1
|
Shibuya H. Telomeres, the nuclear lamina, and membrane remodeling: Orchestrating meiotic chromosome movements. J Cell Biol 2025; 224:e202412135. [PMID: 40261310 PMCID: PMC12013511 DOI: 10.1083/jcb.202412135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025] Open
Abstract
Telomeres, the DNA-protein complex located at the ends of linear eukaryotic chromosomes, not only safeguard genetic information from DNA erosion and aberrant activation of the DNA damage response pathways but also play a pivotal role in sexual reproduction. During meiotic prophase I, telomeres attach to the nuclear envelope and migrate along its surface, facilitating two-dimensional DNA homology searches that ensure precise pairing and recombination of the paternal and maternal chromosomes. Recent studies across diverse model systems have revealed intricate molecular mechanisms, including modifications to telomere- and nuclear envelope-binding proteins, the nuclear lamina, and even membrane composition. Emerging evidence reveals mutations in the genes encoding these meiotic telomere and nuclear envelope-associated proteins among infertile patients. This review highlights recent advances in the field of meiotic telomere research, particularly emphasizing mammalian model systems, contextualizes these findings through comparisons with other eukaryotes, and concludes by exploring potential future research directions in the field.
Collapse
Affiliation(s)
- Hiroki Shibuya
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Li M, Zhu C, Xu Z, Xu M, Kuang Y, Hou X, Huang X, Lv M, Liu Y, Zhang Y, Xu Z, Han X, Wang S, Shi Y, Guang S, Li F. Structural basis for C. elegans pairing center DNA binding specificity by the ZIM/HIM-8 family proteins. Nat Commun 2024; 15:10355. [PMID: 39609407 PMCID: PMC11605055 DOI: 10.1038/s41467-024-54548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
Pairing center (PC) on each chromosome of Caenorhabditis elegans is crucial for homolog pairing and initiating synapsis. Within each PC, clusters of 11/12 bp DNA motif recruit one of four paralogous meiosis-specific proteins: ZIM-1, ZIM-2, ZIM-3, or HIM-8. However, the mechanistic basis underlying the specificity of ZIM/HIM-8-PC DNA interaction remains elusive. Here, we describe crystal structures of HIM-8, ZIM-1 and ZIM-2 DNA binding domains (ZF1, ZF2 and CTD) in complex with their cognate PC DNA motifs, respectively. These structures demonstrated the ZF1-2-CTD folds as an integrated structural unit crucial for its DNA binding specificity. Base-specific DNA-contacting residues are exclusively distributed on ZF1-2 and highly conserved. Furthermore, the CTD potentially contributes to the conformational diversity of ZF1-2, imparting binding specificity to distinct PC DNA motifs. These findings shed light on the mechanism governing PC DNA motif recognition by ZIM/HIM-8 proteins, suggesting a co-evolution relationship between PC DNA motifs and ZF1-2-CTD in shaping the specific recognition.
Collapse
Affiliation(s)
- Meili Li
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chengming Zhu
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zheng Xu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mingjing Xu
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Kuang
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinhao Hou
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinya Huang
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengqi Lv
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongrui Liu
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Zhang
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ziyan Xu
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xu Han
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suman Wang
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunyu Shi
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Shouhong Guang
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Fudong Li
- MOE Key Laboratory for Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
3
|
Rezaei M, Liang M, Yalcin Z, Martin JH, Kazemi P, Bareke E, Ge ZJ, Fardaei M, Benadiva C, Hemida R, Hassan A, Maher GJ, Abdalla E, Buckett W, Bolze PA, Sandhu I, Duman O, Agrawal S, Qian J, Vallian Broojeni J, Bhati L, Miron P, Allias F, Selim A, Fisher RA, Seckl MJ, Sauthier P, Touitou I, Tan SL, Majewski J, Taketo T, Slim R. Defects in meiosis I contribute to the genesis of androgenetic hydatidiform moles. J Clin Invest 2024; 134:e170669. [PMID: 39545410 PMCID: PMC11563684 DOI: 10.1172/jci170669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/26/2024] [Indexed: 11/17/2024] Open
Abstract
To identify novel genes responsible for recurrent hydatidiform moles (HMs), we performed exome sequencing on 75 unrelated patients who were negative for mutations in the known genes. We identified biallelic deleterious variants in 6 genes, FOXL2, MAJIN, KASH5, SYCP2, MEIOB, and HFM1, in patients with androgenetic HMs, including a familial case of 3 affected members. Five of these genes are essential for meiosis I, and their deficiencies lead to premature ovarian insufficiency. Advanced maternal age is the strongest risk factor for sporadic androgenetic HM, which affects 1 in every 600 pregnancies. We studied Hfm1-/- female mice and found that these mice lost all their oocytes before puberty but retained some at younger ages. Oocytes from Hfm1-/- mice initiated meiotic maturation and extruded the first polar bodies in culture; however, their meiotic spindles were often positioned parallel, instead of perpendicular, to the ooplasmic membrane at telophase I, and some oocytes extruded the entire spindle with all the chromosomes into the polar bodies at metaphase II, a mechanism we previously reported in Mei1-/- oocytes. The occurrence of a common mechanism in two mouse models argues in favor of its plausibility at the origin of androgenetic HM formation in humans.
Collapse
Affiliation(s)
- Maryam Rezaei
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Manqi Liang
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Zeynep Yalcin
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jacinta H. Martin
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Parinaz Kazemi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Eric Bareke
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Zhao-Jia Ge
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Majid Fardaei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Claudio Benadiva
- Center for Advanced Reproductive Services, Farmington, Connecticut, USA
| | - Reda Hemida
- Department of Obstetrics and Gynecology, Mansoura University, Mansoura, Egypt
| | - Adnan Hassan
- Department of Obstetrics and Gynecology, Jordan Hospital, Amman, Jordan
| | - Geoffrey J. Maher
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - William Buckett
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Pierre-Adrien Bolze
- Université Lyon 1, Service de Chirurgie Gynécologique et Ontologique, Obstétrique, Centre Français de Référence des Maladies Trophoblastiques, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre Bénite, France
| | - Iqbaljit Sandhu
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Onur Duman
- Security Research Center, Concordia University, Montreal, Quebec, Canada
| | - Suraksha Agrawal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - JianHua Qian
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Lavi Bhati
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Pierre Miron
- Centre d’Aide Médicale à la Procréation Fertilys, Laval, Quebec, Canada
- Institut National de Recherche Scientifique–Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Fabienne Allias
- Department of Pathology, Hospices Civils de Lyon, Centre, Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Amal Selim
- Department of Medical Biochemistry and Molecular Biology, Mansoura University, Mansoura, Egypt
| | - Rosemary A. Fisher
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Michael J. Seckl
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Philippe Sauthier
- Department of Obstetrics and Gynecology, Gynecologic Oncology Division, Centre Hospitalier de l’Université de Montréal, Réseau des Maladies Trophoblastiques du Québec, Montreal, Quebec, Canada
| | - Isabelle Touitou
- Department of Genetics CHU of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Seang Lin Tan
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
- OriginElle Fertility Clinic and Women’s Health Centre, Montreal, Quebec, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Teruko Taketo
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rima Slim
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Sun L, Ye R, Cao C, Lv Z, Wang C, Xie X, Chen X, Yao X, Tian S, Yan L, Shao Y, Cui S, Chen C, Xue Y, Li L, Chen J, Liu J. BCAS2 and hnRNPH1 orchestrate alternative splicing for DNA double-strand break repair and synapsis in meiotic prophase I. Cell Mol Life Sci 2024; 81:449. [PMID: 39520542 PMCID: PMC11550311 DOI: 10.1007/s00018-024-05479-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/22/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Understanding the intricacies of homologous recombination during meiosis is crucial for reproductive biology. However, the role of alternative splicing (AS) in DNA double-strand breaks (DSBs) repair and synapsis remains elusive. In this study, we investigated the impact of conditional knockout (cKO) of the splicing factor gene Bcas2 in mouse germ cells, revealing impaired DSBs repair and synapsis, resulting in non-obstructive azoospermia (NOA). Employing crosslinking immunoprecipitation and sequencing (CLIP-seq), we globally mapped BCAS2 binding sites in the testis, uncovering its predominant association with 5' splice sites (5'SS) of introns and a preference for GA-rich regions. Notably, BCAS2 exhibited direct binding and regulatory influence on Trp53bp1 (codes for 53BP1) and Six6os1 through AS, unveiling novel insights into DSBs repair and synapsis during meiotic prophase I. Furthermore, the interaction between BCAS2, hnRNPH1, and SRSF3 was discovered to orchestrate Trp53bp1 expression via AS, underscoring its role in meiotic prophase I DSBs repair. In summary, our findings delineate the indispensable role of BCAS2-mediated post-transcriptional regulation in DSBs repair and synapsis during male meiosis. This study provides a comprehensive framework for unraveling the molecular mechanisms governing the post-transcriptional network in male meiosis, contributing to the broader understanding of reproductive biology.
Collapse
Affiliation(s)
- Longjie Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Rong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changchang Cao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zheng Lv
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chaofan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Xie
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuexue Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaohong Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuang Tian
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lu Yan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yujing Shao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Chen Chen
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China.
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Ma A, Yang Y, Cao L, Chen L, Zhang JV. FBXO47 regulates centromere pairing as key component of centromeric SCF E3 ligase in mouse spermatocytes. Commun Biol 2024; 7:1099. [PMID: 39244596 PMCID: PMC11380685 DOI: 10.1038/s42003-024-06782-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
Centromere pairing is crucial for synapsis in meiosis. This study delves into the Skp1-Cullin1-F-box protein (SCF) E3 ubiquitin ligase complex, specifically focusing on F-box protein 47 (FBXO47), in mouse meiosis. Here, we revealed that FBXO47 is localized at the centromere and it regulates centromere pairing cooperatively with SKP1 to ensure proper synapsis in pachynema. The absence of FBXO47 causes defective centromeres, resulting in incomplete centromere pairing, which leads to corruption of SC at centromeric ends and along chromosome axes, triggering premature dissociation of chromosomes and pachytene arrest. FBXO47 deficient pachytene spermatocytes exhibited drastically reduced SKP1 expression at centromeres and chromosomes. Additionally, FBXO47 stabilizes SKP1 by down-regulating its ubiquitination in HEK293T cells. In essence, we propose that FBXO47 collaborates with SKP1 to facilitate centromeric SCF formation in spermatocytes. In summary, we posit that the centromeric SCF E3 ligase complex regulates centromere pairing for pachynema progression in mice.
Collapse
Affiliation(s)
- Ani Ma
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Yali Yang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Lianbao Cao
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lijun Chen
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China.
- Sino-European Center of Biomedicine and Health, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Sanzhaeva U, Wonsettler NR, Rhodes SB, Ramamurthy V. TUBB4B is essential for the expansion of differentiating spermatogonia. Sci Rep 2024; 14:20889. [PMID: 39244620 PMCID: PMC11380678 DOI: 10.1038/s41598-024-71303-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Microtubules, polymers of αβ-tubulin heterodimers, are essential for various cellular processes. The incorporation of different tubulin isotypes, each encoded by distinct genes, is proposed to contribute to the functional diversity observed in microtubules. However, the functional roles of each tubulin isotype are not completely understood. In this study, we investigated the role of the β4B-tubulin isotype (Tubb4b) in spermatogenesis, utilizing a Tubb4b knockout mouse model. We showed that β4B-tubulin is expressed in the germ cells throughout spermatogenesis. β4B-tubulin was localized to cytoplasmic microtubules, mitotic spindles, manchette, and axonemes of sperm flagella. We found that the absence of β4B-tubulin resulted in male infertility and failure to produce sperm cells. Our findings demonstrate that a lack of β4B-tubulin leads to defects in the initial stages of spermatogenesis. Specifically, β4B-tubulin is needed for the expansion of differentiating spermatogonia, which is essential for the subsequent progression of spermatogenesis.
Collapse
Affiliation(s)
- Urikhan Sanzhaeva
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Natalie R Wonsettler
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Scott B Rhodes
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Visvanathan Ramamurthy
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, WV, 26506, USA.
- Department of Ophthalmology and Visual Sciences, West Virginia University School of Medicine, Morgantown, WV, 26506, USA.
| |
Collapse
|
7
|
Cromer L, Tiscareno-Andrade M, Lefranc S, Chambon A, Hurel A, Brogniez M, Guérin J, Le Masson I, Adam G, Charif D, Andrey P, Grelon M. Rapid meiotic prophase chromosome movements in Arabidopsis thaliana are linked to essential reorganization at the nuclear envelope. Nat Commun 2024; 15:5964. [PMID: 39013853 PMCID: PMC11252379 DOI: 10.1038/s41467-024-50169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
Meiotic rapid prophase chromosome movements (RPMs) require connections between the chromosomes and the cytoskeleton, involving SUN (Sad1/UNC-84)-domain-containing proteins at the inner nuclear envelope (NE). RPMs remain significantly understudied in plants, with respect to their importance in the regulation of meiosis. Here, we demonstrate that Arabidopsis thaliana meiotic centromeres undergo rapid (up to 500 nm/s) and uncoordinated movements during the zygotene and pachytene stages. These centromere movements are not affected by altered chromosome organization and recombination but are abolished in the double mutant sun1 sun2. We also document the changes in chromosome dynamics and nucleus organization during the transition from leptotene to zygotene, including telomere attachment to SUN-enriched NE domains, bouquet formation, and nucleolus displacement, all of which were defective in sun1 sun2. These results establish A. thaliana as a model species for studying the functional implications of meiotic RPMs and demonstrate the mechanistic conservation of telomere-led RPMs in plants.
Collapse
Affiliation(s)
- Laurence Cromer
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Mariana Tiscareno-Andrade
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Sandrine Lefranc
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Aurélie Chambon
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Aurélie Hurel
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Manon Brogniez
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Julie Guérin
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Ivan Le Masson
- Université Paris-Saclay, AgroParisTech, INRAE, UMR Agronomie, 91120, Palaiseau, France
| | - Gabriele Adam
- Université Paris-Saclay, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
- Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
| | - Delphine Charif
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Philippe Andrey
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Mathilde Grelon
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France.
| |
Collapse
|
8
|
Yin L, Jiang N, Li T, Zhang Y, Yuan S. Telomeric function and regulation during male meiosis in mice and humans. Andrology 2024. [PMID: 38511802 DOI: 10.1111/andr.13631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Telomeres are unique structures situated at the ends of chromosomes. Preserving the structure and function of telomeres is essential for maintaining genomic stability and promoting genetic diversity during male meiosis in mammals. MATERIAL-METHODS This review compiled recent literature on the function and regulation of telomeres during male meiosis in both mice and humans, and also highlighted the critical roles of telomeres in reproductive biology and medicine. RESULTS-DISCUSSION Various structures, consisting of the LINC complex (SUN-KASH), SPDYA-CDK2, TTM trimer (TERB1-TERB2-MAJIN), and shelterin, are critical in controlling telomeric activities, such as nuclear envelope attachment and bouquet formation. Other than telomere-related proteins, cohesins and genes responsible for regulating telomere function are also highlighted, though the exact mechanism remains unclear. The gene-mutant mouse models with meiotic defects directly reveal the essential roles of telomeres in male meiosis. Recently reported mutant genes associated with telomere activity in clinical practice have also been illustrated in detail. CONCLUSIONS Proper regulation of telomere activities is essential for male meiosis progression in mice and humans.
Collapse
Affiliation(s)
- Lisha Yin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Jiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youzhi Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Rao L, Gennerich A. Structure and Function of Dynein's Non-Catalytic Subunits. Cells 2024; 13:330. [PMID: 38391943 PMCID: PMC10886578 DOI: 10.3390/cells13040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Dynein, an ancient microtubule-based motor protein, performs diverse cellular functions in nearly all eukaryotic cells, with the exception of land plants. It has evolved into three subfamilies-cytoplasmic dynein-1, cytoplasmic dynein-2, and axonemal dyneins-each differentiated by their cellular functions. These megadalton complexes consist of multiple subunits, with the heavy chain being the largest subunit that generates motion and force along microtubules by converting the chemical energy of ATP hydrolysis into mechanical work. Beyond this catalytic core, the functionality of dynein is significantly enhanced by numerous non-catalytic subunits. These subunits are integral to the complex, contributing to its stability, regulating its enzymatic activities, targeting it to specific cellular locations, and mediating its interactions with other cofactors. The diversity of non-catalytic subunits expands dynein's cellular roles, enabling it to perform critical tasks despite the conservation of its heavy chains. In this review, we discuss recent findings and insights regarding these non-catalytic subunits.
Collapse
Affiliation(s)
- Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
10
|
Gurusaran M, Erlandsen BS, Davies OR. The crystal structure of SUN1-KASH6 reveals an asymmetric LINC complex architecture compatible with nuclear membrane insertion. Commun Biol 2024; 7:138. [PMID: 38291267 PMCID: PMC10827754 DOI: 10.1038/s42003-024-05794-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
The LINC complex transmits cytoskeletal forces into the nucleus to control the structure and movement of nuclear contents. It is formed of nuclear SUN and cytoplasmic KASH proteins, which interact within the nuclear lumen, immediately below the outer nuclear membrane. However, the symmetrical location of KASH molecules within SUN-KASH complexes in previous crystal structures has been difficult to reconcile with the steric requirements for insertion of their immediately upstream transmembrane helices into the outer nuclear membrane. Here, we report the crystal structure of the SUN-KASH complex between SUN1 and JAW1/LRMP (KASH6) in an asymmetric 9:6 configuration. This intertwined assembly involves two distinct KASH conformations such that all six KASH molecules emerge on the same molecular surface. Hence, they are ideally positioned for insertion of upstream sequences into the outer nuclear membrane. Thus, we report a SUN-KASH complex architecture that appears to be directly compatible with its biological role.
Collapse
Affiliation(s)
- Manickam Gurusaran
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Benedikte S Erlandsen
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
11
|
de Almeida LP, Lee CY, Carbajal A, de Castro RO, Pezza RJ. Visualization and Quantification of Rapid Chromosome Movements at Early Stages of Mouse Meiosis. Methods Mol Biol 2024; 2818:171-177. [PMID: 39126474 DOI: 10.1007/978-1-0716-3906-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Telomere-led rapid chromosome movements (RPMs) are a conserved characteristic of chromosome dynamics in meiosis. RPMs have been suggested to influence critical meiotic functions such as DNA repair and the association of the homologous chromosomes. Here, we describe a method using 3D time-lapse fluorescence imaging to monitor RPMs in Hoechst-stained mouse seminiferous tubules explants. We supplement visualization with customized quantitative motion analysis and in silico simulation. The ability to carry out live imaging, combined with quantitative image analysis, offers a sensitive tool to investigate the regulation of RPMs, chromosome reorganizations that precede dynamic mid-prophase events, and their contribution to faithful transmission of genetic information.
Collapse
Affiliation(s)
- Luciana Previato de Almeida
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Chih-Ying Lee
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Agustin Carbajal
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rodrigo O de Castro
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Roberto J Pezza
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| |
Collapse
|
12
|
Tian Y, Liu L, Gao J, Wang R. Homologous chromosome pairing: The linchpin of accurate segregation in meiosis. J Cell Physiol 2024; 239:3-19. [PMID: 38032002 DOI: 10.1002/jcp.31166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Meiosis is a specialized cell division that occurs in sexually reproducing organisms, generating haploid gametes containing half the chromosome number through two rounds of cell division. Homologous chromosomes pair and prepare for their proper segregation in subsequent divisions. How homologous chromosomes recognize each other and achieve pairing is an important question. Early studies showed that in most organisms, homologous pairing relies on homologous recombination. However, pairing mechanisms differ across species. Evidence indicates that chromosomes are dynamic and move during early meiotic stages, facilitating pairing. Recent studies in various model organisms suggest conserved mechanisms and key regulators of homologous chromosome pairing. This review summarizes these findings and compare similarities and differences in homologous chromosome pairing mechanisms across species.
Collapse
Affiliation(s)
- Yuqi Tian
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Libo Liu
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Jinmin Gao
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Ruoxi Wang
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| |
Collapse
|
13
|
Fernández-Álvarez A. Beyond tradition: exploring the non-canonical functions of telomeres in meiosis. Front Cell Dev Biol 2023; 11:1278571. [PMID: 38020928 PMCID: PMC10679444 DOI: 10.3389/fcell.2023.1278571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
The telomere bouquet is a specific chromosomal configuration that forms during meiosis at the zygotene stage, when telomeres cluster together at the nuclear envelope. This clustering allows cytoskeleton-induced movements to be transmitted to the chromosomes, thereby facilitating homologous chromosome search and pairing. However, loss of the bouquet results in more severe meiotic defects than can be attributed solely to recombination problems, suggesting that the bouquet's full function remains elusive. Despite its transient nature and the challenges in performing in vivo analyses, information is emerging that points to a remarkable suite of non-canonical functions carried out by the bouquet. Here, we describe how new approaches in quantitative cell biology can contribute to establishing the molecular basis of the full function and plasticity of the bouquet, and thus generate a comprehensive picture of the telomeric control of meiosis.
Collapse
Affiliation(s)
- Alfonso Fernández-Álvarez
- Institute of Functional Biology and Genomics (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, Salamanca, Spain
| |
Collapse
|
14
|
Abstract
In meiosis, homologous chromosome synapsis is mediated by a supramolecular protein structure, the synaptonemal complex (SC), that assembles between homologous chromosome axes. The mammalian SC comprises at least eight largely coiled-coil proteins that interact and self-assemble to generate a long, zipper-like structure that holds homologous chromosomes in close proximity and promotes the formation of genetic crossovers and accurate meiotic chromosome segregation. In recent years, numerous mutations in human SC genes have been associated with different types of male and female infertility. Here, we integrate structural information on the human SC with mouse and human genetics to describe the molecular mechanisms by which SC mutations can result in human infertility. We outline certain themes in which different SC proteins are susceptible to different types of disease mutation and how genetic variants with seemingly minor effects on SC proteins may act as dominant-negative mutations in which the heterozygous state is pathogenic.
Collapse
Affiliation(s)
- Ian R Adams
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
15
|
Liu C, Rex R, Lung Z, Wang JS, Wu F, Kim HJ, Zhang L, Sohn LL, Dernburg AF. A cooperative network at the nuclear envelope counteracts LINC-mediated forces during oogenesis in C. elegans. SCIENCE ADVANCES 2023; 9:eabn5709. [PMID: 37436986 PMCID: PMC10337908 DOI: 10.1126/sciadv.abn5709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Oogenesis involves transduction of mechanical forces from the cytoskeleton to the nuclear envelope (NE). In Caenorhabditis elegans, oocyte nuclei lacking the single lamin protein LMN-1 are vulnerable to collapse under forces mediated through LINC (linker of nucleoskeleton and cytoskeleton) complexes. Here, we use cytological analysis and in vivo imaging to investigate the balance of forces that drive this collapse and protect oocyte nuclei. We also use a mechano-node-pore sensing device to directly measure the effect of genetic mutations on oocyte nuclear stiffness. We find that nuclear collapse is not a consequence of apoptosis. It is promoted by dynein, which induces polarization of a LINC complex composed of Sad1 and UNC-84 homology 1 (SUN-1) and ZYGote defective 12 (ZYG-12). Lamins contribute to oocyte nuclear stiffness and cooperate with other inner nuclear membrane proteins to distribute LINC complexes and protect nuclei from collapse. We speculate that a similar network may protect oocyte integrity during extended oocyte arrest in mammals.
Collapse
Affiliation(s)
- Chenshu Liu
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Rachel Rex
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Zoe Lung
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - John S. Wang
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Fan Wu
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Hyung Jun Kim
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Liangyu Zhang
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Lydia L. Sohn
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Abby F. Dernburg
- California Institute for Quantitative Biosciences (QB3) and Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biological Sciences and Engineering, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
16
|
Gurusaran M, Biemans JJ, Wood CW, Davies OR. Molecular insights into LINC complex architecture through the crystal structure of a luminal trimeric coiled-coil domain of SUN1. Front Cell Dev Biol 2023; 11:1144277. [PMID: 37416798 PMCID: PMC10320395 DOI: 10.3389/fcell.2023.1144277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
The LINC complex, consisting of interacting SUN and KASH proteins, mechanically couples nuclear contents to the cytoskeleton. In meiosis, the LINC complex transmits microtubule-generated forces to chromosome ends, driving the rapid chromosome movements that are necessary for synapsis and crossing over. In somatic cells, it defines nuclear shape and positioning, and has a number of specialised roles, including hearing. Here, we report the X-ray crystal structure of a coiled-coiled domain of SUN1's luminal region, providing an architectural foundation for how SUN1 traverses the nuclear lumen, from the inner nuclear membrane to its interaction with KASH proteins at the outer nuclear membrane. In combination with light and X-ray scattering, molecular dynamics and structure-directed modelling, we present a model of SUN1's entire luminal region. This model highlights inherent flexibility between structured domains, and raises the possibility that domain-swap interactions may establish a LINC complex network for the coordinated transmission of cytoskeletal forces.
Collapse
Affiliation(s)
- Manickam Gurusaran
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Jelle J. Biemans
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Christopher W. Wood
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Owen R. Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
17
|
Sun L, Chen J, Ye R, Lv Z, Chen X, Xie X, Li Y, Wang C, Lv P, Yan L, Tian S, Yao X, Chen C, Cui S, Liu J. SRSF1 is crucial for male meiosis through alternative splicing during homologous pairing and synapsis in mice. Sci Bull (Beijing) 2023; 68:1100-1104. [PMID: 37179228 DOI: 10.1016/j.scib.2023.04.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Affiliation(s)
- Longjie Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Rong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng Lv
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xuexue Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaomei Xie
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuheng Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chaofan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Pengbo Lv
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lu Yan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuang Tian
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaohong Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chen Chen
- Department of Animal Science, Michigan State University, East Lansing 48824, USA; Reproductive and Developmental Sciences Program, Michigan State University, East Lansing 48824, USA; Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids 49503, USA
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
18
|
Solé M, Pascual Á, Anton E, Blanco J, Sarrate Z. The courtship choreography of homologous chromosomes: timing and mechanisms of DSB-independent pairing. Front Cell Dev Biol 2023; 11:1191156. [PMID: 37377734 PMCID: PMC10291267 DOI: 10.3389/fcell.2023.1191156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Meiosis involves deep changes in the spatial organisation and interactions of chromosomes enabling the two primary functions of this process: increasing genetic diversity and reducing ploidy level. These two functions are ensured by crucial events such as homologous chromosomal pairing, synapsis, recombination and segregation. In most sexually reproducing eukaryotes, homologous chromosome pairing depends on a set of mechanisms, some of them associated with the repair of DNA double-strand breaks (DSBs) induced at the onset of prophase I, and others that operate before DSBs formation. In this article, we will review various strategies utilised by model organisms for DSB-independent pairing. Specifically, we will focus on mechanisms such as chromosome clustering, nuclear and chromosome movements, as well as the involvement of specific proteins, non-coding RNA, and DNA sequences.
Collapse
Affiliation(s)
| | | | | | - Joan Blanco
- *Correspondence: Joan Blanco, ; Zaida Sarrate,
| | | |
Collapse
|
19
|
Garner KE, Salter A, Lau CK, Gurusaran M, Villemant CM, Granger EP, McNee G, Woodman PG, Davies OR, Burke BE, Allan VJ. The meiotic LINC complex component KASH5 is an activating adaptor for cytoplasmic dynein. J Cell Biol 2023; 222:e202204042. [PMID: 36946995 PMCID: PMC10071310 DOI: 10.1083/jcb.202204042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/15/2022] [Accepted: 02/10/2023] [Indexed: 03/23/2023] Open
Abstract
Cytoplasmic dynein-driven movement of chromosomes during prophase I of mammalian meiosis is essential for synapsis and genetic exchange. Dynein connects to chromosome telomeres via KASH5 and SUN1 or SUN2, which together span the nuclear envelope. Here, we show that KASH5 promotes dynein motility in vitro, and cytosolic KASH5 inhibits dynein's interphase functions. KASH5 interacts with a dynein light intermediate chain (DYNC1LI1 or DYNC1LI2) via a conserved helix in the LIC C-terminal, and this region is also needed for dynein's recruitment to other cellular membranes. KASH5's N-terminal EF-hands are essential as the interaction with dynein is disrupted by mutation of key calcium-binding residues, although it is not regulated by cellular calcium levels. Dynein can be recruited to KASH5 at the nuclear envelope independently of dynactin, while LIS1 is essential for dynactin incorporation into the KASH5-dynein complex. Altogether, we show that the transmembrane protein KASH5 is an activating adaptor for dynein and shed light on the hierarchy of assembly of KASH5-dynein-dynactin complexes.
Collapse
Affiliation(s)
- Kirsten E.L. Garner
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Anna Salter
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- A*STAR Institute of Medical Biology, Singapore, Singapore
| | - Clinton K. Lau
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Manickam Gurusaran
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Cécile M. Villemant
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Elizabeth P. Granger
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gavin McNee
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Philip G. Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Owen R. Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Brian E. Burke
- A*STAR Institute of Medical Biology, Singapore, Singapore
| | - Victoria J. Allan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- A*STAR Institute of Medical Biology, Singapore, Singapore
| |
Collapse
|
20
|
Mytlis A, Levy K, Elkouby YM. The many faces of the bouquet centrosome MTOC in meiosis and germ cell development. Curr Opin Cell Biol 2023; 81:102158. [PMID: 36913831 DOI: 10.1016/j.ceb.2023.102158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/28/2022] [Accepted: 02/12/2023] [Indexed: 03/13/2023]
Abstract
Meiotic chromosomal pairing is facilitated by a conserved cytoskeletal organization. Telomeres associate with perinuclear microtubules via Sun/KASH complexes on the nuclear envelope (NE) and dynein. Telomere sliding on perinuclear microtubules contributes to chromosome homology searches and is essential for meiosis. Telomeres ultimately cluster on the NE, facing the centrosome, in a configuration called the chromosomal bouquet. Here, we discuss novel components and functions of the bouquet microtubule organizing center (MTOC) in meiosis, but also broadly in gamete development. The cellular mechanics of chromosome movements and the bouquet MTOC dynamics are striking. The newly identified zygotene cilium mechanically anchors the bouquet centrosome and completes the bouquet MTOC machinery in zebrafish and mice. We hypothesize that various centrosome anchoring strategies evolved in different species. Evidence suggests that the bouquet MTOC machinery is a cellular organizer, linking meiotic mechanisms with gamete development and morphogenesis. We highlight this cytoskeletal organization as a new platform for creating a holistic understanding of early gametogenesis, with direct implications to fertility and reproduction.
Collapse
Affiliation(s)
- Avishag Mytlis
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem, 9112102, Israel; Institute for Medical Research - Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Karine Levy
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem, 9112102, Israel; Institute for Medical Research - Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Yaniv M Elkouby
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem, 9112102, Israel; Institute for Medical Research - Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel.
| |
Collapse
|
21
|
Fujita I, Kimura A, Yamashita A. A force balance model for a cell size-dependent meiotic nuclear oscillation in fission yeast. EMBO Rep 2023; 24:e55770. [PMID: 36622644 PMCID: PMC9986818 DOI: 10.15252/embr.202255770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023] Open
Abstract
Fission yeast undergoes premeiotic nuclear oscillation, which is dependent on microtubules and is driven by cytoplasmic dynein. Although the molecular mechanisms have been analyzed, how a robust oscillation is generated despite the dynamic behaviors of microtubules has yet to be elucidated. Here, we show that the oscillation exhibits cell length-dependent frequency and requires a balance between microtubule and viscous drag forces, as well as proper microtubule dynamics. Comparison of the oscillations observed in living cells with a simulation model based on microtubule dynamic instability reveals that the period of oscillation correlates with cell length. Genetic alterations that reduce cargo size suggest that the nuclear movement depends on viscous drag forces. Deletion of a gene encoding Kinesin-8 inhibits microtubule catastrophe at the cell cortex and results in perturbation of oscillation, indicating that nuclear movement also depends on microtubule dynamic instability. Our findings link numerical parameters from the simulation model with cellular functions required for generating the oscillation and provide a basis for understanding the physical properties of microtubule-dependent nuclear movements.
Collapse
Affiliation(s)
- Ikumi Fujita
- Laboratory for Cell Asymmetry, Center for Biosystems Dynamics ResearchRIKENKobeJapan
| | - Akatsuki Kimura
- Cell Architecture LaboratoryNational Institute of GeneticsMishimaJapan
- Department of Genetics, School of Life ScienceSOKENDAI (The Graduate University for Advanced Studies)MishimaJapan
| | - Akira Yamashita
- Interdisciplinary Research UnitNational Institute for Basic BiologyOkazakiJapan
- Center for Low‐temperature Plasma SciencesNagoya UniversityNagoyaJapan
| |
Collapse
|
22
|
Rubin T, Macaisne N, Vallés AM, Guilleman C, Gaugué I, Dal Toe L, Huynh JR. Premeiotic pairing of homologous chromosomes during Drosophila male meiosis. Proc Natl Acad Sci U S A 2022; 119:e2207660119. [PMID: 36375065 PMCID: PMC9704699 DOI: 10.1073/pnas.2207660119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022] Open
Abstract
In the early stages of meiosis, maternal and paternal chromosomes pair with their homologous partner and recombine to ensure exchange of genetic information and proper segregation. These events can vary drastically between species and between males and females of the same species. In Drosophila, in contrast to females, males do not form synaptonemal complexes (SCs), do not recombine, and have no crossing over; yet, males are able to segregate their chromosomes properly. Here, we investigated the early steps of homolog pairing in Drosophila males. We found that homolog centromeres are not paired in germline stem cells (GSCs) and become paired in the mitotic region before meiotic entry, similarly to females. Surprisingly, male germline cells express SC proteins, which localize to centromeres and promote pairing. We further found that the SUN/KASH (LINC) complex and microtubules are required for homolog pairing as in females. Chromosome movements in males, however, are much slower than in females and we demonstrate that this slow dynamic is compensated in males by having longer cell cycles. In agreement, slowing down cell cycles was sufficient to rescue pairing-defective mutants in female meiosis. Our results demonstrate that although meiosis differs significantly between males and females, sex-specific cell cycle kinetics integrate similar molecular mechanisms to achieve proper centromere pairing.
Collapse
Affiliation(s)
- Thomas Rubin
- Center for Interdisciplinary Research in Biology, CNRS UMR 7241, INSERM U1050, Collège de France and Paris Sciences & Lettres Research University, 75231 Paris Cedex 05, France
| | | | - Ana Maria Vallés
- Center for Interdisciplinary Research in Biology, CNRS UMR 7241, INSERM U1050, Collège de France and Paris Sciences & Lettres Research University, 75231 Paris Cedex 05, France
| | - Clara Guilleman
- Center for Interdisciplinary Research in Biology, CNRS UMR 7241, INSERM U1050, Collège de France and Paris Sciences & Lettres Research University, 75231 Paris Cedex 05, France
| | - Isabelle Gaugué
- Department of Genetics and Developmental Biology, CNRS UMR 3215, INSERM U934, Institut Curie, 75005 Paris, France
| | - Laurine Dal Toe
- Center for Interdisciplinary Research in Biology, CNRS UMR 7241, INSERM U1050, Collège de France and Paris Sciences & Lettres Research University, 75231 Paris Cedex 05, France
| | - Jean-René Huynh
- Center for Interdisciplinary Research in Biology, CNRS UMR 7241, INSERM U1050, Collège de France and Paris Sciences & Lettres Research University, 75231 Paris Cedex 05, France
| |
Collapse
|
23
|
Chan CJ, Hirashima T. Tissue hydraulics in reproduction. Semin Cell Dev Biol 2022; 131:124-133. [PMID: 35606275 DOI: 10.1016/j.semcdb.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The development of functional eggs and sperm are critical processes in mammalian development as they ensure successful reproduction and species propagation. While past studies have identified important genes that regulate these processes, the roles of luminal flow and fluid stress in reproductive biology remain less well understood. Here, we discuss recent evidence that support the diverse functions of luminal fluid in oogenesis, spermatogenesis and embryogenesis. We also review emerging techniques that allow for precise quantification and perturbation of tissue hydraulics in female and male reproductive systems, and propose new questions and approaches in this field. We hope this review will provide a useful resource to inspire future research in tissue hydraulics in reproductive biology and diseases.
Collapse
Affiliation(s)
- Chii Jou Chan
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore.
| | - Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; The Hakubi Center/Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan.
| |
Collapse
|
24
|
Zhang Q, Tao C, Gao S, Li S, Xu B, Ke H, Wang Y, Zhang F, Qin Y, Zhang L, Guo T. Homozygous Variant in KASH5 Causes Premature Ovarian Insufficiency by Disordered Meiotic Homologous Pairing. J Clin Endocrinol Metab 2022; 107:2589-2597. [PMID: 35708642 DOI: 10.1210/clinem/dgac368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Premature ovarian insufficiency (POI) affects 1% to 3.7% of women at reproductive age, and its etiology is heterogeneous. The linker of nucleoskeleton and cytoskeleton (LINC) complex, consisting of KASH5 and SUN1, plays an indispensable role in meiotic homolog pairing, determining the ovarian reserve. However, their roles in the pathogenesis of POI are unknown. OBJECTIVE To investigate the role of KASH5 variation in the pathogenesis of POI. DESIGN Whole-exome sequencing was performed in a pedigree with 2 POI patients. The pathogenicity of identified variant was illustrated by in vitro functional studies, and its effect on ovarian function and meiosis was confirmed by histological analysis and oocyte spreads with Kash5 C-terminal deleted mice model. RESULTS A homozygous splicing site variant in KASH5 (c.747G > A) was identified. In vitro studies found the variant disturbed the nuclear membrane localization of KASH5 and its binding with SUN1. Moreover, the Kash5 C-terminal deleted mice revealed defective meiotic homolog pairing and accelerated depletion of oocytes. CONCLUSIONS The splicing site variant in KASH5 is responsible for POI due to defective meiotic homolog pairing and accelerated depletion of oocytes. Our study is the first to report disorganized LINC complex participating in POI pathogenesis, potentially suggesting the essential roles of meiotic telomere attachment and dynein-driven proteins for chromosome movement in ovarian function maintenance.
Collapse
Affiliation(s)
- Qian Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Chengqiu Tao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Shuchang Gao
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Shan Li
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Bingying Xu
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Hanni Ke
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yiyang Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Feng Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Institute of Reproduction and Development, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Ling Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Institute of Reproduction and Development, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Ting Guo
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| |
Collapse
|
25
|
de Almeida BRR, Noronha RCR, Cardoso AL, Martins C, Martins JG, Procópio REDL, Nagamachi CY, Pieczarka JC. Kinetic Activity of Chromosomes and Expression of Recombination Genes in Achiasmatic Meiosis of Tityus (Archaeotityus) Scorpions. Int J Mol Sci 2022; 23:ijms23169179. [PMID: 36012447 PMCID: PMC9408970 DOI: 10.3390/ijms23169179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
Several species of Tityus (Scorpiones, Buthidae) present multi-chromosomal meiotic associations and failures in the synaptic process, originated from reciprocal translocations. Holocentric chromosomes and achiasmatic meiosis in males are present in all members of this genus. In the present study, we investigated synapse dynamics, transcriptional silencing by γH2AX, and meiotic microtubule association in bivalents and a quadrivalent of the scorpion Tityus maranhensis. Additionally, we performed RT-PCR to verify the expression of mismatch repair enzymes involved in crossing-over formation in Tityus silvestris gonads. The quadrivalent association in T. maranhensis showed delay in the synaptic process and long asynaptic regions during pachytene. In this species, γH2AX was recorded only at the chromosome ends during early stages of prophase I; in metaphase I, bivalents and quadrivalents of T. maranhensis exhibited binding to microtubules along their entire length, while in metaphase II/anaphase II transition, spindle fibers interacted only with telomeric regions. Regarding T. silvestris, genes involved in the recombination process were transcribed in ovaries, testes and embryos, without significant difference between these tissues. The expression of these genes during T. silvestris achiasmatic meiosis is discussed in the present study. The absence of meiotic inactivation by γH2AX and holo/telokinetic behavior of the chromosomes are important factors for the maintenance of the quadrivalent in T. maranhensis and the normal continuation of the meiotic cycle in this species.
Collapse
Affiliation(s)
- Bruno Rafael Ribeiro de Almeida
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Perimetral da Ciência, km 01, Guamá, Belem 66075-750, PA, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Pará, Campus Itaituba, R. Universitário, s/n, Maria Magdalena, Itaituba 68183-300, PA, Brazil
| | - Renata Coelho Rodrigues Noronha
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Perimetral da Ciência, km 01, Guamá, Belem 66075-750, PA, Brazil
| | - Adauto Lima Cardoso
- Laboratório Genômica Integrativa, Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Júnior, s/n, Rubião Júnior, Botucatu 18618970, SP, Brazil
| | - Cesar Martins
- Laboratório Genômica Integrativa, Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Júnior, s/n, Rubião Júnior, Botucatu 18618970, SP, Brazil
| | - Jonas Gama Martins
- Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936-Petrópolis, Manaus 69067-375, AM, Brazil
| | - Rudi Emerson de Lima Procópio
- Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas (UEA), Avenida Carvalho Leal, 1777-Cachoeirinha, Manaus 69065-170, AM, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Perimetral da Ciência, km 01, Guamá, Belem 66075-750, PA, Brazil
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Avenida Perimetral da Ciência, km 01, Guamá, Belem 66075-750, PA, Brazil
- Correspondence:
| |
Collapse
|
26
|
Yang C, Lin X, Ji Z, Huang Y, Zhang L, Luo J, Chen H, Li P, Tian R, Zhi E, Hong Y, Zhou Z, Zhang F, Li Z, Yao C. Novel bi-allelic variants in KASH5 are associated with meiotic arrest and non-obstructive azoospermia. Mol Hum Reprod 2022; 28:gaac021. [PMID: 35674372 DOI: 10.1093/molehr/gaac021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/11/2022] [Indexed: 11/12/2022] Open
Abstract
KASH5 is an essential component of the LINC (linker of the nucleoskeleton and cytoskeleton) complex that regulates chromosome movements and nuclear envelope (NE) remodeling in mouse spermatocytes during meiosis prophase I, but its expression and function in human cells, as well as its association with male infertility are largely unknown. In this study, a novel heterozygous copy number variation (CNV) (seq [GRCh37] del(19) (19q13.33) chr19: g.49894043-49903011del) and a heterozygous loss of function variant (NM_144688: c.979_980del: p.R327Sfs*21) in human KASH5 were identified in a non-obstructive azoospermia (NOA)-affected patient and in his infertile sister by whole-exome sequencing and CNV array. Spermatogenesis in the proband was arrested at zygotene-like stage with a deficiency in homolog pairing and synapsis. KASH5 protein expression in human spermatocytes was evaluated and reported first in this study. Single-cell RNA sequencing demonstrated that the LINC complex and associated genes in human and mouse shared a similar expression pattern, indicating a conserved mechanism in the regulation of chromosome movements and NE remodeling. Kash5 knockout mouse displayed similar phenotypes, including a meiotic arrest at a zygotene-like stage and impaired pairing and synapsis. Collectively, we have identified novel rare variants within human KASH5 in patients with NOA and meiosis arrest. Our study expands the knowledge of KASH5 and associated proteins in regulating human meiosis prophase I progress and provides new insight into the genetic etiology of NOA.
Collapse
Affiliation(s)
- Chao Yang
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaoqi Lin
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Zhiyong Ji
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhua Huang
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhang
- Center for Reproductive Medicine, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Jiaqiang Luo
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huixing Chen
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Li
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruhui Tian
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Erlei Zhi
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Hong
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Zhou
- School of Life Sciences and Technology, Shanghai Tech University, Shanghai, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Zheng Li
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Yao
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Agrawal R, Gillies JP, Zang JL, Zhang J, Garrott SR, Shibuya H, Nandakumar J, DeSantis ME. The KASH5 protein involved in meiotic chromosomal movements is a novel dynein activating adaptor. eLife 2022; 11:e78201. [PMID: 35703493 PMCID: PMC9242646 DOI: 10.7554/elife.78201] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Dynein harnesses ATP hydrolysis to move cargo on microtubules in multiple biological contexts. Dynein meets a unique challenge in meiosis by moving chromosomes tethered to the nuclear envelope to facilitate homolog pairing essential for gametogenesis. Though processive dynein motility requires binding to an activating adaptor, the identity of the activating adaptor required for dynein to move meiotic chromosomes is unknown. We show that the meiosis-specific nuclear-envelope protein KASH5 is a dynein activating adaptor: KASH5 directly binds dynein using a mechanism conserved among activating adaptors and converts dynein into a processive motor. We map the dynein-binding surface of KASH5, identifying mutations that abrogate dynein binding in vitro and disrupt recruitment of the dynein machinery to the nuclear envelope in cultured cells and mouse spermatocytes in vivo. Our study identifies KASH5 as the first transmembrane dynein activating adaptor and provides molecular insights into how it activates dynein during meiosis.
Collapse
Affiliation(s)
- Ritvija Agrawal
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - John P Gillies
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Juliana L Zang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Sharon R Garrott
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
- Biological Chemistry, University of MichiganAnn ArborUnited States
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Morgan E DeSantis
- Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
- Biological Chemistry, University of MichiganAnn ArborUnited States
| |
Collapse
|
28
|
Homozygous missense mutation in CCDC155 disrupts the transmembrane distribution of CCDC155 and SUN1, resulting in non-obstructive azoospermia and premature ovarian insufficiency in humans. Hum Genet 2022; 141:1795-1809. [PMID: 35587281 DOI: 10.1007/s00439-022-02459-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/23/2022] [Indexed: 11/04/2022]
Abstract
Non-obstructive azoospermia (NOA) and premature ovarian insufficiency (POI) represent the most serious forms of human infertility caused by gametogenic failure. Although whole-exome sequencing (WES) has uncovered multiple monogenic causes of human infertility, our knowledge of the genetic basis of human gametogenesis defects remains at a rudimentary stage. Coiled-coil-domain-containing protein 155 (CCDC155) encodes a core component of the linker of the nucleoskeleton and cytoskeleton complex that is essential for modulating telomere-led chromosome movements during the meiotic prophase of mice. Additionally, Ccdc155 deficiency in mice causes infertility in both sexes with meiotic arrest. In this study, we applied WES to identify the pathogenic genes for 15 NOA and POI patients whose parents were consanguineous and identified a novel homozygous missense mutation in CCDC155 [c.590T>C (p.Leu197Pro)] in a pair of familial NOA and POI patients whose parents were first cousins. The affected spermatocytes were unable to complete meiotic division coupled with unresolved repair of the DNA double-strand break. This rare missense mutation with lesions in the conserved CC domain of CCDC155 blocked nuclear envelope (NE) distribution and subsequently prevented NE-specific enrichment of Sad1- and UNC84-domain-containing 1 either ex vivo or in vitro, eventually leading to disruptive NE anchoring of chromosome-induced meiotic arrest in both sexes. This study presents the first evidence of the necessity of the SUN1-CCDC155 complex during human meiosis and provides insight into the CCDC155 CC domain, thereby expanding the genetic spectrum of human NOA and POI and promoting adequate genetic counselling and appropriate fertility guidance for these patients.
Collapse
|
29
|
Kim HJ, Liu C, Dernburg AF. How and Why Chromosomes Interact with the Cytoskeleton during Meiosis. Genes (Basel) 2022; 13:genes13050901. [PMID: 35627285 PMCID: PMC9140367 DOI: 10.3390/genes13050901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022] Open
Abstract
During the early meiotic prophase, connections are established between chromosomes and cytoplasmic motors via a nuclear envelope bridge, known as a LINC (linker of nucleoskeleton and cytoskeleton) complex. These widely conserved links can promote both chromosome and nuclear motions. Studies in diverse organisms have illuminated the molecular architecture of these connections, but important questions remain regarding how they contribute to meiotic processes. Here, we summarize the current knowledge in the field, outline the challenges in studying these chromosome dynamics, and highlight distinctive features that have been characterized in major model systems.
Collapse
Affiliation(s)
- Hyung Jun Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA;
| | - Chenshu Liu
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA;
| | - Abby F. Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA;
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA;
- Correspondence:
| |
Collapse
|
30
|
Diffusion and distal linkages govern interchromosomal dynamics during meiotic prophase. Proc Natl Acad Sci U S A 2022; 119:e2115883119. [PMID: 35302885 PMCID: PMC8944930 DOI: 10.1073/pnas.2115883119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceEssential for sexual reproduction, meiosis is a specialized cell division required for the production of haploid gametes. Critical to this process are the pairing, recombination, and segregation of homologous chromosomes (homologs). While pairing and recombination are linked, it is not known how many linkages are sufficient to hold homologs in proximity. Here, we reveal that random diffusion and the placement of a small number of linkages are sufficient to establish the apparent "pairing" of homologs. We also show that colocalization between any two loci is more dynamic than anticipated. Our study provides observations of live interchromosomal dynamics during meiosis and illustrates the power of combining single-cell measurements with theoretical polymer modeling.
Collapse
|
31
|
Prusicki MA, Balboni M, Sofroni K, Hamamura Y, Schnittger A. Caught in the Act: Live-Cell Imaging of Plant Meiosis. FRONTIERS IN PLANT SCIENCE 2021; 12:718346. [PMID: 34992616 PMCID: PMC8724559 DOI: 10.3389/fpls.2021.718346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Live-cell imaging is a powerful method to obtain insights into cellular processes, particularly with respect to their dynamics. This is especially true for meiosis, where chromosomes and other cellular components such as the cytoskeleton follow an elaborate choreography over a relatively short period of time. Making these dynamics visible expands understanding of the regulation of meiosis and its underlying molecular forces. However, the analysis of meiosis by live-cell imaging is challenging; specifically in plants, a temporally resolved understanding of chromosome segregation and recombination events is lacking. Recent advances in live-cell imaging now allow the analysis of meiotic events in plants in real time. These new microscopy methods rely on the generation of reporter lines for meiotic regulators and on the establishment of ex vivo culture and imaging conditions, which stabilize the specimen and keep it alive for several hours or even days. In this review, we combine an overview of the technical aspects of live-cell imaging in plants with a summary of outstanding questions that can now be addressed to promote live-cell imaging in Arabidopsis and other plant species and stimulate ideas on the topics that can be addressed in the context of plant meiotic recombination.
Collapse
Affiliation(s)
| | | | | | | | - Arp Schnittger
- Department of Developmental Biology, Institute for Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
32
|
Liu R, Kasowitz SD, Homolka D, Leu NA, Shaked JT, Ruthel G, Jain D, Lin H, Keeney S, Luo M, Pillai RS, Wang PJ. YTHDC2 is essential for pachytene progression and prevents aberrant microtubule-driven telomere clustering in male meiosis. Cell Rep 2021; 37:110110. [PMID: 34910909 PMCID: PMC8720241 DOI: 10.1016/j.celrep.2021.110110] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/21/2021] [Accepted: 11/17/2021] [Indexed: 01/18/2023] Open
Abstract
Mechanisms driving the prolonged meiotic prophase I in mammals are poorly understood. RNA helicase YTHDC2 is critical for mitosis to meiosis transition. However, YTHDC2 is highly expressed in pachytene cells. Here we identify an essential role for YTHDC2 in meiotic progression. Specifically, YTHDC2 deficiency causes microtubule-dependent telomere clustering and apoptosis at the pachytene stage of prophase I. Depletion of YTHDC2 results in a massively dysregulated transcriptome in pachytene cells, with a tendency toward upregulation of genes normally expressed in mitotic germ cells and downregulation of meiotic transcripts. Dysregulation does not correlate with m6A status, and YTHDC2-bound mRNAs are enriched in genes upregulated in mutant germ cells, revealing that YTHDC2 primarily targets mRNAs for degradation. Furthermore, altered transcripts in mutant pachytene cells encode microtubule network proteins. Our results demonstrate that YTHDC2 regulates the pachytene stage by perpetuating a meiotic transcriptome and preventing microtubule network changes that could lead to telomere clustering.
Collapse
Affiliation(s)
- Rong Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China; Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Seth D Kasowitz
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - David Homolka
- Department of Molecular Biology, Science III, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - N Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Jordan T Shaked
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Gordon Ruthel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Devanshi Jain
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA; Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Huijuan Lin
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China; Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Mengcheng Luo
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - Ramesh S Pillai
- Department of Molecular Biology, Science III, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Nozaki T, Chang F, Weiner B, Kleckner N. High Temporal Resolution 3D Live-Cell Imaging of Budding Yeast Meiosis Defines Discontinuous Actin/Telomere-Mediated Chromosome Motion, Correlated Nuclear Envelope Deformation and Actin Filament Dynamics. Front Cell Dev Biol 2021; 9:687132. [PMID: 34900979 PMCID: PMC8656277 DOI: 10.3389/fcell.2021.687132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
Chromosome movement is prominent at mid-meiotic prophase and is proposed to enhance the efficiency and/or stringency of homolog pairing and/or to help prevent or resolve topological entanglements. Here, we combine fluorescent repressor operator system (FROS) labeling with three-dimensional (3D) live-cell imaging at high spatio-temporal resolution to define the detailed kinetics of mid-meiotic prophase motion for a single telomere-proximal locus in budding yeast. Telomere motions can be grouped into three general categories: (i) pauses, in which the telomere “jiggles in place”; (ii) rapid, straight/curvilinear motion which reflects Myo2/actin-mediated transport of the monitored telomere; and (iii) slower directional motions, most of which likely reflect indirectly promoted motion of the monitored telomere in coordination with actin-mediated motion of an unmarked telomere. These and other findings highlight the importance of dynamic assembly/disassembly of telomere/LINC/actin ensembles and also suggest important roles for nuclear envelope deformations promoted by actin-mediated telomere/LINC movement. The presented low-SNR (signal-to-noise ratio) imaging methodology provides opportunities for future exploration of homolog pairing and related phenomena.
Collapse
Affiliation(s)
- Tadasu Nozaki
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Frederick Chang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Beth Weiner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
34
|
Prasada Rao HB, Sato T, Challa K, Fujita Y, Shinohara M, Shinohara A. Phosphorylation of luminal region of the SUN-domain protein Mps3 promotes nuclear envelope localization during meiosis. eLife 2021; 10:63119. [PMID: 34586062 PMCID: PMC8570693 DOI: 10.7554/elife.63119] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/26/2021] [Indexed: 12/31/2022] Open
Abstract
During meiosis, protein ensembles in the nuclear envelope (NE) containing SUN- and KASH-domain proteins, called linker nucleocytoskeleton and cytoskeleton (LINC) complex, promote the chromosome motion. Yeast SUN-domain protein, Mps3, forms multiple meiosis-specific ensembles on NE, which show dynamic localisation for chromosome motion; however, the mechanism by which these Mps3 ensembles are formed during meiosis remains largely unknown. Here, we showed that the cyclin-dependent protein kinase (CDK) and Dbf4-dependent Cdc7 protein kinase (DDK) regulate meiosis-specific dynamics of Mps3 on NE, particularly by mediating the resolution of Mps3 clusters and telomere clustering. We also found that the luminal region of Mps3 juxtaposed to the inner nuclear membrane is required for meiosis-specific localisation of Mps3 on NE. Negative charges introduced by meiosis-specific phosphorylation in the luminal region of Mps3 alter its interaction with negatively charged lipids by electric repulsion in reconstituted liposomes. Phospho-mimetic substitution in the luminal region suppresses the localisation of Mps3 via the inactivation of CDK or DDK. Our study revealed multi-layered phosphorylation-dependent regulation of the localisation of Mps3 on NE for meiotic chromosome motion and NE remodelling.
Collapse
Affiliation(s)
| | | | - Kiran Challa
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Miki Shinohara
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Japan
| |
Collapse
|
35
|
Pawar S, Kutay U. The Diverse Cellular Functions of Inner Nuclear Membrane Proteins. Cold Spring Harb Perspect Biol 2021; 13:a040477. [PMID: 33753404 PMCID: PMC8411953 DOI: 10.1101/cshperspect.a040477] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nuclear compartment is delimited by a specialized expanded sheet of the endoplasmic reticulum (ER) known as the nuclear envelope (NE). Compared to the outer nuclear membrane and the contiguous peripheral ER, the inner nuclear membrane (INM) houses a unique set of transmembrane proteins that serve a staggering range of functions. Many of these functions reflect the exceptional position of INM proteins at the membrane-chromatin interface. Recent research revealed that numerous INM proteins perform crucial roles in chromatin organization, regulation of gene expression, genome stability, and mediation of signaling pathways into the nucleus. Other INM proteins establish mechanical links between chromatin and the cytoskeleton, help NE remodeling, or contribute to the surveillance of NE integrity and homeostasis. As INM proteins continue to gain prominence, we review these advancements and give an overview on the functional versatility of the INM proteome.
Collapse
Affiliation(s)
- Sumit Pawar
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
36
|
Chen Y, Wang Y, Chen J, Zuo W, Fan Y, Huang S, Liu Y, Chen G, Li Q, Li J, Wu J, Bian Q, Huang C, Lei M. The SUN1-SPDYA interaction plays an essential role in meiosis prophase I. Nat Commun 2021; 12:3176. [PMID: 34039995 PMCID: PMC8155084 DOI: 10.1038/s41467-021-23550-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 04/29/2021] [Indexed: 12/27/2022] Open
Abstract
Chromosomes pair and synapse with their homologous partners to segregate correctly at the first meiotic division. Association of telomeres with the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex composed of SUN1 and KASH5 enables telomere-led chromosome movements and telomere bouquet formation, facilitating precise pairwise alignment of homologs. Here, we identify a direct interaction between SUN1 and Speedy A (SPDYA) and determine the crystal structure of human SUN1-SPDYA-CDK2 ternary complex. Analysis of meiosis prophase I process in SPDYA-binding-deficient SUN1 mutant mice reveals that the SUN1-SPDYA interaction is required for the telomere-LINC complex connection and the assembly of a ring-shaped telomere supramolecular architecture at the nuclear envelope, which is critical for efficient homologous pairing and synapsis. Overall, our results provide structural insights into meiotic telomere structure that is essential for meiotic prophase I progression. Telomeres attach to the nuclear envelope to facilitate homolog pairing during meiosis prophase I. Here, the authors show that SUN1 and SPDYA interact, and demonstrate that this interaction is important for telomere structure and function, and essential to mice gametogenesis.
Collapse
Affiliation(s)
- Yanyan Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Juan Chen
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Wu Zuo
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Fan
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Sijia Huang
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Yongmei Liu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Guangming Chen
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China.,Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Central Hospital, Zhenjiang, China
| | - Qing Li
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jian Wu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Qian Bian
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Chenhui Huang
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Institute of Precision Medicine, Shanghai, China.
| | - Ming Lei
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Institute of Precision Medicine, Shanghai, China. .,Key laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
37
|
Bentebbal SA, Meqbel BR, Salter A, Allan V, Burke B, Horn HF. A human infertility-associated KASH5 variant promotes mitochondrial localization. Sci Rep 2021; 11:10133. [PMID: 33980926 PMCID: PMC8115505 DOI: 10.1038/s41598-021-89439-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/22/2021] [Indexed: 02/03/2023] Open
Abstract
KASH5 is the most recently identified member of the KASH domain family of tail anchored, outer nuclear membrane (ONM) and endoplasmic reticulum (ER) proteins. During meiosis prophase I, KASH5 and SUN1 form a complex that spans the nuclear envelope and which links the telomeres of meiotic chromosomes to cytoplasmic dynein. This connection is essential for homologous chromosome dynamics and pairing. A recent study identified a variant in human KASH5 (L535Q) that correlated with male infertility associated with azoospermia. However, no molecular mechanism was described. Here, we report that this amino acid substitution, within the KASH5 transmembrane domain (TMD) has no predicted effects on secondary structure. However, the overall hydrophobicity of the L535Q TMD, is calculated to be lower than the wild-type KASH5, based on the GES (Goldman-Engelman-Steitz) amino acid hydrophobicity scale. This change in hydrophobicity profoundly affects the subcellular localization of KASH5. Through a series of amino acid substitution studies, we show that the L535Q substitution perturbs KASH5 localization to the ER and ONM and instead results in mistargeting to the mitochondria membrane. We suggest that this mislocalization accounts for the infertility and azoospermia phenotype in patients.
Collapse
Affiliation(s)
- Sana A. Bentebbal
- grid.452146.00000 0004 1789 3191College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Bakhita R. Meqbel
- grid.452146.00000 0004 1789 3191College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Anna Salter
- grid.5379.80000000121662407Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT UK ,grid.185448.40000 0004 0637 0221Laboratory of Nuclear Dynamics and Architecture, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Victoria Allan
- grid.5379.80000000121662407Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT UK
| | - Brian Burke
- grid.185448.40000 0004 0637 0221Laboratory of Nuclear Dynamics and Architecture, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Henning F. Horn
- grid.452146.00000 0004 1789 3191College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
38
|
Mytlis A, Elkouby YM. Live and Time-Lapse Imaging of Early Oogenesis and Meiotic Chromosomal Dynamics in Cultured Juvenile Zebrafish Ovaries. Methods Mol Biol 2021; 2218:137-155. [PMID: 33606229 DOI: 10.1007/978-1-0716-0970-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Oocyte production is crucial for sexual reproduction. Recent findings in zebrafish and other established model organisms emphasize that the early steps of oogenesis involve the coordination of simultaneous and tightly sequential processes across cellular compartments and between sister cells. To fully understand the mechanistic framework of these coordinated processes, cellular and morphological analysis in high temporal resolution is required. Here, we provide a protocol for four-dimensional live time-lapse analysis of cultured juvenile zebrafish ovaries. We describe how multiple-stage oocytes can be simultaneously analyzed in single ovaries, and several ovaries can be processed in single experiments. In addition, we detail adequate conditions for quantitative image acquisition. Finally, we demonstrate that using this protocol, we successfully capture rapid meiotic chromosomal movements in early prophase for the first time in zebrafish oocytes, in four dimensions and in vivo. Our protocol expands the use of the zebrafish as a model system to understand germ cell and ovarian development in postembryonic stages.
Collapse
Affiliation(s)
- Avishag Mytlis
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem, Faculty of Medicine, Institute for Medical Research - Israel-Canada (IMRIC), Jerusalem, Israel
| | - Yaniv M Elkouby
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem, Faculty of Medicine, Institute for Medical Research - Israel-Canada (IMRIC), Jerusalem, Israel.
| |
Collapse
|
39
|
Zhu L, He W, Zhang H, Sun Y, Li Q, Zhou L, Zhu S, Tao M, Zhou Y, Zhao R, Luo K, Tang C, Zhang C, Liu S. Unconventional meiotic process of spermatocytes in male Cyprinus carpio. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
40
|
Kazemi P, Taketo T. Two telomeric ends of acrocentric chromosome play distinct roles in homologous chromosome synapsis in the fetal mouse oocyte. Chromosoma 2021; 130:41-52. [PMID: 33492414 DOI: 10.1007/s00412-021-00752-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Abstract
In mammalian oocytes, proper chromosome segregation at the first meiotic division is dictated by the presence and site of homologous chromosome recombination, which takes place in fetal life. Our current understanding of how homologous chromosomes find each other and initiate synapsis, which is prerequisite for homologous recombination, is limited. It is known that chromosome telomeres are anchored into the nuclear envelope (NE) at the early meiotic prophase I (MPI) and move along NE to facilitate homologous chromosome search and pairing. However, the mouse (Mus musculus) carries all acrocentric chromosomes with one telomeric end close to the centromere (subcentromeric telomere; C-telomere) and the other far away from the centromere (distal telomere; D-telomere), and how C- and D-telomeres participate in chromosome pairing and synapsis during the MPI progression is not well understood. Here, we found in the mouse oocyte that C- and D-telomeres transiently clustered in one area, but D-telomeres soon separated together from C-telomeres and then dispersed to preferentially initiate synapsis, while C-telomeres remained in clusters and synapsed at the last. In the Spo11 null oocyte, which is deficient in SPO11-dependent DSBs formation and homologous synapsis, the pattern of C- and D-telomere clustering and resolution was not affected, but synapsis was more frequently initiated at C-telomeres. These results suggest that SPO11 suppresses the early synapsis between C-telomeres in clusters.
Collapse
Affiliation(s)
- Parinaz Kazemi
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Teruko Taketo
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada. .,Department of Surgery, McGill University, RI-MUHC, Montreal, QC, H4A 3J1, Canada. .,Department of Obstetrics/Gynecology, McGill University, RI-MUHC, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
41
|
Gurusaran M, Davies OR. A molecular mechanism for LINC complex branching by structurally diverse SUN-KASH 6:6 assemblies. eLife 2021; 10:60175. [PMID: 33393904 PMCID: PMC7800377 DOI: 10.7554/elife.60175] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex mechanically couples cytoskeletal and nuclear components across the nuclear envelope to fulfil a myriad of cellular functions, including nuclear shape and positioning, hearing, and meiotic chromosome movements. The canonical model is that 3:3 interactions between SUN and KASH proteins underlie the nucleocytoskeletal linkages provided by the LINC complex. Here, we provide crystallographic and biophysical evidence that SUN-KASH is a constitutive 6:6 complex in which two constituent 3:3 complexes interact head-to-head. A common SUN-KASH topology is achieved through structurally diverse 6:6 interaction mechanisms by distinct KASH proteins, including zinc-coordination by Nesprin-4. The SUN-KASH 6:6 interface provides a molecular mechanism for the establishment of integrative and distributive connections between 3:3 structures within a branched LINC complex network. In this model, SUN-KASH 6:6 complexes act as nodes for force distribution and integration between adjacent SUN and KASH molecules, enabling the coordinated transduction of large forces across the nuclear envelope.
Collapse
Affiliation(s)
- Manickam Gurusaran
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Owen Richard Davies
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
42
|
Lee CY, Bisig CG, Conrad MN, Ditamo Y, Previato de Almeida L, Dresser ME, Pezza RJ. Telomere-led meiotic chromosome movements: recent update in structure and function. Nucleus 2020; 11:111-116. [PMID: 32412326 PMCID: PMC7781623 DOI: 10.1080/19491034.2020.1769456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
In S. cerevisiae prophase meiotic chromosomes move by forces generated in the cytoplasm and transduced to the telomere via a protein complex located in the nuclear membrane. We know that chromosome movements require actin cytoskeleton [13,31] and the proteins Ndj1, Mps3, and Csm4. Until recently, the identity of the protein connecting Ndj1-Mps3 with the cytoskeleton components was missing. It was also not known the identity of a cytoplasmic motor responsible for interacting with the actin cytoskeleton and a protein at the outer nuclear envelope. Our recent work [36] identified Mps2 as the protein connecting Ndj1-Mps3 with cytoskeleton components; Myo2 as the cytoplasmic motor that interacts with Mps2; and Cms4 as a regulator of Mps2 and Myo2 interaction and activities (Figure 1). Below we present a model for how Mps2, Csm4, and Myo2 promote chromosome movements by providing the primary connections joining telomeres to the actin cytoskeleton through the LINC complex.
Collapse
Affiliation(s)
- C Y Lee
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation , Oklahoma City, OK, USA
| | - C G Bisig
- Facultad de Ciencias Químicas, Dpto. Química Biológica Ranwel Caputto-CIQUIBIC, Universidad Nacional de Córdoba , Córdoba, Argentina
| | - M N Conrad
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation , Oklahoma City, OK, USA
| | - Y Ditamo
- Facultad de Ciencias Químicas, Dpto. Química Biológica Ranwel Caputto-CIQUIBIC, Universidad Nacional de Córdoba , Córdoba, Argentina
| | - L Previato de Almeida
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation , Oklahoma City, OK, USA
| | - M E Dresser
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation , Oklahoma City, OK, USA
| | - R J Pezza
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation , Oklahoma City, OK, USA.,Department of Cell Biology, University of Oklahoma Health Science Center , Oklahoma City, OK, USA
| |
Collapse
|
43
|
Kmonickova V, Frolikova M, Steger K, Komrskova K. The Role of the LINC Complex in Sperm Development and Function. Int J Mol Sci 2020; 21:E9058. [PMID: 33260574 PMCID: PMC7730847 DOI: 10.3390/ijms21239058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 11/23/2022] Open
Abstract
The LINC (LInker of Nucleoskeleton and Cytoskeleton) complex is localized within the nuclear envelope and consists of SUN (Sad1/UNc84 homology domain-containing) proteins located in the inner nuclear membrane and KASH (Klarsicht/Anc1/Syne1 homology domain-containing) proteins located in the outer nuclear membrane, hence linking nuclear with cytoplasmic structures. While the nucleoplasm-facing side acts as a key player for correct pairing of homolog chromosomes and rapid chromosome movements during meiosis, the cytoplasm-facing side plays a pivotal role for sperm head development and proper acrosome formation during spermiogenesis. A further complex present in spermatozoa is involved in head-to-tail coupling. An intact LINC complex is crucial for the production of fertile sperm, as mutations in genes encoding for complex proteins are known to be associated with male subfertility in both mice and men. The present review provides a comprehensive overview on our current knowledge of LINC complex subtypes present in germ cells and its central role for male reproduction. Future studies on distinct LINC complex components are an absolute requirement to improve the diagnosis of idiopathic male factor infertility and the outcome of assisted reproduction.
Collapse
Affiliation(s)
- Vera Kmonickova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.K.); (M.F.)
| | - Michaela Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.K.); (M.F.)
| | - Klaus Steger
- Department of Urology, Pediatric Urology and Andrology, Molecular Andrology, Justus-Liebig University, 35392 Giessen, Germany;
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (V.K.); (M.F.)
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague 2, Czech Republic
| |
Collapse
|
44
|
Wang G, Wu X, Zhou L, Gao S, Yun D, Liang A, Sun F. Tethering of Telomeres to the Nuclear Envelope Is Mediated by SUN1-MAJIN and Possibly Promoted by SPDYA-CDK2 During Meiosis. Front Cell Dev Biol 2020; 8:845. [PMID: 33015044 PMCID: PMC7509418 DOI: 10.3389/fcell.2020.00845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022] Open
Abstract
During meiosis, telomeres attach to the nuclear envelope (NE) to promote homologous chromosome moving, pairing, synapsis, and recombination. The telomere-NE attachment is mediated by SUN1, TERB1-TERB2-MAJIN (TTM complex), and TRF1. The interaction of the TTM complex with shelterin is mediated by TERB1 and TRF1, but how SUN1 interacts with the TTM complex is not yet fully understood. In this study, we found that SUN1 not only interacted with TERB1 but also interacted with MAJIN, and the interaction of SUN1 with MAJIN is stronger than TERB1. We also found that SUN1 interacted with SPDYA, an activator of CDK2. The binding sites of MAJIN and SPDYA at SUN1 were mapped, and both MAJIN and SPDYA bound to the N-terminal domain of SUN1 and the two binding sites were close to each other. Furthermore, SPDYA bound to SUN1 via the Ringo domain and recruited CDK2 to SUN1. Then, we found that the interaction of SUN1 with MAJIN was decreased by the CDK2 inhibitors. Taken together, our results provide the possible mechanism of SUN1, MAJIN, and SPDYA-CDK2 in promoting the telomere-NE attachment during meiosis.
Collapse
Affiliation(s)
- Guishuan Wang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Xiaolong Wu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Liwei Zhou
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Sheng Gao
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Damin Yun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Ajuan Liang
- Reproductive Medical Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Sun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, China
| |
Collapse
|
45
|
Bradfield A, Button L, Drury J, Green DC, Hill CJ, Hapangama DK. Investigating the Role of Telomere and Telomerase Associated Genes and Proteins in Endometrial Cancer. Methods Protoc 2020; 3:E63. [PMID: 32899298 PMCID: PMC7565490 DOI: 10.3390/mps3030063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 12/16/2022] Open
Abstract
Endometrial cancer (EC) is the commonest gynaecological malignancy. Current prognostic markers are inadequate to accurately predict patient survival, necessitating novel prognostic markers, to improve treatment strategies. Telomerase has a unique role within the endometrium, whilst aberrant telomerase activity is a hallmark of many cancers. The aim of the current in silico study is to investigate the role of telomere and telomerase associated genes and proteins (TTAGPs) in EC to identify potential prognostic markers and therapeutic targets. Analysis of RNA-seq data from The Cancer Genome Atlas identified differentially expressed genes (DEGs) in EC (568 TTAGPs out of 3467) and ascertained DEGs associated with histological subtypes, higher grade endometrioid tumours and late stage EC. Functional analysis demonstrated that DEGs were predominantly involved in cell cycle regulation, while the survival analysis identified 69 DEGs associated with prognosis. The protein-protein interaction network constructed facilitated the identification of hub genes, enriched transcription factor binding sites and drugs that may target the network. Thus, our in silico methods distinguished many critical genes associated with telomere maintenance that were previously unknown to contribute to EC carcinogenesis and prognosis, including NOP56, WFS1, ANAPC4 and TUBB4A. Probing the prognostic and therapeutic utility of these novel TTAGP markers will form an exciting basis for future research.
Collapse
Affiliation(s)
- Alice Bradfield
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
| | - Lucy Button
- Faculty of Health and Life Sciences, University of Liverpool, Brownlow Hill, Liverpool L69 7ZX, UK;
| | - Josephine Drury
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
| | - Daniel C. Green
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK;
| | - Christopher J. Hill
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
| | - Dharani K. Hapangama
- Department of Women’s and Children’s Health, University of Liverpool, Crown St, Liverpool L69 7ZX, UK; (A.B.); (J.D.); (C.J.H.)
- Liverpool Women’s NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool L8 7SS, UK
| |
Collapse
|
46
|
Sepsi A, Schwarzacher T. Chromosome-nuclear envelope tethering - a process that orchestrates homologue pairing during plant meiosis? J Cell Sci 2020; 133:jcs243667. [PMID: 32788229 PMCID: PMC7438012 DOI: 10.1242/jcs.243667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During prophase I of meiosis, homologous chromosomes pair, synapse and exchange their genetic material through reciprocal homologous recombination, a phenomenon essential for faithful chromosome segregation. Partial sequence identity between non-homologous and heterologous chromosomes can also lead to recombination (ectopic recombination), a highly deleterious process that rapidly compromises genome integrity. To avoid ectopic exchange, homology recognition must be extended from the narrow position of a crossover-competent double-strand break to the entire chromosome. Here, we review advances on chromosome behaviour during meiotic prophase I in higher plants, by integrating centromere- and telomere dynamics driven by cytoskeletal motor proteins, into the processes of homologue pairing, synapsis and recombination. Centromere-centromere associations and the gathering of telomeres at the onset of meiosis at opposite nuclear poles create a spatially organised and restricted nuclear state in which homologous DNA interactions are favoured but ectopic interactions also occur. The release and dispersion of centromeres from the nuclear periphery increases the motility of chromosome arms, allowing meiosis-specific movements that disrupt ectopic interactions. Subsequent expansion of interstitial synapsis from numerous homologous interactions further corrects ectopic interactions. Movement and organisation of chromosomes, thus, evolved to facilitate the pairing process, and can be modulated by distinct stages of chromatin associations at the nuclear envelope and their collective release.
Collapse
Affiliation(s)
- Adél Sepsi
- Department of Plant Cell Biology, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
- BME Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science (ABÉT), 1111, Budapest, Mu˝ egyetem rkp. 3-9., Hungary
| | - Trude Schwarzacher
- University of Leicester, Department of Genetics and Genome Biology, University Road, Leicester LE1 7RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
47
|
Hua R, Wei H, Liu C, Zhang Y, Liu S, Guo Y, Cui Y, Zhang X, Guo X, Li W, Liu M. FBXO47 regulates telomere-inner nuclear envelope integration by stabilizing TRF2 during meiosis. Nucleic Acids Res 2020; 47:11755-11770. [PMID: 31724724 PMCID: PMC7145685 DOI: 10.1093/nar/gkz992] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023] Open
Abstract
During meiosis, telomere attachment to the inner nuclear envelope is required for proper pairing of homologous chromosomes and recombination. Here, we identified F-box protein 47 (FBXO47) as a regulator of the telomeric shelterin complex that is specifically expressed during meiotic prophase I. Knockout of Fbxo47 in mice leads to infertility in males. We found that the Fbxo47 deficient spermatocytes are unable to form a complete synaptonemal complex. FBXO47 interacts with TRF1/2, and the disruption of Fbxo47 destabilizes TRF2, leading to unstable telomere attachment and slow traversing through the bouquet stage. Our findings uncover a novel mechanism of FBXO47 in telomeric shelterin subunit stabilization during meiosis.
Collapse
Affiliation(s)
- Rong Hua
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Huafang Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yue Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Siyu Liu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| |
Collapse
|
48
|
Mixing and Matching Chromosomes during Female Meiosis. Cells 2020; 9:cells9030696. [PMID: 32178277 PMCID: PMC7140621 DOI: 10.3390/cells9030696] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 01/17/2023] Open
Abstract
Meiosis is a key event in the manufacturing of an oocyte. During this process, the oocyte creates a set of unique chromosomes by recombining paternal and maternal copies of homologous chromosomes, and by eliminating one set of chromosomes to become haploid. While meiosis is conserved among sexually reproducing eukaryotes, there is a bewildering diversity of strategies among species, and sometimes within sexes of the same species, to achieve proper segregation of chromosomes. Here, we review the very first steps of meiosis in females, when the maternal and paternal copies of each homologous chromosomes have to move, find each other and pair. We explore the similarities and differences observed in C. elegans, Drosophila, zebrafish and mouse females.
Collapse
|
49
|
"The nuclear envelope, a meiotic jack-of-all-trades". Curr Opin Cell Biol 2020; 64:34-42. [PMID: 32109733 DOI: 10.1016/j.ceb.2019.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/12/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
Abstract
The nucleus is one of the membrane-bound organelles that are a distinguishing feature between eukaryotes and prokaryotes. During meiosis, the nuclear envelope takes on functions beyond separating the nucleoplasm from the cytoplasm. These include associations with meiotic chromosomes to mediate pairing, being a sensor for recombination progression, and supportive of enormous nuclear growth during oocyte formation. In this review, we highlight recent results that have contributed to our understanding of meiotic nuclear envelope function and dynamics.
Collapse
|
50
|
Wu S, Mipam T, Xu C, Zhao W, Shah MA, Yi C, Luo H, Cai X, Zhong J. Testis transcriptome profiling identified genes involved in spermatogenic arrest of cattleyak. PLoS One 2020; 15:e0229503. [PMID: 32092127 PMCID: PMC7039509 DOI: 10.1371/journal.pone.0229503] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/09/2020] [Indexed: 12/16/2022] Open
Abstract
Background Cattleyak are the hybrid offspring between cattle and yak and combine yak hardiness with cattle productivity. Much attempt has been made to examine the mechanisms of male sterility caused by spermatogenic arrest, but yet there is no research systematically and precisely elucidated testis gene expression profiling between cattleyak and yak. Methods To explore the higher resolution comparative transcriptome map between the testes of yak and cattleyak, and further analyze the mRNA expression dynamics of spermatogenic arrest in cattleyak. We characterized the comparative transcriptome profile from the testes of yak and cattleyak using high-throughput sequencing. Then we used quantitative analysis to validate several differentially expressed genes (DEGs) in testicular tissue and spermatogenic cells. Results Testis transcriptome profiling identified 6477 DEGs (2919 upregulated and 3558 downregulated) between cattleyak and yak. Further analysis revealed that the marker genes and apoptosis regulatory genes for undifferentiated spermatogonia were upregulated, while the genes for differentiation maintenance were downregulated in cattleyak. A majority of DEGs associated with mitotic checkpoint, and cell cycle progression were downregulated in cattleyak during spermatogonial mitosis. Furthermore, almost all DEGs related to synaptonemal complex assembly, and meiotic progression presented no sign of expression in cattleyak. Even worse, dozens of genes involved in acrosome formation, and flagellar development were dominantly downregulated in cattleyak. Conclusion DEGs indicated that spermatogenic arrest of cattleyak may originate from the differentiation stage of spermatogonial stem cells and be aggravated during spermatogonial mitosis and spermatocyte meiosis, which contributes to the scarcely presented sperms in cattleyak.
Collapse
Affiliation(s)
- Shixin Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Chuanfei Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Mujahid Ali Shah
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Chuanping Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Hui Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
- * E-mail: (XC); (JZ)
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
- * E-mail: (XC); (JZ)
| |
Collapse
|