1
|
Wu X, Xiong D, Liu R, Lai X, Tian Y, Xie Z, Chen L, Hu L, Duan J, Gao X, Zeng X, Dong W, Xu T, Fu F, Yang X, Cheng X, Plewczynski D, Kim M, Xin W, Wang T, Xiang AP, Tang Z. Evolutionary divergence in CTCF-mediated chromatin topology drives transcriptional innovation in humans. Nat Commun 2025; 16:2941. [PMID: 40140405 PMCID: PMC11947266 DOI: 10.1038/s41467-025-58275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Chromatin topology can impact gene regulation, but how evolutionary divergence in chromatin topology has shaped gene regulatory landscapes for distinctive human traits remains poorly understood. CTCF sites determine chromatin topology by forming domains and loops. Here, we show evolutionary divergence in CTCF-mediated chromatin topology at the domain and loop scales during primate evolution, elucidating distinct mechanisms for shaping regulatory landscapes. Human-specific divergent domains lead to a broad rewiring of transcriptional landscapes. Divergent CTCF loops concord with species-specific enhancer activity, influencing enhancer connectivity to target genes in a concordant yet constrained manner. Under this concordant mechanism, we establish the role of human-specific CTCF loops in shaping transcriptional isoform diversity, with functional implications for disease susceptibility. Furthermore, we validate the function of these human-specific CTCF loops using human forebrain organoids. This study advances our understanding of genetic evolution from the perspective of genome architecture.
Collapse
Affiliation(s)
- Xia Wu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Dan Xiong
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Rong Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Xingqiang Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangdong, China
| | - Yuhan Tian
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Ziying Xie
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Li Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Lanqi Hu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Jingjing Duan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Xinyu Gao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Xian Zeng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Wei Dong
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Ting Xu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Fang Fu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Xin Yang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Xinlai Cheng
- Buchmann Institute for Molecular Life Sciences, Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Minji Kim
- Department of Computational Medicine and Bioinformatics, University of Michigan, Michigan, MI, USA
| | - Wenjun Xin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
- Autism Research Center, Peking University Health Science Center, Beijing, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangdong, China
| | - Zhonghui Tang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China.
| |
Collapse
|
2
|
Penninger P, Brezovec H, Tsymala I, Teufl M, Phan-Canh T, Bitencourt T, Brinkmann M, Glaser W, Ellmeier W, Bonelli M, Kuchler K. HDAC1 fine-tunes Th17 polarization in vivo to restrain tissue damage in fungal infections. Cell Rep 2024; 43:114993. [PMID: 39580799 DOI: 10.1016/j.celrep.2024.114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Histone deacetylases (HDACs) contribute to shaping many aspects of T cell lineage functions in anti-infective surveillance; however, their role in fungus-specific immune responses remains poorly understood. Using a T cell-specific deletion of HDAC1, we uncover its critical role in limiting polarization toward Th17 by restricting expression of the cytokine receptors gp130 and transforming growth factor β receptor 2 (TGF-βRII) in a fungus-specific manner, thus limiting Stat3 and Smad2/3 signaling. Controlled release of interleukin-17A (IL-17A) and granulocyte-macrophage colony-stimulating factor (GM-CSF) is vital to minimize apoptotic processes in renal tubular epithelial cells in vitro and in vivo. Consequently, animals harboring excess Th17-polarized HDCA1-deficient CD4+ T cells develop increased kidney pathology upon invasive Candida albicans infection. Importantly, pharmacological inhibition of class I HDACs similarly increased IL-17A release by both mouse and human CD4+ T cells. Collectively, this work shows that HDAC1 controls T cell polarization, thus playing a critical role in the antifungal immune defense and infection outcomes.
Collapse
Affiliation(s)
- Philipp Penninger
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Helena Brezovec
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Irina Tsymala
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Magdalena Teufl
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Trinh Phan-Canh
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Tamires Bitencourt
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; CCRI - St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Marie Brinkmann
- Medical University of Vienna, Division of Rheumatology, Department of Internal Medicine III, 1090 Vienna, Austria
| | - Walter Glaser
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Wilfried Ellmeier
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, 1090 Vienna, Austria
| | - Michael Bonelli
- Medical University of Vienna, Division of Rheumatology, Department of Internal Medicine III, 1090 Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
3
|
Boers R, Boers J, Tan B, van Leeuwen ME, Wassenaar E, Sanchez EG, Sleddens E, Tenhagen Y, Mulugeta E, Laven J, Creyghton M, Baarends W, van IJcken WFJ, Gribnau J. Retrospective analysis of enhancer activity and transcriptome history. Nat Biotechnol 2023; 41:1582-1592. [PMID: 36823354 PMCID: PMC10635829 DOI: 10.1038/s41587-023-01683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/20/2023] [Indexed: 02/25/2023]
Abstract
Cell state changes in development and disease are controlled by gene regulatory networks, the dynamics of which are difficult to track in real time. In this study, we used an inducible DCM-RNA polymerase subunit b fusion protein which labels active genes and enhancers with a bacterial methylation mark that does not affect gene transcription and is propagated in S-phase. This DCM-RNA polymerase fusion protein enables transcribed genes and active enhancers to be tagged and then examined at later stages of development or differentiation. We apply this DCM-time machine (DCM-TM) technology to study intestinal homeostasis, revealing rapid and coordinated activation of enhancers and nearby genes during enterocyte differentiation. We provide new insights in absorptive-secretory lineage decision-making in intestinal stem cell (ISC) differentiation and show that ISCs retain a unique chromatin landscape required to maintain ISC identity and delineate future expression of differentiation-associated genes. DCM-TM has wide applicability in tracking cell states, providing new insights in the regulatory networks underlying cell state changes.
Collapse
Affiliation(s)
- Ruben Boers
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joachim Boers
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Beatrice Tan
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marieke E van Leeuwen
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Evelyne Wassenaar
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Erlantz Gonzalez Sanchez
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Esther Sleddens
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Yasha Tenhagen
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Eskeatnaf Mulugeta
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joop Laven
- Department of Obstetrics and Gynaecology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Menno Creyghton
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Willy Baarends
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wilfred F J van IJcken
- Erasmus Center for Biomics, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.
| |
Collapse
|
4
|
Williams RM, Lukoseviciute M, Sauka-Spengler T, Bronner ME. Single-cell atlas of early chick development reveals gradual segregation of neural crest lineage from the neural plate border during neurulation. eLife 2022; 11:74464. [PMID: 35088714 PMCID: PMC8798042 DOI: 10.7554/elife.74464] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
The epiblast of vertebrate embryos is comprised of neural and non-neural ectoderm, with the border territory at their intersection harboring neural crest and cranial placode progenitors. Here, we a generate single-cell atlas of the developing chick epiblast from late gastrulation through early neurulation stages to define transcriptional changes in the emerging ‘neural plate border’ as well as other regions of the epiblast. Focusing on the border territory, the results reveal gradual establishment of heterogeneous neural plate border signatures, including novel genes that we validate by fluorescent in situ hybridization. Developmental trajectory analysis infers that segregation of neural plate border lineages only commences at early neurulation, rather than at gastrulation as previously predicted. We find that cells expressing the prospective neural crest marker Pax7 contribute to multiple lineages, and a subset of premigratory neural crest cells shares a transcriptional signature with their border precursors. Together, our results suggest that cells at the neural plate border remain heterogeneous until early neurulation, at which time progenitors become progressively allocated toward defined neural crest and placode lineages. The data also can be mined to reveal changes throughout the developing epiblast.
Collapse
Affiliation(s)
- Ruth M Williams
- California Institute of Technology, Division of Biology and Biological engineering, Pasadena, United States.,University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Martyna Lukoseviciute
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Tatjana Sauka-Spengler
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford, United Kingdom
| | - Marianne E Bronner
- California Institute of Technology, Division of Biology and Biological engineering, Pasadena, United States
| |
Collapse
|
5
|
Reduced NCOR2 expression accelerates androgen deprivation therapy failure in prostate cancer. Cell Rep 2021; 37:110109. [PMID: 34910907 PMCID: PMC8889623 DOI: 10.1016/j.celrep.2021.110109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/21/2021] [Accepted: 11/17/2021] [Indexed: 01/27/2023] Open
Abstract
This study addresses the roles of nuclear receptor corepressor 2 (NCOR2) in prostate cancer (PC) progression in response to androgen deprivation therapy (ADT). Reduced NCOR2 expression significantly associates with shorter disease-free survival in patients with PC receiving adjuvant ADT. Utilizing the CWR22 xenograft model, we demonstrate that stably reduced NCOR2 expression accelerates disease recurrence following ADT, associates with gene expression patterns that include neuroendocrine features, and induces DNA hypermethylation. Stably reduced NCOR2 expression in isogenic LNCaP (androgen-sensitive) and LNCaP-C4–2 (androgen-independent) cells revealed that NCOR2 reduction phenocopies the impact of androgen treatment and induces global DNA hypermethylation patterns. NCOR2 genomic binding is greatest in LNCaP-C4–2 cells and most clearly associates with forkhead box (FOX) transcription factor FOXA1 binding. NCOR2 binding significantly associates with transcriptional regulation most when in active enhancer regions. These studies reveal robust roles for NCOR2 in regulating the PC transcriptome and epigenome and underscore recent mutational studies linking NCOR2 loss of function to PC disease progression. Long et al. show that reduced levels of NCOR2 lead to accelerated prostate cancer recurrence during androgen withdrawal in a patient-derived xenograft model. NCOR2 reduction is characterized by incomplete response to androgen withdrawal, and recurrent tumors show increased neuroendocrine traits. These phenotypic changes are associated with hypermethylated enhancers.
Collapse
|
6
|
Estermann MA, Hirst CE, Major AT, Smith CA. The homeobox gene TGIF1 is required for chicken ovarian cortical development and generation of the juxtacortical medulla. Development 2021; 148:dev199646. [PMID: 34387307 PMCID: PMC8406534 DOI: 10.1242/dev.199646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
During early embryogenesis in amniotic vertebrates, the gonads differentiate into either ovaries or testes. The first cell lineage to differentiate gives rise to the supporting cells: Sertoli cells in males and pre-granulosa cells in females. These key cell types direct the differentiation of the other cell types in the gonad, including steroidogenic cells. The gonadal surface epithelium and the interstitial cell populations are less well studied, and little is known about their sexual differentiation programs. Here, we show the requirement of the homeobox transcription factor gene TGIF1 for ovarian development in the chicken embryo. TGIF1 is expressed in the two principal ovarian somatic cell populations: the cortex and the pre-granulosa cells of the medulla. TGIF1 expression is associated with an ovarian phenotype in estrogen-mediated sex reversal experiments. Targeted misexpression and gene knockdown indicate that TGIF1 is required, but not sufficient, for proper ovarian cortex formation. In addition, TGIF1 is identified as the first known regulator of juxtacortical medulla development. These findings provide new insights into chicken ovarian differentiation and development, specifically cortical and juxtacortical medulla formation.
Collapse
Affiliation(s)
| | | | | | - Craig Allen Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton VIC 3800, Australia
| |
Collapse
|
7
|
Effects of TG interaction factor 1 on synthesis of estradiol and progesterone in granulosa cells of goats through SMAD2/3-SP1 signaling pathway. Anim Reprod Sci 2021; 229:106750. [PMID: 33940561 DOI: 10.1016/j.anireprosci.2021.106750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/31/2022]
Abstract
The TG interaction factor 1 (TGIF1) is of the TALE homologue domain protein family and is considered as a transcriptional repressor of SMAD protein that interacts with DNA through a specific consensus-binding site for TG and recruits mSin3A and histone deacetylases to the SMAD complex. In this study, there is the first detailed description of TGIF1 on steroidogenesis in goat granulosa cells. When there is a relatively greater expression of the TGIF1 gene, there is a lesser abundance of CYP11A1, CYP19A1, and StAR mRNA transcript and protein and 3β-HSD mRNA transcript in granulosa cells of goats. Furthermore, there were lesser concentrations of 17β-estradiol (E2) and progesterone (P4) in culture medium when there was greater TGIF1 gene expression and there were greater concentrations of these hormones in the culture medium when there was lesser TGIF1 gene expression. There may be functions of TGIF1, therefore, in suppression of SMAD-induced E2 and P4 production and in decreasing the phosphorylation of SMAD2/3 in granulosa cells of goats and relative abundance of the SMAD2/3 protein transcription factor, SP1. With suppression of TGIF1 gene expression, there was a reversal of SP1-induced suppression of steroidogenesis-related genes. Results of the present study provide insights about the potential mechanism underlying the regulation of granulosa cell steroidogenesis of goats by TGIF1.
Collapse
|
8
|
Zhang J, Zhang F, Fan J, Feng B. TGIF1 Knockdown Inhibits the Proliferation and Invasion of Gastric Cancer via AKT Signaling Pathway. Cancer Manag Res 2021; 13:2603-2612. [PMID: 33776478 PMCID: PMC7987261 DOI: 10.2147/cmar.s254348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 12/19/2020] [Indexed: 11/26/2022] Open
Abstract
Introduction Gastric cancer is a kind of cancer with high mortality. TGIF1, as a transcription inhibitor, can inhibit the transcription of specific genes. The purpose of this study was to investigate the role of TGIF1 in gastric cancer by knocking down TGIF1. Methods The expression of TGIF1 was detected by qPCR and Western blotting; CCK8 assay, colony formation assay, transwell, and wound-healing assay were used to evaluate the proliferation, migration, and invasion of gastric cancer cells; cell apoptosis was analyzed by flow cytometry and Hoechst-PI double staining; cell cycle was detected by flow cytometry. Gelatinase experiment was performed to detect the expression level of MMP-2; apoptosis related proteins and AKT singling pathway were assessed by Western blotting. Results Knockdown of TGIF1 inhibited the proliferation, migration, and invasion of gastric cancer cells and promoted apoptosis. TGIF1 knockdown down-regulated the expression levels of MMP-2, Bcl2, CyclinD1, and p-Akt, and up-regulated the expression levels of Bax and Caspase3. These data suggested that knockdown of TGIF1 inhibited the development of gastric cancer via AKT signaling pathway. Conclusion TGIF1 knockdown inhibited the proliferation, migration, and invasion and promoted apoptosis of gastric cancer cells via the AKT signaling pathway, suggesting that TGIF1 is considered a potential inhibitor in gastric cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Pharmacy Department, Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei 050026, People's Republic of China
| | - Feiyan Zhang
- Department of Outpatient Operating Room, Heze Municipal Hospital, Heze City, Shandong Province, 274000, People's Republic of China
| | - Jiye Fan
- Department of Pharmaceutical Engineering, Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei 050026, People's Republic of China.,College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Bin Feng
- Department of Gastrointestinal Surgery, Heze Municipal Hospital, Heze City, 274000 Shandong Province, People's Republic of China
| |
Collapse
|
9
|
The PWWP2A Histone Deacetylase Complex Represses Intragenic Spurious Transcription Initiation in mESCs. iScience 2020; 23:101741. [PMID: 33235983 PMCID: PMC7670215 DOI: 10.1016/j.isci.2020.101741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/22/2020] [Accepted: 10/23/2020] [Indexed: 12/26/2022] Open
Abstract
Transcriptional fidelity depends on accurate promoter selection and initiation from the correct sites. In yeast, H3K36me3-mediated recruitment of the Rpd3S HDAC complex to gene bodies suppresses spurious transcription initiation. Here we describe an equivalent pathway in metazoans. PWWP2A/B is an H3K36me3 reader that forms a stable complex with HDAC1/2. We used CAGE-seq to profile all transcription initiation sites in wild-type mESCs and cells lacking PWWP2A/B. Loss of PWWP2A/B enhances spurious initiation from intragenic sites present in wild-type mESCs, and this effect is associated with increased levels of initiating Pol-II and histone acetylation. Spurious initiation events in Pwwp2a/b DKO mESCs do not overlap in genomic location or chromatin features with spurious sites that arise in Dnmt3b KO mESCs, previously reported to function in the suppression of intragenic transcriptional initiation, suggesting these pathways function cooperatively in maintaining the fidelity of transcription initiation in metazoans. Loss of PWWP2A/B leads to increased levels of spurious transcription initiation Spurious TSS sites are predominantly in the gene bodies of highly expressed genes Spurious sites are marked with increased histone acetylation and initiating Pol II PWWP2-spurious TSSs are distinct from those caused by DNMT3B loss
Collapse
|
10
|
Dries R, Stryjewska A, Coddens K, Okawa S, Notelaers T, Birkhoff J, Dekker M, Verfaillie CM, Del Sol A, Mulugeta E, Conidi A, Grosveld FG, Huylebroeck D. Integrative and perturbation-based analysis of the transcriptional dynamics of TGFβ/BMP system components in transition from embryonic stem cells to neural progenitors. Stem Cells 2019; 38:202-217. [PMID: 31675135 PMCID: PMC7027912 DOI: 10.1002/stem.3111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/09/2019] [Indexed: 01/05/2023]
Abstract
Cooperative actions of extrinsic signals and cell‐intrinsic transcription factors alter gene regulatory networks enabling cells to respond appropriately to environmental cues. Signaling by transforming growth factor type β (TGFβ) family ligands (eg, bone morphogenetic proteins [BMPs] and Activin/Nodal) exerts cell‐type specific and context‐dependent transcriptional changes, thereby steering cellular transitions throughout embryogenesis. Little is known about coordinated regulation and transcriptional interplay of the TGFβ system. To understand intrafamily transcriptional regulation as part of this system's actions during development, we selected 95 of its components and investigated their mRNA‐expression dynamics, gene‐gene interactions, and single‐cell expression heterogeneity in mouse embryonic stem cells transiting to neural progenitors. Interrogation at 24 hour intervals identified four types of temporal gene transcription profiles that capture all stages, that is, pluripotency, epiblast formation, and neural commitment. Then, between each stage we performed esiRNA‐based perturbation of each individual component and documented the effect on steady‐state mRNA levels of the remaining 94 components. This exposed an intricate system of multilevel regulation whereby the majority of gene‐gene interactions display a marked cell‐stage specific behavior. Furthermore, single‐cell RNA‐profiling at individual stages demonstrated the presence of detailed co‐expression modules and subpopulations showing stable co‐expression modules such as that of the core pluripotency genes at all stages. Our combinatorial experimental approach demonstrates how intrinsically complex transcriptional regulation within a given pathway is during cell fate/state transitions.
Collapse
Affiliation(s)
- Ruben Dries
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Agata Stryjewska
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Kathleen Coddens
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Satoshi Okawa
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg.,Integrated BioBank of Luxembourg, Dudelange, Luxembourg
| | - Tineke Notelaers
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Judith Birkhoff
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mike Dekker
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg.,CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.,IKERBASQUE, Basque, Foundation for Science, Bilbao, Spain
| | - Eskeatnaf Mulugeta
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Du R, Shen W, Liu Y, Gao W, Zhou W, Li J, Zhao S, Chen C, Chen Y, Liu Y, Sun P, Xiang R, Shi Y, Luo Y. TGIF2 promotes the progression of lung adenocarcinoma by bridging EGFR/RAS/ERK signaling to cancer cell stemness. Signal Transduct Target Ther 2019; 4:60. [PMID: 31871777 PMCID: PMC6908606 DOI: 10.1038/s41392-019-0098-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023] Open
Abstract
TGF-β-induced factor homeobox 2 (TGIF2) is a transcription regulator that plays essential roles in the regulation of development and cell fate decisions. Aberrant expression of TGIF family proteins has been observed in several cancers, including ovarian, esophageal, and colorectal cancers. Here, we report that TGIF2 mediates the EGFR-RAS-ERK signaling pathway to enhance the stemness of lung adenocarcinoma (LUAD) cells and, therefore, promote the progression and metastasis of LUAD. We found that high TGIF2 expression was closely correlated with tumor growth, lymph node metastasis, and survival of patients with LUAD. Mice bearing TGIF2-silenced H1299 xenografts developed smaller tumors and fewer lung metastases. Importantly, silencing TGIF2 decreased the cancer stem cell (CSC)-like properties in A549 and H1299 cells. Furthermore, we identified that TGIF2 binding to the OCT4 promoter promotes its expression. In both LUAD cells and in vivo LUAD mouse models, we revealed that EGFR-RAS-ERK signaling phosphorylated TGIF2 and increased its stability, which was important for TGIF2-promoted LUAD stemness since phosphorylation-deficient TGIF2 mutants lost these functions. Thus, our study revealed that an important factor, TGIF2, bridges EGFR signaling to the CSC characteristics of LUAD cells, which can be utilized as an effective target for LUAD therapy.
Collapse
Affiliation(s)
- Renle Du
- Department of Immunology, School of Medicine, Nankai University, Tianjin, 300071 China
| | - Wenzhi Shen
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining, 272067 China
| | - Yi Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin, 300071 China
| | - Wenjuan Gao
- Department of Immunology, School of Medicine, Nankai University, Tianjin, 300071 China
| | - Wei Zhou
- Department of Immunology, School of Medicine, Nankai University, Tianjin, 300071 China
| | - Jun Li
- Department of Immunology, School of Medicine, Nankai University, Tianjin, 300071 China
| | - Shuangtao Zhao
- Department of Immunology, School of Medicine, Nankai University, Tianjin, 300071 China
| | - Chong Chen
- Department of Immunology, Institute of Basic Medical Science, Chinese Academy of Medical Science, School of Basic Medicine, Peking Union Medical College, Beijing, 100005 China
| | - Yanan Chen
- Department of Immunology, School of Medicine, Nankai University, Tianjin, 300071 China
- 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, Tianjin, 300071 China
- Tianjin Key Laboratory of Tumour Microenvironment and Neurovascular Regulation, Tianjin, 300071 China
| | - Yanhua Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin, 300071 China
- 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, Tianjin, 300071 China
- Tianjin Key Laboratory of Tumour Microenvironment and Neurovascular Regulation, Tianjin, 300071 China
| | - Peiqing Sun
- Department of Cancer Biology, School of Medicine, Wake Forest University, Winston-Salem, NC 27157 USA
| | - Rong Xiang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, 300071 China
- 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, Tianjin, 300071 China
- Tianjin Key Laboratory of Tumour Microenvironment and Neurovascular Regulation, Tianjin, 300071 China
| | - Yi Shi
- Department of Immunology, School of Medicine, Nankai University, Tianjin, 300071 China
- 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, Tianjin, 300071 China
- Tianjin Key Laboratory of Tumour Microenvironment and Neurovascular Regulation, Tianjin, 300071 China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Science, Chinese Academy of Medical Science, School of Basic Medicine, Peking Union Medical College, Beijing, 100005 China
| |
Collapse
|
12
|
Yang SC, Liu JJ, Wang CK, Lin YT, Tsai SY, Chen WJ, Huang WK, Tu PWA, Lin YC, Chang CF, Cheng CL, Lin H, Lai CY, Lin CY, Lee YH, Chiu YC, Hsu CC, Hsu SC, Hsiao M, Schuyler SC, Lu FL, Lu J. Down-regulation of ATF1 leads to early neuroectoderm differentiation of human embryonic stem cells by increasing the expression level of SOX2. FASEB J 2019; 33:10577-10592. [PMID: 31242772 DOI: 10.1096/fj.201800220rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We reveal by high-throughput screening that activating transcription factor 1 (ATF1) is a novel pluripotent regulator in human embryonic stem cells (hESCs). The knockdown of ATF1 expression significantly up-regulated neuroectoderm (NE) genes but not mesoderm, endoderm, and trophectoderm genes. Of note, down-regulation or knockout of ATF1 with short hairpin RNA (shRNA), small interfering RNA (siRNA), or clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) was sufficient to up-regulate sex-determining region Y-box (SOX)2 and paired box 6 (PAX6) expression under the undifferentiated or differentiated conditions, whereas overexpression of ATF1 suppressed NE differentiation. Endogenous ATF1 was spontaneously down-regulated after d 1-3 of neural induction. By double-knockdown experiments, up-regulation of SOX2 was critical for the increase of PAX6 and SOX1 expression in shRNA targeting Atf1 hESCs. Using the luciferase reporter assay, we identified ATF1 as a negative transcriptional regulator of Sox2 gene expression. A novel function of ATF1 was discovered, and these findings contribute to a broader understanding of the very first steps in regulating NE differentiation in hESCs.-Yang, S.-C., Liu, J.-J., Wang, C.-K., Lin, Y.-T., Tsai, S.-Y., Chen, W.-J., Huang, W.-K., Tu, P.-W. A., Lin, Y.-C., Chang, C.-F., Cheng, C.-L., Lin, H., Lai, C.-Y., Lin, C.-Y., Lee, Y.-H., Chiu, Y.-C., Hsu, C.-C., Hsu, S.-C., Hsiao, M., Schuyler, S. C., Lu, F. L., Lu, J. Down-regulation of ATF1 leads to early neuroectoderm differentiation of human embryonic stem cells by increasing the expression level of SOX2.
Collapse
Affiliation(s)
- Shang-Chih Yang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jan-Jan Liu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Kai Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Tsen Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Su-Yi Tsai
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Wei-Ju Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Kai Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Po-Wen A Tu
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | | | - Chih-Lun Cheng
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsuan Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Ying Lai
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Yu Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yen-Chun Chiu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Shu-Ching Hsu
- National Institute of Infectious Diseases and Vaccinology, Zhunan, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Scott C Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Division of Head and Neck Surgery, Department of Otolaryngology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Frank Leigh Lu
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jean Lu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan.,RNAi Core, National Core Facility, Academia Sinica, Taipei, Taiwan.,Department of Life Science, Tzu Chi University, Hualien, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
13
|
Gerovska D, Araúzo-Bravo MJ. Computational analysis of single-cell transcriptomics data elucidates the stabilization of Oct4 expression in the E3.25 mouse preimplantation embryo. Sci Rep 2019; 9:8930. [PMID: 31222057 PMCID: PMC6586892 DOI: 10.1038/s41598-019-45438-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/06/2019] [Indexed: 01/05/2023] Open
Abstract
Our computational analysis focuses on the 32- to 64-cell mouse embryo transition, Embryonic day (E3.25), whose study in literature is concentrated mainly on the search for an early onset of the second cell-fate decision, the specification of the inner cell mass (ICM) to primitive endoderm (PE) and epiblast (EPI). We analysed single-cell (sc) microarray transcriptomics data from E3.25 using Hierarchical Optimal k-Means (HOkM) clustering, and identified two groups of ICM cells: a group of cells from embryos with less than 34 cells (E3.25-LNCs), and another group of cells from embryos with more than 33 cells (E3.25-HNCs), corresponding to two developmental stages. Although we found massive underlying heterogeneity in the ICM cells at E3.25-HNC with over 3,800 genes with transcriptomics bifurcation, many of which are PE and EPI markers, we showed that the E3.25-HNCs are neither PE nor EPI. Importantly, analysing the differently expressed genes between the E3.25-LNCs and E3.25-HNCs, we uncovered a non-autonomous mechanism, based on a minimal number of four inner-cell contacts in the ICM, which activates Oct4 in the preimplantation embryo. Oct4 is highly expressed but unstable at E3.25-LNC, and stabilizes at high level at E3.25-HNC, with Bsg highly expressed, and the chromatin remodelling program initialised to establish an early naïve pluripotent state. Our results indicate that the pluripotent state we found to exist in the ICM at E3.25-HNC is the in vivo counterpart of a new, very early pluripotent state. We compared the transcriptomics profile of this in vivo E3.25-HNC pluripotent state, together with the profiles of E3.25-LNC, E3.5 EPI and E4.5 EPI cells, with the profiles of all embryonic stem cells (ESCs) available in the GEO database from the same platform (over 600 microarrays). The shortest distance between the set of inner cells (E3.25, E3.5 and E4.5) and the ESCs is between the E3.25-HNC cells and 2i + LIF ESCs; thus, the developmental transition from 33 to 34 cells decreases dramatically the distance with the naïve ground state of the 2i + LIF ESCs. We validated the E3.25 events through analysis of scRNA-seq data from early and late 32-cell ICM cells.
Collapse
Affiliation(s)
- Daniela Gerovska
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, Calle Doctor Beguiristain s/n, San Sebastián, 20014, Spain
- Computational Biomedicine Data Analysis Platform, Biodonostia Health Research Institute, Calle Doctor Beguiristain s/n, San Sebastián, 20014, Spain
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, Calle Doctor Beguiristain s/n, San Sebastián, 20014, Spain.
- Computational Biomedicine Data Analysis Platform, Biodonostia Health Research Institute, Calle Doctor Beguiristain s/n, San Sebastián, 20014, Spain.
- IKERBASQUE, Basque Foundation for Science, Calle María Díaz Harokoa 3, 48013, Bilbao, Spain.
- CIBER of Frailty and Healthy Aging (CIBERfes), Madrid, Spain.
| |
Collapse
|
14
|
The molecular logic of Nanog-induced self-renewal in mouse embryonic stem cells. Nat Commun 2019; 10:1109. [PMID: 30846691 PMCID: PMC6406003 DOI: 10.1038/s41467-019-09041-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/13/2019] [Indexed: 12/20/2022] Open
Abstract
Transcription factor networks, together with histone modifications and signalling pathways, underlie the establishment and maintenance of gene regulatory architectures associated with the molecular identity of each cell type. However, how master transcription factors individually impact the epigenomic landscape and orchestrate the behaviour of regulatory networks under different environmental constraints is only partially understood. Here, we show that the transcription factor Nanog deploys multiple distinct mechanisms to enhance embryonic stem cell self-renewal. In the presence of LIF, which fosters self-renewal, Nanog rewires the pluripotency network by promoting chromatin accessibility and binding of other pluripotency factors to thousands of enhancers. In the absence of LIF, Nanog blocks differentiation by sustaining H3K27me3, a repressive histone mark, at developmental regulators. Among those, we show that the repression of Otx2 plays a preponderant role. Our results underscore the versatility of master transcription factors, such as Nanog, to globally influence gene regulation during developmental processes.
Collapse
|
15
|
Shah A, Melhuish TA, Fox TE, Frierson HF, Wotton D. TGIF transcription factors repress acetyl CoA metabolic gene expression and promote intestinal tumor growth. Genes Dev 2019; 33:388-402. [PMID: 30808659 PMCID: PMC6446543 DOI: 10.1101/gad.320127.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
Abstract
In this study, Shah et al. show that Tgifs, which repress gene expression by binding directly to DNA or interacting with transforming growth factor β (TGFβ)-responsive SMADs, promote adenoma growth in the context of mutant Apc (adenomatous polyposis coli). Their findings suggest that Tgifs play an important role in regulating basic energy metabolism in normal cells and that this function of Tgifs is amplified in some cancers. Tgif1 (thymine–guanine-interacting factor 1) and Tgif2 repress gene expression by binding directly to DNA or interacting with transforming growth factor (TGF) β-responsive SMADs. Tgifs are essential for embryogenesis and may function in tumor progression. By analyzing both gain and loss of Tgif function in a well-established mouse model of intestinal cancer, we show that Tgifs promote adenoma growth in the context of mutant Apc (adenomatous polyposis coli). Despite the tumor-suppressive role of TGFβ signaling, transcriptome profiling of colon tumors suggests minimal effect of Tgifs on the TGFβ pathway. Instead, it appears that Tgifs, which are up-regulated in Apc mutant colon tumors, contribute to reprogramming metabolic gene expression. Integrating gene expression data from colon tumors with other gene expression and chromatin-binding data identifies a set of direct Tgif target genes encoding proteins involved in acetyl CoA and pyruvate metabolism. Analysis of both tumor and nontumor tissues indicates that these genes are targets of Tgif repression in multiple settings, suggesting that this is a core Tgif function. We propose that Tgifs play an important role in regulating basic energy metabolism in normal cells, and that this function of Tgifs is amplified in some cancers.
Collapse
Affiliation(s)
- Anant Shah
- Department of Biochemistry and Molecular Genetics, Center for Cell Signaling, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Tiffany A Melhuish
- Department of Biochemistry and Molecular Genetics, Center for Cell Signaling, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Henry F Frierson
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - David Wotton
- Department of Biochemistry and Molecular Genetics, Center for Cell Signaling, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
16
|
Wotton D, Taniguchi K. Functions of TGIF homeodomain proteins and their roles in normal brain development and holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:128-139. [PMID: 29749689 DOI: 10.1002/ajmg.c.31612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 01/08/2023]
Abstract
Holoprosencephaly (HPE) is a frequent human forebrain developmental disorder with both genetic and environmental causes. Multiple loci have been associated with HPE in humans, and potential causative genes at 14 of these loci have been identified. Although TGIF1 (originally TGIF, for Thymine Guanine-Interacting Factor) is among the most frequently screened genes in HPE patients, an understanding of how mutations in this gene contribute to the pathogenesis of HPE has remained elusive. However, mouse models based on loss of function of Tgif1, and the related Tgif2 gene, have shed some light on how human TGIF1 variants might cause HPE. Functional analyses of TGIF proteins and of TGIF1 single nucleotide variants from HPE patients, combined with analysis of forebrain development in mouse embryos lacking both Tgif1 and Tgif2, suggest that TGIFs regulate the transforming growth factor ß/Nodal signaling pathway and sonic hedgehog (SHH) signaling independently. Although, some developmental processes that are regulated by TGIFs may be Nodal-dependent, it appears that the forebrain patterning defects and HPE in Tgif mutant mouse embryos is primarily due to altered signaling via the Shh pathway.
Collapse
Affiliation(s)
- David Wotton
- Department of Biochemistry and Molecular Genetics, Center for Cell Signaling, University of Virginia, Charlottesville, Virginia
| | - Kenichiro Taniguchi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
17
|
Lee BK, Uprety N, Jang YJ, Tucker SK, Rhee C, LeBlanc L, Beck S, Kim J. Fosl1 overexpression directly activates trophoblast-specific gene expression programs in embryonic stem cells. Stem Cell Res 2017; 26:95-102. [PMID: 29272857 PMCID: PMC5899959 DOI: 10.1016/j.scr.2017.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/05/2017] [Accepted: 12/10/2017] [Indexed: 11/30/2022] Open
Abstract
During early development in placental mammals, proper trophoblast lineage development is essential for implantation and placentation. Defects in this lineage can cause early pregnancy failures and other pregnancy disorders. However, transcription factors controlling trophoblast development remain poorly understood. Here, we utilize Fosl1, previously implicated in trophoblast giant cell development as a member of the AP-1 complex, to trans-differentiate embryonic stem (ES) cells to trophoblast lineage-like cells. We first show that the ectopic expression of Fosl1 is sufficient to induce trophoblast-specific gene expression programs in ES cells. Surprisingly, we find that this transcriptional reprogramming occurs independently of changes in levels of ES cell core factors during the cell fate change. This suggests that Fosl1 acts in a novel way to orchestrate the ES to trophoblast cell fate conversion compared to previously known reprogramming factors. Mapping of Fosl1 targets reveals that Fosl1 directly activates TE lineage-specific genes as a pioneer factor. Our work suggests Fosl1 may be used to reprogram ES cells into differentiated cell types in trophoblast lineage, which not only enhances our knowledge of global trophoblast gene regulation but also may provide a future therapeutic tool for generating induced trophoblast cells from patient-derived pluripotent stem cells.
Collapse
Affiliation(s)
- Bum-Kyu Lee
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Nadima Uprety
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Yu Jin Jang
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Scott K Tucker
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Catherine Rhee
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Lucy LeBlanc
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Samuel Beck
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, United States; Kathryn W. Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Salisbury Cove, ME 04672, United States
| | - Jonghwan Kim
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
18
|
Kwon YJ, Leibovitch BA, Bansal N, Pereira L, Chung CY, Ariztia EV, Zelent A, Farias EF, Waxman S. Targeted interference of SIN3A-TGIF1 function by SID decoy treatment inhibits Wnt signaling and invasion in triple negative breast cancer cells. Oncotarget 2017; 8:88421-88436. [PMID: 29179446 PMCID: PMC5687616 DOI: 10.18632/oncotarget.11381] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/23/2016] [Indexed: 12/21/2022] Open
Abstract
Cancer cell invasion is an obligatory step for metastatic dissemination that contributes to rapid relapse and a poorer survival in triple negative breast cancer (TNBC) patients. Development of novel therapeutic strategies to block tumor invasion is an unmet need in the treatment of cancer. We reported that the selective inhibition of the PAH2 domain of SIN3A protein function markedly suppressed metastatic dissemination to the lungs in TNBC xenograft bearing mice. Here, we show that TNBC cell lines treated with Sin3 interaction domain (SID) decoy peptides that bind to PAH2 display a strong in vitro inhibition of transwell invasion. This is accompanied by actin cytoskeleton reorganization with increased cortical actin deposition and downregulation of known Wnt target genes that are associated with epithelial to mesenchymal transition (EMT) and cancer cell invasion. Wnt pathway inhibition by SID decoy peptide was confirmed by decreased Wnt reporter activity and altered cytoplasmic localization of nuclear β-catenin. TGIF1, a transcription factor that modulates Wnt signaling and known to interact with the PAH2 domain of SIN3A, can be dissociated from the SIN3A complex by SID decoys. TGIF1 knockdown inhibits WNT target genes and in vitro cell invasion suggesting that TGIF1 might be a key target of the SID decoys to block tumor invasion. Taken together, targeting SIN3 function using SID decoys is a novel strategy to reverse invasion and the EMT program in TNBC translating into the inhibition of metastasis dissemination and eradication of residual disease.
Collapse
Affiliation(s)
- Yeon-Jin Kwon
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Boris A. Leibovitch
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Nidhi Bansal
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Lutecia Pereira
- University of Miami, Sylvester Comprehensive Cancer Center, Florida MI, USA
| | - Chi-Yeh Chung
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Edgardo V. Ariztia
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Arthur Zelent
- University of Miami, Sylvester Comprehensive Cancer Center, Florida MI, USA
| | - Eduardo F. Farias
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Samuel Waxman
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| |
Collapse
|
19
|
Lee BK, Lee J, Shen W, Rhee C, Chung H, Kim J. Fbxl19 recruitment to CpG islands is required for Rnf20-mediated H2B mono-ubiquitination. Nucleic Acids Res 2017; 45:7151-7166. [PMID: 28453857 PMCID: PMC5499583 DOI: 10.1093/nar/gkx310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/13/2017] [Indexed: 12/17/2022] Open
Abstract
Histone H2B lysine 120 mono-ubiquitination (H2Bub1) catalyzed by Rnf20 has been implicated in normal differentiation of embryonic stem (ES) and adult stem cells. However, it remains unknown how Rnf20 is recruited to its specific target chromosomal loci for the establishment of H2Bub1. Here, we reveal that Fbxl19, a CxxC domain-containing protein, promotes H2Bub1 at the promoters of CpG island-containing genes by interacting with Rnf20. We show that up-regulation of Fbxl19 increases the level of global H2Bub1 in mouse ES cells, while down-regulation of Fbxl19 reduces the level of H2Bub1. Our genome-wide target mapping unveils the preferential occupancy of Fbxl19 on CpG island-containing promoters, and we further discover that chromosomal binding of Fbxl19 is required for H2Bub1 of its targets. Moreover, we reveal that Fbxl19 is critical for proper differentiation of ES cells in collaboration with Rnf20. Altogether, our results demonstrate that Fbxl19 recruitment to CpG islands is required for Rnf20-mediated H2B mono-ubiquitination.
Collapse
Affiliation(s)
- Bum-Kyu Lee
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jiwoon Lee
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Wenwen Shen
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Catherine Rhee
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Haewon Chung
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
20
|
Potential energy landscapes identify the information-theoretic nature of the epigenome. Nat Genet 2017; 49:719-729. [PMID: 28346445 PMCID: PMC5565269 DOI: 10.1038/ng.3811] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/13/2017] [Indexed: 12/11/2022]
Abstract
Epigenetics is the study of biochemical modifications carrying information independent of DNA sequence, which are heritable through cell division. In 1940, Waddington coined the term "epigenetic landscape" as a metaphor for pluripotency and differentiation, but methylation landscapes have not yet been rigorously computed. Using principles from statistical physics and information theory, we derive epigenetic energy landscapes from whole-genome bisulfite sequencing (WGBS) data that enable us to quantify methylation stochasticity genome-wide using Shannon's entropy, associating it with chromatin structure. Moreover, we consider the Jensen-Shannon distance between sample-specific energy landscapes as a measure of epigenetic dissimilarity and demonstrate its effectiveness for discerning epigenetic differences. By viewing methylation maintenance as a communications system, we introduce methylation channels and show that higher-order chromatin organization can be predicted from their informational properties. Our results provide a fundamental understanding of the information-theoretic nature of the epigenome that leads to a powerful approach for studying its role in disease and aging.
Collapse
|
21
|
Tgif1 and Tgif2 Repress Expression of the RabGAP Evi5l. Mol Cell Biol 2017; 37:MCB.00527-16. [PMID: 27956704 DOI: 10.1128/mcb.00527-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/02/2016] [Indexed: 11/20/2022] Open
Abstract
Mouse embryos conditionally lacking Tgif1 and Tgif2 have holoprosencephaly and defects in left-right asymmetry. To identify pathways affected by loss of Tgif function during embryogenesis, we performed transcriptome profiling on whole mouse embryos. Among the genes with altered expression in embryos lacking Tgifs were a number with links to cilium function. One of these, Evi5l, encodes a RabGAP that is known to block the formation of cilia when overexpressed. Evi5l expression is increased in Tgif1; Tgif2-null embryos and in double-null mouse embryo fibroblasts (MEFs). Knockdown of Tgifs in a human retinal pigment epithelial cell line also increased EVI5L expression. We show that TGIF1 binds to a conserved consensus TGIF site 5' of the human and mouse Evi5l genes and represses Evi5l expression. In primary MEFs lacking both Tgifs, the number of cells with primary cilia was significantly decreased, and we observed a reduction in the transcriptional response to Shh pathway activation. Reducing Evi5l expression in MEFs lacking Tgifs resulted in a partial restoration of cilium numbers and in the transcriptional response to activation of the Shh pathway. In summary, this work shows that Tgifs regulate ciliogenesis and suggests that Evi5l mediates at least part of this effect.
Collapse
|
22
|
Abstract
Tgif1 and Tgif2 are transcriptional repressors that inhibit the transcriptional response to transforming growth factor β signaling, and can repress gene expression by direct binding to DNA. Loss of function mutations in TGIF1 are associated with holoprosencephaly (HPE) in humans. In mice, embryos lacking both Tgif1 and Tgif2 fail to complete gastrulation, and conditional double null embryos that survive past gastrulation have HPE and do not survive past mid-gestation. Here we show that in mice of a relatively pure C57BL/6 strain background, loss of Tgif1 alone results in defective axial patterning and altered expression of Hoxc6. The primary defects in Tgif1 null embryos are the presence of extra ribs on the C7 vertebra, consistent with a posterior transformation phenotype. In addition we observed defective cervical vertebrae, primarily C1-C5, in both adult mice and embryos that lacked Tgif1. The combination of Tgif1 and Tgif2 mutations increases the severity and penetrance of the posterior transformation phenotype, without altering the type of defects seen. Similarly, exposure of Tgif1 mutant embryos to retinoic acid at E8.5 increased the severity and penetrance of the Tgif1 phenotype. This suggests that Tgif1 and Tgif2 regulate axial patterning and that reduced TGIF function sensitizes embryos to the effects of retinoic acid.
Collapse
|
23
|
Feinberg AP, Koldobskiy MA, Göndör A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet 2016; 17:284-99. [PMID: 26972587 DOI: 10.1038/nrg.2016.13] [Citation(s) in RCA: 622] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This year is the tenth anniversary of the publication in this journal of a model suggesting the existence of 'tumour progenitor genes'. These genes are epigenetically disrupted at the earliest stages of malignancies, even before mutations, and thus cause altered differentiation throughout tumour evolution. The past decade of discovery in cancer epigenetics has revealed a number of similarities between cancer genes and stem cell reprogramming genes, widespread mutations in epigenetic regulators, and the part played by chromatin structure in cellular plasticity in both development and cancer. In the light of these discoveries, we suggest here a framework for cancer epigenetics involving three types of genes: 'epigenetic mediators', corresponding to the tumour progenitor genes suggested earlier; 'epigenetic modifiers' of the mediators, which are frequently mutated in cancer; and 'epigenetic modulators' upstream of the modifiers, which are responsive to changes in the cellular environment and often linked to the nuclear architecture. We suggest that this classification is helpful in framing new diagnostic and therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Andrew P Feinberg
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Rangos 570, Baltimore, Maryland 21205, USA
| | - Michael A Koldobskiy
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Rangos 570, Baltimore, Maryland 21205, USA
| | - Anita Göndör
- Department of Microbiology, Tumour and Cell Biology, Nobels väg 16, Karolinska Institutet, S-171 77 Stockholm, Sweden
| |
Collapse
|