1
|
Tan L, Yin T, Xiang H, Wang L, Mudgal P, Chen J, Ding Y, Wang G, Lim BJW, Huang Y, Huang D, Liang Y, Alexander PB, Xiang K, Wang E, Yan C, Ma Z, Tan M, Li QJ, Wang XF. Aberrant cytoplasmic expression of UHRF1 restrains the MHC-I-mediated anti-tumor immune response. Nat Commun 2024; 15:8569. [PMID: 39362877 PMCID: PMC11450162 DOI: 10.1038/s41467-024-52902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Immunotherapy successfully complements traditional cancer treatment. However, primary and acquired resistance might limit efficacy. Reduced antigen presentation by MHC-I has been identified as potential resistance factor. Here we show that the epigenetic regulator ubiquitin-like with PHD and ring finger domains 1 (UHRF1), exhibits altered expression and aberrant cytosolic localization in cancerous tissues, where it promotes MHC-I ubiquitination and degradation. Cytoplasmic translocation of UHRF1 is induced by its phosphorylation on a specific serine in response to signals provided by factors present in the tumor microenvironment (TME), such as TGF-β, enabling UHRF1 to bind MHC-I. Downregulation of MHC-I results in suppression of the antigen presentation pathway to establish an immune hostile TME. UHRF1 inactivation by genetic deletion synergizes with immune checkpoint blockade (ICB) treatment and induces an anti-tumour memory response by evoking low-affinity T cells. Our study adds to the understanding of UHRF1 in cancer immune evasion and provides a potential target to synergize with immunotherapy and overcome immunotherapeutic resistance.
Collapse
Affiliation(s)
- Lianmei Tan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Tao Yin
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Handan Xiang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | | | - Junying Chen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yi Ding
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Guoping Wang
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Bryan Jian Wei Lim
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Yuqi Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - De Huang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yaosi Liang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Peter B Alexander
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Kun Xiang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Ergang Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Chengsong Yan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Zhehao Ma
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qi-Jing Li
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
2
|
Shu Q, Liu X, Xiang X, Bo X. The expression and clinical significance of UHRF1 in soft tissue sarcomas and its prognostic value. Medicine (Baltimore) 2024; 103:e38393. [PMID: 38847665 PMCID: PMC11155523 DOI: 10.1097/md.0000000000038393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/08/2024] [Indexed: 06/10/2024] Open
Abstract
To explore the expression and prognostic value of UHRF1 gene in soft tissue sarcoma (STS) and its related molecular mechanism. The expression data and clinicopathological parameters of STS were downloaded from the Cancer Genome Atlas (TCGA). The expression level of UHRF1 in STS and adjacent tissues and its relationship with clinicopathological characteristics were analyzed. The expression level of UHRF1 in STS tissues was significantly higher than that in paracancerous tissues (P < .001), and the overall survival (OS) time of patients with high UHRF1 expression was significantly shorter than that of patients with low UHRF1 expression (P = .002). The expression of UHRF1 was correlated with tumor necrosis, histological type and metastasis, and the differences were statistically significant (P = .013; P = .001; P = .002). The area ratio under receiver operating characteristic (ROC) curve between STS tissue and adjacent tissue of UHRF1 expression was 0.994. Number of tumors (HR = 0.416, 95%CI = 0.260-0.666, P < .001), depth of tumor (HR = 2.888, 95%CI = 0.910-9.168, P = .033), metastasis (HR = 2.888, 95% CI = 1.762-4.732, P < .001), residual tumor (HR = 2.637, 95% CI = 1.721-4.038, P < .001) and UHRF1 expression (HR = 1.342, 95% CI = 1.105-1.630, P = .003) were significantly associated with OS, and high expression of UHRF1 (HR = 1.387, 95%CI = 1.008-1.907, P = .044) was an independent risk factor for the prognosis of STS patients. The results of the nomogram exhibited that UHRF1 expression level had a significant effect on the total score value. GSEA enrichment analysis suggested that UHRF1 was involved in 14 signaling pathways regulating mRNA spliceosome, cell cycle, P53 signaling pathway were identified. Single sample gene set enrichment analysis (ssGSEA) exhibited that the expression of UHRF1 in STS was positively correlated with the level of Th2 cell infiltration, and negatively correlated with plasmacytoid dendritic cells (pDC), natural killer cells (NK), Eosinophils, Mast cells, etc. UHRF1 expression is involved in the immune microenvironment of HCC and affects the occurrence and development of HCC. UHRF1 is highly expressed in STS tissues. It is involved in the regulation of multiple tumor-related signaling pathways and immune cell microenvironment, suggesting that UHRF1 may be a potential molecular marker for prognosis prediction and targeted therapy of STS patients.
Collapse
Affiliation(s)
- Qiang Shu
- Department of Hepatobiliary Surgery, Neijiang First People’s Hospital affiliated to Chongqing Medical University, Neijiang, China
| | - XiaoLing Liu
- Department of Infection Management, Neijiang Hospital of Traditional Chinese Medicine affiliated to Chengdu University of Traditional Chinese Medicine, Neijiang, China
| | - Xing Xiang
- Department of Hepatobiliary Surgery, Neijiang First People’s Hospital affiliated to Chongqing Medical University, Neijiang, China
| | - Xu Bo
- Department of Hepatobiliary Surgery, Neijiang First People’s Hospital affiliated to Chongqing Medical University, Neijiang, China
| |
Collapse
|
3
|
Yamaguchi K, Chen X, Rodgers B, Miura F, Bashtrykov P, Bonhomme F, Salinas-Luypaert C, Haxholli D, Gutekunst N, Aygenli BÖ, Ferry L, Kirsh O, Laisné M, Scelfo A, Ugur E, Arimondo PB, Leonhardt H, Kanemaki MT, Bartke T, Fachinetti D, Jeltsch A, Ito T, Defossez PA. Non-canonical functions of UHRF1 maintain DNA methylation homeostasis in cancer cells. Nat Commun 2024; 15:2960. [PMID: 38580649 PMCID: PMC10997609 DOI: 10.1038/s41467-024-47314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
DNA methylation is an essential epigenetic chromatin modification, and its maintenance in mammals requires the protein UHRF1. It is yet unclear if UHRF1 functions solely by stimulating DNA methylation maintenance by DNMT1, or if it has important additional functions. Using degron alleles, we show that UHRF1 depletion causes a much greater loss of DNA methylation than DNMT1 depletion. This is not caused by passive demethylation as UHRF1-depleted cells proliferate more slowly than DNMT1-depleted cells. Instead, bioinformatics, proteomics and genetics experiments establish that UHRF1, besides activating DNMT1, interacts with DNMT3A and DNMT3B and promotes their activity. In addition, we show that UHRF1 antagonizes active DNA demethylation by TET2. Therefore, UHRF1 has non-canonical roles that contribute importantly to DNA methylation homeostasis; these findings have practical implications for epigenetics in health and disease.
Collapse
Affiliation(s)
- Kosuke Yamaguchi
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France.
| | - Xiaoying Chen
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Brianna Rodgers
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, Epigenetic Chemical Biology, CNRS, UMR 3523, Chem4Life, Paris, France
| | | | - Deis Haxholli
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicole Gutekunst
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| | | | - Laure Ferry
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Olivier Kirsh
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Marthe Laisné
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Andrea Scelfo
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Enes Ugur
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paola B Arimondo
- Institut Pasteur, Université Paris Cité, Epigenetic Chemical Biology, CNRS, UMR 3523, Chem4Life, Paris, France
| | - Heinrich Leonhardt
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
- Department of Biological Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | |
Collapse
|
4
|
Lu G, Xiao S, Meng F, Zhang L, Chang Y, Zhao J, Gao N, Su W, Guo X, Liu Y, Li C, Tang W, Zou L, Yu S, Liu R. AMPK activation attenuates central sensitization in a recurrent nitroglycerin-induced chronic migraine mouse model by promoting microglial M2-type polarization. J Headache Pain 2024; 25:29. [PMID: 38454376 PMCID: PMC10921743 DOI: 10.1186/s10194-024-01739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Energy metabolism disorders and neurogenic inflammation play important roles in the central sensitization to chronic migraine (CM). AMP-activated protein kinase (AMPK) is an intracellular energy sensor, and its activation regulates inflammation and reduces neuropathic pain. However, studies on the involvement of AMPK in the regulation of CM are currently lacking. Therefore, this study aimed to explore the mechanism underlying the involvement of AMPK in the central sensitization to CM. METHODS Mice with recurrent nitroglycerin (NTG)-induced CM were used to detect the expression of AMPK protein in the trigeminal nucleus caudalis (TNC). Following intraperitoneal injection of the AMPK activator 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR) and inhibitor compound C, the mechanical pain threshold, activity level, and pain-like behaviors in the mice were measured. The expression of calcitonin gene-related peptide (CGRP) and cytokines, M1/M2 microglia, and NF-κB pathway activation were detected after the intervention. RESULTS Repeated NTG injections resulted in a gradual decrease in AMPK protein expression, and the negative regulation of AMPK by increased ubiquitin-like plant homeodomain and RING finger domain 1 (UHRF1) expression may counteract AMPK activation by increasing ADP/ATP. AICAR can reduce the hyperalgesia and pain-like behaviors of CM mice, improve the activity of mice, reduce the expression of CGRP, IL-1β, IL-6, and TNF-α in the TNC region, and increase the expression of IL-4 and IL-10. Moreover, AMPK in TNC was mainly located in microglia. AICAR could reduce the expression of inducible NO synthase (iNOS) in M1 microglia and increase the expression of Arginase 1 (Arg1) in M2 microglia by inhibiting the activation of NF-κB pathway. CONCLUSIONS AMPK was involved in the central sensitization of CM, and the activation of AMPK reduced neuroinflammation in NTG-induced CM mice. AMPK may provide new insights into interventions for energy metabolism disorders and neurogenic inflammation in migraine.
Collapse
Affiliation(s)
- Guangshuang Lu
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Department of Pediatrics, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, China
| | - Shaobo Xiao
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Fanchao Meng
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Leyi Zhang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Yan Chang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Jinjing Zhao
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Nan Gao
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Wenjie Su
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Xinghao Guo
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Yingyuan Liu
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Chenhao Li
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Wenjing Tang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Liping Zou
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Shengyuan Yu
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
| | - Ruozhuo Liu
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
| |
Collapse
|
5
|
Ashraf W, Ahmad T, Reynoird N, Hamiche A, Mély Y, Bronner C, Mousli M. Natural and Synthetic Anticancer Epidrugs Targeting the Epigenetic Integrator UHRF1. Molecules 2023; 28:5997. [PMID: 37630248 PMCID: PMC10459542 DOI: 10.3390/molecules28165997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, and its incidence and mortality are increasing each year. Improved therapeutic strategies against cancer have progressed, but remain insufficient to invert this trend. Along with several other risk factors, abnormal genetic and epigenetic regulations play a critical role in the initiation of cellular transformation, as well as tumorigenesis. The epigenetic regulator UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is a multidomain protein with oncogenic abilities overexpressed in most cancers. Through the coordination of its multiple domains and other epigenetic key players, UHRF1 regulates DNA methylation and histone modifications. This well-coordinated dialogue leads to the silencing of tumor-suppressor genes (TSGs) and facilitates tumor cells' resistance toward anticancer drugs, ultimately promoting apoptosis escape and uncontrolled proliferation. Several studies have shown that the downregulation of UHRF1 with natural compounds in tumor cells induces the reactivation of various TSGs, inhibits cell growth, and promotes apoptosis. In this review, we discuss the underlying mechanisms and the potential of various natural and synthetic compounds that can inhibit/minimize UHRF1's oncogenic activities and/or its expression.
Collapse
Affiliation(s)
- Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Tanveer Ahmad
- Institut Pour L’avancée des Biosciences, Centre de Recherche UGA, INSERM U1209, CNRS 5309, Université Grenoble Alpes, 38058 Grenoble, France; (T.A.); (N.R.)
| | - Nicolas Reynoird
- Institut Pour L’avancée des Biosciences, Centre de Recherche UGA, INSERM U1209, CNRS 5309, Université Grenoble Alpes, 38058 Grenoble, France; (T.A.); (N.R.)
| | - Ali Hamiche
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Equipe Labellisée Ligue Contre le Cancer, 67401 Illkirch, France;
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France;
| | - Christian Bronner
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Equipe Labellisée Ligue Contre le Cancer, 67401 Illkirch, France;
| | - Marc Mousli
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France;
| |
Collapse
|
6
|
Kostyrko K, Román M, Lee AG, Simpson DR, Dinh PT, Leung SG, Marini KD, Kelly MR, Broyde J, Califano A, Jackson PK, Sweet-Cordero EA. UHRF1 is a mediator of KRAS driven oncogenesis in lung adenocarcinoma. Nat Commun 2023; 14:3966. [PMID: 37407562 PMCID: PMC10322837 DOI: 10.1038/s41467-023-39591-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
KRAS is a frequent driver in lung cancer. To identify KRAS-specific vulnerabilities in lung cancer, we performed RNAi screens in primary spheroids derived from a Kras mutant mouse lung cancer model and discovered an epigenetic regulator Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). In human lung cancer models UHRF1 knock-out selectively impaired growth and induced apoptosis only in KRAS mutant cells. Genome-wide methylation and gene expression analysis of UHRF1-depleted KRAS mutant cells revealed global DNA hypomethylation leading to upregulation of tumor suppressor genes (TSGs). A focused CRISPR/Cas9 screen validated several of these TSGs as mediators of UHRF1-driven tumorigenesis. In vivo, UHRF1 knock-out inhibited tumor growth of KRAS-driven mouse lung cancer models. Finally, in lung cancer patients high UHRF1 expression is anti-correlated with TSG expression and predicts worse outcomes for patients with KRAS mutant tumors. These results nominate UHRF1 as a KRAS-specific vulnerability and potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Kaja Kostyrko
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
| | - Marta Román
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Alex G Lee
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - David R Simpson
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Phuong T Dinh
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Stanley G Leung
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Kieren D Marini
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Marcus R Kelly
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua Broyde
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - E Alejandro Sweet-Cordero
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Hou J, Li W, Zhang S, Tan D, Lv K, Zhu Y, Hou Y, Guo H, Jiang L. UHRF1 plays an oncogenic role in small cell lung cancer. Mol Carcinog 2023; 62:385-397. [PMID: 36537722 DOI: 10.1002/mc.23493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Small cell lung cancer (SCLC) is a malignant tumor characterized by aggressiveness and dismal prognosis. The specific role of ubiquitin-like PHD and RING finger domain (UHRF1), a frequently overexpressed cancer-promoting gene in various tumors, is poorly understood in SCLC. Herein, we explored the potential carcinogenic role of UHRF1 in SCLC. First, public databases were used to analyze the expression of UHRF1 in SCLC, and tissue specimens in our center were examined to confirm the results while clinical outcomes were collected to analyze its relationship with UHRF1. Then, UHRF1 knockdown and overexpression cell lines were established to evaluate the carcinogenic function of UHRF1 in vitro and in vivo. The mechanism of the biological consequences was determined by co-inmunoprecipitation. Moreover, we also analyzed the influence of UHRF1 on cisplatin (DDP) sensitivity of SCLC. The expression of UHRF1 was significantly higher in SCLC tissues than in normal tissues, and high levels of UHRF1 suggested a poor prognosis for SCLC. Mechanistically, UHRF1 promoted SCLC growth through yes-associated protein 1 (YAP1). Specifically, UHRF1 bound to YAP1 and inhibited YAP1 ubiquitin degradation, thus stabilizing the YAP1 protein in SCLC cells. UHRF1 downregulation enhanced DDP sensitivity in SCLC cells and was correlated with a favorable prognosis in patients with SCLC treated with platinum-based chemotherapy. UHRF1 plays an oncogenic role in SCLC by modulating YAP1. Therefore, UHRF1 could be used as a biomarker to predict the prognosis of SCLC patients and serve as a potential therapeutic target for SCLC patients.
Collapse
Affiliation(s)
- Jia Hou
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenyuan Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shirong Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Deli Tan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kejia Lv
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yue Zhu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Environment and Disease-related Genes of the Education Ministry, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Lili Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
AKT1 regulates UHRF1 protein stability and promotes the resistance to abiraterone in prostate cancer. Oncogenesis 2023; 12:1. [PMID: 36593255 PMCID: PMC9807647 DOI: 10.1038/s41389-022-00446-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
Oncogenic activation of PI3K/AKT signaling pathway, together with epigenetic aberrations are the characters of castration-resistant prostate cancer (CRPC). UHRF1 as a key epigenetic regulator, plays a critical role in prostate cancer (PCa) development, and its expression is positively correlated with the degree of malignancy. In this present study we investigated the potential regulatory mechanism of AKT1 on UHRF1, and further validated the in vitro and in vivo anticancer efficacy of AKT phosphorylation inhibitor MK2206 in combination with abiraterone. Both UHRF1 and p-AKT aberrantly overexpressed in the abiraterone-resistant PCa cells. Further studies revealed that AKT1 protein interacts with UHRF1, and AKT1 directly phosphorylates UHRF1 via the site Thr-210. MK2206 induced UHRF1 protein degradation by inhibiting AKT1-induced UHRF1 phosphorylation, and then reduced the interaction between UHRF1 and deubiquitinase USP7, while promoted the interaction between UHRF1 and E3 ubiquitin protein ligase BTRC. MK2206 significantly promoted the sensitivity of abiraterone-refractory PCa cells and xenografts to abiraterone by decreasing UHRF1 protein level, and reversed the phenotype of NEPC, evently induced cellular senescence and cell apoptosis. Altogether, our present study for the first time revealed a novel molecular mechanism of abiraterone resistance through PI3K/AKT-UHRF1 pathway, and provided a novel therapeutic modality by targeting PI3K/AKT1 to promote the drug sensitivity of abiraterone in PCa patients.
Collapse
|
9
|
Mouawad R, Neamati N. Inhibition of Protein Disulfide Isomerase (PDIA1) Leads to Proteasome-Mediated Degradation of Ubiquitin-like PHD and RING Finger Domain-Containing Protein 1 (UHRF1) and Increased Sensitivity of Glioblastoma Cells to Topoisomerase II Inhibitors. ACS Pharmacol Transl Sci 2022; 6:100-114. [PMID: 36654750 PMCID: PMC9841782 DOI: 10.1021/acsptsci.2c00186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor, and the prognosis remains poor with current available treatments. PDIA1 is considered a promising therapeutic target in GBM. In this study, we demonstrate that targeting PDIA1 results in increased GBM cell death by topoisomerase II (Top-II) inhibitors resulting in proteasome-mediated degradation of the oncogenic protein UHRF1. Combination of the PDIA1 inhibitor, bepristat-2a, produces strong synergy with doxorubicin, etoposide, and mitoxantrone in GBM and other cancer cell lines. Our bioinformatics analysis of multiple datasets revealed downregulation of UHRF1, upon PDIA1 inhibition. In addition, PDIA1 inhibition results in proteasome-mediated degradation of UHRF1 protein. Interestingly, treatment of GBM cells with bepristat-2a results in increased apoptosis and resistance to ferroptosis. Our findings emphasize the importance of PDIA1 as a therapeutic target in GBM and present a promising new therapeutic approach using Top-II inhibitors for GBM treatment.
Collapse
|
10
|
Kaplun DS, Kaluzhny DN, Prokhortchouk EB, Zhenilo SV. DNA Methylation: Genomewide Distribution, Regulatory Mechanism and Therapy Target. Acta Naturae 2022; 14:4-19. [PMID: 36694897 PMCID: PMC9844086 DOI: 10.32607/actanaturae.11822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/29/2022] [Indexed: 01/22/2023] Open
Abstract
DNA methylation is the most important epigenetic modification involved in the regulation of transcription, imprinting, establishment of X-inactivation, and the formation of a chromatin structure. DNA methylation in the genome is often associated with transcriptional repression and the formation of closed heterochromatin. However, the results of genome-wide studies of the DNA methylation pattern and transcriptional activity of genes have nudged us toward reconsidering this paradigm, since the promoters of many genes remain active despite their methylation. The differences in the DNA methylation distribution in normal and pathological conditions allow us to consider methylation as a diagnostic marker or a therapy target. In this regard, the need to investigate the factors affecting DNA methylation and those involved in its interpretation becomes pressing. Recently, a large number of protein factors have been uncovered, whose ability to bind to DNA depends on their methylation. Many of these proteins act not only as transcriptional activators or repressors, but also affect the level of DNA methylation. These factors are considered potential therapeutic targets for the treatment of diseases resulting from either a change in DNA methylation or a change in the interpretation of its methylation level. In addition to protein factors, a secondary DNA structure can also affect its methylation and can be considered as a therapy target. In this review, the latest research into the DNA methylation landscape in the genome has been summarized to discuss why some DNA regions avoid methylation and what factors can affect its level or interpretation and, therefore, can be considered a therapy target.
Collapse
Affiliation(s)
- D. S. Kaplun
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071 Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119071 Russia
| | - D. N. Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia
| | - E. B. Prokhortchouk
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071 Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119071 Russia
| | - S. V. Zhenilo
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071 Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119071 Russia
| |
Collapse
|
11
|
Mandal P, Eswara K, Yerkesh Z, Kharchenko V, Zandarashvili L, Szczepski K, Bensaddek D, Jaremko Ł, Black BE, Fischle W. Molecular basis of hUHRF1 allosteric activation for synergistic histone modification binding by PI5P. SCIENCE ADVANCES 2022; 8:eabl9461. [PMID: 36001657 PMCID: PMC9401617 DOI: 10.1126/sciadv.abl9461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Chromatin marks are recognized by distinct binding modules, many of which are embedded in multidomain proteins. How the different functionalities of such complex chromatin modulators are regulated is often unclear. Here, we delineated the interplay of the H3 amino terminus- and K9me-binding activities of the multidomain hUHRF1 protein. We show that the phosphoinositide PI5P interacts simultaneously with two distant flexible linker regions connecting distinct domains of hUHRF1. The binding is dependent on both, the polar head group, and the acyl part of the phospholipid and induces a conformational rearrangement juxtaposing the H3 amino terminus and K9me3 recognition modules of the protein. In consequence, the two features of the H3 tail are bound in a multivalent, synergistic manner. Our work highlights a previously unidentified molecular function for PI5P outside of the context of lipid mono- or bilayers and establishes a molecular paradigm for the allosteric regulation of complex, multidomain chromatin modulators by small cellular molecules.
Collapse
Affiliation(s)
- Papita Mandal
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Karthik Eswara
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Zhadyra Yerkesh
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Vladlena Kharchenko
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Levani Zandarashvili
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kacper Szczepski
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Dalila Bensaddek
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Łukasz Jaremko
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wolfgang Fischle
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
DNA Damage Response Regulation by Histone Ubiquitination. Int J Mol Sci 2022; 23:ijms23158187. [PMID: 35897775 PMCID: PMC9332593 DOI: 10.3390/ijms23158187] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cells are constantly exposed to numerous genotoxic stresses that induce DNA damage. DNA double-strand breaks (DSBs) are among the most serious damages and should be systematically repaired to preserve genomic integrity. The efficiency of repair is closely associated with chromatin structure, which is regulated by posttranslational modifications of histones, including ubiquitination. Recent evidence shows crosstalk between histone ubiquitination and DNA damage responses, suggesting an integrated model for the systematic regulation of DNA repair. There are two major pathways for DSB repair, viz., nonhomologous end joining and homologous recombination, and the choice of the pathway is partially controlled by posttranslational modifications of histones, including ubiquitination. Histone ubiquitination changes chromatin structure in the vicinity of DSBs and serves as a platform to select and recruit repair proteins; the removal of these modifications by deubiquitinating enzymes suppresses the recruitment of repair proteins and promotes the convergence of repair reactions. This article provides a comprehensive overview of the DNA damage response regulated by histone ubiquitination in response to DSBs.
Collapse
|
13
|
Ju MK, Lee JR, Choi Y, Park SY, Sul HJ, Chung HJ, An S, Lee S, Jung E, Kim B, Choi BY, Kim BJ, Kim HS, Lim H, Kang HS, Soh JS, Myung K, Kim KC, Cho JW, Seo J, Kim TM, Lee JY, Kim Y, Kim H, Zang DY. PWWP2B promotes DNA end resection and homologous recombination. EMBO Rep 2022; 23:e53492. [PMID: 35582821 PMCID: PMC9253748 DOI: 10.15252/embr.202153492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 11/15/2023] Open
Abstract
Genome instability is one of the leading causes of gastric cancers. However, the mutational landscape of driver genes in gastric cancer is poorly understood. Here, we investigate somatic mutations in 25 Korean gastric adenocarcinoma patients using whole-exome sequencing and show that PWWP2B is one of the most frequently mutated genes. PWWP2B mutation correlates with lower cancer patient survival. We find that PWWP2B has a role in DNA double-strand break repair. As a nuclear protein, PWWP2B moves to sites of DNA damage through its interaction with UHRF1. Depletion of PWWP2B enhances cellular sensitivity to ionizing radiation (IR) and impairs IR-induced foci formation of RAD51. PWWP2B interacts with MRE11 and participates in homologous recombination via promoting DNA end-resection. Taken together, our data show that PWWP2B facilitates the recruitment of DNA repair machinery to sites of DNA damage and promotes HR-mediated DNA double-strand break repair. Impaired PWWP2B function might thus cause genome instability and promote gastric cancer development.
Collapse
Affiliation(s)
- Min Kyung Ju
- Department of Biological SciencesUlsan National Institute of Science and TechnologyUlsanKorea
| | - Joo Rak Lee
- Department of Biological SciencesUlsan National Institute of Science and TechnologyUlsanKorea
| | - Yeonsong Choi
- Department of Biomedical EngineeringUlsan National Institute of Science and TechnologyUlsanKorea
| | - Seon Young Park
- Department of Biological SciencesResearch Institute of Women’s HealthSookmyung Women's UniversitySeoulKorea
| | - Hee Jung Sul
- Hallym Translational Research InstituteHallym University Sacred Heart HospitalAnyang‐siKorea
| | - Hee Jin Chung
- Department of Biological SciencesUlsan National Institute of Science and TechnologyUlsanKorea
| | - Soyeong An
- Department of Biological SciencesUlsan National Institute of Science and TechnologyUlsanKorea
| | - Semin Lee
- Department of Biomedical EngineeringUlsan National Institute of Science and TechnologyUlsanKorea
| | - Eunyoung Jung
- Department of Biological SciencesResearch Institute of Women’s HealthSookmyung Women's UniversitySeoulKorea
| | - Bohyun Kim
- Hallym Translational Research InstituteHallym University Sacred Heart HospitalAnyang‐siKorea
| | - Bo Youn Choi
- Hallym Translational Research InstituteHallym University Sacred Heart HospitalAnyang‐siKorea
| | - Bum Jun Kim
- Department of Internal MedicineHallym University Sacred Heart HospitalHallym University College of MedicineAnyang‐siKorea
| | - Hyeong Su Kim
- Department of Internal MedicineHallym University Sacred Heart HospitalHallym University College of MedicineAnyang‐siKorea
| | - Hyun Lim
- Department of Internal MedicineHallym University Sacred Heart HospitalHallym University College of MedicineAnyang‐siKorea
| | - Ho Suk Kang
- Department of Internal MedicineHallym University Sacred Heart HospitalHallym University College of MedicineAnyang‐siKorea
| | - Jae Seung Soh
- Department of Internal MedicineHallym University Sacred Heart HospitalHallym University College of MedicineAnyang‐siKorea
| | - Kyungjae Myung
- Department of Biological SciencesUlsan National Institute of Science and TechnologyUlsanKorea
- Center for Genomic Integrity Institute for Basic Science (IBS)UlsanKorea
| | - Kab Choong Kim
- Department of SurgeryHallym University Medical CenterHallym University College of MedicineAnyang‐siKorea
| | - Ji Woong Cho
- Department of SurgeryHallym University Medical CenterHallym University College of MedicineAnyang‐siKorea
| | - Jinwon Seo
- Department of PathologyHallym University Sacred Heart HospitalHallym University College of MedicineAnyang‐siKorea
| | - Tae Moon Kim
- Center for Genomic Integrity Institute for Basic Science (IBS)UlsanKorea
| | - Ja Yil Lee
- Department of Biological SciencesUlsan National Institute of Science and TechnologyUlsanKorea
- Center for Genomic Integrity Institute for Basic Science (IBS)UlsanKorea
| | - Yonghwan Kim
- Department of Biological SciencesResearch Institute of Women’s HealthSookmyung Women's UniversitySeoulKorea
| | - Hongtae Kim
- Department of Biological SciencesUlsan National Institute of Science and TechnologyUlsanKorea
- Center for Genomic Integrity Institute for Basic Science (IBS)UlsanKorea
| | - Dae Young Zang
- Hallym Translational Research InstituteHallym University Sacred Heart HospitalAnyang‐siKorea
- Department of Internal MedicineHallym University Sacred Heart HospitalHallym University College of MedicineAnyang‐siKorea
| |
Collapse
|
14
|
Zhang J, Zhang H, Ding X, Hu J, Li Y, Zhang J, Wang H, Qi S, Xie A, Shi J, Xiang M, Bin Y, Wang G, Wang L, Wang Z. Crosstalk between macrophage-derived PGE 2 and tumor UHRF1 drives hepatocellular carcinoma progression. Theranostics 2022; 12:3776-3793. [PMID: 35664070 PMCID: PMC9131282 DOI: 10.7150/thno.69494] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/20/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Tumor-associated macrophages (TAMs) and dysregulated tumor epigenetics contribute to hepatocellular carcinoma (HCC) progression. However, the mechanistic interactions between TAMs and tumor epigenetics remain poorly understood. Methods: Immunohistochemistry and multiplexed fluorescence staining were performed to evaluate the correlation between TAMs numbers and UHRF1 expression in human HCC tissues. PGE2 neutralizing antibody and COX-2 inhibitor were used to analyze the regulation of TAMs isolated from HCC tissues on UHRF1 expression. Multiple microRNA prediction programs were employed to identify microRNAs that target UHRF1 3'UTR. Luciferase reporter assay was applied to evaluate the regulation of miR-520d on UHRF1 expression. Chromatin immunoprecipitation (ChIP) assays were performed to assess the abundance of H3K9me2 in the KLF6 promoter and DNMT1 in the CSF1 promoter regulated by UHRF1. The functional roles of TAM-mediated oncogenic network in HCC progression were verified by in vitro colony formation assays, in vivo xenograft experiments and analysis of clinical samples. Results: Here, we find that TAMs induce and maintain high levels of HCC UHRF1, an oncogenic epigenetic regulator. Mechanistically, TAM-derived PGE2 stimulates UHRF1 expression by repressing miR-520d that targets the 3'-UTR of UHRF1 mRNA. In consequence, upregulated UHRF1 methylates H3K9 to diminish tumor KLF6 expression, a tumor inhibitory transcriptional factor that directly transcribes miR-520d. PGE2 reduces KLF6 occupancy in the promoter of miR-520d, dampens miR-520d expression, and sustains robust UHRF1 expression. Moreover, UHRF1 promotes CSF1 expression by inducing DNA hypomethylation of the CSF1 promoter and supports TAM accumulation. Conclusions: Capitalizing on studies on HCC cells and tissues, animal models, and clinical information, we reveal a previously unappreciated TAM-mediated oncogenic network via multiple reciprocal enforcing molecular nodes. Targeting this network may be an approach to treat HCC patients.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Hongyan Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Xiuli Ding
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Jia Hu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Yongkui Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Jinxiang Zhang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Hui Wang
- Department of Human Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430030
| | - Shanshan Qi
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Aqing Xie
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Jie Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Mengxi Xiang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Yawen Bin
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430022
| |
Collapse
|
15
|
Lee C, Kim J. Genome maintenance in retinoblastoma: Implications for therapeutic vulnerabilities (Review). Oncol Lett 2022; 23:192. [PMID: 35527780 PMCID: PMC9073582 DOI: 10.3892/ol.2022.13312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/08/2022] [Indexed: 11/19/2022] Open
Abstract
Retinoblastoma (RB) is a pediatric ocular malignancy that is initiated mostly by biallelic inactivation of the RB transcriptional corepressor 1 (RB1) tumor suppressor gene in the developing retina. Unlike the prevailing prediction based on multiple studies involving RB1 gene disruption in experimental models, human RB tumors have been demonstrated to possess a relatively stable genome, characterized by a low mutation rate and a few recurrent chromosomal alterations related to somatic copy number changes. This suggests that RB may harbor heightened genome maintenance mechanisms to counteract or compensate for the risk of massive genome instability, which can potentially be driven by the early RB1 loss as a tumor-initiating event. Although the genome maintenance mechanisms might have been evolved to promote RB cell survival by preventing lethal genomic defects, emerging evidence suggests that the dependency of RB cells on these mechanisms also exposes their unique vulnerability to chemotherapy, particularly when the genome maintenance machineries are tumor cell-specific. This review summarizes the genome maintenance mechanisms identified in RB, including findings on the roles of chromatin regulators in DNA damage response/repair and protein factors involved in maintaining chromosome stability and promoting survival in RB. In addition, advantages and challenges for exploiting these therapeutic vulnerabilities in RB are discussed.
Collapse
Affiliation(s)
- Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jong Kim
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
16
|
Saeki N, Inoue K, Ideta-Otsuka M, Watamori K, Mizuki S, Takenaka K, Igarashi K, Miura H, Takeda S, Imai Y. Epigenetic regulator UHRF1 suppressively orchestrates pro-inflammatory gene expression in rheumatoid arthritis. J Clin Invest 2022; 132:150533. [PMID: 35472067 PMCID: PMC9151705 DOI: 10.1172/jci150533] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is characterized by chronic synovial inflammation with aberrant epigenetic alterations, eventually leading to joint destruction. However, the epigenetic regulatory mechanisms underlying RA pathogenesis remain largely unknown. Here we showed that Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) is a central epigenetic regulator that suppressively orchestrates multiple pathogeneses in RA. UHRF1 expression was remarkably up-regulated in synovial fibroblasts (SF) from arthritis model mice and RA patients. Mice with SF-specific Uhrf1 conditional knockout showed more severe arthritic phenotypes than littermate control. Uhrf1-deficient SF also exhibited enhanced apoptosis resistance and up-regulated expression of several cytokines including Ccl20. In RA patients, DAS28, CRP, and Th17 accumulation as well as apoptosis resistance were negatively correlated with UHRF1 expression in synovium. Finally, Ryuvidine administration that stabilizes UHRF1 ameliorated arthritis pathogeneses in a mouse model of RA. This study demonstrated that UHRF1 expressed in RA SF can contribute to negative feedback mechanisms that suppress multiple pathogenic events in arthritis, suggesting that targeting UHRF1 could be one of the therapeutic strategies for RA.
Collapse
Affiliation(s)
- Noritaka Saeki
- Division of Laboratory Animal Research, Ehime University, Toon, Japan
| | - Kazuki Inoue
- Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, China
| | - Maky Ideta-Otsuka
- Laboratory of Instrumental Analysis, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Kunihiko Watamori
- Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shinichi Mizuki
- The Center for Rheumatic Diseases, Matsuyama Red Cross Hospital, Matsuyama, Japan
| | - Katsuto Takenaka
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Katsuhide Igarashi
- Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Hiromasa Miura
- Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shu Takeda
- Division of Endocrinology, Toranomon Hospital Endocrine Center, Tokyo, Japan
| | - Yuuki Imai
- Division of Laboratory Animal Research, Ehime University, Toon, Japan
| |
Collapse
|
17
|
Xiong M, Zhou S, Feng S, Gui Y, Li J, Wu Y, Dong J, Yuan S. UHRF1 is indispensable for meiotic sex chromosome inactivation and interacts with the DNA damage response pathway in mice. Biol Reprod 2022; 107:168-182. [PMID: 35284939 DOI: 10.1093/biolre/ioac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/04/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
During male meiosis, the constitutively unsynapsed XY chromosomes undergo meiotic sex chromosome inactivation (MSCI), and the DNA damage response (DDR) pathway is critical for MSCI establishment. Our previous study showed that UHRF1(ubiquitin-like, with PHD and ring finger domains 1) deletion led to meiotic arrest and male infertility; however, the underlying mechanisms of UHRF1 in the regulation of meiosis remain unclear. Here, we report that UHRF1 is required for MSCI and cooperates with the DDR pathway in male meiosis. UHRF1-deficient spermatocytes display aberrant pairing and synapsis of homologous chromosomes during the pachytene stage. In addition, UHRF1 deficiency leads to aberrant recruitment of ATR and FANCD2 on the sex chromosomes and disrupts the diffusion of ATR to the XY chromatin. Furthermore, we show that UHRF1 acts as a cofactor of BRCA1 to facilitate the recruitment of DDR factors onto sex chromosomes for MSCI establishment. Accordingly, deletion of UHRF1 leads to the failure of meiotic silencing on sex chromosomes, resulting in meiotic arrest. In addition to our previous findings, the present study reveals that UHRF1 participates in MSCI, ensuring the progression of male meiosis. This suggests a multifunctional role of UHRF1 in the male germline.
Collapse
Affiliation(s)
- Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinmei Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanqing Wu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Juan Dong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China.,Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
18
|
Hsu CC, Tsai YS, Lin HK. UHRF1: a novel metabolic guardian restricting AMPK activity. Cell Res 2022; 32:3-4. [PMID: 34907338 PMCID: PMC8724280 DOI: 10.1038/s41422-021-00589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, USA
| | - Yau-Sheng Tsai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
19
|
Proteins That Read DNA Methylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:269-293. [DOI: 10.1007/978-3-031-11454-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Nuclear UHRF1 is a gate-keeper of cellular AMPK activity and function. Cell Res 2022; 32:54-71. [PMID: 34561619 PMCID: PMC8724286 DOI: 10.1038/s41422-021-00565-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/24/2021] [Indexed: 01/03/2023] Open
Abstract
The AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis. Although much has been learned on how low energy status and glucose starvation activate AMPK, how AMPK activity is properly controlled in vivo is still poorly understood. Here we report that UHRF1, an epigenetic regulator highly expressed in proliferating and cancer cells, interacts with AMPK and serves to suppress AMPK activity under both basal and stressed conditions. As a nuclear protein, UHRF1 promotes AMPK nuclear retention and strongly suppresses nuclear AMPK activity toward substrates H2B and EZH2. Importantly, we demonstrate that UHRF1 also robustly inhibits AMPK activity in the cytoplasm compartment, most likely as a consequence of AMPK nucleocytoplasmic shuttling. Mechanistically, we found that UHRF1 has no obvious effect on AMPK activation by upstream kinases LKB1 and CAMKK2 but inhibits AMPK activity by acting as a bridging factor targeting phosphatase PP2A to dephosphorylate AMPK. Hepatic overexpression of UHRF1 showed profound effects on glucose and lipid metabolism in wild-type mice but not in those with the liver-specific knockout of AMPKα1/α2, whereas knockdown of UHRF1 in adipose tissue led to AMPK activation and reduced sizes of adipocytes and lipogenic activity, highlighting the physiological significance of this regulation in glucose and lipid metabolism. Thus, our study identifies UHRF1 as a novel AMPK gate-keeper with critical roles in cellular metabolism.
Collapse
|
21
|
UNOKI M, SASAKI H. The UHRF protein family in epigenetics, development, and carcinogenesis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:401-415. [PMID: 36216533 PMCID: PMC9614205 DOI: 10.2183/pjab.98.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/14/2022] [Indexed: 05/31/2023]
Abstract
The UHRF protein family consists of multidomain regulatory proteins that sense modification status of DNA and/or proteins and catalyze the ubiquitylation of target proteins. Through their functional domains, they interact with other molecules and serve as a hub for regulatory networks of several important biological processes, including maintenance of DNA methylation and DNA damage repair. The UHRF family is conserved in vertebrates and plants but is missing from fungi and many nonvertebrate animals. Mammals commonly have UHRF1 and UHRF2, but, despite their high structural similarity, the two paralogues appear to have distinct functions. Furthermore, UHRF1 and UHRF2 show different expression patterns and different outcomes in gene knockout experiments. In this review, we summarize the current knowledge on the molecular function of the UHRF family in various biological pathways and discuss their roles in epigenetics, development, gametogenesis, and carcinogenesis, with a focus on the mammalian UHRF proteins.
Collapse
Affiliation(s)
- Motoko UNOKI
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki SASAKI
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
22
|
Katsuki Y, Abe M, Park SY, Wu W, Yabe H, Yabe M, van Attikum H, Nakada S, Ohta T, Seidman MM, Kim Y, Takata M. RNF168 E3 ligase participates in ubiquitin signaling and recruitment of SLX4 during DNA crosslink repair. Cell Rep 2021; 37:109879. [PMID: 34706224 PMCID: PMC11388903 DOI: 10.1016/j.celrep.2021.109879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/24/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
SLX4/FANCP is a key Fanconi anemia (FA) protein and a DNA repair scaffold for incision around a DNA interstrand crosslink (ICL) by its partner XPF nuclease. The tandem UBZ4 ubiquitin-binding domains of SLX4 are critical for the recruitment of SLX4 to damage sites, likely by binding to K63-linked polyubiquitin chains. However, the identity of the ubiquitin E3 ligase that mediates SLX4 recruitment remains unknown. Using small interfering RNA (siRNA) screening with a GFP-tagged N-terminal half of SLX4 (termed SLX4-N), we identify the RNF168 E3 ligase as a critical factor for mitomycin C (MMC)-induced SLX4 foci formation. RNF168 and GFP-SLX4-N colocalize in MMC-induced ubiquitin foci. Accumulation of SLX4-N at psoralen-laser ICL tracks or of endogenous SLX4 at Digoxigenin-psoralen/UVA ICL is dependent on RNF168. Finally, we find that RNF168 is epistatic with SLX4 in promoting MMC tolerance. We conclude that RNF168 is a critical component of the signal transduction that recruits SLX4 to ICL damage.
Collapse
Affiliation(s)
- Yoko Katsuki
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| | - Masako Abe
- The Core Facility, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Seon Young Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Wenwen Wu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Hiromasa Yabe
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Miharu Yabe
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Shinichiro Nakada
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Osaka, Japan; Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Michael M Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yonghwan Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
23
|
Mancini M, Magnani E, Macchi F, Bonapace IM. The multi-functionality of UHRF1: epigenome maintenance and preservation of genome integrity. Nucleic Acids Res 2021; 49:6053-6068. [PMID: 33939809 PMCID: PMC8216287 DOI: 10.1093/nar/gkab293] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
During S phase, the cooperation between the macromolecular complexes regulating DNA synthesis, epigenetic information maintenance and DNA repair is advantageous for cells, as they can rapidly detect DNA damage and initiate the DNA damage response (DDR). UHRF1 is a fundamental epigenetic regulator; its ability to coordinate DNA methylation and histone code is unique across proteomes of different species. Recently, UHRF1’s role in DNA damage repair has been explored and recognized to be as important as its role in maintaining the epigenome. UHRF1 is a sensor for interstrand crosslinks and a determinant for the switch towards homologous recombination in the repair of double-strand breaks; its loss results in enhanced sensitivity to DNA damage. These functions are finely regulated by specific post-translational modifications and are mediated by the SRA domain, which binds to damaged DNA, and the RING domain. Here, we review recent studies on the role of UHRF1 in DDR focusing on how it recognizes DNA damage and cooperates with other proteins in its repair. We then discuss how UHRF1’s epigenetic abilities in reading and writing histone modifications, or its interactions with ncRNAs, could interlace with its role in DDR.
Collapse
Affiliation(s)
- Monica Mancini
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| | - Elena Magnani
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Filippo Macchi
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Ian Marc Bonapace
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| |
Collapse
|
24
|
Xu P, Zhang L, Xiao Y, Li W, Hu Z, Zhang R, Li J, Wu F, Xi Y, Zou Q, Wang Z, Guo R, Ma H, Dong S, Xiao M, Yang Z, Ren X, Wei C, Yu W. UHRF1 regulates alternative splicing by binding to splicing factors and U snRNAs. Hum Mol Genet 2021; 30:2110-2122. [PMID: 34196368 DOI: 10.1093/hmg/ddab178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
The well-established functions of UHRF1 converge to DNA biological processes, as exemplified by DNA methylation maintenance and DNA damage repair during cell cycles. However, the potential effect of UHRF1 on RNA metabolism is largely unexplored. Here, we revealed that UHRF1 serves as a novel alternative RNA splicing regulator. The protein interactome of UHRF1 identified various splicing factors. Among them, SF3B3 could interact with UHRF1 directly and participate in UHRF1-regulated alternative splicing events. Furthermore, we interrogated the RNA interactome of UHRF1, and surprisingly, we identified U snRNAs, the canonical spliceosome component, in the UHRF1-associated RNA components. Unexpectedly, we found H3R2 methylation status determines the binding preference of U snRNA, especially U2 snRNA. The involvement of U snRNAs in UHRF1-containing complex and their binding preference to specific chromatin configuration imply a finely orchestrated mechanism at play. Our results provided the resources and pinpointed the molecular basis of UHRF1-mediated alternative RNA splicing, which will help us better our understanding of the physiological and pathological roles of UHRF1 in disease development.
Collapse
Affiliation(s)
- Peng Xu
- Shanghai Public Health Clinical Centre and Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Lan Zhang
- Shanghai Public Health Clinical Centre and Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Yao Xiao
- Shanghai Public Health Clinical Centre and Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Wei Li
- Shanghai Public Health Clinical Centre and Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Zhiqiang Hu
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Rukui Zhang
- Shanghai Public Health Clinical Centre and Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Jin Li
- Shanghai Public Health Clinical Centre and Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Feizhen Wu
- Key Laboratory of Medical Epigenetics and Metabolism, Institute of Clinical Science of Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yanping Xi
- Shanghai Public Health Clinical Centre and Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China.,Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Qingping Zou
- Shanghai Public Health Clinical Centre and Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Zhentian Wang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Rui Guo
- Key Laboratory of Medical Epigenetics and Metabolism, Institute of Clinical Science of Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Honghui Ma
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Shihua Dong
- Shanghai Public Health Clinical Centre and Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Min Xiao
- Shanghai Public Health Clinical Centre and Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China.,Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Zhicong Yang
- Shanghai Public Health Clinical Centre and Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Xiaoguang Ren
- Shanghai Public Health Clinical Centre and Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Chaochun Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenqiang Yu
- Shanghai Public Health Clinical Centre and Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute and Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| |
Collapse
|
25
|
Hanaki S, Habara M, Shimada M. UV-induced activation of ATR is mediated by UHRF2. Genes Cells 2021; 26:447-454. [PMID: 33848395 DOI: 10.1111/gtc.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 11/27/2022]
Abstract
UHRF1 (Ubiquitin-like with PHD and ring finger domains 1) regulates DNA methylation and histone modifications and plays a key role in cell proliferation and the DNA damage response. However, the function of UHRF2, a paralog of UHRF1, in the DNA damage response remains largely unknown. Here, we show that UHRF2 is essential for maintaining cell viability after UV irradiation, as well as for the proliferation of cancer cells. UHRF2 was found to physically interact with ATR in a DNA damage-dependent manner through UHRF2's TTD domain. In addition, phosphorylation of threonine at position 1989, which is required for UV-induced activation of ATR, was impaired in cells depleted of UHRF2, suggesting that UHRF2 is essential in ATR activation. In conclusion, these results suggest a new regulatory mechanism of ATR activation mediated by UHRF2.
Collapse
Affiliation(s)
- Shunsuke Hanaki
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi City, Japan
| | - Makoto Habara
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi City, Japan
| | - Midori Shimada
- Department of Veterinary Biochemistry, Yamaguchi University, Yamaguchi City, Japan
| |
Collapse
|
26
|
Franks JL, Martinez-Chacin RC, Wang X, Tiedemann RL, Bonacci T, Choudhury R, Bolhuis DL, Enrico TP, Mouery RD, Damrauer JS, Yan F, Harrison JS, Major MB, Hoadley KA, Suzuki A, Rothbart SB, Brown NG, Emanuele MJ. In silico APC/C substrate discovery reveals cell cycle-dependent degradation of UHRF1 and other chromatin regulators. PLoS Biol 2020; 18:e3000975. [PMID: 33306668 PMCID: PMC7758050 DOI: 10.1371/journal.pbio.3000975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/23/2020] [Accepted: 11/05/2020] [Indexed: 01/07/2023] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and critical regulator of cell cycle progression. Despite its vital role, it has remained challenging to globally map APC/C substrates. By combining orthogonal features of known substrates, we predicted APC/C substrates in silico. This analysis identified many known substrates and suggested numerous candidates. Unexpectedly, chromatin regulatory proteins are enriched among putative substrates, and we show experimentally that several chromatin proteins bind APC/C, oscillate during the cell cycle, and are degraded following APC/C activation, consistent with being direct APC/C substrates. Additional analysis revealed detailed mechanisms of ubiquitylation for UHRF1, a key chromatin regulator involved in histone ubiquitylation and DNA methylation maintenance. Disrupting UHRF1 degradation at mitotic exit accelerates G1-phase cell cycle progression and perturbs global DNA methylation patterning in the genome. We conclude that APC/C coordinates crosstalk between cell cycle and chromatin regulatory proteins. This has potential consequences in normal cell physiology, where the chromatin environment changes depending on proliferative state, as well as in disease.
Collapse
Affiliation(s)
- Jennifer L Franks
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Raquel C Martinez-Chacin
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Xianxi Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Rochelle L Tiedemann
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Thomas Bonacci
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Rajarshi Choudhury
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Derek L Bolhuis
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Taylor P Enrico
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ryan D Mouery
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeffrey S Damrauer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Feng Yan
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joseph S Harrison
- Department of Chemistry, University of the Pacific, Stockton, California, United States of America
| | - M Ben Major
- Department of Cell Biology and Physiology, Department of Otolaryngology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Nicholas G Brown
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michael J Emanuele
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
27
|
Canonical and Noncanonical Roles of Fanconi Anemia Proteins: Implications in Cancer Predisposition. Cancers (Basel) 2020; 12:cancers12092684. [PMID: 32962238 PMCID: PMC7565043 DOI: 10.3390/cancers12092684] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Fanconi anemia (FA) is a genetic disorder that is characterized by bone marrow failure (BMF), developmental abnormalities, and predisposition to cancer. In this review, we present an overview of both canonical (regulation of interstrand cross-links repair, ICLs) and noncanonical roles of FA proteins. We divide noncanonical alternative functions in two types: nuclear (outside ICLs such as FA action in replication stress or DSB repair) and cytosolic (such as in mitochondrial quality control or selective autophagy). We further discuss the involvement of FA genes in the predisposition to develop different types of cancers and we examine current DNA damage response-targeted therapies. Finally, we promote an insightful perspective regarding the clinical implication of the cytosolic noncanonical roles of FA proteins in cancer predisposition, suggesting that these alternative roles could be of critical importance for disease progression. Abstract Fanconi anemia (FA) is a clinically and genetically heterogeneous disorder characterized by the variable presence of congenital somatic abnormalities, bone marrow failure (BMF), and a predisposition to develop cancer. Monoallelic germline mutations in at least five genes involved in the FA pathway are associated with the development of sporadic hematological and solid malignancies. The key function of the FA pathway is to orchestrate proteins involved in the repair of interstrand cross-links (ICLs), to prevent genomic instability and replication stress. Recently, many studies have highlighted the importance of FA genes in noncanonical pathways, such as mitochondria homeostasis, inflammation, and virophagy, which act, in some cases, independently of DNA repair processes. Thus, primary defects in DNA repair mechanisms of FA patients are typically exacerbated by an impairment of other cytoprotective pathways that contribute to the multifaceted clinical phenotype of this disease. In this review, we summarize recent advances in the understanding of the pathogenesis of FA, with a focus on the cytosolic noncanonical roles of FA genes, discussing how they may contribute to cancer development, thus suggesting opportunities to envisage novel therapeutic approaches.
Collapse
|
28
|
Tian D, Tang J, Geng X, Li Q, Wang F, Zhao H, Narla G, Yao X, Zhang Y. Targeting UHRF1-dependent DNA repair selectively sensitizes KRAS mutant lung cancer to chemotherapy. Cancer Lett 2020; 493:80-90. [PMID: 32814087 DOI: 10.1016/j.canlet.2020.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/16/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022]
Abstract
Kirsten rat sarcoma virus oncogene homolog (KRAS) mutant lung cancer remains a challenge to cure and chemotherapy is the current standard treatment in the clinic. Hence, understanding molecular mechanisms underlying the sensitivity of KRAS mutant lung cancer to chemotherapy could help uncover unique strategies to treat this disease. Here we report a compound library screen and identification of cardiac glycosides as agents that selectively enhance the in vitro and in vivo effects of chemotherapy on KRAS mutant lung cancer. Quantitative mass spectrometry reveals that cardiac glycosides inhibit DNA double strand break (DSB) repair through suppressing the expression of UHRF1, an important DSB repair factor. Inhibition of UHRF1 by cardiac glycosides was mediated by specific suppression of the oncogenic KRAS pathway. Overexpression of UHRF1 rescued DSB repair inhibited by cardiac glycosides and depletion of UHRF1 mitigated cardiac glycoside-enhanced chemotherapeutic drug sensitivity in KRAS mutant lung cancer cells. Our study reveals a targetable dependency on UHRF1-stimulated DSB repair in KRAS mutant lung cancer in response to chemotherapy.
Collapse
Affiliation(s)
- Danmei Tian
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Jinshan Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Xinran Geng
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Qingwen Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Fangfang Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Huadong Zhao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Youwei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
29
|
Rageul J, Kim H. Fanconi anemia and the underlying causes of genomic instability. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:693-708. [PMID: 31983075 PMCID: PMC7778457 DOI: 10.1002/em.22358] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 05/02/2023]
Abstract
Fanconi anemia (FA) is a rare genetic disorder, characterized by birth defects, progressive bone marrow failure, and a predisposition to cancer. This devastating disease is caused by germline mutations in any one of the 22 known FA genes, where the gene products are primarily responsible for the resolution of DNA interstrand cross-links (ICLs), a type of DNA damage generally formed by cytotoxic chemotherapeutic agents. However, the identity of endogenous mutagens that generate DNA ICLs remains largely elusive. In addition, whether DNA ICLs are indeed the primary cause behind FA phenotypes is still a matter of debate. Recent genetic studies suggest that naturally occurring reactive aldehydes are a primary source of DNA damage in hematopoietic stem cells, implicating that they could play a role in genome instability and FA. Emerging lines of evidence indicate that the FA pathway constitutes a general surveillance mechanism for the genome by protecting against a variety of DNA replication stresses. Therefore, understanding the DNA repair signaling that is regulated by the FA pathway, and the types of DNA lesions underlying the FA pathophysiology is crucial for the treatment of FA and FA-associated cancers. Here, we review recent advances in our understanding of the relationship between reactive aldehydes, bone marrow dysfunction, and FA biology in the context of signaling pathways triggered during FA-mediated DNA repair and maintenance of the genomic integrity. Environ. Mol. Mutagen. 2020. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julie Rageul
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
- Stony Brook Cancer Center, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York 11794, USA
- Correspondence to: Hyungjin Kim, Ph.D., Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Basic Sciences Tower 8-125, 100 Nicolls Rd., Stony Brook, NY 11794, Phone: 631-444-3134, FAX: 631-444-3218,
| |
Collapse
|
30
|
The Impact of the Deepwater Horizon Oil Spill upon Lung Health-Mouse Model-Based RNA-Seq Analyses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155466. [PMID: 32751227 PMCID: PMC7432840 DOI: 10.3390/ijerph17155466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 01/09/2023]
Abstract
We used a transcriptomic approach to interrogate the effects of a saline-accommodated fraction from the Macondo 252 well (MC252) oil and Corexit dispersants on lung tissue. Wild-type C57BL/6 male and female mice were exposed on days 0, 7 and 13 by oropharyngeal aspiration to saline accommodated fractions (SAF) of crude oil from the Macondo (MC252) well, Corexit 9500, Corexit 9527, 9500+oil and 9527+oil or a saline solution as the vehicle control. These treatments did not cause overt toxicity, with the exception of the Corexit exposures which caused brief weight loss after the first exposure. On day 14, total RNA was isolated from the left lung for RNA-seq analyses. KEGG-pathway-based differential expression revealed that Corexit 9527 elicited the strongest changes involving the upregulation of 19 KEGG pathways (FDR < 0.10), followed by Corexit 9500 with the upregulation of seven pathways (FDR < 0.10). As an important signature, pathways related to a response to DNA damage (e.g., p53 signaling and mismatch repair) dominate those upregulated by Corexit 9527 and Corexit 9500. In addition, pro-inflammatory pathways (e.g., cytokine-cytokine receptor interaction, IL-17 signaling pathway and TNF signaling pathways) were upregulated selectively in oil-treated male mice. Surprisingly, oil + dispersant combinations caused lesser effects than the individual treatments at the transcriptomic level. Overall, these findings support potential genotoxicity, inflammation and cell death due to dispersant or oil exposures. Similar exposures to lung tumor bearing K-RasLA1 mice provided evidence for tumor promotion by oil and Corexit dispersant treatments. Our mouse RNA-seq analyses may be relevant to the pulmonary health hazards of MC252 oil and dispersants experienced in exposed populations.
Collapse
|
31
|
Socha A, Yang D, Bulsiewicz A, Yaprianto K, Kupculak M, Liang CC, Hadjicharalambous A, Wu R, Gygi SP, Cohn MA. WRNIP1 Is Recruited to DNA Interstrand Crosslinks and Promotes Repair. Cell Rep 2020; 32:107850. [PMID: 32640220 PMCID: PMC7351111 DOI: 10.1016/j.celrep.2020.107850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/15/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022] Open
Abstract
The Fanconi anemia (FA) pathway repairs DNA interstrand crosslinks (ICLs). Many FA proteins are recruited to ICLs in a timely fashion so that coordinated repair can occur. However, the mechanism of this process is poorly understood. Here, we report the purification of a FANCD2-containing protein complex with multiple subunits, including WRNIP1. Using live-cell imaging, we show that WRNIP1 is recruited to ICLs quickly after their appearance, promoting repair. The observed recruitment facilitates subsequent recruitment of the FANCD2/FANCI complex. Depletion of WRNIP1 sensitizes cells to ICL-forming drugs. We find that ubiquitination of WRNIP1 and the activity of its UBZ domain are required to facilitate recruitment of FANCD2/FANCI and promote repair. Altogether, we describe a mechanism by which WRNIP1 is recruited rapidly to ICLs, resulting in chromatin loading of the FANCD2/FANCI complex in an unusual process entailing ubiquitination of WRNIP1 and the activity of its integral UBZ domain. Multiple proteins are identified in a FANCD2 protein complex, including WRNIP1 WRNIP1 is recruited to DNA interstrand crosslinks and promotes DNA repair Recruitment of WRNIP1 facilitates loading of the FANCD2/FANCI complex onto DNA Ubiquitination of WRNIP1 and its UBZ domain are required for DNA repair
Collapse
Affiliation(s)
- Anna Socha
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Di Yang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Alicja Bulsiewicz
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Kelvin Yaprianto
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Marian Kupculak
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Chih-Chao Liang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Ronghu Wu
- Department of Cell Biology, Harvard Medical School, Boston, MA 01125, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 01125, USA
| | - Martin A Cohn
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
32
|
Zhang Y, Chen Y, Ma R, Jiang Y, Liu J, Lin Y, Chen S, Xia M, Zou F, Zhang J, Pan T, Wang L, Wei L, Zhang H. UHRF1 Controls Thymocyte Fate Decisions through the Epigenetic Regulation of EGR1 Expression. THE JOURNAL OF IMMUNOLOGY 2020; 204:3248-3261. [DOI: 10.4049/jimmunol.1901471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
|
33
|
Schneider M, Trummer C, Stengl A, Zhang P, Szwagierczak A, Cardoso MC, Leonhardt H, Bauer C, Antes I. Systematic analysis of the binding behaviour of UHRF1 towards different methyl- and carboxylcytosine modification patterns at CpG dyads. PLoS One 2020; 15:e0229144. [PMID: 32084194 PMCID: PMC7034832 DOI: 10.1371/journal.pone.0229144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/30/2020] [Indexed: 01/24/2023] Open
Abstract
The multi-domain protein UHRF1 is essential for DNA methylation maintenance and binds DNA via a base-flipping mechanism with a preference for hemi-methylated CpG sites. We investigated its binding to hemi- and symmetrically modified DNA containing either 5-methylcytosine (mC), 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), or 5-carboxylcytosine (caC). Our experimental results indicate that UHRF1 binds symmetrically carboxylated and hybrid methylated/carboxylated CpG dyads in addition to its previously reported substrates. Complementary molecular dynamics simulations provide a possible mechanistic explanation of how the protein could differentiate between modification patterns. First, we observe different local binding modes in the nucleotide binding pocket as well as the protein's NKR finger. Second, both DNA modification sites are coupled through key residues within the NKR finger, suggesting a communication pathway affecting protein-DNA binding for carboxylcytosine modifications. Our results suggest a possible additional function of the hemi-methylation reader UHRF1 through binding of carboxylated CpG sites. This opens the possibility of new biological roles of UHRF1 beyond DNA methylation maintenance and of oxidised methylcytosine derivates in epigenetic regulation.
Collapse
Affiliation(s)
- Markus Schneider
- Center for Integrated Protein Science Munich at the TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Carina Trummer
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Andreas Stengl
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Peng Zhang
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
- Cell Biology and Epigenetics at the Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Aleksandra Szwagierczak
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics at the Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Heinrich Leonhardt
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Christina Bauer
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Iris Antes
- Center for Integrated Protein Science Munich at the TUM School of Life Sciences, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
34
|
Chen M, Wen T, Horn HT, Chandrahas VK, Thapa N, Choi S, Cryns VL, Anderson RA. The nuclear phosphoinositide response to stress. Cell Cycle 2020; 19:268-289. [PMID: 31902273 PMCID: PMC7028212 DOI: 10.1080/15384101.2019.1711316] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accumulating evidence reveals that nuclear phosphoinositides (PIs) serve as central signaling hubs that control a multitude of nuclear processes by regulating the activity of nuclear proteins. In response to cellular stressors, PIs accumulate in the nucleus and multiple PI isomers are synthesized by the actions of PI-metabolizing enzymes, kinases, phosphatases and phospholipases. By directly interacting with effector proteins, phosphoinositide signals transduce changes in cellular functions. Here we describe nuclear phosphoinositide signaling in multiple sub-nuclear compartments and summarize the literature that demonstrates roles for specific kinases, phosphatases, and phospholipases in the orchestration of nuclear phosphoinositide signaling in response to cellular stress. Additionally, we discuss the specific PI-protein complexes through which these lipids execute their functions by regulating the configuration, stability, and transcription activity of their effector proteins. Overall, our review provides a detailed landscape of the current understanding of the nuclear PI-protein interactome and its role in shaping the coordinated response to cellular stress.
Collapse
Affiliation(s)
- Mo Chen
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Tianmu Wen
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Hudson T. Horn
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Narendra Thapa
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Suyong Choi
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Vincent L. Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Richard A. Anderson
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
35
|
Mutreja K, Krietsch J, Hess J, Ursich S, Berti M, Roessler FK, Zellweger R, Patra M, Gasser G, Lopes M. ATR-Mediated Global Fork Slowing and Reversal Assist Fork Traverse and Prevent Chromosomal Breakage at DNA Interstrand Cross-Links. Cell Rep 2019; 24:2629-2642.e5. [PMID: 30184498 PMCID: PMC6137818 DOI: 10.1016/j.celrep.2018.08.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 01/02/2023] Open
Abstract
Interstrand cross-links (ICLs) are toxic DNA lesions interfering with DNA metabolism that are induced by widely used anticancer drugs. They have long been considered absolute roadblocks for replication forks, implicating complex DNA repair processes at stalled or converging replication forks. Recent evidence challenged this view, proposing that single forks traverse ICLs by yet elusive mechanisms. Combining ICL immunolabeling and single-molecule approaches in human cells, we now show that ICL induction leads to global replication fork slowing, involving forks not directly challenged by ICLs. Active fork slowing is linked to rapid recruitment of RAD51 to replicating chromatin and to RAD51/ZRANB3-mediated fork reversal. This global modulation of fork speed and architecture requires ATR activation, promotes single-fork ICL traverse—here, directly visualized by electron microscopy—and prevents chromosomal breakage by untimely ICL processing. We propose that global fork slowing by remodeling provides more time for template repair and promotes bypass of residual lesions, limiting fork-associated processing. Fork slowing and reversal are also observed at forks not directly challenged by ICLs Fork reversal assists ICL traverse and limits DSBs associated with ICL unhooking ICL traverse can be directly visualized in human cells by electron microscopy ATR mediates global fork slowing and reversal upon different genotoxic treatments
Collapse
Affiliation(s)
- Karun Mutreja
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jana Krietsch
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jeannine Hess
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Sebastian Ursich
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Matteo Berti
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Fabienne K Roessler
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Center for Microscopy and Image Analysis, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Ralph Zellweger
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Malay Patra
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Gilles Gasser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
36
|
Sun X, Cui Y, Feng H, Liu H, Liu X. TGF-β signaling controls Foxp3 methylation and T reg cell differentiation by modulating Uhrf1 activity. J Exp Med 2019; 216:2819-2837. [PMID: 31515281 PMCID: PMC6888975 DOI: 10.1084/jem.20190550] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/28/2019] [Accepted: 08/28/2019] [Indexed: 01/02/2023] Open
Abstract
Regulatory T (T reg) cells are required for the maintenance of immune homeostasis. Both TGF-β signaling and epigenetic modifications are important for Foxp3 induction, but how TGF-β signaling participates in the epigenetic regulation of Foxp3 remains largely unknown. Here we showed that T cell-specific ablation of Uhrf1 resulted in T reg-biased differentiation in TCR-stimulated naive T cells in the absence of TGF-β signaling, and these Foxp3+ T cells had a suppressive function. Adoptive transfer of Uhrf1 -/- naive T cells could significantly suppress colitis due to increased iT reg cell generation. Mechanistically, Uhrf1 was induced upon TCR stimulation and participated in the maintenance of DNA methylation patterns of T reg cell-specific genes during cell division, while it was phosphorylated upon TGF-β stimulation and sequestered outside the nucleus, and ultimately underwent proteasome-dependent degradation. Collectively, our study reveals a novel epigenetic mechanism of TGF-β-mediated iT reg cell differentiation by modulating Uhrf1 activity and suggests that Uhrf1 may be a potential therapeutic target in inflammatory diseases for generating stable iT reg cells.
Collapse
Affiliation(s)
- Xiang Sun
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yu Cui
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Haiyun Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haifeng Liu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
37
|
Hahm JY, Kim JY, Park JW, Kang JY, Kim KB, Kim SR, Cho H, Seo SB. Methylation of UHRF1 by SET7 is essential for DNA double-strand break repair. Nucleic Acids Res 2019; 47:184-196. [PMID: 30357346 PMCID: PMC6326791 DOI: 10.1093/nar/gky975] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/06/2018] [Indexed: 12/13/2022] Open
Abstract
Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is a key epigenetic regulator of DNA methylation maintenance and heterochromatin formation. The roles of UHRF1 in DNA damage repair also have been emphasized in recent years. However, the regulatory mechanism of UHRF1 remains elusive. In this study, we showed that UHRF1 is methylated by SET7 and demethylation is catalyzed by LSD1. In addition, methylation of UHRF1 is induced in response to DNA damage and its phosphorylation in S phase is a prerequisite for interaction with SET7. Furthermore, UHRF1 methylation catalyzes the conjugation of polyubiquitin chains to PCNA and promotes homologous recombination for DNA repair. SET7-mediated UHRF1 methylation is also shown to be essential for cell viability against DNA damage. Our data revealed the regulatory mechanism underlying the UHRF1 methylation status by SET7 and LSD1 in double-strand break repair pathway.
Collapse
Affiliation(s)
- Ja Young Hahm
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji-Young Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Joo-Young Kang
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kee-Beom Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Se-Ryeon Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hana Cho
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
38
|
Miousse IR, Skinner CM, Sridharan V, Seawright JW, Singh P, Landes RD, Cheema AK, Hauer-Jensen M, Boerma M, Koturbash I. Changes in one-carbon metabolism and DNA methylation in the hearts of mice exposed to space environment-relevant doses of oxygen ions ( 16O). LIFE SCIENCES IN SPACE RESEARCH 2019; 22:8-15. [PMID: 31421852 PMCID: PMC6703167 DOI: 10.1016/j.lssr.2019.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 05/13/2023]
Abstract
Cardiovascular disease constitutes an important threat to humans after space missions beyond the Earth's magnetosphere. Epigenetic alterations have an important role in the etiology and pathogenesis of cardiovascular disease. Previous research in animal models has shown that protons and 56Fe ions cause long-term changes in DNA methylation and expression of repetitive elements in the heart. However, astronauts will be exposed to a variety of ions, including the smaller fragmented products of heavy ions after they interact with the walls of the space craft. Here, we investigated the effects of 16O on the cardiac methylome and one-carbon metabolism in male C57BL/6 J mice. Left ventricles were examined 14 and 90 days after exposure to space-relevant doses of 0.1, 0.25, or 1 Gy of 16O (600 MeV/n). At 14 days, the two higher radiation doses elicited global DNA hypomethylation in the 5'-UTR of Long Interspersed Nuclear Elements 1 (LINE-1) compared to unirradiated, sham-treated mice, whereas specific LINE-1 elements exhibited hypermethylation at day 90. The pericentromeric major satellites were affected both at the DNA methylation and expression levels at the lowest radiation dose. DNA methylation was elevated, particularly after 90 days, while expression showed first a decrease followed by an increase in transcript abundance. Metabolomics analysis revealed that metabolites involved in homocysteine remethylation, central to DNA methylation, were unaffected by radiation, but the transsulfuration pathway was impacted after 90 days, with a large increase in cystathione levels at the lowest dose. In summary, we observed dynamic changes in the cardiac epigenome and metabolome three months after exposure to a single low dose of oxygen ions.
Collapse
Affiliation(s)
- Isabelle R Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Charles M Skinner
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - John W Seawright
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Preeti Singh
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Amrita K Cheema
- Georgetown University Medical Center, Departments of Oncology and Biochemistry, Molecular and Cellular Biology, Washington, DC, United States
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
39
|
Overexpression of UHRF1 promoted the proliferation of vascular smooth cells via the regulation of Geminin protein levels. Biosci Rep 2019; 39:BSR20181341. [PMID: 30710064 PMCID: PMC6390124 DOI: 10.1042/bsr20181341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 11/17/2022] Open
Abstract
Geminin is an inhibitor of DNA replication licensing and cell cycle. Our previous study demonstrates that Geminin plays an important role in regulating phenotypic diversity and growth of vascular smooth cells (VSMCs). Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1) is an epigenetic coordinator, whose RING domain confers intrinsic E3 ligase activity, mediating the ubiquitination of several proteins and the protein-protein interaction. Aberrant expression of UHRF1 was related to aggressiveness of multiple human malignancies, where knockdown of UHRF1 led to decreased proliferation of cancer cells. However, it is unclear whether proper UHRF1 function is involved in aberrant proliferation and phenotypic switching of VSMCs via altering Geminin protein levels. In present study, in UHRF1-overexpressing A10 cells, 3H-thymidine and 5-ethynyl-20-deoxyuridine (EdU) and CCK8 were used to examine the proliferation of VSMCs. RT-PCR and Western blot analyses were performed to investigate whether UHRF1-mediated effects were achieved by altering Geminin expression in VSMCs. RNA-seq analysis was performed to dissect related mechanisms or signaling pathways of these effects. The results of in vitro experiments suggested that UHRF1 prompted proliferation and cell cycle of VSMCs via the down-regulation of Geminin protein levels with no change in Geminin mRNA expression. Besides, PI3K-Akt signaling pathway was increased upon UHRF1 up-regulation. Our study demonstrated that overexpressing UHRF1 was involved in VSMCs proliferation through reducing inhibitory Geminin protein levels to promote cell cycle as well as activating PI3K-Akt signaling. This may provide key knowledge for the development of better strategies to prevent diseases related to VSMCs abnormal proliferation.
Collapse
|
40
|
Khanal S, Galloway DA. High-risk human papillomavirus oncogenes disrupt the Fanconi anemia DNA repair pathway by impairing localization and de-ubiquitination of FancD2. PLoS Pathog 2019; 15:e1007442. [PMID: 30818369 PMCID: PMC6413947 DOI: 10.1371/journal.ppat.1007442] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/12/2019] [Accepted: 02/04/2019] [Indexed: 12/31/2022] Open
Abstract
Persistent expression of high-risk HPV oncogenes is necessary for the development of anogenital and oropharyngeal cancers. Here, we show that E6/E7 expressing cells are hypersensitive to DNA crosslinking agent cisplatin and have defects in repairing DNA interstrand crosslinks (ICL). Importantly, we elucidate how E6/E7 attenuate the Fanconi anemia (FA) DNA crosslink repair pathway. Though E6/E7 activated the pathway by increasing FancD2 monoubiquitination and foci formation, they inhibited the completion of the repair by multiple mechanisms. E6/E7 impaired FancD2 colocalization with double-strand breaks (DSB), which subsequently hindered the recruitment of the downstream protein Rad51 to DSB in E6 cells. Further, E6 expression caused delayed FancD2 de-ubiquitination, an important process for effective ICL repair. Delayed FancD2 de-ubiquitination was associated with the increased chromatin retention of FancD2 hindering USP1 de-ubiquitinating activity, and persistently activated ATR/CHK-1/pS565 FancI signaling. E6 mediated p53 degradation did not hamper the cell cycle specific process of FancD2 modifications but abrogated repair by disrupting FancD2 de-ubiquitination. Further, E6 reduced the expression and foci formation of Palb2, which is a repair protein downstream of FancD2. These findings uncover unique mechanisms by which HPV oncogenes contribute to genomic instability and the response to cisplatin therapies.
Collapse
Affiliation(s)
- Sujita Khanal
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Denise A. Galloway
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
41
|
Kim SM, Forsburg SL. Regulation of Structure-Specific Endonucleases in Replication Stress. Genes (Basel) 2018; 9:genes9120634. [PMID: 30558228 PMCID: PMC6316474 DOI: 10.3390/genes9120634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022] Open
Abstract
Replication stress results in various forms of aberrant replication intermediates that need to be resolved for faithful chromosome segregation. Structure-specific endonucleases (SSEs) recognize DNA secondary structures rather than primary sequences and play key roles during DNA repair and replication stress. Holliday junction resolvase MUS81 (methyl methane sulfonate (MMS), and UV-sensitive protein 81) and XPF (xeroderma pigmentosum group F-complementing protein) are a subset of SSEs that resolve aberrant replication structures. To ensure genome stability and prevent unnecessary DNA breakage, these SSEs are tightly regulated by the cell cycle and replication checkpoints. We discuss the regulatory network that control activities of MUS81 and XPF and briefly mention other SSEs involved in the resolution of replication intermediates.
Collapse
Affiliation(s)
- Seong Min Kim
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Susan L Forsburg
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
42
|
Laisné M, Gupta N, Kirsh O, Pradhan S, Defossez PA. Mechanisms of DNA Methyltransferase Recruitment in Mammals. Genes (Basel) 2018; 9:genes9120617. [PMID: 30544749 PMCID: PMC6316769 DOI: 10.3390/genes9120617] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022] Open
Abstract
DNA methylation is an essential epigenetic mark in mammals. The proper distribution of this mark depends on accurate deposition and maintenance mechanisms, and underpins its functional role. This, in turn, depends on the precise recruitment and activation of de novo and maintenance DNA methyltransferases (DNMTs). In this review, we discuss mechanisms of recruitment of DNMTs by transcription factors and chromatin modifiers—and by RNA—and place these mechanisms in the context of biologically meaningful epigenetic events. We present hypotheses and speculations for future research, and underline the fundamental and practical benefits of better understanding the mechanisms that govern the recruitment of DNMTs.
Collapse
Affiliation(s)
- Marthe Laisné
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Nikhil Gupta
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Olivier Kirsh
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | | | - Pierre-Antoine Defossez
- Epigenetics and Cell Fate, UMR7216 CNRS, University Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| |
Collapse
|
43
|
Ferrandi A, Castani F, Pitaro M, Tagliaferri S, de la Tour CB, Alduina R, Sommer S, Fasano M, Barbieri P, Mancini M, Bonapace IM. Deinococcus radiodurans' SRA-HNH domain containing protein Shp (Dr1533) is involved in faithful genome inheritance maintenance following DNA damage. Biochim Biophys Acta Gen Subj 2018; 1863:118-129. [PMID: 30308220 DOI: 10.1016/j.bbagen.2018.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Deinococcus radiodurans R1 (DR) survives conditions of extreme desiccation, irradiation and exposure to genotoxic chemicals, due to efficient DNA breaks repair, also through Mn2+ protection of DNA repair enzymes. METHODS Possible annotated domains of the DR1533 locus protein (Shp) were searched by bioinformatic analysis. The gene was cloned and expressed as fusion protein. Band-shift assays of Shp or the SRA and HNH domains were performed on oligonucleotides, genomic DNA from E. coli and DR. shp knock-out mutant was generated by homologous recombination with a kanamycin resistance cassette. RESULTS DR1533 contains an N-terminal SRA domain and a C-terminal HNH motif (SRA-HNH Protein, Shp). Through its SRA domain, Shp binds double-strand oligonucleotides containing 5mC and 5hmC, but also unmethylated and mismatched cytosines in presence of Mn2+. Shp also binds to Escherichia coli dcm+ genomic DNA, and to cytosine unmethylated DR and E. coli dcm- genomic DNAs, but only in presence of Mn2+. Under these binding conditions, Shp displays DNAse activity through its HNH domain. Shp KO enhanced >100 fold the number of spontaneous mutants, whilst the treatment with DNA double strand break inducing agents enhanced up to 3-log the number of survivors. CONCLUSIONS The SRA-HNH containing protein Shp binds to and cuts 5mC DNA, and unmethylated DNA in a Mn2+ dependent manner, and might be involved in faithful genome inheritance maintenance following DNA damage. GENERAL SIGNIFICANCE Our results provide evidence for a potential role of DR Shp protein for genome integrity maintenance, following DNA double strand breaks induced by genotoxic agents.
Collapse
Affiliation(s)
- Alex Ferrandi
- Department of Biotechnology and Life Sciences, University of Insubria, Via Manara 7, Busto Arsizio, VA, Italy
| | - Federica Castani
- Department of Biotechnology and Life Sciences, University of Insubria, Via Manara 7, Busto Arsizio, VA, Italy
| | - Mauro Pitaro
- Department of Biotechnology and Life Sciences, University of Insubria, Via Manara 7, Busto Arsizio, VA, Italy
| | - Sara Tagliaferri
- Department of Biotechnology and Life Sciences, University of Insubria, Via Manara 7, Busto Arsizio, VA, Italy
| | - Claire Bouthier de la Tour
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, France and Institut de Génétique et Microbiologie - Université Paris-Sud, Paris, France
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo, Italy
| | - Suzanne Sommer
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, France and Institut de Génétique et Microbiologie - Université Paris-Sud, Paris, France
| | - Mauro Fasano
- Department of Sciences and High technology, University of Insubria, Via Manara 7, Busto Arsizio, VA, Italy
| | - Paola Barbieri
- Department of Biotechnology and Life Sciences, University of Insubria, Via Manara 7, Busto Arsizio, VA, Italy
| | - Monica Mancini
- Department of Biotechnology and Life Sciences, University of Insubria, Via Manara 7, Busto Arsizio, VA, Italy.
| | - Ian Marc Bonapace
- Department of Biotechnology and Life Sciences, University of Insubria, Via Manara 7, Busto Arsizio, VA, Italy.
| |
Collapse
|
44
|
Abstract
The SLX4/FANCP tumor suppressor has emerged as a key player in the maintenance of genome stability, making pivotal contributions to the repair of interstrand cross-links, homologous recombination, and in response to replication stress genome-wide as well as at specific loci such as common fragile sites and telomeres. SLX4 does so in part by acting as a scaffold that controls and coordinates the XPF-ERCC1, MUS81-EME1, and SLX1 structure-specific endonucleases in different DNA repair and recombination mechanisms. It also interacts with other important DNA repair and cell cycle control factors including MSH2, PLK1, TRF2, and TOPBP1 as well as with ubiquitin and SUMO. This review aims at providing an up-to-date and comprehensive view on the key functions that SLX4 fulfills to maintain genome stability as well as to highlight and discuss areas of uncertainty and emerging concepts.
Collapse
Affiliation(s)
- Jean-Hugues Guervilly
- a CRCM, CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes , Marseille , France
| | - Pierre Henri Gaillard
- a CRCM, CNRS, INSERM, Aix Marseille Univ, Institut Paoli-Calmettes , Marseille , France
| |
Collapse
|
45
|
Motnenko A, Liang CC, Yang D, Lopez-Martinez D, Yoshikawa Y, Zhan B, Ward KE, Tian J, Haas W, Spingardi P, Kessler BM, Kriaucionis S, Gygi SP, Cohn MA. Identification of UHRF2 as a novel DNA interstrand crosslink sensor protein. PLoS Genet 2018; 14:e1007643. [PMID: 30335751 PMCID: PMC6193622 DOI: 10.1371/journal.pgen.1007643] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/17/2018] [Indexed: 02/04/2023] Open
Abstract
The Fanconi Anemia (FA) pathway is important for repairing interstrand crosslinks (ICLs) between the Watson-Crick strands of the DNA double helix. An initial and essential stage in the repair process is the detection of the ICL. Here, we report the identification of UHRF2, a paralogue of UHRF1, as an ICL sensor protein. UHRF2 is recruited to ICLs in the genome within seconds of their appearance. We show that UHRF2 cooperates with UHRF1, to ensure recruitment of FANCD2 to ICLs. A direct protein-protein interaction is formed between UHRF1 and UHRF2, and between either UHRF1 and UHRF2, and FANCD2. Importantly, we demonstrate that the essential monoubiquitination of FANCD2 is stimulated by UHRF1/UHRF2. The stimulation is mediating by a retention of FANCD2 on chromatin, allowing for its monoubiquitination by the FA core complex. Taken together, we uncover a mechanism of ICL sensing by UHRF2, leading to FANCD2 recruitment and retention at ICLs, in turn facilitating activation of FANCD2 by monoubiquitination.
Collapse
Affiliation(s)
- Anna Motnenko
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Chih-Chao Liang
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Di Yang
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Yasunaga Yoshikawa
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Bao Zhan
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Katherine E. Ward
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jiayang Tian
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Wilhelm Haas
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States of America Medicine, Kitasato University, Aomori, Japan
| | - Paolo Spingardi
- Ludwig Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Benedikt M. Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Skirmantas Kriaucionis
- Ludwig Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States of America Medicine, Kitasato University, Aomori, Japan
| | - Martin A. Cohn
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
46
|
Yin L, Liu Y, Peng Y, Peng Y, Yu X, Gao Y, Yuan B, Zhu Q, Cao T, He L, Gong Z, Sun L, Fan X, Li X. PARP inhibitor veliparib and HDAC inhibitor SAHA synergistically co-target the UHRF1/BRCA1 DNA damage repair complex in prostate cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:153. [PMID: 30012171 PMCID: PMC6048811 DOI: 10.1186/s13046-018-0810-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
Abstract
Background The poly ADP ribose polymerase (PARP) inhibitor olaparib has been approved for treating prostate cancer (PCa) with BRCA mutations, and veliparib, another PARP inhibitor, is being tested in clinical trials. However, veliparib only showed a moderate anticancer effect, and combination therapy is required for PCa patients. Histone deacetylase (HDAC) inhibitors have been tested to improve the anticancer efficacy of PARP inhibitors for PCa cells, but the exact mechanisms are still elusive. Methods Several types of PCa cells and prostate epithelial cell line RWPE-1 were treated with veliparib or SAHA alone or in combination. Cell viability or clonogenicity was tested with violet crystal assay; cell apoptosis was detected with Annexin V-FITC/PI staining and flow cytometry, and the cleaved PARP was tested with western blot; DNA damage was evaluated by staining the cells with γH2AX antibody, and the DNA damage foci were observed with a fluorescent microscopy, and the level of γH2AX was tested with western blot; the protein levels of UHRF1 and BRCA1 were measured with western blot or cell immunofluorescent staining, and the interaction of UHRF1 and BRCA1 proteins was detected with co-immunoprecipitation when cells were treated with drugs. The antitumor effect of combinational therapy was validated in DU145 xenograft models. Results PCa cells showed different sensitivity to veliparib or SAHA. Co-administration of both drugs synergistically decreased cell viability and clonogenicity, and synergistically induced cell apoptosis and DNA damage, while had no detectable toxicity to normal prostate epithelial cells. Mechanistically, veliparib or SAHA alone reduced BRCA1 or UHRF1 protein levels, co-treatment with veliparib and SAHA synergistically reduced BRCA1 protein levels by targeting the UHRF1/BRCA1 protein complex, the depletion of UHRF1 resulted in the degradation of BRCA1 protein, while the elevation of UHRF1 impaired co-treatment-reduced BRCA1 protein levels. Co-administration of both drugs synergistically decreased the growth of xenografts. Conclusions Our studies revealed that the synergistic lethality of HDAC and PARP inhibitors resulted from promoting DNA damage and inhibiting HR DNA damage repair pathways, in particular targeting the UHRF1/BRCA1 protein complex. The synergistic lethality of veliparib and SAHA shows great potential for future PCa clinical trials. Electronic supplementary material The online version of this article (10.1186/s13046-018-0810-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linglong Yin
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Youhong Liu
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuchong Peng
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yongbo Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Xiaohui Yu
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingxue Gao
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Bowen Yuan
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Qianling Zhu
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Tuoyu Cao
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Leye He
- Research Institute for Prostate Disease, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuegong Fan
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Li
- Center for Molecular Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China. .,Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China. .,Research Institute for Prostate Disease, Central South University, Changsha, China.
| |
Collapse
|
47
|
Uhrf1 regulates active transcriptional marks at bivalent domains in pluripotent stem cells through Setd1a. Nat Commun 2018; 9:2583. [PMID: 29968706 PMCID: PMC6030064 DOI: 10.1038/s41467-018-04818-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/23/2018] [Indexed: 11/18/2022] Open
Abstract
Embryonic stem cells (ESCs) maintain pluripotency through unique epigenetic states. When ESCs commit to a specific lineage, epigenetic changes in histones and DNA accompany the transition to specialized cell types. Investigating how epigenetic regulation controls lineage specification is critical in order to generate the required cell types for clinical applications. Uhrf1 is a widely known hemi-methylated DNA-binding protein, playing a role in DNA methylation through the recruitment of Dnmt1 and in heterochromatin formation alongside G9a, Trim28, and HDACs. Although Uhrf1 is not essential in ESC self-renewal, it remains elusive how Uhrf1 regulates cell specification. Here we report that Uhrf1 forms a complex with the active trithorax group, the Setd1a/COMPASS complex, to maintain bivalent histone marks, particularly those associated with neuroectoderm and mesoderm specification. Overall, our data demonstrate that Uhrf1 safeguards proper differentiation via bivalent histone modifications. Uhrf1 is a known regulator of heterochromatin and DNA methylation in embryonic stem cells (ESCs). Here, the authors demonstrate that Uhrf1 acts together with the Set1/COMPASS complex regulator of active transcription to promote H3K4 methylation at bivalent loci and Uhrf1 loss results in disruption of differentiation.
Collapse
|
48
|
Lan X, Fu H, Li G, Zeng W, Lin X, Zhu Y, Liu M, Chen P. TMUB1 Inhibits BRL-3A Hepatocyte Proliferation by Interfering with the Binding of CAML to Cyclophilin B through its TM1 Hydrophobic Domain. Sci Rep 2018; 8:9917. [PMID: 29967478 PMCID: PMC6028644 DOI: 10.1038/s41598-018-28339-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Transmembrane and ubiquitin-like domain-containing 1 (Tmub1) encodes a protein (TMUB1) containing an ubiquitin-like domain and plays a negative regulatory role during hepatocyte proliferation, but its mechanism in this process is still unknown. Here, TMUB1 interfered with the binding of calcium-modulating cyclophilin ligand (CAML) to cyclophilin B, which may represent a key role in the negative regulatory process of TMUB1 in hepatocyte proliferation. Co-immunoprecipitation assays in rat BRL-3A cells confirmed the interaction between TMUB1 and CAML; significant regulation of the influx of Ca2+ ([Ca2+]i) and hepatocyte proliferation occurred following TMUB1 overexpression or knockout. Deletion of the TM1 hydrophobic domain of TMUB1 completely abolished this interaction and led to loss of TMUB1's regulatory effects on cytological behavior. Furthermore, overexpression of TMUB1 completely abolished the interaction between CAML and its downstream protein cyclophilin B, which can act upstream of calcineurin by increasing [Ca2+]i during cell proliferation. Taken together, our results indicate that TMUB1 regulates BRL-3A hepatocyte proliferation by interacting with CAML and further interferes with the binding of CAML to cyclophilin B to decrease cellular [Ca2+]i.
Collapse
Affiliation(s)
- Xiang Lan
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, The Third Military Medical University (Army medical university), Chongqing, China
| | - Hangwei Fu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, The Third Military Medical University (Army medical university), Chongqing, China
| | - Guangyao Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, The Third Military Medical University (Army medical university), Chongqing, China
| | - Wei Zeng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, The Third Military Medical University (Army medical university), Chongqing, China
| | - Xia Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, The Third Military Medical University (Army medical university), Chongqing, China
| | - Yuanxin Zhu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, The Third Military Medical University (Army medical university), Chongqing, China
| | - Menggang Liu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, The Third Military Medical University (Army medical university), Chongqing, China.
| | - Ping Chen
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, The Third Military Medical University (Army medical university), Chongqing, China.
| |
Collapse
|
49
|
Chen C, Zhai S, Zhang L, Chen J, Long X, Qin J, Li J, Huo R, Wang X. Uhrf1 regulates germinal center B cell expansion and affinity maturation to control viral infection. J Exp Med 2018; 215:1437-1448. [PMID: 29618490 PMCID: PMC5940267 DOI: 10.1084/jem.20171815] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/07/2017] [Accepted: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
The production of high-affinity antibody is essential for pathogen clearance. Antibody affinity is increased through germinal center (GC) affinity maturation, which relies on BCR somatic hypermutation (SHM) followed by antigen-based selection. GC B cell proliferation is essentially involved in these processes; it provides enough templates for SHM and also serves as a critical mechanism of positive selection. In this study, we show that expression of epigenetic regulator ubiquitin-like with PHD and RING finger domains 1 (Uhrf1) was markedly up-regulated by c-Myc-AP4 in GC B cells, and it was required for GC response. Uhrf1 regulates cell proliferation-associated genes including cdkn1a, slfn1, and slfn2 by DNA methylation, and its deficiency inhibited the GC B cell cycle at G1-S phase. Subsequently, GC B cell SHM and affinity maturation were impaired, and Uhrf1 GC B knockout mice were unable to control chronic virus infection. Collectively, our data suggest that Uhrf1 regulates GC B cell proliferation and affinity maturation, and its expression in GC B cells is required for virus clearance.
Collapse
Affiliation(s)
- Chao Chen
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Sulan Zhai
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Le Zhang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jingjing Chen
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xuehui Long
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jun Qin
- Key Laboratory of Stem Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xiaoming Wang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
50
|
UHRF1 depletion sensitizes retinoblastoma cells to chemotherapeutic drugs via downregulation of XRCC4. Cell Death Dis 2018; 9:164. [PMID: 29415984 PMCID: PMC5833858 DOI: 10.1038/s41419-017-0203-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022]
Abstract
UHRF1 (ubiquitin-like with PHD and ring finger domains 1) is highly expressed in various human cancers including retinoblastoma, and associated with tumor-promoting effects such as inhibition of apoptosis and high proliferation. However, the molecular mechanisms underlying tumor-promoting functions of UHRF1 in retinoblastoma still remain elusive. Here, we show that stable knockdown of UHRF1 renders retinoblastoma cells sensitized to conventional chemotherapeutic drugs such as etoposide and camptothecin, resulting in enhanced DNA damage and apoptotic cell death. We found that UHRF1-depleted retinoblastoma cells can recognize DNA damages normally but have markedly low expression of XRCC4 (X-ray repair cross complementing 4) among the components of nonhomologous end-joining (NHEJ) repair complex. Conversely, overexpression of UHRF1 increased the XRCC4 expression and stable knockdown of XRCC4 sensitized retinoblastoma cells to etoposide treatment, suggesting that XRCC4 is a key mediator for the drug sensitivity upon UHRF1 depletion in retinoblastoma cells. Consistent with the findings, chromatin association of DNA ligase IV in response to acute DNA damage was found to be significantly reduced in UHRF1-depleted retinoblastoma cells and functional complementation for XRCC4 in UHRF1-depleted cells attenuated the drug sensitivity, demonstrating that XRCC4 downregulation in UHRF1-depleted cells impaired DNA repair and consequently induced robust apoptosis upon genotoxic drug treatment. In human primary retinoblastoma, high expression of UHRF1 and XRCC4 could be detected, and elevated XRCC4 expression correlated with reduced apoptosis markers, implying that UHRF1-mediated XRCC4 upregulation under pathophysiological conditions triggered by RB1 gene inactivation may confer protection against endogenous DNA damages that arise during retinoblastoma development. Taken together, these results present a new mechanistic insight into how UHRF1 mediates its tumor-promoting functions in retinoblastoma, and also provide a basis for UHRF1 targeting to improve the efficacy of current chemotherapy for retinoblastoma treatment.
Collapse
|