo-Cadierno
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Cristina Cueto-Ureña
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Connor Welch
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Iker Feliu
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Irati Macaya
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Laura Vera
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Xabier Morales
- Imaging Unit and Cancer Imaging Laboratory, University of Navarra, CIMA, Pamplona, Spain
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Turin, Italy
| | - Pietro Scaparone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Turin, Italy
| | - Ines Lopez
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Elodie Darbo
- University of Bordeaux, INSERM, BRIC, U 1312, F-33000, Bordeaux, France
| | - Oihane Erice
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Adrian Vallejo
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Haritz Moreno
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | | | - David Lara-Astiaso
- Molecular Therapies Program, University of Navarra, CIMA, Pamplona, Spain
- Wellcome - MRC Cambridge Stem Cell Institute (CSCI), Cambridge, UK
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ivan Cortes-Dominguez
- Imaging Unit and Cancer Imaging Laboratory, University of Navarra, CIMA, Pamplona, Spain
- Bioinformatics Platform, University of Navarra, CIMA, Pamplona, Spain
| | - Elizabeth Guruceaga
- Bioinformatics Platform, University of Navarra, CIMA, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Turin, Italy
| | - Fernando Lecanda
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - Silve Vicent
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
- Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain.
| |
Collapse
|
50
|
Schaf J, Shinhmar S, Zeng Q, Pardo OE, Beesley P, Syed N, Williams RSB. Enhanced Sestrin expression through Tanshinone 2A treatment improves PI3K-dependent inhibition of glioma growth. Cell Death Discov 2023; 9:172. [PMID: 37202382 DOI: 10.1038/s41420-023-01462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Glioblastomas are a highly aggressive cancer type which respond poorly to current pharmaceutical treatments, thus novel therapeutic approaches need to be investigated. One such approach involves the use of the bioactive natural product Tanshinone IIA (T2A) derived from the Chinese herb Danshen, where mechanistic insight for this anti-cancer agent is needed to validate its use. Here, we employ a tractable model system, Dictyostelium discoideum, to provide this insight. T2A potently inhibits cellular proliferation of Dictyostelium, suggesting molecular targets in this model. We show that T2A rapidly reduces phosphoinositide 3 kinase (PI3K) and protein kinase B (PKB) activity, but surprisingly, the downstream complex mechanistic target of rapamycin complex 1 (mTORC1) is only inhibited following chronic treatment. Investigating regulators of mTORC1, including PKB, tuberous sclerosis complex (TSC), and AMP-activated protein kinase (AMPK), suggests these enzymes were not responsible for this effect, implicating an additional molecular mechanism of T2A. We identify this mechanism as the increased expression of sestrin, a negative regulator of mTORC1. We further show that combinatory treatment using a PI3K inhibitor and T2A gives rise to a synergistic inhibition of cell proliferation. We then translate our findings to human and mouse-derived glioblastoma cell lines, where both a PI3K inhibitor (Paxalisib) and T2A reduces glioblastoma proliferation in monolayer cultures and in spheroid expansion, with combinatory treatment significantly enhancing this effect. Thus, we propose a new approach for cancer treatment, including glioblastomas, through combinatory treatment with PI3K inhibitors and T2A.
Collapse
Affiliation(s)
- Judith Schaf
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Sonia Shinhmar
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Qingyu Zeng
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, Hammersmith Hospital, London, UK
| | - Olivier E Pardo
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Philip Beesley
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Nelofer Syed
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, Hammersmith Hospital, London, UK
| | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
| |
Collapse
|