1
|
Ma Y, Vafaie N, Kragel PA. Embedding emotion concepts in cognitive maps. Neurosci Biobehav Rev 2025; 172:106089. [PMID: 40057255 DOI: 10.1016/j.neubiorev.2025.106089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/17/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Emotion knowledge is organized in a two-dimensional space known as the affective circumplex, which is thought to develop from core affective feelings and the co-occurrence of emotional events. Neural studies reveal that emotion concepts and cognitive maps of space and abstract concepts are represented in hippocampal-prefrontal systems. We propose that the circumplex is formed by learning the transitions between emotion concepts, a process mediated by a reciprocal network involving hippocampal cells that encode emotion concepts and grid cells in medial entorhinal and ventral prefrontal cortices that encode the relations between them. We anticipate that testing this hypothesis will shed light on the debate about whether emotions are biologically basic or constructed from core affective dimensions.
Collapse
Affiliation(s)
- Yumeng Ma
- Department of Psychology, Emory University, USA
| | | | | |
Collapse
|
2
|
Zutshi I, Apostolelli A, Yang W, Zheng ZS, Dohi T, Balzani E, Williams AH, Savin C, Buzsáki G. Hippocampal neuronal activity is aligned with action plans. Nature 2025; 639:153-161. [PMID: 39779866 DOI: 10.1038/s41586-024-08397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025]
Abstract
Neurons in the hippocampus are correlated with different variables, including space, time, sensory cues, rewards and actions, in which the extent of tuning depends on ongoing task demands1-8. However, it remains uncertain whether such diverse tuning corresponds to distinct functions within the hippocampal network or whether a more generic computation can account for these observations9. Here, to disentangle the contribution of externally driven cues versus internal computation, we developed a task in mice in which space, auditory tones, rewards and context were juxtaposed with changing relevance. High-density electrophysiological recordings revealed that neurons were tuned to each of these modalities. By comparing movement paths and action sequences, we observed that external variables had limited direct influence on hippocampal firing. Instead, spiking was influenced by online action plans and modulated by goal uncertainty. Our results suggest that internally generated cell assembly sequences are selected and updated by action plans towards deliberate goals. The apparent tuning of hippocampal neuronal spiking to different sensory modalities might emerge due to alignment to the afforded action progression within a task rather than representation of external cues.
Collapse
Affiliation(s)
- Ipshita Zutshi
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Athina Apostolelli
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Wannan Yang
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Zheyang Sam Zheng
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Tora Dohi
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Edoardo Balzani
- Center for Neural Science, New York University, New York, NY, USA
- Center for Data Science, New York University, New York, NY, USA
| | - Alex H Williams
- Center for Neural Science, New York University, New York, NY, USA
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
| | - Cristina Savin
- Center for Neural Science, New York University, New York, NY, USA
- Center for Data Science, New York University, New York, NY, USA
| | - György Buzsáki
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Chandra S, Sharma S, Chaudhuri R, Fiete I. Episodic and associative memory from spatial scaffolds in the hippocampus. Nature 2025; 638:739-751. [PMID: 39814883 DOI: 10.1038/s41586-024-08392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/13/2024] [Indexed: 01/18/2025]
Abstract
Hippocampal circuits in the brain enable two distinct cognitive functions: the construction of spatial maps for navigation, and the storage of sequential episodic memories1-5. Although there have been advances in modelling spatial representations in the hippocampus6-10, we lack good models of its role in episodic memory. Here we present a neocortical-entorhinal-hippocampal network model that implements a high-capacity general associative memory, spatial memory and episodic memory. By factoring content storage from the dynamics of generating error-correcting stable states, the circuit (which we call vector hippocampal scaffolded heteroassociative memory (Vector-HaSH)) avoids the memory cliff of prior memory models11,12, and instead exhibits a graceful trade-off between number of stored items and recall detail. A pre-structured internal scaffold based on grid cell states is essential for constructing even non-spatial episodic memory: it enables high-capacity sequence memorization by abstracting the chaining problem into one of learning low-dimensional transitions. Vector-HaSH reproduces several hippocampal experiments on spatial mapping and context-based representations, and provides a circuit model of the 'memory palaces' used by memory athletes13. Thus, this work provides a unified understanding of the spatial mapping and associative and episodic memory roles of the hippocampus.
Collapse
Affiliation(s)
- Sarthak Chandra
- Department of Brain and Cognitive Sciences and McGovern Institute, MIT, Cambridge, MA, USA
| | - Sugandha Sharma
- Department of Brain and Cognitive Sciences and McGovern Institute, MIT, Cambridge, MA, USA
| | - Rishidev Chaudhuri
- Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA
- Department of Mathematics, University of California Davis, Davis, CA, USA
| | - Ila Fiete
- Department of Brain and Cognitive Sciences and McGovern Institute, MIT, Cambridge, MA, USA.
| |
Collapse
|
4
|
Vetere LM, Galas AM, Vaughan N, Feng Y, Wick ZC, Philipsberg PA, Liobimova O, Fernandez-Ruiz A, Cai DJ, Shuman T. Medial entorhinal-hippocampal desynchronization parallels the emergence of memory impairment in a mouse model of Alzheimer's disease pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633171. [PMID: 39868201 PMCID: PMC11761809 DOI: 10.1101/2025.01.15.633171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive impairments in episodic and spatial memory, as well as circuit and network-level dysfunction. While functional impairments in medial entorhinal cortex (MEC) and hippocampus (HPC) have been observed in patients and rodent models of AD, it remains unclear how communication between these regions breaks down in disease, and what specific physiological changes are associated with the onset of memory impairment. We used silicon probes to simultaneously record neural activity in MEC and hippocampus before or after the onset of spatial memory impairment in the 3xTg mouse model of AD pathology. We found that reduced hippocampal theta power, reduced MEC-CA1 theta coherence, and altered phase locking of MEC and hippocampal neurons all coincided with the emergence of spatial memory impairment in 3xTg mice. Together, these findings indicate that disrupted temporal coordination of neural activity in the MEC-hippocampal system parallels the emergence of memory impairment in a model of AD pathology.
Collapse
Affiliation(s)
| | | | - Nick Vaughan
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yu Feng
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | | | - Denise J Cai
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
5
|
Arai S, Sypniewski KA, Pavlides C. Differential roles of medial/lateral entorhinal cortex in spatial/object memory and contribution to hippocampal functional neuronal organization. Neurobiol Learn Mem 2025; 217:108015. [PMID: 39689754 DOI: 10.1016/j.nlm.2024.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
Episodic memory is subserved by interactions between entorhinal cortex (EC) and hippocampus. Within EC, a functional dissociation has been proposed for medial (MEC) and lateral (LEC) subregions, whereby, MEC processes spatial information while LEC processes information about objects and their location in space. Most of these studies, however, used classical methods which lack both spatial and temporal specificity, thus, the precise role of MEC/LEC in memory could use further clarification. First, we show a possible functional dissociation of MEC/LEC for place/object fear memory, by optogenetic suppression of these areas during memory acquisition. The main output of EC is to the hippocampus. MEC projects mainly towards proximal/superficial CA1 and deep CA3 while LEC towards distal/deep CA1 and superficial CA3. Dentate gyrus (DG), terminations of MEC/LEC are dissociated septotemporally. A functional dissociation has also been proposed for subregions of the hippocampus. Previous studies reported that proximal/distal CA1 process spatial/nonspatial information, respectively. For the second part of the study, we used the immediate-early gene Zif-268 to map neuronal activity in CA1. We first show enhanced Zif-268 expression and cluster-type organization in the proximal CA1 by place exposure and enhanced Zif-268 expression/cluster organization in distal CA1 following object exposure. Second, direct optogenetic stimulation of MEC/LEC, produced a similar enhancement/cluster-type organization in the same areas. Enhanced Zif-268 expression was also observed in CA3 and DG. These results substantiate previous findings and are proof positive that the hippocampus is organized in clusters to encode information generally ascribed to this structure.
Collapse
Affiliation(s)
- Shoko Arai
- Department of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Krzysztof A Sypniewski
- Department of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Constantine Pavlides
- Department of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
6
|
Hagen C, Hoxha M, Chitale S, White AO, Ogallar PM, Expósito AN, Agüera ADR, Torres C, Papini MR, Sabariego M. Flexible Behavioral Adjustment to Frustrative Nonreward in Anticipatory Behavior, but Not in Consummatory Behavior, Requires the Dorsal Hippocampus. Hippocampus 2024; 34:688-710. [PMID: 39373314 DOI: 10.1002/hipo.23642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/12/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
The hippocampus (HC) is recognized for its pivotal role in memory-related plasticity and facilitating adaptive behavioral responses to reward shifts. However, the nature of its involvement in the response to reward downshifts remains to be determined. To bridge this knowledge gap, we explored the HC's function through a series of experiments in various tasks involving reward downshifts and using several neural manipulations in rats. In Experiment 1, complete excitotoxic lesions of the HC impaired choice performance in a modified T-maze after reducing the quantity of sugar pellet rewards. In Experiment 2, chemogenetic inhibition of the dorsal HC (dHC) disrupted anticipatory behavior following a food-pellet reward reduction. Experiments 3-5 impaired HC function by using peripheral lipopolysaccharide (LPS) administration. This treatment, which induces peripheral inflammation affecting HC function, significantly increased cytokine levels in the dHC (Experiment 3) and impaired anticipatory choice behavior (Experiment 4). None of these dorsal hippocampal manipulations affected consummatory responses in animals experiencing sucrose downshifts. Accordingly, we found no evidence of increased neural activation in either the dorsal or ventral HC, as measured by c-Fos expression, after a sucrose downshift task involving consummatory suppression (Experiment 6). The results highlight the HC's pivotal role in adaptively modulating anticipatory behavior in response to a variety of situations involving frustrative nonreward, while having no effect on adjustments on consummatory behavior. The data supporting this conclusion were obtained under heterogeneous experimental conditions derived from a multi-laboratory collaboration, ensuring the robustness and high reproducibility of our findings. Spatial orientation, memory update, choice of reward signals of different values, and anticipatory versus consummatory adjustments to reward downshift are discussed as potential mechanisms that could account for the specific effects observed from HC manipulations.
Collapse
Affiliation(s)
- Christopher Hagen
- Department of Psychology, Texas Christian University, Fort Worth, Texas, USA
| | - Megi Hoxha
- Program in Neuroscience & Behavior, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - Saee Chitale
- Program in Neuroscience & Behavior, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - Andre O White
- Program in Neuroscience & Behavior, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - Pedro M Ogallar
- Departamento de Psicología, Universidad de Jaén, Jaén, Spain
| | | | | | - Carmen Torres
- Departamento de Psicología, Universidad de Jaén, Jaén, Spain
| | - Mauricio R Papini
- Department of Psychology, Texas Christian University, Fort Worth, Texas, USA
| | - Marta Sabariego
- Program in Neuroscience & Behavior, Mount Holyoke College, South Hadley, Massachusetts, USA
| |
Collapse
|
7
|
Basu J, Nagel K. Neural circuits for goal-directed navigation across species. Trends Neurosci 2024; 47:904-917. [PMID: 39393938 PMCID: PMC11563880 DOI: 10.1016/j.tins.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024]
Abstract
Across species, navigation is crucial for finding both resources and shelter. In vertebrates, the hippocampus supports memory-guided goal-directed navigation, whereas in arthropods the central complex supports similar functions. A growing literature is revealing similarities and differences in the organization and function of these brain regions. We review current knowledge about how each structure supports goal-directed navigation by building internal representations of the position or orientation of an animal in space, and of the location or direction of potential goals. We describe input pathways to each structure - medial and lateral entorhinal cortex in vertebrates, and columnar and tangential neurons in insects - that primarily encode spatial and non-spatial information, respectively. Finally, we highlight similarities and differences in spatial encoding across clades and suggest experimental approaches to compare coding principles and behavioral capabilities across species. Such a comparative approach can provide new insights into the neural basis of spatial navigation and neural computation.
Collapse
Affiliation(s)
- Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| | - Katherine Nagel
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
8
|
Zutshi I, Apostolelli A, Yang W, Zheng ZS, Dohi T, Balzani E, Williams AH, Savin C, Buzsáki G. Hippocampal neuronal activity is aligned with action plans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611533. [PMID: 39282373 PMCID: PMC11398474 DOI: 10.1101/2024.09.05.611533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Neurons in the hippocampus are correlated with different variables, including space, time, sensory cues, rewards, and actions, where the extent of tuning depends on ongoing task demands. However, it remains uncertain whether such diverse tuning corresponds to distinct functions within the hippocampal network or if a more generic computation can account for these observations. To disentangle the contribution of externally driven cues versus internal computation, we developed a task in mice where space, auditory tones, rewards, and context were juxtaposed with changing relevance. High-density electrophysiological recordings revealed that neurons were tuned to each of these modalities. By comparing movement paths and action sequences, we observed that external variables had limited direct influence on hippocampal firing. Instead, spiking was influenced by online action plans modulated by goal uncertainty. Our results suggest that internally generated cell assembly sequences are selected and updated by action plans toward deliberate goals. The apparent tuning of hippocampal neuronal spiking to different sensory modalities might emerge due to alignment to the afforded action progression within a task rather than representation of external cues.
Collapse
|
9
|
Athanasiadis M, Masserini S, Yuan L, Fetterhoff D, Leutgeb JK, Leutgeb S, Leibold C. Low rate hippocampal delay period activity encodes behavioral experience. Hippocampus 2024; 34:422-437. [PMID: 38838068 PMCID: PMC11978360 DOI: 10.1002/hipo.23619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024]
Abstract
Remembering what just happened is a crucial prerequisite to form long-term memories but also for establishing and maintaining working memory. So far there is no general agreement about cortical mechanisms that support short-term memory. Using a classifier-based decoding approach, we report that hippocampal activity during few sparsely distributed brief time intervals contains information about the previous sensory motor experience of rodents. These intervals are characterized by only a small increase of firing rate of only a few neurons. These low-rate predictive patterns are present in both working memory and non-working memory tasks, in two rodent species, rats and Mongolian gerbils, are strongly reduced for rats with medial entorhinal cortex lesions, and depend on the familiarity of the sensory-motor context.
Collapse
Affiliation(s)
- Markos Athanasiadis
- Fakultät für Biologie, Bernstein Center Freiburg, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Stefano Masserini
- Computational Neurophysics Lab, Institute for Theoretical Physics, Universität Bremen, Bremen, Germany
- Department Biologie II, Ludwig-Maximilians Universität München, Martinsried, Germany
| | - Li Yuan
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Dustin Fetterhoff
- Department Biologie II, Ludwig-Maximilians Universität München, Martinsried, Germany
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politecnica de Madrid, Madrid, Spain
| | - Jill K. Leutgeb
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Stefan Leutgeb
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
- Kavli Institute for Brain and Mind, University of California, La Jolla, California, USA
| | - Christian Leibold
- Fakultät für Biologie, Bernstein Center Freiburg, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- BrainLinks-BrainTools, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Dubanet O, Higley MJ. Retrosplenial inputs drive visual representations in the medial entorhinal cortex. Cell Rep 2024; 43:114470. [PMID: 38985682 PMCID: PMC11300029 DOI: 10.1016/j.celrep.2024.114470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/21/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
The importance of visual cues for navigation and goal-directed behavior is well established, although the neural mechanisms supporting sensory representations in navigational circuits are largely unknown. Navigation is fundamentally dependent on the medial entorhinal cortex (MEC), which receives direct projections from neocortical visual areas, including the retrosplenial cortex (RSC). Here, we perform high-density recordings of MEC neurons in awake, head-fixed mice presented with simple visual stimuli and assess the dynamics of sensory-evoked activity. We find that a large fraction of neurons exhibit robust responses to visual input. Visually responsive cells are located primarily in layer 3 of the dorsal MEC and can be separated into subgroups based on functional and molecular properties. Furthermore, optogenetic suppression of RSC afferents within the MEC strongly reduces visual responses. Overall, our results demonstrate that the MEC can encode simple visual cues in the environment that may contribute to neural representations of location necessary for accurate navigation.
Collapse
Affiliation(s)
- Olivier Dubanet
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
11
|
Shao Q, Chen L, Li X, Li M, Cui H, Li X, Zhao X, Shi Y, Sun Q, Yan K, Wang G. A non-canonical visual cortical-entorhinal pathway contributes to spatial navigation. Nat Commun 2024; 15:4122. [PMID: 38750027 PMCID: PMC11096324 DOI: 10.1038/s41467-024-48483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Visual information is important for accurate spatial coding and memory-guided navigation. As a crucial area for spatial cognition, the medial entorhinal cortex (MEC) harbors diverse spatially tuned cells and functions as the major gateway relaying sensory inputs to the hippocampus containing place cells. However, how visual information enters the MEC has not been fully understood. Here, we identify a pathway originating in the secondary visual cortex (V2) and directly targeting MEC layer 5a (L5a). L5a neurons served as a network hub for visual processing in the MEC by routing visual inputs from multiple V2 areas to other local neurons and hippocampal CA1. Interrupting this pathway severely impaired visual stimulus-evoked neural activity in the MEC and performance of mice in navigation tasks. These observations reveal a visual cortical-entorhinal pathway highlighting the role of MEC L5a in sensory information transmission, a function typically attributed to MEC superficial layers before.
Collapse
Affiliation(s)
- Qiming Shao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Ligu Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaowan Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Miao Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Hui Cui
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoyue Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xinran Zhao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuying Shi
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Qiang Sun
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Kaiyue Yan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Guangfu Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
12
|
Hales JB, Olivas L, Abouchedid D, Blaser RE. Contribution of the medial entorhinal cortex to performance on the Traveling Salesperson Problem in rats. Behav Brain Res 2024; 463:114883. [PMID: 38281708 DOI: 10.1016/j.bbr.2024.114883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
In order to successfully navigate through space, animals must rely on multiple cognitive processes, including orientation in space, memory of object locations, and navigational decisions based on that information. Although highly-controlled behavioral tasks are valuable for isolating and targeting specific processes, they risk producing a narrow understanding of complex behavior in natural contexts. The Traveling Salesperson Problem (TSP) is an optimization problem that can be used to study naturalistic foraging behaviors, in which subjects select routes between multiple baited targets. Foraging is a spontaneous, yet complex, behavior, involving decision-making, attention, course planning, and memory. Previous research found that hippocampal lesions in rats impaired TSP task performance, particularly on measures of spatial memory. Although traditional laboratory tests have shown the medial entorhinal cortex (MEC) to play an important role in spatial memory, if and how the MEC is involved in finding efficient solutions to the TSP remains unknown. In the current study, rats were trained on the TSP, learning to retrieve bait from targets in a variety of spatial configurations. After recovering from either an MEC lesion or control sham surgery, the rats were tested on eight new configurations. Our results showed that, similar to rats with hippocampal lesions, MEC-lesioned rats were impaired on measures of spatial memory, but not spatial decision-making, with greatest impairments on configurations requiring a global navigational strategy for selecting the optimal route. These findings suggest that the MEC is important for effective spatial navigation, especially when global cue processing is required.
Collapse
Affiliation(s)
- Jena B Hales
- University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | - Larissa Olivas
- University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA
| | | | - Rachel E Blaser
- University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| |
Collapse
|
13
|
Yadav N, Toader A, Rajasethupathy P. Beyond hippocampus: Thalamic and prefrontal contributions to an evolving memory. Neuron 2024; 112:1045-1059. [PMID: 38272026 DOI: 10.1016/j.neuron.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
The hippocampus has long been at the center of memory research, and rightfully so. However, with emerging technological capabilities, we can increasingly appreciate memory as a more dynamic and brain-wide process. In this perspective, our goal is to begin developing models to understand the gradual evolution, reorganization, and stabilization of memories across the brain after their initial formation in the hippocampus. By synthesizing studies across the rodent and human literature, we suggest that as memory representations initially form in hippocampus, parallel traces emerge in frontal cortex that cue memory recall, and as they mature, with sustained support initially from limbic then diencephalic then cortical circuits, they become progressively independent of hippocampus and dependent on a mature cortical representation. A key feature of this model is that, as time progresses, memory representations are passed on to distinct circuits with progressively longer time constants, providing the opportunity to filter, forget, update, or reorganize memories in the process of committing to long-term storage.
Collapse
Affiliation(s)
- Nakul Yadav
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Andrew Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Priya Rajasethupathy
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
14
|
Clark H, Nolan MF. Task-anchored grid cell firing is selectively associated with successful path integration-dependent behaviour. eLife 2024; 12:RP89356. [PMID: 38546203 PMCID: PMC10977970 DOI: 10.7554/elife.89356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024] Open
Abstract
Grid firing fields have been proposed as a neural substrate for spatial localisation in general or for path integration in particular. To distinguish these possibilities, we investigate firing of grid and non-grid cells in the mouse medial entorhinal cortex during a location memory task. We find that grid firing can either be anchored to the task environment, or can encode distance travelled independently of the task reference frame. Anchoring varied between and within sessions, while spatial firing of non-grid cells was either coherent with the grid population, or was stably anchored to the task environment. We took advantage of the variability in task-anchoring to evaluate whether and when encoding of location by grid cells might contribute to behaviour. We find that when reward location is indicated by a visual cue, performance is similar regardless of whether grid cells are task-anchored or not, arguing against a role for grid representations when location cues are available. By contrast, in the absence of the visual cue, performance was enhanced when grid cells were anchored to the task environment. Our results suggest that anchoring of grid cells to task reference frames selectively enhances performance when path integration is required.
Collapse
Affiliation(s)
- Harry Clark
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, Hugh Robson Building, University of EdinburghEdinburghUnited Kingdom
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, Simons Initiative for the Developing Brain, Hugh Robson Building, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
15
|
Savelli F. Spontaneous Dynamics of Hippocampal Place Fields in a Model of Combinatorial Competition among Stable Inputs. J Neurosci 2024; 44:e1663232024. [PMID: 38316560 PMCID: PMC10977031 DOI: 10.1523/jneurosci.1663-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
We present computer simulations illustrating how the plastic integration of spatially stable inputs could contribute to the dynamic character of hippocampal spatial representations. In novel environments of slightly larger size than typical apparatus, the emergence of well-defined place fields in real place cells seems to rely on inputs from normally functioning grid cells. Theoretically, the grid-to-place transformation is possible if a place cell is able to respond selectively to a combination of suitably aligned grids. We previously identified the functional characteristics that allow a synaptic plasticity rule to accomplish this selection by synaptic competition during rat foraging behavior. Here, we show that the synaptic competition can outlast the formation of place fields, contributing to their spatial reorganization over time, when the model is run in larger environments and the topographical/modular organization of grid inputs is taken into account. Co-simulated cells that differ only by their randomly assigned grid inputs display different degrees and kinds of spatial reorganization-ranging from place-field remapping to more subtle in-field changes or lapses in firing. The model predicts a greater number of place fields and propensity for remapping in place cells recorded from more septal regions of the hippocampus and/or in larger environments, motivating future experimental standardization across studies and animal models. In sum, spontaneous remapping could arise from rapid synaptic learning involving inputs that are functionally homogeneous, spatially stable, and minimally stochastic.
Collapse
Affiliation(s)
- Francesco Savelli
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
- Neurosciences Institute, The University of Texas at San Antonio, San Antonio, Texas 78249
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, Texas 78249
| |
Collapse
|
16
|
Malone TJ, Tien NW, Ma Y, Cui L, Lyu S, Wang G, Nguyen D, Zhang K, Myroshnychenko MV, Tyan J, Gordon JA, Kupferschmidt DA, Gu Y. A consistent map in the medial entorhinal cortex supports spatial memory. Nat Commun 2024; 15:1457. [PMID: 38368457 PMCID: PMC10874432 DOI: 10.1038/s41467-024-45853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/05/2024] [Indexed: 02/19/2024] Open
Abstract
The medial entorhinal cortex (MEC) is hypothesized to function as a cognitive map for memory-guided navigation. How this map develops during learning and influences memory remains unclear. By imaging MEC calcium dynamics while mice successfully learned a novel virtual environment over ten days, we discovered that the dynamics gradually became more spatially consistent and then stabilized. Additionally, grid cells in the MEC not only exhibited improved spatial tuning consistency, but also maintained stable phase relationships, suggesting a network mechanism involving synaptic plasticity and rigid recurrent connectivity to shape grid cell activity during learning. Increased c-Fos expression in the MEC in novel environments further supports the induction of synaptic plasticity. Unsuccessful learning lacked these activity features, indicating that a consistent map is specific for effective spatial memory. Finally, optogenetically disrupting spatial consistency of the map impaired memory-guided navigation in a well-learned environment. Thus, we demonstrate that the establishment of a spatially consistent MEC map across learning both correlates with, and is necessary for, successful spatial memory.
Collapse
Affiliation(s)
- Taylor J Malone
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nai-Wen Tien
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Yan Ma
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lian Cui
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shangru Lyu
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Garret Wang
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Duc Nguyen
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Center of Neural Science, New York University, New York, NY, USA
| | - Kai Zhang
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Maxym V Myroshnychenko
- Integrative Neuroscience Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jean Tyan
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joshua A Gordon
- Integrative Neuroscience Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
- Office of the Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David A Kupferschmidt
- Integrative Neuroscience Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yi Gu
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Bowler JC, Losonczy A. Direct cortical inputs to hippocampal area CA1 transmit complementary signals for goal-directed navigation. Neuron 2023; 111:4071-4085.e6. [PMID: 37816349 PMCID: PMC11490304 DOI: 10.1016/j.neuron.2023.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/14/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023]
Abstract
The subregions of the entorhinal cortex (EC) are conventionally thought to compute dichotomous representations for spatial processing, with the medial EC (MEC) providing a global spatial map and the lateral EC (LEC) encoding specific sensory details of experience. Yet, little is known about the specific types of information EC transmits downstream to the hippocampus. Here, we exploit in vivo sub-cellular imaging to record from EC axons in CA1 while mice perform navigational tasks in virtual reality (VR). We uncover distinct yet overlapping representations of task, location, and context in both MEC and LEC axons. MEC transmitted highly location- and context-specific codes; LEC inputs were biased by ongoing navigational goals. However, during tasks with reliable reward locations, the animals' position could be accurately decoded from either subregion. Our results revise the prevailing dogma about EC information processing, revealing novel ways spatial and non-spatial information is routed and combined upstream of the hippocampus.
Collapse
Affiliation(s)
- John C Bowler
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA.
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
18
|
Liu C, Todorova R, Tang W, Oliva A, Fernandez-Ruiz A. Associative and predictive hippocampal codes support memory-guided behaviors. Science 2023; 382:eadi8237. [PMID: 37856604 PMCID: PMC10894649 DOI: 10.1126/science.adi8237] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/21/2023] [Indexed: 10/21/2023]
Abstract
Episodic memory involves learning and recalling associations between items and their spatiotemporal context. Those memories can be further used to generate internal models of the world that enable predictions to be made. The mechanisms that support these associative and predictive aspects of memory are not yet understood. In this study, we used an optogenetic manipulation to perturb the sequential structure, but not global network dynamics, of place cells as rats traversed specific spatial trajectories. This perturbation abolished replay of those trajectories and the development of predictive representations, leading to impaired learning of new optimal trajectories during memory-guided navigation. However, place cell assembly reactivation and reward-context associative learning were unaffected. Our results show a mechanistic dissociation between two complementary hippocampal codes: an associative code (through coactivity) and a predictive code (through sequences).
Collapse
Affiliation(s)
| | | | - Wenbo Tang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Azahara Oliva
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
19
|
Dubanet O, Higley MJ. Retrosplenial inputs drive diverse visual representations in the medial entorhinal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560642. [PMID: 37873152 PMCID: PMC10592898 DOI: 10.1101/2023.10.03.560642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The ability of rodents to use visual cues for successful navigation and goal-directed behavior has been long appreciated, although the neural mechanisms supporting sensory representations in navigational circuits are largely unknown. Navigation is fundamentally dependent on the hippocampus and closely connected entorhinal cortex, whose neurons exhibit characteristic firing patterns corresponding to the animal's location. The medial entorhinal cortex (MEC) receives direct projections from sensory areas in the neocortex, suggesting the ability to encode sensory information. To examine this possibility, we performed high-density recordings of MEC neurons in awake, head-fixed mice presented with simple visual stimuli and assessed the dynamics of sensory-evoked activity. We found a large fraction of neurons exhibited robust responses to visual input that shaped activity relative to ongoing network dynamics. Visually responsive cells could be separated into subgroups based on functional and molecular properties within deep layers of the dorsal MEC, suggesting diverse populations within the MEC contribute to sensory encoding. We then showed that optogenetic suppression of retrosplenial cortex afferents within the MEC strongly reduced visual responses. Overall, our results demonstrate the the MEC can encode simple visual cues in the environment that can contribute to neural representations of location necessary for accurate navigation.
Collapse
Affiliation(s)
- Olivier Dubanet
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
20
|
Huang X, Schlesiger MI, Barriuso-Ortega I, Leibold C, MacLaren DAA, Bieber N, Monyer H. Distinct spatial maps and multiple object codes in the lateral entorhinal cortex. Neuron 2023; 111:3068-3083.e7. [PMID: 37478849 DOI: 10.1016/j.neuron.2023.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/12/2023] [Accepted: 06/23/2023] [Indexed: 07/23/2023]
Abstract
The lateral entorhinal cortex (LEC) is a major cortical input area to the hippocampus, and it is crucial for associative object-place-context memories. An unresolved question is whether these associations are performed exclusively in the hippocampus or also upstream of it. Anatomical evidence suggests that the LEC processes both object and spatial information. We describe here a gradient of spatial selectivity along the antero-posterior axis of the LEC. We demonstrate that the LEC generates distinct spatial maps for different contexts that are independent of object coding and vice versa, thus providing evidence for pure spatial and pure object codes upstream of the hippocampus. While space and object coding occur by and large separately in the LEC, we identified neurons that encode for space and objects conjunctively. Together, these findings point to a scenario in which the LEC sustains both distinct space and object coding and associative space-object coding.
Collapse
Affiliation(s)
- Xu Huang
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Magdalene Isabell Schlesiger
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Isabel Barriuso-Ortega
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Christian Leibold
- Institute Biology III & Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg im Breisgau, Germany; BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Duncan Archibald Allan MacLaren
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nina Bieber
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
21
|
Malone TJ, Tien NW, Ma Y, Cui L, Lyu S, Wang G, Nguyen D, Zhang K, Myroshnychenko MV, Tyan J, Gordon JA, Kupferschmidt DA, Gu Y. A consistent map in the medial entorhinal cortex supports spatial memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560254. [PMID: 37986767 PMCID: PMC10659391 DOI: 10.1101/2023.09.30.560254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The medial entorhinal cortex (MEC) is hypothesized to function as a cognitive map for memory-guided navigation. How this map develops during learning and influences memory remains unclear. By imaging MEC calcium dynamics while mice successfully learned a novel virtual environment over ten days, we discovered that the dynamics gradually became more spatially consistent and then stabilized. Additionally, grid cells in the MEC not only exhibited improved spatial tuning consistency, but also maintained stable phase relationships, suggesting a network mechanism involving synaptic plasticity and rigid recurrent connectivity to shape grid cell activity during learning. Increased c-Fos expression in the MEC in novel environments further supports the induction of synaptic plasticity. Unsuccessful learning lacked these activity features, indicating that a consistent map is specific for effective spatial memory. Finally, optogenetically disrupting spatial consistency of the map impaired memory-guided navigation in a well-learned environment. Thus, we demonstrate that the establishment of a spatially consistent MEC map across learning both correlates with, and is necessary for, successful spatial memory.
Collapse
Affiliation(s)
- Taylor J. Malone
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- These authors contributed equally to this work
| | - Nai-Wen Tien
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Current address: Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- These authors contributed equally to this work
| | - Yan Ma
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- These authors contributed equally to this work
| | - Lian Cui
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shangru Lyu
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Garret Wang
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Duc Nguyen
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Current address: Center of Neural Science, New York University, New York, NY, USA
| | - Kai Zhang
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Maxym V. Myroshnychenko
- Integrative Neuroscience Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jean Tyan
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua A. Gordon
- Integrative Neuroscience Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
- Office of the Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A. Kupferschmidt
- Integrative Neuroscience Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Gu
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Savelli F. Spontaneous dynamics of hippocampal place fields in a model of combinatorial competition among stable inputs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.04.556254. [PMID: 37732194 PMCID: PMC10508775 DOI: 10.1101/2023.09.04.556254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
We present computer simulations illustrating how the plastic integration of spatially stable inputs could contribute to the dynamic character of hippocampal spatial representations. In novel environments of slightly larger size than typical apparatus, the emergence of well-defined place fields in real place cells seems to rely on inputs from normally functioning grid cells. Theoretically, the grid-to-place transformation is possible if a place cell is able to respond selectively to a combination of suitably aligned grids. We previously identified the functional characteristics that allow a synaptic plasticity rule to accomplish this selection by synaptic competition during rat foraging behavior. Here, we show that the synaptic competition can outlast the formation of place fields, contributing to their spatial reorganization over time, when the model is run in larger environments and the topographical/modular organization of grid inputs is taken into account. Co-simulated cells that differ only by their randomly assigned grid inputs display different degrees and kinds of spatial reorganization-ranging from place-field remapping to more subtle in-field changes or lapses in firing. The model predicts a greater number of place fields and propensity for remapping in place cells recorded from more septal regions of the hippocampus and/or in larger environments, motivating future experimental standardization across studies and animal models. In sum, spontaneous remapping could arise from rapid synaptic learning involving inputs that are functionally homogeneous, spatially stable, and minimally stochastic. Significance Statement In both AI and theoretical neuroscience, learning systems often rely on the asymptotic convergence of slow-acting learning rules applied to input spaces that are presumed to be sampled repeatedly, for example over developmental timescales. Place cells of the hippocampus testify to a neural system capable of rapidly encoding cognitive variables-such as the animal's position in space-from limited experience. These internal representations undergo "spontaneous" changes over time, spurring much interest in their cognitive significance and underlying mechanisms. We investigate a model suggesting that some of these changes could be a tradeoff of rapid learning.
Collapse
|
23
|
Parra-Barrero E, Vijayabaskaran S, Seabrook E, Wiskott L, Cheng S. A map of spatial navigation for neuroscience. Neurosci Biobehav Rev 2023; 152:105200. [PMID: 37178943 DOI: 10.1016/j.neubiorev.2023.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Spatial navigation has received much attention from neuroscientists, leading to the identification of key brain areas and the discovery of numerous spatially selective cells. Despite this progress, our understanding of how the pieces fit together to drive behavior is generally lacking. We argue that this is partly caused by insufficient communication between behavioral and neuroscientific researchers. This has led the latter to under-appreciate the relevance and complexity of spatial behavior, and to focus too narrowly on characterizing neural representations of space-disconnected from the computations these representations are meant to enable. We therefore propose a taxonomy of navigation processes in mammals that can serve as a common framework for structuring and facilitating interdisciplinary research in the field. Using the taxonomy as a guide, we review behavioral and neural studies of spatial navigation. In doing so, we validate the taxonomy and showcase its usefulness in identifying potential issues with common experimental approaches, designing experiments that adequately target particular behaviors, correctly interpreting neural activity, and pointing to new avenues of research.
Collapse
Affiliation(s)
- Eloy Parra-Barrero
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sandhiya Vijayabaskaran
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Eddie Seabrook
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Laurenz Wiskott
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sen Cheng
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
24
|
Traub RD, Whittington MA, Cunningham MO. Simulation of oscillatory dynamics induced by an approximation of grid cell output. Rev Neurosci 2023; 34:517-532. [PMID: 36326795 PMCID: PMC10329426 DOI: 10.1515/revneuro-2022-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/06/2022] [Indexed: 07/20/2023]
Abstract
Grid cells, in entorhinal cortex (EC) and related structures, signal animal location relative to hexagonal tilings of 2D space. A number of modeling papers have addressed the question of how grid firing behaviors emerge using (for example) ideas borrowed from dynamical systems (attractors) or from coupled oscillator theory. Here we use a different approach: instead of asking how grid behavior emerges, we take as a given the experimentally observed intracellular potentials of superficial medial EC neurons during grid firing. Employing a detailed neural circuit model modified from a lateral EC model, we then ask how the circuit responds when group of medial EC principal neurons exhibit such potentials, simultaneously with a simulated theta frequency input from the septal nuclei. The model predicts the emergence of robust theta-modulated gamma/beta oscillations, suggestive of oscillations observed in an in vitro medial EC experimental model (Cunningham, M.O., Pervouchine, D.D., Racca, C., Kopell, N.J., Davies, C.H., Jones, R.S.G., Traub, R.D., and Whittington, M.A. (2006). Neuronal metabolism governs cortical network response state. Proc. Natl. Acad. Sci. U S A 103: 5597-5601). Such oscillations result because feedback interneurons tightly synchronize with each other - despite the varying phases of the grid cells - and generate a robust inhibition-based rhythm. The lack of spatial specificity of the model interneurons is consistent with the lack of spatial periodicity in parvalbumin interneurons observed by Buetfering, C., Allen, K., and Monyer, H. (2014). Parvalbumin interneurons provide grid cell-driven recurrent inhibition in the medial entorhinal cortex. Nat. Neurosci. 17: 710-718. If in vivo EC gamma rhythms arise during exploration as our model predicts, there could be implications for interpreting disrupted spatial behavior and gamma oscillations in animal models of Alzheimer's disease and schizophrenia. Noting that experimental intracellular grid cell potentials closely resemble cortical Up states and Down states, during which fast oscillations also occur during Up states, we propose that the co-occurrence of slow principal cell depolarizations and fast network oscillations is a general property of the telencephalon, in both waking and sleep states.
Collapse
Affiliation(s)
- Roger D. Traub
- AI Foundations, IBM T.J. Watson Research Center, Yorktown Heights, NY10598, USA
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104, USA
| | | | - Mark O. Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, University of Dublin, 152-160 Pearse St., Dublin 2, Ireland
| |
Collapse
|
25
|
Osanai H, Nair IR, Kitamura T. Dissecting cell-type-specific pathways in medial entorhinal cortical-hippocampal network for episodic memory. J Neurochem 2023; 166:172-188. [PMID: 37248771 PMCID: PMC10538947 DOI: 10.1111/jnc.15850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Episodic memory, which refers to our ability to encode and recall past events, is essential to our daily lives. Previous research has established that both the entorhinal cortex (EC) and hippocampus (HPC) play a crucial role in the formation and retrieval of episodic memories. However, to understand neural circuit mechanisms behind these processes, it has become necessary to monitor and manipulate the neural activity in a cell-type-specific manner with high temporal precision during memory formation, consolidation, and retrieval in the EC-HPC networks. Recent studies using cell-type-specific labeling, monitoring, and manipulation have demonstrated that medial EC (MEC) contains multiple excitatory neurons that have differential molecular markers, physiological properties, and anatomical features. In this review, we will comprehensively examine the complementary roles of superficial layers of neurons (II and III) and the roles of deeper layers (V and VI) in episodic memory formation and recall based on these recent findings.
Collapse
Affiliation(s)
- Hisayuki Osanai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Indrajith R Nair
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
26
|
Allison EAMA, Moore JW, Arkell D, Thomas J, Dudchenko PA, Wood ER. The medial entorhinal cortex is necessary for the stimulus control over hippocampal place fields by distal, but not proximal, landmarks. Hippocampus 2023; 33:811-829. [PMID: 36808771 PMCID: PMC10946748 DOI: 10.1002/hipo.23506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/22/2023]
Abstract
A fundamental property of place cells in the hippocampus is the anchoring of their firing fields to salient landmarks within the environment. However, it is unclear how such information reaches the hippocampus. In the current experiment, we tested the hypothesis that the stimulus control exerted by distal visual landmarks requires input from the medial entorhinal cortex (MEC). Place cells were recorded from mice with ibotenic acid lesions of the MEC (n = 7) and from sham-lesioned mice (n = 6) following 90° rotations of either distal landmarks or proximal cues in a cue- controlled environment. We found that lesions of the MEC impaired the anchoring of place fields to distal landmarks, but not proximal cues. We also observed that, relative to sham-lesioned mice, place cells in animals with MEC lesions exhibited significantly reduced spatial information and increased sparsity. These results support the view that distal landmark information reaches the hippocampus via the MEC, but that proximal cue information can do so via an alternative neural pathway.
Collapse
Affiliation(s)
| | - Joe W. Moore
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Daisy Arkell
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Julia Thomas
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | | | - Emma R. Wood
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
27
|
Riva M, Moriceau S, Morabito A, Dossi E, Sanchez-Bellot C, Azzam P, Navas-Olive A, Gal B, Dori F, Cid E, Ledonne F, David S, Trovero F, Bartolomucci M, Coppola E, Rebola N, Depaulis A, Rouach N, de la Prida LM, Oury F, Pierani A. Aberrant survival of hippocampal Cajal-Retzius cells leads to memory deficits, gamma rhythmopathies and susceptibility to seizures in adult mice. Nat Commun 2023; 14:1531. [PMID: 36934089 PMCID: PMC10024761 DOI: 10.1038/s41467-023-37249-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/08/2023] [Indexed: 03/20/2023] Open
Abstract
Cajal-Retzius cells (CRs) are transient neurons, disappearing almost completely in the postnatal neocortex by programmed cell death (PCD), with a percentage surviving up to adulthood in the hippocampus. Here, we evaluate CR's role in the establishment of adult neuronal and cognitive function using a mouse model preventing Bax-dependent PCD. CRs abnormal survival resulted in impairment of hippocampus-dependent memory, associated in vivo with attenuated theta oscillations and enhanced gamma activity in the dorsal CA1. At the cellular level, we observed transient changes in the number of NPY+ cells and altered CA1 pyramidal cell spine density. At the synaptic level, these changes translated into enhanced inhibitory currents in hippocampal pyramidal cells. Finally, adult mutants displayed an increased susceptibility to lethal tonic-clonic seizures in a kainate model of epilepsy. Our data reveal that aberrant survival of a small proportion of postnatal hippocampal CRs results in cognitive deficits and epilepsy-prone phenotypes in adulthood.
Collapse
Affiliation(s)
- Martina Riva
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Stéphanie Moriceau
- Platform for Neurobehavioral and metabolism, Structure Fédérative de Recherche Necker, 26 INSERM US24/CNRS UAR, 3633, Paris, France
| | - Annunziato Morabito
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de l'Hopital, 75013, Paris, France
| | - Elena Dossi
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | | | - Patrick Azzam
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | | | - Beatriz Gal
- Instituto Cajal, CSIC, Madrid, Spain
- Universidad Camilo José Cela, Madrid, Spain
| | - Francesco Dori
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Elena Cid
- Instituto Cajal, CSIC, Madrid, Spain
| | - Fanny Ledonne
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Sabrina David
- Key-Obs SAS, 13 avenue Buffon, 45100, Orléans, France
| | | | - Magali Bartolomucci
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Eva Coppola
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Nelson Rebola
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de l'Hopital, 75013, Paris, France
| | - Antoine Depaulis
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | | | - Franck Oury
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, 75015, Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015, Paris, France.
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France.
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, 75014, Paris, France.
| |
Collapse
|
28
|
Bono J, Zannone S, Pedrosa V, Clopath C. Learning predictive cognitive maps with spiking neurons during behavior and replays. eLife 2023; 12:e80671. [PMID: 36927625 PMCID: PMC10019888 DOI: 10.7554/elife.80671] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/12/2023] [Indexed: 03/18/2023] Open
Abstract
The hippocampus has been proposed to encode environments using a representation that contains predictive information about likely future states, called the successor representation. However, it is not clear how such a representation could be learned in the hippocampal circuit. Here, we propose a plasticity rule that can learn this predictive map of the environment using a spiking neural network. We connect this biologically plausible plasticity rule to reinforcement learning, mathematically and numerically showing that it implements the TD-lambda algorithm. By spanning these different levels, we show how our framework naturally encompasses behavioral activity and replays, smoothly moving from rate to temporal coding, and allows learning over behavioral timescales with a plasticity rule acting on a timescale of milliseconds. We discuss how biological parameters such as dwelling times at states, neuronal firing rates and neuromodulation relate to the delay discounting parameter of the TD algorithm, and how they influence the learned representation. We also find that, in agreement with psychological studies and contrary to reinforcement learning theory, the discount factor decreases hyperbolically with time. Finally, our framework suggests a role for replays, in both aiding learning in novel environments and finding shortcut trajectories that were not experienced during behavior, in agreement with experimental data.
Collapse
Affiliation(s)
- Jacopo Bono
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - Sara Zannone
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - Victor Pedrosa
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - Claudia Clopath
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
29
|
Bilash OM, Chavlis S, Johnson CD, Poirazi P, Basu J. Lateral entorhinal cortex inputs modulate hippocampal dendritic excitability by recruiting a local disinhibitory microcircuit. Cell Rep 2023; 42:111962. [PMID: 36640337 DOI: 10.1016/j.celrep.2022.111962] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
The lateral entorhinal cortex (LEC) provides multisensory information to the hippocampus, directly to the distal dendrites of CA1 pyramidal neurons. LEC neurons perform important functions for episodic memory processing, coding for contextually salient elements of an environment or experience. However, we know little about the functional circuit interactions between the LEC and the hippocampus. We combine functional circuit mapping and computational modeling to examine how long-range glutamatergic LEC projections modulate compartment-specific excitation-inhibition dynamics in hippocampal area CA1. We demonstrate that glutamatergic LEC inputs can drive local dendritic spikes in CA1 pyramidal neurons, aided by the recruitment of a disinhibitory VIP interneuron microcircuit. Our circuit mapping and modeling further reveal that LEC inputs also recruit CCK interneurons that may act as strong suppressors of dendritic spikes. These results highlight a cortically driven GABAergic microcircuit mechanism that gates nonlinear dendritic computations, which may support compartment-specific coding of multisensory contextual features within the hippocampus.
Collapse
Affiliation(s)
- Olesia M Bilash
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete 70013, Greece
| | - Cara D Johnson
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete 70013, Greece.
| | - Jayeeta Basu
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Psychiatry, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
30
|
Athanasiadis M, Masserini S, Yuan L, Fetterhoff D, Leutgeb JK, Leutgeb S, Leibold C. Low Rate Hippocampal Delay Period Activity Encodes Behavioral Experience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523199. [PMID: 36711893 PMCID: PMC9881970 DOI: 10.1101/2023.01.09.523199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Remembering what just happened is a crucial prerequisite to form long-term memories but also for establishing and maintaining working memory. So far there is no general agreement about cortical mechanisms that support short-term memory. Using a classifier-based decoding approach, we report that hippocampal activity during few sparsely distributed brief time intervals contains information about the previous sensory motor experience of rodents. These intervals are characterized by only a small increase of firing rate of only a few neurons. These low-rate predictive patterns are present in both working memory and non-working memory tasks, in two rodent species, rats and Mongolian gerbils, are strongly reduced for rats with medial entorhinal cortex lesions, and depend on the familiarity of the sensory-motor context.
Collapse
Affiliation(s)
- Markos Athanasiadis
- Albert-Ludwigs-Universität Freiburg, Fakultät für Biologie & Bernstein Center Freiburg, 79104 Freiburg, Germany
| | | | - Li Yuan
- UC San Diego, Neurobiology Department, School of Biological Sciences La Jolla 92093 CA, USA
| | - Dustin Fetterhoff
- Department Biologie II, Ludwig-Maximilans Universität München, 82152 Martinsried, Germany
- Universidad Politecnica de Madrid, Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, 28223 Madrid, Spain
| | - Jill K Leutgeb
- UC San Diego, Neurobiology Department, School of Biological Sciences La Jolla 92093 CA, USA
| | - Stefan Leutgeb
- UC San Diego, Neurobiology Department, School of Biological Sciences La Jolla 92093 CA, USA
- Kavli Institute for Brain and Mind, La Jolla 92093 CA, USA
| | - Christian Leibold
- Albert-Ludwigs-Universität Freiburg, Fakultät für Biologie & Bernstein Center Freiburg, 79104 Freiburg, Germany
- Albert-Ludwigs-Universität Freiburg, BrainLinks-BrainTools, 79110 Freiburg, Germany
| |
Collapse
|
31
|
Chao OY, Nikolaus S, Yang YM, Huston JP. Neuronal circuitry for recognition memory of object and place in rodent models. Neurosci Biobehav Rev 2022; 141:104855. [PMID: 36089106 PMCID: PMC10542956 DOI: 10.1016/j.neubiorev.2022.104855] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Rats and mice are used for studying neuronal circuits underlying recognition memory due to their ability to spontaneously remember the occurrence of an object, its place and an association of the object and place in a particular environment. A joint employment of lesions, pharmacological interventions, optogenetics and chemogenetics is constantly expanding our knowledge of the neural basis for recognition memory of object, place, and their association. In this review, we summarize current studies on recognition memory in rodents with a focus on the novel object preference, novel location preference and object-in-place paradigms. The evidence suggests that the medial prefrontal cortex- and hippocampus-connected circuits contribute to recognition memory for object and place. Under certain conditions, the striatum, medial septum, amygdala, locus coeruleus and cerebellum are also involved. We propose that the neuronal circuitry for recognition memory of object and place is hierarchically connected and constructed by different cortical (perirhinal, entorhinal and retrosplenial cortices), thalamic (nucleus reuniens, mediodorsal and anterior thalamic nuclei) and primeval (hypothalamus and interpeduncular nucleus) modules interacting with the medial prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Susanne Nikolaus
- Department of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
32
|
Coray R, Quednow BB. The role of serotonin in declarative memory: A systematic review of animal and human research. Neurosci Biobehav Rev 2022; 139:104729. [PMID: 35691469 DOI: 10.1016/j.neubiorev.2022.104729] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
The serotonergic system is involved in diverse cognitive functions including memory. Of particular importance to daily life are declarative memories that contain information about personal experiences, general facts, and events. Several psychiatric or neurological diseases, such as depression, attention-deficit-hyperactivity disorder (ADHD), and dementia, show alterations in serotonergic signalling and attendant memory disorders. Nevertheless, understanding serotonergic neurotransmission and its influence on memory remained a challenge until today. In this systematic review, we summarize recent psychopharmacological studies in animals and humans from a psychological memory perspective, in consideration of task-specific requirements. This approach has the advantage that comparisons between serotonin (5-HT)-related neurochemical mechanisms and manipulations are each addressing specific mnemonic circuits. We conclude that applications of the same 5-HT-related treatments can differentially affect unrelated tasks of declarative memories. Moreover, the analysis of specific mnemonic phases (e.g., encoding vs. consolidation) reveals opposing impacts of increased or decreased 5-HT tones, with low 5-HT supporting spatial encoding but impairing the consolidation of objects and verbal memories. Promising targets for protein synthesis-dependent consolidation enhancements include 5-HT4 receptor agonists and 5-HT6 receptor antagonists, with the latter being of special interest for the treatment of age-related decline. Further implications are pointed out as base for the development of novel therapeutic targets for memory impairment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rebecca Coray
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland.
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland
| |
Collapse
|
33
|
Anstötz M, Lee SK, Maccaferri G. Glutamate released by Cajal-Retzius cells impacts specific hippocampal circuits and behaviors. Cell Rep 2022; 39:110822. [PMID: 35584670 PMCID: PMC9190441 DOI: 10.1016/j.celrep.2022.110822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/23/2022] [Accepted: 04/23/2022] [Indexed: 12/31/2022] Open
Abstract
The impact of Cajal-Retzius cells on the regulation of hippocampal circuits and related behaviors is unresolved. Here, we directly address this issue by impairing the glutamatergic output of Cajal-Retzius cells with the conditional ablation of vGluT2, which is their main vesicular glutamate transporter. Although two distinct conditional knockout lines do not reveal major alterations in hippocampal-layer organization and dendritic length of principal neurons or GABAergic cells, we find parallel deficits in specific hippocampal-dependent behaviors and in their putative underlying microcircuits. First, conditional knockout animals show increased innate anxiety and decreased feedforward GABAergic inhibition on dentate gyrus granule cells. Second, we observe impaired spatial memory processing, which is associated with decreased spine density and reduced AMPA/NMDA ratio of postsynaptic responses at the perforant- and entorhino-hippocampal pathways. We conclude that glutamate synaptically released by Cajal-Retzius cells is critical for the regulation of hippocampal microcircuits and specific types of behaviors. Anstötz et al. report that postnatal hippocampal Cajal-Retzius cells use vGluT2 as their main glutamate vesicular transporter. Conditional inactivation of vGluT2 in mice reveals both behavioral and network alterations. The observed results indicate the involvement of Cajal-Retzius cells in the regulation of innate anxiety/spatial memory and in potentially related neuronal circuits.
Collapse
Affiliation(s)
- Max Anstötz
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany.
| | - Sun Kyong Lee
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gianmaria Maccaferri
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
34
|
Khalife MR, Scott RC, Hernan AE. Mechanisms for Cognitive Impairment in Epilepsy: Moving Beyond Seizures. Front Neurol 2022; 13:878991. [PMID: 35645970 PMCID: PMC9135108 DOI: 10.3389/fneur.2022.878991] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
There has been a major emphasis on defining the role of seizures in the causation of cognitive impairments like memory deficits in epilepsy. Here we focus on an alternative hypothesis behind these deficits, emphasizing the mechanisms of information processing underlying healthy cognition characterized as rate, temporal and population coding. We discuss the role of the underlying etiology of epilepsy in altering neural networks thereby leading to both the propensity for seizures and the associated cognitive impairments. In addition, we address potential treatments that can recover the network function in the context of a diseased brain, thereby improving both seizure and cognitive outcomes simultaneously. This review shows the importance of moving beyond seizures and approaching the deficits from a system-level perspective with the guidance of network neuroscience.
Collapse
Affiliation(s)
- Mohamed R. Khalife
- Division of Neuroscience, Nemours Children's Health, Wilmington, DE, United States
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Rod C. Scott
- Division of Neuroscience, Nemours Children's Health, Wilmington, DE, United States
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
- Institute of Child Health, Neurosciences Unit University College London, London, United Kingdom
| | - Amanda E. Hernan
- Division of Neuroscience, Nemours Children's Health, Wilmington, DE, United States
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
35
|
O’Reilly RC, Ranganath C, Russin JL. The Structure of Systematicity in the Brain. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2022; 31:124-130. [PMID: 35785023 PMCID: PMC9246245 DOI: 10.1177/09637214211049233] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A hallmark of human intelligence is the ability to adapt to new situations, by applying learned rules to new content (systematicity) and thereby enabling an open-ended number of inferences and actions (generativity). Here, we propose that the human brain accomplishes these feats through pathways in the parietal cortex that encode the abstract structure of space, events, and tasks, and pathways in the temporal cortex that encode information about specific people, places, and things (content). Recent neural network models show how the separation of structure and content might emerge through a combination of architectural biases and learning, and these networks show dramatic improvements in the ability to capture systematic, generative behavior. We close by considering how the hippocampal formation may form integrative memories that enable rapid learning of new structure and content representations.
Collapse
Affiliation(s)
| | - Charan Ranganath
- Department of Psychology
- Center for Neuroscience, University of California, Davis
| | - Jacob L. Russin
- Department of Psychology
- Center for Neuroscience, University of California, Davis
| |
Collapse
|
36
|
Zutshi I, Valero M, Fernández-Ruiz A, Buzsáki G. Extrinsic control and intrinsic computation in the hippocampal CA1 circuit. Neuron 2022; 110:658-673.e5. [PMID: 34890566 PMCID: PMC8857017 DOI: 10.1016/j.neuron.2021.11.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/01/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
In understanding circuit operations, a key problem is the extent to which neuronal spiking reflects local computation or responses to upstream inputs. We addressed this issue in the hippocampus by performing combined optogenetic and pharmacogenetic local and upstream inactivation. Silencing the medial entorhinal cortex (mEC) largely abolished extracellular theta and gamma currents in CA1 while only moderately affecting firing rates. In contrast, CA3 and local CA1 silencing strongly decreased firing of CA1 neurons without affecting theta currents. Each perturbation reconfigured the CA1 spatial map. However, the ability of the CA1 circuit to support place field activity persisted, maintaining the same fraction of spatially tuned place fields and reliable assembly expression as in the intact mouse. Thus, the CA1 network can induce and maintain coordinated cell assemblies with minimal reliance on its inputs, but these inputs can effectively reconfigure and assist in maintaining stability of the CA1 map.
Collapse
Affiliation(s)
- Ipshita Zutshi
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA
| | - Manuel Valero
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA
| | - Antonio Fernández-Ruiz
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA
| | - György Buzsáki
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10016, USA.
| |
Collapse
|
37
|
The Entorhinal Cortex as a Gateway for Amygdala Influences on Memory Consolidation. Neuroscience 2022; 497:86-96. [PMID: 35122874 DOI: 10.1016/j.neuroscience.2022.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/16/2022]
Abstract
The amygdala, specifically its basolateral nucleus (BLA), is a critical site integrating neuromodulatory influences on memory consolidation in other brain areas. Almost 20 years ago, we reported the first direct evidence that BLA activity is required for modulatory interventions in the entorhinal cortex (EC) to affect memory consolidation (Roesler, Roozendaal, and McGaugh, 2002). Since then, significant advances have been made in our understanding of how the EC participates in memory. For example, the characterization of grid cells specialized in processing spatial information in the medial EC (mEC) that act as major relayers of information to the hippocampus (HIP) has changed our view of memory processing by the EC; and the development of optogenetic technologies for manipulation of neuronal activity has recently enabled important new discoveries on the role of the BLA projections to the EC in memory. Here, we review the current evidence on interactions between the BLA and EC in synaptic plasticity and memory formation. The findings suggest that the EC may function as a gateway and mediator of modulatory influences from the BLA, which are then processed and relayed to the HIP. Through extensive reciprocal connections among the EC, HIP, and several cortical areas, information related to new memories is then consolidated by these multiple brain systems, through various molecular and cellular mechanisms acting in a distributed and highly concerted manner, during several hours after learning. A special note is made on the contribution by Ivan Izquierdo to our understanding of memory consolidation at the brain system level.
Collapse
|
38
|
Park SB, Lim HY, Lee EY, Yoo SW, Jung HS, Lee E, Sun W, Lee I. The fasciola cinereum subregion of the hippocampus is important for the acquisition of visual contextual memory. Prog Neurobiol 2022; 210:102217. [PMID: 34999186 DOI: 10.1016/j.pneurobio.2022.102217] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/29/2021] [Accepted: 01/04/2022] [Indexed: 11/15/2022]
Abstract
The fasciola cinereum (FC) is a subregion of the hippocampus that has received relatively little attention compared with other hippocampal subregions with respect to anatomical characteristics and functional significance. Here, we show that the FC exhibits clear anatomical borders with the distalmost region of the CA1. Principal neurons in the FC resemble the granule cells in the dentate gyrus (DG). However, adult neurogenesis was not found unlike in the DG. The FC receives inputs mostly from the lateral entorhinal cortex and perirhinal cortex while projecting exclusively to the crest of the DG within the hippocampus. Neurotoxic lesions in the FC using colchicine impaired the acquisition, but not retrieval, of visual contextual memory in rats. FC lesions also impaired place recognition and object-in-place memory. As the rat performed the contextual memory task on the T-maze, place cells in the FC exhibited robust place fields and were indiscriminable from those in CA1 with respect to the basic firing properties. However, place cells in the FC fired only transiently in their place fields on the maze compared with those in CA1. Our findings suggest that the episodic firing pattern of the place cells in the FC may play critical roles in learning a novel contextual environment by facilitating temoporally structured contextual pattern separation in the DG of the hippocampus.
Collapse
Affiliation(s)
- Seong-Beom Park
- Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-ro 1, Shillim-dong, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Heung-Yeol Lim
- Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-ro 1, Shillim-dong, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eun-Young Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-ro 1, Shillim-dong, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung-Woo Yoo
- Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-ro 1, Shillim-dong, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyun-Suk Jung
- Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-ro 1, Shillim-dong, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eunsoo Lee
- Department of Anatomy, College of Medicine, Korea University, Anam-dong 5, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Woong Sun
- Department of Anatomy, College of Medicine, Korea University, Anam-dong 5, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-ro 1, Shillim-dong, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
39
|
de Landeta AB, Pereyra M, Miranda M, Bekinschtein P, Medina JH, Katche C. Functional connectivity of anterior retrosplenial cortex in object recognition memory. Neurobiol Learn Mem 2021; 186:107544. [PMID: 34737148 DOI: 10.1016/j.nlm.2021.107544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
Recognition memory can rely on three components: "what", "where" and "when". Recently we demonstrated that the anterior retrosplenial cortex (aRSC), like the perirhinal cortex (PRH) and unlike the hippocampus (HP), is required for consolidation of the "what" component. Here, we aimed at studying which brain structures interact with the aRSC to process object recognition (OR) memory in rats. We studied the interaction of six brain structures that are connected to the aRSC during OR memory processing: PRH, medial prefrontal cortex (mPFC), anteromedial thalamic nuclei (AM), medial entorhinal cortex (MEC), anterior cingulate cortex (ACC) and the dorsal HP (dHP). We previously described the role of the PRH and dHP, so we first studied the participation of the mPFC, AM, MEC and ACC in OR memory consolidation by bilateral microinfusions of the GABAA receptor agonist muscimol. We observed an impairment in OR long-term memory (LTM) when inactivating the mPFC, the AM and the MEC, but not the ACC. Then, we studied the functional connections by unilateral inactivation of the aRSC and each one of the six structures in the same (ipsilateral) or the opposite (contralateral) hemisphere. Our results showed an amnesic LTM effect in rats with ipsilateral inactivations of aRSC-PRH, aRSC-mPFC, aRSC-AM, or aRSC-MEC. On the other hand, we observed memory impairment when aRSC-ACC were inactivated in opposite hemispheres, and no effect when the aRSC-dHP connection was inactivated. Thus, our ipsilateral inactivation findings reveal that the aRSC and, at least one brain region required in OR LTM processing are essential to consolidate OR memory. In conclusion, our results show that several cortico-cortical and cortico-thalamic pathways are important for OR memory consolidation.
Collapse
Affiliation(s)
- Ana Belén de Landeta
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Buenos Aires, Argentina
| | - Magdalena Pereyra
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Buenos Aires, Argentina
| | - Magdalena Miranda
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Buenos Aires, Argentina
| | - Jorge H Medina
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Buenos Aires, Argentina; Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| | - Cynthia Katche
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Buenos Aires, Argentina.
| |
Collapse
|
40
|
Cholvin T, Hainmueller T, Bartos M. The hippocampus converts dynamic entorhinal inputs into stable spatial maps. Neuron 2021; 109:3135-3148.e7. [PMID: 34619088 PMCID: PMC8516433 DOI: 10.1016/j.neuron.2021.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/31/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022]
Abstract
The medial entorhinal cortex (MEC)-hippocampal network plays a key role in the processing, storage, and recall of spatial information. However, how the spatial code provided by MEC inputs relates to spatial representations generated by principal cell assemblies within hippocampal subfields remains enigmatic. To investigate this coding relationship, we employed two-photon calcium imaging in mice navigating through dissimilar virtual environments. Imaging large MEC bouton populations revealed spatially tuned activity patterns. MEC inputs drastically changed their preferred spatial field locations between environments, whereas hippocampal cells showed lower levels of place field reconfiguration. Decoding analysis indicated that higher place field reliability and larger context-dependent activity-rate differences allow low numbers of principal cells, particularly in the DG and CA1, to provide information about location and context more accurately and rapidly than MEC inputs. Thus, conversion of dynamic MEC inputs into stable spatial hippocampal maps may enable fast encoding and efficient recall of spatio-contextual information. MEC inputs to the DG, CA3, and CA1 show different spatial coding properties MEC inputs remap even more strongly than hippocampal principal cells Hippocampal principal cell activity is more reliable and stable than their MEC inputs Hippocampal principal cells allow improved spatial and contextual readout
Collapse
Affiliation(s)
- Thibault Cholvin
- Institute for Physiology I, University of Freiburg, Medical Faculty, Freiburg 79104, Germany
| | - Thomas Hainmueller
- NYU Neuroscience Institute, 435 East 30th Street, New York, NY 10016, USA
| | - Marlene Bartos
- Institute for Physiology I, University of Freiburg, Medical Faculty, Freiburg 79104, Germany.
| |
Collapse
|
41
|
Rueckemann JW, Sosa M, Giocomo LM, Buffalo EA. The grid code for ordered experience. Nat Rev Neurosci 2021; 22:637-649. [PMID: 34453151 PMCID: PMC9371942 DOI: 10.1038/s41583-021-00499-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Entorhinal cortical grid cells fire in a periodic pattern that tiles space, which is suggestive of a spatial coordinate system. However, irregularities in the grid pattern as well as responses of grid cells in contexts other than spatial navigation have presented a challenge to existing models of entorhinal function. In this Perspective, we propose that hippocampal input provides a key informative drive to the grid network in both spatial and non-spatial circumstances, particularly around salient events. We build on previous models in which neural activity propagates through the entorhinal-hippocampal network in time. This temporal contiguity in network activity points to temporal order as a necessary characteristic of representations generated by the hippocampal formation. We advocate that interactions in the entorhinal-hippocampal loop build a topological representation that is rooted in the temporal order of experience. In this way, the structure of grid cell firing supports a learned topology rather than a rigid coordinate frame that is bound to measurements of the physical world.
Collapse
Affiliation(s)
- Jon W Rueckemann
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Marielena Sosa
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA.
- Washington National Primate Research Center, Seattle, WA, USA.
| |
Collapse
|
42
|
Delpech JC, Pathak D, Varghese M, Kalavai SV, Hays EC, Hof PR, Johnson WE, Ikezu S, Medalla M, Luebke JI, Ikezu T. Wolframin-1-expressing neurons in the entorhinal cortex propagate tau to CA1 neurons and impair hippocampal memory in mice. Sci Transl Med 2021; 13:eabe8455. [PMID: 34524859 PMCID: PMC8763211 DOI: 10.1126/scitranslmed.abe8455] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abnormally phosphorylated tau, an early neuropathologic marker of Alzheimer’s disease (AD), first occurs in the brain’s entorhinal cortex layer II (ECII) and then spreads to the CA1 field of the hippocampus. Animal models of tau propagation aiming to recapitulate this phenomenon mostly show tau transfer from ECII stellate neurons to the dentate gyrus, but tau pathology in the dentate gyrus does not appear until advanced stages of AD. Wolframin-1–expressing (Wfs1+) pyramidal neurons have been shown functionally to modulate hippocampal CA1 neurons in mice. Here, we report that Wfs1+ pyramidal neurons are conserved in the ECII of postmortem human brain tissue and that Wfs1 colocalized with abnormally phosphorylated tau in brains from individuals with early AD. Wfs1+ neuron–specific expression of human P301L mutant tau in mouse ECII resulted in transfer of tau to hippocampal CA1 pyramidal neurons, suggesting spread of tau pathology as observed in the early Braak stages of AD. In mice expressing human mutant tau specifically in the ECII brain region, electrophysiological recordings of CA1 pyramidal neurons showed reduced excitability. Multielectrode array recordings of optogenetically stimulated Wfs1+ ECII axons resulted in reduced CA1 neuronal firing. Chemogenetic activation of CA1 pyramidal neurons showed a reduction in c-fos+ cells in the CA1. Last, a fear conditioning task revealed deficits in trace and contextual memory in mice overexpressing human mutant tau in the ECII. This work demonstrates tau transfer from the ECII to CA1 in mouse brain and provides an early Braak stage preclinical model of AD. Wolframin-1–positive neurons in the entorhinal cortex of mouse brain propagate tau to the hippocampal CA1 region resulting in memory impairment.
Collapse
Affiliation(s)
- Jean-Christophe Delpech
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.,University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Dhruba Pathak
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald C. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Srinidhi Venkatesan Kalavai
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Emma C Hays
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald C. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W Evan Johnson
- Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Seiko Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Maria Medalla
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.,Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Jennifer I Luebke
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.,Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.,Center for Systems Neuroscience, Boston University, Boston, MA, USA.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
43
|
Vo A, Tabrizi NS, Hunt T, Cayanan K, Chitale S, Anderson LG, Tenney S, White AO, Sabariego M, Hales JB. Medial entorhinal cortex lesions produce delay-dependent disruptions in memory for elapsed time. Neurobiol Learn Mem 2021; 185:107507. [PMID: 34474155 DOI: 10.1016/j.nlm.2021.107507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
Our memory for time is a fundamental ability that we use to judge the duration of events, put our experiences into a temporal context, and decide when to initiate actions. The medial entorhinal cortex (MEC), with its direct projections to the hippocampus, has been proposed to be the key source of temporal information for hippocampal time cells. However, the behavioral relevance of such temporal firing patterns remains unclear, as most of the paradigms used for the study of temporal processing and time cells are either spatial tasks or tasks for which MEC function is not required. In this study, we asked whether the MEC is necessary for rats to perform a time duration discrimination task (TDD), in which rats were trained to discriminate between 10-s and 20-s delay intervals. After reaching a 90% performance criterion, the rats were assigned to receive an excitotoxic MEC-lesion or sham-lesion surgery. We found that after recovering from surgery, rats with MEC lesions were impaired on the TDD task in comparison to rats with sham lesions, failing to return to criterion performance. Their impairment, however, was specific to the longer, 20-s delay trials. These results indicate that time processing is dependent on MEC neural computations only for delays that exceed 10 s, perhaps because long-term memory resources are needed to keep track of longer time intervals.
Collapse
Affiliation(s)
- Annette Vo
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Nina S Tabrizi
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Thomas Hunt
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Kayla Cayanan
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Saee Chitale
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Lucy G Anderson
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Sarah Tenney
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA 01075, USA
| | - André O White
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA 01075, USA; Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Marta Sabariego
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA 01075, USA.
| | - Jena B Hales
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA.
| |
Collapse
|
44
|
Frost BE, Martin SK, Cafalchio M, Islam MN, Aggleton JP, O'Mara SM. Anterior Thalamic Inputs Are Required for Subiculum Spatial Coding, with Associated Consequences for Hippocampal Spatial Memory. J Neurosci 2021; 41:6511-6525. [PMID: 34131030 PMCID: PMC8318085 DOI: 10.1523/jneurosci.2868-20.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 11/21/2022] Open
Abstract
Just as hippocampal lesions are principally responsible for "temporal lobe" amnesia, lesions affecting the anterior thalamic nuclei seem principally responsible for a similar loss of memory, "diencephalic" amnesia. Compared with the former, the causes of diencephalic amnesia have remained elusive. A potential clue comes from how the two sites are interconnected, as within the hippocampal formation, only the subiculum has direct, reciprocal connections with the anterior thalamic nuclei. We found that both permanent and reversible anterior thalamic nuclei lesions in male rats cause a cessation of subicular spatial signaling, reduce spatial memory performance to chance, but leave hippocampal CA1 place cells largely unaffected. We suggest that a core element of diencephalic amnesia stems from the information loss in hippocampal output regions following anterior thalamic pathology.SIGNIFICANCE STATEMENT At present, we know little about interactions between temporal lobe and diencephalic memory systems. Here, we focused on the subiculum, as the sole hippocampal formation region directly interconnected with the anterior thalamic nuclei. We combined reversible and permanent lesions of the anterior thalamic nuclei, electrophysiological recordings of the subiculum, and behavioral analyses. Our results were striking and clear: following permanent thalamic lesions, the diverse spatial signals normally found in the subiculum (including place cells, grid cells, and head-direction cells) all disappeared. Anterior thalamic lesions had no discernible impact on hippocampal CA1 place fields. Thus, spatial firing activity within the subiculum requires anterior thalamic function, as does successful spatial memory performance. Our findings provide a key missing part of the much bigger puzzle concerning why anterior thalamic damage is so catastrophic for spatial memory in rodents and episodic memory in humans.
Collapse
Affiliation(s)
- Bethany E Frost
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Sean K Martin
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Matheus Cafalchio
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Md Nurul Islam
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - John P Aggleton
- School of Psychology, Cardiff University, Cardiff, CF10 3AS, United Kingdom
| | - Shane M O'Mara
- School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland
| |
Collapse
|
45
|
Poitreau J, Buttet M, Manrique C, Poucet B, Sargolini F, Save E. Navigation using global or local reference frames in rats with medial and lateral entorhinal cortex lesions. Behav Brain Res 2021; 413:113448. [PMID: 34246711 DOI: 10.1016/j.bbr.2021.113448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
The medial (MEC) and the lateral (LEC) regions of the entorhinal cortex send a major input to the hippocampus and have been proposed to play a foremost role in combining spatial and non-spatial attributes of episodic memory. In addition, it has been recently suggested that the MEC is involved in the processing of information in a global reference frame and the LEC in the processing of information in a local reference frame. Whether these putative functions could be generalized to navigation contexts has not been established yet. To address this hypothesis, rats with MEC or LEC NMDA-induced lesions were trained in two versions of a navigation task in the water maze, a global cue condition in which they had to use distal room cues and a local cue condition in which they had to use 3 objects placed in the pool. In the global cue condition, MEC-lesioned rats exhibited slower acquisition and were not able to precisely locate the submerged platform during the probe trial. In contrast LEC-lesioned rats exhibited control-like performance. In the local cue condition, navigational abilities were spared in both lesion groups. In addition when the 3 different objects were replaced by 3 identical objects, all groups maintained their navigation accuracy suggesting that the identity of objects is not crucial for place navigation. Overall, the results indicate that the MEC is necessary for place navigation using a global reference frame. In contrast, navigation using a local reference frame does not require the LEC nor the MEC.
Collapse
Affiliation(s)
| | - Manon Buttet
- Laboratory of Cognitive Neuroscience, Marseille, France
| | | | - Bruno Poucet
- Laboratory of Cognitive Neuroscience, Marseille, France
| | | | - Etienne Save
- Laboratory of Cognitive Neuroscience, Marseille, France.
| |
Collapse
|
46
|
Learning an Efficient Hippocampal Place Map from Entorhinal Inputs Using Non-Negative Sparse Coding. eNeuro 2021; 8:ENEURO.0557-20.2021. [PMID: 34162691 PMCID: PMC8266216 DOI: 10.1523/eneuro.0557-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/03/2022] Open
Abstract
Cells in the entorhinal cortex (EC) contain rich spatial information and project strongly to the hippocampus where a cognitive map is supposedly created. These cells range from cells with structured spatial selectivity, such as grid cells in the medial EC (MEC) that are selective to an array of spatial locations that form a hexagonal grid, to weakly spatial cells, such as non-grid cells in the MEC and lateral EC (LEC) that contain spatial information but have no structured spatial selectivity. However, in a small environment, place cells in the hippocampus are generally selective to a single location of the environment, while granule cells in the dentate gyrus of the hippocampus have multiple discrete firing locations but lack spatial periodicity. Given the anatomic connection from the EC to the hippocampus, how the hippocampus retrieves information from upstream EC remains unclear. Here, we propose a unified learning model that can describe the spatial tuning properties of both hippocampal place cells and dentate gyrus granule cells based on non-negative sparse coding from EC inputs. Sparse coding plays an important role in many cortical areas and is proposed here to have a key role in the hippocampus. Our results show that the hexagonal patterns of MEC grid cells with various orientations, grid spacings and phases are necessary for the model to learn different place cells that efficiently tile the entire spatial environment. However, if there is a lack of diversity in any grid parameters or a lack of hippocampal cells in the network, this will lead to the emergence of hippocampal cells that have multiple firing locations. More surprisingly, the model can also learn hippocampal place cells even when weakly spatial cells, instead of grid cells, are used as the input to the hippocampus. This work suggests that sparse coding may be one of the underlying organizing principles for the navigational system of the brain.
Collapse
|
47
|
Hales JB, Reitz NT, Vincze JL, Ocampo AC, Leutgeb S, Clark RE. A role for medial entorhinal cortex in spatial and nonspatial forms of memory in rats. Behav Brain Res 2021; 407:113259. [PMID: 33775779 PMCID: PMC8143915 DOI: 10.1016/j.bbr.2021.113259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/04/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022]
Abstract
Many studies have focused on the role of the medial entorhinal cortex (MEC) in spatial memory and spatial processing. However, more recently, studies have suggested that the functions of the MEC may extend beyond the spatial domain and into the temporal aspects of memory processing. The current study examined the effect of MEC lesions on spatial and nonspatial tasks that require rats to learn and remember information about location or stimulus-stimulus associations across short temporal gaps. MEC- and sham-lesioned male rats were tested on a watermaze delayed match to position (DMP) task and trace fear conditioning (TFC). Rats with MEC lesions were impaired at remembering the platform location after both the shortest (1 min) and the longest (6 h) delays on the DMP task, never performing as precisely as sham rats under the easiest condition and performing poorly at the longest delay. On the TFC task, although MEC-lesioned rats were not impaired at remembering the conditioning context, they showed reduced freezing in response to the previously associated tone. These findings suggest that the MEC plays a role in bridging temporal delays during learning and memory that extend beyond its established role in spatial memory processing.
Collapse
Affiliation(s)
- Jena B Hales
- Department of Psychological Sciences, University of San Diego, San Diego, CA, 92110, USA.
| | - Nicole T Reitz
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Jonathan L Vincze
- Marian College of Osteopathic Medicine, Indianapolis, IN, 46222, USA
| | - Amber C Ocampo
- Department of Psychiatry, Yale University, New Haven, CT, 06511, USA
| | - Stefan Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA; Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert E Clark
- Department of Psychiatry 0603, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
48
|
Long X, Zhang SJ. A novel somatosensory spatial navigation system outside the hippocampal formation. Cell Res 2021; 31:649-663. [PMID: 33462427 PMCID: PMC8169756 DOI: 10.1038/s41422-020-00448-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 11/10/2020] [Indexed: 01/30/2023] Open
Abstract
Spatially selective firing of place cells, grid cells, boundary vector/border cells and head direction cells constitutes the basic building blocks of a canonical spatial navigation system centered on the hippocampal-entorhinal complex. While head direction cells can be found throughout the brain, spatial tuning outside the hippocampal formation is often non-specific or conjunctive to other representations such as a reward. Although the precise mechanism of spatially selective firing activity is not understood, various studies show sensory inputs, particularly vision, heavily modulate spatial representation in the hippocampal-entorhinal circuit. To better understand the contribution of other sensory inputs in shaping spatial representation in the brain, we performed recording from the primary somatosensory cortex in foraging rats. To our surprise, we were able to detect the full complement of spatially selective firing patterns similar to that reported in the hippocampal-entorhinal network, namely, place cells, head direction cells, boundary vector/border cells, grid cells and conjunctive cells, in the somatosensory cortex. These newly identified somatosensory spatial cells form a spatial map outside the hippocampal formation and support the hypothesis that location information modulates body representation in the somatosensory cortex. Our findings provide transformative insights into our understanding of how spatial information is processed and integrated in the brain, as well as functional operations of the somatosensory cortex in the context of rehabilitation with brain-machine interfaces.
Collapse
Affiliation(s)
- Xiaoyang Long
- grid.410570.70000 0004 1760 6682Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037 China
| | - Sheng-Jia Zhang
- grid.410570.70000 0004 1760 6682Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037 China
| |
Collapse
|
49
|
de Francisco A, Sierra-Palomares Y, Felipe M, Calle D, Desco M, Cussó L. Effect of illumination level [18F]FDG-PET brain uptake in free moving mice. PLoS One 2021; 16:e0251454. [PMID: 33984015 PMCID: PMC8118315 DOI: 10.1371/journal.pone.0251454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
In both clinical and preclinical scenarios, 2-deoxy-2[18F]fluoro-D-glucose ([18F]FDG) is the radiotracer most widely used to study brain glucose metabolism with positron emission tomography (PET). In clinical practice, there is a worldwide standardized protocol for preparing patients for [18F]FDG-PET studies, which specifies the room lighting. However, this standard is typically not observed in the preclinical field, although it is well known that animal handling affects the biodistribution of [18F]FDG. The present study aimed to evaluate the effect of ambient lighting on brain [18F]FDG uptake in mice. Two [18F]FDG-PET studies were performed on each animal, one in light and one in dark conditions. Thermal video recordings were acquired to analyse animal motor activity in both conditions. [18F]FDG-PET images were analysed with the Statistical Parametric Mapping method. The results showed that [18F]FDG uptake is higher in darkness than in light condition in mouse nucleus accumbens, hippocampus, midbrain, hindbrain, and cerebellum. The SPM analysis also showed an interaction between the illumination condition and the sex of the animal. Mouse activity was significantly different (p = 0.01) between light conditions (632 ± 215 s of movement) and dark conditions (989 ± 200 s), without significant effect of sex (p = 0.416). We concluded that room illumination conditions during [18F]FDG uptake in mice affected the brain [18F]FDG biodistribution. Therefore, we highlight the importance to control this factor to ensure more reliable and reproducible mouse brain [18F]FDG-PET results.
Collapse
Affiliation(s)
- Alexandra de Francisco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Yolanda Sierra-Palomares
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María Felipe
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Daniel Calle
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
- * E-mail:
| | - Lorena Cussó
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| |
Collapse
|
50
|
Vandrey B, Duncan S, Ainge JA. Object and object-memory representations across the proximodistal axis of CA1. Hippocampus 2021; 31:881-896. [PMID: 33942429 DOI: 10.1002/hipo.23331] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 03/11/2021] [Accepted: 03/28/2021] [Indexed: 11/07/2022]
Abstract
Episodic memory requires information about objects to be integrated into a spatial framework. Place cells in the hippocampus encode spatial representations of objects that could be generated through signaling from the entorhinal cortex. Projections from lateral (LEC) and medial entorhinal cortex (MEC) to the hippocampus terminate in distal and proximal CA1, respectively. We recorded place cells in distal and proximal CA1 as rats explored an environment that contained objects. Place cells in distal CA1 demonstrated higher measures of spatial tuning, stability, and closer proximity of place fields to objects. Furthermore, remapping to object displacement was modulated by place field proximity to objects in distal, but not proximal CA1. Finally, representations of previous object locations were closer to those locations in distal CA1 than proximal CA1. Our data suggest that in cue-rich environments, LEC inputs to the hippocampus support spatial representations with higher spatial tuning, closer proximity to objects, and greater stability than those receiving inputs from MEC. This is consistent with functional segregation in the entorhinal-hippocampal circuits underlying object-place memory.
Collapse
Affiliation(s)
- Brianna Vandrey
- University of St Andrews, School of Psychology and Neuroscience, St Andrews, Fife, UK
- University of Edinburgh, Centre for Discovery Brain Sciences, Edinburgh, EH8 9XD, UK
| | - Stephen Duncan
- University of St Andrews, School of Psychology and Neuroscience, St Andrews, Fife, UK
| | - James A Ainge
- University of St Andrews, School of Psychology and Neuroscience, St Andrews, Fife, UK
| |
Collapse
|