1
|
Geng D, Li Y, Yang B, Zhang L, Gu H, Zhang T, Zhao Z, Liu H, Cui Q, Zheng R, Cao P, Zhang F. Cholecystokinin neurons in the spinal trigeminal nucleus interpolaris regulate mechanically evoked predatory hunting in male mice. Nat Commun 2025; 16:2544. [PMID: 40087271 PMCID: PMC11909130 DOI: 10.1038/s41467-025-57771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Predatory hunting plays a critical role in animal survival. Motion-related vibrissal somatosensory signaling is essential for prey detection and hunting in mice. However, little is known about the neural circuits that convert vibrissal somatosensory cues to trigger predatory hunting. Here, we report that mechanical force onto the vibrissal area of the male mice is a key stimulus for predatory hunting. Mechanically evoked predatory hunting was abrogated by the chemogenetic inactivation of cholecystokinin-positive (Cck+) neurons in the spinal trigeminal nucleus interpolaris (Sp5I). The Cck+ Sp5I neurons responded to the intensity of mechanical stimulus and sent neural signals to the superior colliculus that were relevant to stereotypical predatory hunting motor actions. Synaptic inactivation of the projections from Cck+ Sp5I neurons to the superior colliculus impaired mechanically evoked predatory attacks. Together, these data reveal a spinal trigeminal nucleus neural circuit that is specifically engaged in translating vibrissal somatosensory cues to provoke predatory hunting.
Collapse
Affiliation(s)
- Dandan Geng
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of Vascular Biology of Hebei Province; Hebei Medical University, Shijiazhuang, China
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Yaning Li
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of Vascular Biology of Hebei Province; Hebei Medical University, Shijiazhuang, China
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Bo Yang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of Vascular Biology of Hebei Province; Hebei Medical University, Shijiazhuang, China
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Li Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Huating Gu
- National Institute of Biological Sciences, Beijing, China
| | - Tianyun Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of Vascular Biology of Hebei Province; Hebei Medical University, Shijiazhuang, China
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Zijie Zhao
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of Vascular Biology of Hebei Province; Hebei Medical University, Shijiazhuang, China
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Hui Liu
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of Vascular Biology of Hebei Province; Hebei Medical University, Shijiazhuang, China
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Qingzhuo Cui
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of Vascular Biology of Hebei Province; Hebei Medical University, Shijiazhuang, China
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Rong Zheng
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of Vascular Biology of Hebei Province; Hebei Medical University, Shijiazhuang, China
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| | - Fan Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of Vascular Biology of Hebei Province; Hebei Medical University, Shijiazhuang, China.
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
2
|
Aníbal-Martínez M, Puche-Aroca L, Pérez-Montoyo E, Pumo G, Madrigal MP, Rodríguez-Malmierca LM, Martini FJ, Rijli FM, López-Bendito G. A prenatal window for enhancing spatial resolution of cortical barrel maps. Nat Commun 2025; 16:1955. [PMID: 40050657 PMCID: PMC11885613 DOI: 10.1038/s41467-025-57052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
Precise mapping of peripheral inputs onto cortical areas is essential for accurate sensory processing. In the mouse primary somatosensory cortex, mystacial whiskers correspond to large, well-defined barrels, while upper lip whiskers form smaller, less distinct barrels. These differences are traditionally attributed to variations in whisker input type and receptor density, but prenatal activity and transcriptional programs also impact somatosensory map development independently of sensory experience. Here, we demonstrate that prenatal ablation of mystacial whiskers leads to a remapping of cortical territories, enhancing the functional and anatomical definition of upper lip whisker barrels. This reorganization occurs without altering peripheral receptor types. Instead, thalamic neurons that receive upper lip inputs adopt a mystacial-like transcriptional profile. Our findings unveil a regulated prenatal mechanism in the thalamus that ensures sufficient cortical barrel size and spatial resolution for sensory processing, irrespective of peripheral receptor type or density, highlighting a critical developmental process in sensory mapping.
Collapse
Affiliation(s)
- Mar Aníbal-Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain
| | - Lorenzo Puche-Aroca
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain
| | - Elena Pérez-Montoyo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain
| | - Gabriele Pumo
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - M Pilar Madrigal
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández (UMH), San Juan de Alicante, Alicante, Spain
| | - Luis M Rodríguez-Malmierca
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain
| | - Francisco J Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Juan de Alicante, Alicante, Spain.
| |
Collapse
|
3
|
Tsytsarev V, Plachez C, Zhao S, O'Connor DH, Erzurumlu RS. Bilateral Whisker Representations in the Primary Somatosensory Cortex in Robo3cKO Mice Are Reflected in the Primary Motor Cortex. Neuroscience 2024; 544:128-137. [PMID: 38447690 PMCID: PMC11146016 DOI: 10.1016/j.neuroscience.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
In Robo3cKO mice, midline crossing defects of the trigeminothalamic projections from the trigeminal principal sensory nucleus result in bilateral whisker maps in the somatosensory thalamus and consequently in the face representation area of the primary somatosensory (S1) cortex (Renier et al., 2017; Tsytsarev et al., 2017). We investigated whether this bilateral sensory representation in the whisker-barrel cortex is also reflected in the downstream projections from the S1 to the primary motor (M1) cortex. To label these projections, we injected anterograde viral axonal tracer in S1 cortex. Corticocortical projections from the S1 distribute to similar areas across the ipsilateral hemisphere in control and Robo3cKO mice. Namely, in both genotypes they extend to the M1, premotor/prefrontal cortex (PMPF), secondary somatosensory (S2) cortex. Next, we performed voltage-sensitive dye imaging (VSDi) in the left hemisphere following ipsilateral and contralateral single whisker stimulation. While controls showed only activation in the contralateral whisker barrel cortex and M1 cortex, the Robo3cKO mouse left hemisphere was activated bilaterally in both the barrel cortex and the M1 cortex. We conclude that the midline crossing defect of the trigeminothalamic projections leads to bilateral whisker representations not only in the thalamus and the S1 cortex but also downstream from the S1, in the M1 cortex.
Collapse
Affiliation(s)
- Vassiliy Tsytsarev
- Department of Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF-2, Baltimore, MD 21201, USA.
| | - Céline Plachez
- Department of Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF-2, Baltimore, MD 21201, USA.
| | - Shuxin Zhao
- Department of Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF-2, Baltimore, MD 21201, USA.
| | - Daniel H O'Connor
- The Zanvyl Krieger Mind/Brain Institute, The Johns Hopkins University, 3400 N. Charles Street, 338 Krieger Hall, Baltimore, MD 21218, USA.
| | - Reha S Erzurumlu
- Department of Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF-2, Baltimore, MD 21201, USA.
| |
Collapse
|
4
|
Najafi P, Reimer C, Gilthorpe JD, Jacobsen KR, Ramløse M, Paul NF, Simianer H, Tetens J, Falker-Gieske C. Genomic evidence for the suitability of Göttingen Minipigs with a rare seizure phenotype as a model for human epilepsy. Neurogenetics 2024; 25:103-117. [PMID: 38383918 PMCID: PMC11076379 DOI: 10.1007/s10048-024-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
Epilepsy is a complex genetic disorder that affects about 2% of the global population. Although the frequency and severity of epileptic seizures can be reduced by a range of pharmacological interventions, there are no disease-modifying treatments for epilepsy. The development of new and more effective drugs is hindered by a lack of suitable animal models. Available rodent models may not recapitulate all key aspects of the disease. Spontaneous epileptic convulsions were observed in few Göttingen Minipigs (GMPs), which may provide a valuable alternative animal model for the characterisation of epilepsy-type diseases and for testing new treatments. We have characterised affected GMPs at the genome level and have taken advantage of primary fibroblast cultures to validate the functional impact of fixed genetic variants on the transcriptome level. We found numerous genes connected to calcium metabolism that have not been associated with epilepsy before, such as ADORA2B, CAMK1D, ITPKB, MCOLN2, MYLK, NFATC3, PDGFD, and PHKB. Our results have identified two transcription factor genes, EGR3 and HOXB6, as potential key regulators of CACNA1H, which was previously linked to epilepsy-type disorders in humans. Our findings provide the first set of conclusive results to support the use of affected subsets of GMPs as an alternative and more reliable model system to study human epilepsy. Further neurological and pharmacological validation of the suitability of GMPs as an epilepsy model is therefore warranted.
Collapse
Affiliation(s)
- Pardis Najafi
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Christian Reimer
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Höltystr. 10, 31535, Neustadt, Germany
| | - Jonathan D Gilthorpe
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
| | - Kirsten R Jacobsen
- Ellegaard Göttingen Minipigs A/S, Sorø Landevej 302, 4261, Dalmose, Denmark
| | - Maja Ramløse
- Ellegaard Göttingen Minipigs A/S, Sorø Landevej 302, 4261, Dalmose, Denmark
| | - Nora-Fabienne Paul
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany
| | - Henner Simianer
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Clemens Falker-Gieske
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany.
| |
Collapse
|
5
|
Ueta Y, Miyata M. Functional and structural synaptic remodeling mechanisms underlying somatotopic organization and reorganization in the thalamus. Neurosci Biobehav Rev 2023; 152:105332. [PMID: 37524138 DOI: 10.1016/j.neubiorev.2023.105332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
The somatosensory system organizes the topographic representation of body maps, termed somatotopy, at all levels of an ascending hierarchy. Postnatal maturation of somatotopy establishes optimal somatosensation, whereas deafferentation in adults reorganizes somatotopy, which underlies pathological somatosensation, such as phantom pain and complex regional pain syndrome. Here, we focus on the mouse whisker somatosensory thalamus to study how sensory experience shapes the fine topography of afferent connectivity during the critical period and what mechanisms remodel it and drive a large-scale somatotopic reorganization after peripheral nerve injury. We will review our findings that, following peripheral nerve injury in adults, lemniscal afferent synapses onto thalamic neurons are remodeled back to immature configuration, as if the critical period reopens. The remodeling process is initiated with local activation of microglia in the brainstem somatosensory nucleus downstream to injured nerves and heterosynaptically controlled by input from GABAergic and cortical neurons to thalamic neurons. These fruits of thalamic studies complement well-studied cortical mechanisms of somatotopic organization and reorganization and unveil potential intervention points in treating pathological somatosensation.
Collapse
Affiliation(s)
- Yoshifumi Ueta
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| |
Collapse
|
6
|
Olde Heuvel F, Ouali Alami N, Aousji O, Pogatzki-Zahn E, Zahn PK, Wilhelm H, Deshpande D, Khatamsaz E, Catanese A, Woelfle S, Schön M, Jain S, Grabrucker S, Ludolph AC, Verpelli C, Michaelis J, Boeckers TM, Roselli F. Shank2 identifies a subset of glycinergic neurons involved in altered nociception in an autism model. Mol Autism 2023; 14:21. [PMID: 37316943 DOI: 10.1186/s13229-023-00552-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Autism Spectrum Disorders (ASD) patients experience disturbed nociception in the form of either hyposensitivity to pain or allodynia. A substantial amount of processing of somatosensory and nociceptive stimulus takes place in the dorsal spinal cord. However, many of these circuits are not very well understood in the context of nociceptive processing in ASD. METHODS We have used a Shank2-/- mouse model, which displays a set of phenotypes reminiscent of ASD, and performed behavioural and microscopic analysis to investigate the role of dorsal horn circuitry in nociceptive processing of ASD. RESULTS We determined that Shank2-/- mice display increased sensitivity to formalin pain and thermal preference, but a sensory specific mechanical allodynia. We demonstrate that high levels of Shank2 expression identifies a subpopulation of neurons in murine and human dorsal spinal cord, composed mainly by glycinergic interneurons and that loss of Shank2 causes the decrease in NMDAR in excitatory synapses on these inhibitory interneurons. In fact, in the subacute phase of the formalin test, glycinergic interneurons are strongly activated in wild type (WT) mice but not in Shank2-/- mice. Consequently, nociception projection neurons in laminae I are activated in larger numbers in Shank2-/- mice. LIMITATIONS Our investigation is limited to male mice, in agreement with the higher representation of ASD in males; therefore, caution should be applied to extrapolate the findings to females. Furthermore, ASD is characterized by extensive genetic diversity and therefore the findings related to Shank2 mutant mice may not necessarily apply to patients with different gene mutations. Since nociceptive phenotypes in ASD range between hyper- and hypo-sensitivity, diverse mutations may affect the circuit in opposite ways. CONCLUSION Our findings prove that Shank2 expression identifies a new subset of inhibitory interneurons involved in reducing the transmission of nociceptive stimuli and whose unchecked activation is associated with pain hypersensitivity. We provide evidence that dysfunction in spinal cord pain processing may contribute to the nociceptive phenotypes in ASD.
Collapse
Affiliation(s)
| | - Najwa Ouali Alami
- Department of Neurology, Ulm University, Ulm, Germany
- International PhD Program, Ulm University, Ulm, Germany
| | | | - Esther Pogatzki-Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Peter K Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
- Clinic for Anesthesiology, Intensive Care and Pain Medicine, University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Hanna Wilhelm
- Department of Neurology, Ulm University, Ulm, Germany
| | | | | | - Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Sarah Woelfle
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Michael Schön
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Sanjay Jain
- Department of Internal Medicine (Renal), Pathology and Immunology, Washington University School of Medicine, St. Louis, USA
| | | | - Albert C Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Chiara Verpelli
- Institute of Neuroscience, National Science Council, Milan, Italy
| | | | - Tobias M Boeckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany.
- Department of Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany.
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany.
- Center for Biomedical Research (ZBF), Helmholtzstraße 8/2, 89081, Ulm, Germany.
| |
Collapse
|
7
|
Uyar O, Dominguez JM, Bordeleau M, Lapeyre L, Ibáñez FG, Vallières L, Tremblay ME, Corbeil J, Boivin G. Single-cell transcriptomics of the ventral posterolateral nucleus-enriched thalamic regions from HSV-1-infected mice reveal a novel microglia/microglia-like transcriptional response. J Neuroinflammation 2022; 19:81. [PMID: 35387656 PMCID: PMC8985399 DOI: 10.1186/s12974-022-02437-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/13/2022] [Indexed: 12/17/2022] Open
Abstract
Background Microglia participate in the immune response upon central nervous system (CNS) infections. However, the role of these cells during herpes simplex encephalitis (HSE) has not been fully characterized. We sought to identify different microglia/microglia-like cells and describe the potential mechanisms and signaling pathways involved during HSE. Methods The transcriptional response of CD11b+ immune cells, including microglia/microglia-like cells, was investigated using single-cell RNA sequencing (scRNA-seq) on cells isolated from the ventral posterolateral nucleus (VPL)-enriched thalamic regions of C57BL/6 N mice intranasally infected with herpes simplex virus-1 (HSV-1) (6 × 105 PFUs/20 µl). We further performed scanning electronic microscopy (SEM) analysis in VPL regions on day 6 post-infection (p.i.) to provide insight into microglial functions. Results We describe a novel microglia-like transcriptional response associated with a rare cell population (7% of all analyzed cells), named “in transition” microglia/microglia-like cells in HSE. This new microglia-like transcriptional signature, found in the highly infected thalamic regions, was enriched in specific genes (Retnlg, Cxcr2, Il1f9) usually associated with neutrophils. Pathway analysis of this cell-type transcriptome showed increased NLRP3-inflammasome-mediated interleukin IL-1β production, promoting a pro-inflammatory response. These cells' increased expression of viral transcripts suggests that the distinct “in transition” transcriptome corresponds to the intrinsic antiviral immune signaling of HSV-1-infected microglia/microglia-like cells in the thalamus. In accordance with this phenotype, we observed several TMEM119+/IBA-I+ microglia/microglia-like cells immunostained for HSV-1 in highly infected regions. Conclusions A new microglia/microglia-like state may potentially shed light on how microglia could react to HSV-1 infection. Our observations suggest that infected microglia/microglia-like cells contribute to an exacerbated CNS inflammation. Further characterization of this transitory state of the microglia/microglia-like cell transcriptome may allow the development of novel immunomodulatory approaches to improve HSE outcomes by regulating the microglial immune response. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02437-7.
Collapse
Affiliation(s)
- Olus Uyar
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Pediatrics and Microbiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Juan Manuel Dominguez
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Molecular Medicine and Big Data Research Centre, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Maude Bordeleau
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Neurosciences Unit, CHU de Québec-Laval University Research Center, Quebec City, QC, Canada
| | - Lina Lapeyre
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Pediatrics and Microbiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Fernando González Ibáñez
- Neurosciences Unit, CHU de Québec-Laval University Research Center, Quebec City, QC, Canada.,Department of Molecular Medicine, Laval University, Quebec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Luc Vallières
- Neurosciences Unit, CHU de Québec-Laval University Research Center, Quebec City, QC, Canada.,Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Marie-Eve Tremblay
- Neurosciences Unit, CHU de Québec-Laval University Research Center, Quebec City, QC, Canada.,Department of Molecular Medicine, Laval University, Quebec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
| | - Jacques Corbeil
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Molecular Medicine and Big Data Research Centre, Faculty of Medicine, Laval University, Quebec City, QC, Canada.,Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases, CHU de Québec-Laval University Research Center and Department of Pediatrics and Microbiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada.
| |
Collapse
|
8
|
Feng W, Li Y, Kratsios P. Emerging Roles for Hox Proteins in the Last Steps of Neuronal Development in Worms, Flies, and Mice. Front Neurosci 2022; 15:801791. [PMID: 35185450 PMCID: PMC8855150 DOI: 10.3389/fnins.2021.801791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/31/2021] [Indexed: 12/28/2022] Open
Abstract
A remarkable diversity of cell types characterizes every animal nervous system. Previous studies provided important insights into how neurons commit to a particular fate, migrate to the right place and form precise axodendritic patterns. However, the mechanisms controlling later steps of neuronal development remain poorly understood. Hox proteins represent a conserved family of homeodomain transcription factors with well-established roles in anterior-posterior (A-P) patterning and the early steps of nervous system development, including progenitor cell specification, neuronal migration, cell survival, axon guidance and dendrite morphogenesis. This review highlights recent studies in Caenorhabditis elegans, Drosophila melanogaster and mice that suggest new roles for Hox proteins in processes occurring during later steps of neuronal development, such as synapse formation and acquisition of neuronal terminal identity features (e.g., expression of ion channels, neurotransmitter receptors, and neuropeptides). Moreover, we focus on exciting findings suggesting Hox proteins are required to maintain synaptic structures and neuronal terminal identity during post-embryonic life. Altogether, these studies, in three model systems, support the hypothesis that certain Hox proteins are continuously required, from early development throughout post-embryonic life, to build and maintain a functional nervous system, significantly expanding their functional repertoire beyond the control of early A-P patterning.
Collapse
Affiliation(s)
- Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, IL, United States
- University of Chicago Neuroscience Institute, Chicago, IL, United States
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, United States
| | - Yinan Li
- Department of Neurobiology, University of Chicago, Chicago, IL, United States
- University of Chicago Neuroscience Institute, Chicago, IL, United States
- Committee on Neurobiology, University of Chicago, Chicago, IL, United States
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, United States
- University of Chicago Neuroscience Institute, Chicago, IL, United States
| |
Collapse
|
9
|
Ueta Y, Miyata M. Electrophysiological and anatomical characterization of synaptic remodeling in the mouse whisker thalamus. STAR Protoc 2021; 2:100743. [PMID: 34430916 PMCID: PMC8369072 DOI: 10.1016/j.xpro.2021.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the central nervous system, developmental and pathophysiologic conditions cause a large-scale reorganization of functional connectivity of neural circuits. Here, by using a mouse model for peripheral sensory nerve injury, we present a protocol for combined electrophysiological and anatomical techniques to identify neural basis of synaptic remodeling in the mouse whisker thalamus. Our protocol provides comprehensive approaches to analyze both structural and functional components of synaptic remodeling. For complete details on the use and execution of this protocol, please refer to Ueta and Miyata, (2021). The infraorbital nerve cut for preparing a peripheral nerve injury mouse model Pressure or iontophoretic drug application via stereotaxic injection Assessing functional synaptic remodeling by whole-cell patch-clamp in acute slices Immunohistochemical identification of structural synaptic remodeling
Collapse
Affiliation(s)
- Yoshifumi Ueta
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| |
Collapse
|
10
|
Maheshwari U, Kraus D, Vilain N, Holwerda SJB, Cankovic V, Maiorano NA, Kohler H, Satoh D, Sigrist M, Arber S, Kratochwil CF, Di Meglio T, Ducret S, Rijli FM. Postmitotic Hoxa5 Expression Specifies Pontine Neuron Positional Identity and Input Connectivity of Cortical Afferent Subsets. Cell Rep 2021; 31:107767. [PMID: 32553152 DOI: 10.1016/j.celrep.2020.107767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/18/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
The mammalian precerebellar pontine nucleus (PN) has a main role in relaying cortical information to the cerebellum. The molecular determinants establishing ordered connectivity patterns between cortical afferents and precerebellar neurons are largely unknown. We show that expression of Hox5 transcription factors is induced in specific subsets of postmitotic PN neurons at migration onset. Hox5 induction is achieved by response to retinoic acid signaling, resulting in Jmjd3-dependent derepression of Polycomb chromatin and 3D conformational changes. Hoxa5 drives neurons to settle posteriorly in the PN, where they are monosynaptically targeted by cortical neuron subsets mainly carrying limb somatosensation. Furthermore, Hoxa5 postmigratory ectopic expression in PN neurons is sufficient to attract cortical somatosensory inputs regardless of position and avoid visual afferents. Transcriptome analysis further suggests that Hoxa5 is involved in circuit formation. Thus, Hoxa5 coordinates postmitotic specification, migration, settling position, and sub-circuit assembly of PN neuron subsets in the cortico-cerebellar pathway.
Collapse
Affiliation(s)
- Upasana Maheshwari
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, 4051 Basel, Switzerland
| | - Dominik Kraus
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, 4051 Basel, Switzerland
| | - Nathalie Vilain
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Sjoerd J B Holwerda
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Vanja Cankovic
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Nicola A Maiorano
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Daisuke Satoh
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Biozentrum, University of Basel, Kingelbergstrasse 70, 4056 Basel, Switzerland
| | - Markus Sigrist
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Biozentrum, University of Basel, Kingelbergstrasse 70, 4056 Basel, Switzerland
| | - Silvia Arber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Biozentrum, University of Basel, Kingelbergstrasse 70, 4056 Basel, Switzerland
| | - Claudius F Kratochwil
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Thomas Di Meglio
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, 4051 Basel, Switzerland.
| |
Collapse
|
11
|
Kitazawa T, Machlab D, Joshi O, Maiorano N, Kohler H, Ducret S, Kessler S, Gezelius H, Soneson C, Papasaikas P, López-Bendito G, Stadler MB, Rijli FM. A unique bipartite Polycomb signature regulates stimulus-response transcription during development. Nat Genet 2021; 53:379-391. [PMID: 33603234 PMCID: PMC7610396 DOI: 10.1038/s41588-021-00789-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/19/2021] [Indexed: 01/31/2023]
Abstract
Rapid cellular responses to environmental stimuli are fundamental for development and maturation. Immediate early genes can be transcriptionally induced within minutes in response to a variety of signals. How their induction levels are regulated and their untimely activation by spurious signals prevented during development is poorly understood. We found that in developing sensory neurons, before perinatal sensory-activity-dependent induction, immediate early genes are embedded into a unique bipartite Polycomb chromatin signature, carrying active H3K27ac on promoters but repressive Ezh2-dependent H3K27me3 on gene bodies. This bipartite signature is widely present in developing cell types, including embryonic stem cells. Polycomb marking of gene bodies inhibits mRNA elongation, dampening productive transcription, while still allowing for fast stimulus-dependent mark removal and bipartite gene induction. We reveal a developmental epigenetic mechanism regulating the rapidity and amplitude of the transcriptional response to relevant stimuli, while preventing inappropriate activation of stimulus-response genes.
Collapse
Affiliation(s)
- Taro Kitazawa
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Dania Machlab
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,Swiss Institute of Bioinformatics, Basel, Switzerland,University of Basel, Basel, Switzerland
| | - Onkar Joshi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Nicola Maiorano
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sandra Kessler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Henrik Gezelius
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| | - Charlotte Soneson
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| | - Michael B. Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland,University of Basel, Basel, Switzerland,Correspondence to:
| |
Collapse
|
12
|
Sensational developments in somatosensory development? Curr Opin Neurobiol 2021; 66:212-223. [PMID: 33454646 DOI: 10.1016/j.conb.2020.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/25/2022]
Abstract
This is an overview of the most recent advances pertaining to the development of the cardinal components of the somatosensory system: the peripheral sensory neurons that perceive somatosensory stimuli, the first line central nervous system circuits that modulate them, and the higher structures such as the somatosensory cortex that eventually compute a motor response to them. Here, I also review the most recent findings concerning the role of neuronal activity in somatosensory development, formation of somatotopic maps, insights into human somatosensory development and the link between aberrant somatosensation and neurodevelopmental disorders.
Collapse
|
13
|
Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2020; 101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.
Collapse
Affiliation(s)
- Jochen F Staiger
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
14
|
Xia H, Liu Y, Wang Z, Zhang W, Qi M, Qi B, Jiang X. Long Noncoding RNA HOTAIRM1 Maintains Tumorigenicity of Glioblastoma Stem-Like Cells Through Regulation of HOX Gene Expression. Neurotherapeutics 2020; 17:754-764. [PMID: 31691127 PMCID: PMC7283434 DOI: 10.1007/s13311-019-00799-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Noncoding RNAs regulate transcription of gene expression and play an important role in the pathogenesis of glioblastomas. These tumors are heterogeneous with some glioma stem cells (GSCs) that are highly tumorigenic subpopulations of cells contributing to recurrence and treatment resistance. In this study, GSCs were established by neurosphere cultures of primary glioblastoma cells and validated by the expression of GSC marker CD133. The expression of the long noncoding RNA HOTAIRM1 was detected using real-time quantitative reverse transcription PCR (qRT-PCR). The role of HOTAIRM1 in the proliferation, apoptosis, stemness, and tumorigenicity of GSCs was investigated by soft agar colony formation, flow cytometry, TUNEL analysis, sphere formation, and in vivo xenograft models through silencing of HOTAIRM1. The expression of HOTAIRM1 and the neighboring HOX genes were analyzed by qRT-PCR in different grades of gliomas and nontumor tissues. We found that HOTAIRM1 is significantly elevated in GSCs. The silencing of HOTAIRM1 significantly impairs the proliferation, apoptosis, self-renewal, tumorigenesis of GSCs. In addition, HOTAIRM1 is significantly upregulated in gliomas and associated with tumor grade and patient survival. HOTAIRM1 neighboring genes, HOXA1, HOXA2, and HOXA3, are also significantly upregulated in gliomas and correlate with the expression of HOTAIRM1. Among them, HOXA2 and HOXA3 were identified as being upregulated in GSCs and contributed to the self-renewal of these stem cells. Taken together, our results demonstrate that HOTAIRM1 plays a critical role in the self-renewal of GSCs. These data also suggest that overexpression of HOTAIRM1 can be a negative prognostic factor for patient survival in malignant glioma and may be a promising potential therapeutic target.
Collapse
Affiliation(s)
- Hongping Xia
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China.
- Department of Pathology, School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China.
- Department of Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Yinhua Liu
- Department of Pathology, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Zhichun Wang
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Wei Zhang
- Department of Pathology, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Min Qi
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Bin Qi
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiaochun Jiang
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China.
| |
Collapse
|
15
|
Abstract
Cre-mediated recombination has become a powerful tool to confine gene deletions (conditional knockouts) or overexpression of genes (conditional knockin/overexpression). By spatiotemporal restriction of genetic manipulations, major problems of classical knockouts such as embryonic lethality or pleiotropy can be circumvented. Furthermore, Cre-mediated recombination has broad applications in the analysis of the cellular behavior of subpopulations and cell types as well as for genetic fate mapping. This chapter gives an overview about applications for the Cre/LoxP system and their execution.
Collapse
Affiliation(s)
- Claudius F Kratochwil
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
16
|
Coughlan E, Garside VC, Wong SFL, Liang H, Kraus D, Karmakar K, Maheshwari U, Rijli FM, Bourne J, McGlinn E. A Hox Code Defines Spinocerebellar Neuron Subtype Regionalization. Cell Rep 2019; 29:2408-2421.e4. [DOI: 10.1016/j.celrep.2019.10.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/12/2019] [Accepted: 10/10/2019] [Indexed: 11/25/2022] Open
|
17
|
Erskine A, Bus T, Herb JT, Schaefer AT. AutonoMouse: High throughput operant conditioning reveals progressive impairment with graded olfactory bulb lesions. PLoS One 2019; 14:e0211571. [PMID: 30840676 PMCID: PMC6402634 DOI: 10.1371/journal.pone.0211571] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/16/2019] [Indexed: 11/18/2022] Open
Abstract
Operant conditioning is a crucial tool in neuroscience research for probing brain function. While molecular, anatomical and even physiological techniques have seen radical increases in throughput, efficiency, and reproducibility in recent years, behavioural tools have somewhat lagged behind. Here we present a fully automated, high-throughput system for self-initiated conditioning of up to 25 group-housed, radio-frequency identification (RFID) tagged mice over periods of several months and >106 trials. We validate this "AutonoMouse" system in a series of olfactory behavioural tasks and show that acquired data is comparable to previous semi-manual approaches. Furthermore, we use AutonoMouse to systematically probe the impact of graded olfactory bulb lesions on olfactory behaviour, demonstrating that while odour discrimination in general is robust to even most extensive disruptions, small olfactory bulb lesions already impair odour detection. Discrimination learning of similar mixtures as well as learning speed are in turn reliably impacted by medium lesion sizes. The modular nature and open-source design of AutonoMouse should allow for similar robust and systematic assessments across neuroscience research areas.
Collapse
Affiliation(s)
- Andrew Erskine
- The Francis Crick Institute, Neurophysiology of Behaviour Laboratory, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Thorsten Bus
- Behavioural Neurophysiology, Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | - Jan T. Herb
- The Francis Crick Institute, Neurophysiology of Behaviour Laboratory, London, United Kingdom
- Behavioural Neurophysiology, Max-Planck-Institute for Medical Research, Heidelberg, Germany
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Andreas T. Schaefer
- The Francis Crick Institute, Neurophysiology of Behaviour Laboratory, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
- Behavioural Neurophysiology, Max-Planck-Institute for Medical Research, Heidelberg, Germany
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
18
|
Kitazawa T, Rijli FM. Barrelette map formation in the prenatal mouse brainstem. Curr Opin Neurobiol 2018; 53:210-219. [PMID: 30342228 DOI: 10.1016/j.conb.2018.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/03/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Abstract
The rodent whiskers are topographically mapped in brainstem sensory nuclei as neuronal modules known as barrelettes. Little is known about how the facial whisker pattern is copied into a brainstem barrelette topographic pattern, which serves as a template for the establishment of thalamic barreloid and, in turn, cortical barrel maps, and how precisely is the whisker pattern mapped in the brainstem during prenatal development. Here, we review recent insights advancing our understanding of the intrinsic and extrinsic patterning mechanisms contributing to establish topographical equivalence between the facial whisker pattern and the mouse brainstem during prenatal development and their relative importance.
Collapse
Affiliation(s)
- Taro Kitazawa
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4051 Basel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4051 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland.
| |
Collapse
|
19
|
Iwasato T, Erzurumlu RS. Development of tactile sensory circuits in the CNS. Curr Opin Neurobiol 2018; 53:66-75. [PMID: 29908482 DOI: 10.1016/j.conb.2018.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/30/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022]
Abstract
Molecular identification of neuronal types and genetic and imaging approaches to characterize their properties reveal morphological, physiological and dynamic aspects of sensory circuit development. Here we focus on the mouse tactile sensory circuitry, with particular emphasis on the main trigeminal pathway that connects the whiskers, the major tactile organ in rodents, to the neocortex. At each level of this pathway, neurogenesis, axonal elongation, pathfinding, target recognition and circuit reorganization including dendritic refinement of cortical layer 4 neurons occur contemporaneously and a multitude of molecular signals are used in differing combinations. We highlight recent advances in development of tactile circuitry and note gaps in our understanding.
Collapse
Affiliation(s)
- Takuji Iwasato
- National Institute of Genetics, Mishima, Japan; Department of Genetics, SOKENDAI, Mishima, Japan
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
20
|
Hox2 Genes Are Required for Tonotopic Map Precision and Sound Discrimination in the Mouse Auditory Brainstem. Cell Rep 2017; 18:185-197. [PMID: 28052248 DOI: 10.1016/j.celrep.2016.12.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/03/2016] [Accepted: 12/06/2016] [Indexed: 11/22/2022] Open
Abstract
Tonotopy is a hallmark of auditory pathways and provides the basis for sound discrimination. Little is known about the involvement of transcription factors in brainstem cochlear neurons orchestrating the tonotopic precision of pre-synaptic input. We found that in the absence of Hoxa2 and Hoxb2 function in Atoh1-derived glutamatergic bushy cells of the anterior ventral cochlear nucleus, broad input topography and sound transmission were largely preserved. However, fine-scale synaptic refinement and sharpening of isofrequency bands of cochlear neuron activation upon pure tone stimulation were impaired in Hox2 mutants, resulting in defective sound-frequency discrimination in behavioral tests. These results establish a role for Hox factors in tonotopic refinement of connectivity and in ensuring the precision of sound transmission in the mammalian auditory circuit.
Collapse
|
21
|
Lizen B, Moens C, Mouheiche J, Sacré T, Ahn MT, Jeannotte L, Salti A, Gofflot F. Conditional Loss of Hoxa5 Function Early after Birth Impacts on Expression of Genes with Synaptic Function. Front Mol Neurosci 2017; 10:369. [PMID: 29187810 PMCID: PMC5695161 DOI: 10.3389/fnmol.2017.00369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/26/2017] [Indexed: 12/24/2022] Open
Abstract
Hoxa5 is a member of the Hox gene family that plays critical roles in successive steps of the central nervous system formation during embryonic and fetal development. In the mouse, Hoxa5 was recently shown to be expressed in the medulla oblongata and the pons from fetal stages to adulthood. In these territories, Hoxa5 transcripts are enriched in many precerebellar neurons and several nuclei involved in autonomic functions, while the HOXA5 protein is detected mainly in glutamatergic and GABAergic neurons. However, whether HOXA5 is functionally required in these neurons after birth remains unknown. As a first approach to tackle this question, we aimed at determining the molecular programs downstream of the HOXA5 transcription factor in the context of the postnatal brainstem. A comparative transcriptomic analysis was performed in combination with gene expression localization, using a conditional postnatal Hoxa5 loss-of-function mouse model. After inactivation of Hoxa5 at postnatal days (P)1–P4, we established the transcriptome of the brainstem from P21 Hoxa5 conditional mutants using RNA-Seq analysis. One major finding was the downregulation of several genes associated with synaptic function in Hoxa5 mutant specimens including different actors involved in glutamatergic synapse, calcium signaling pathway, and GABAergic synapse. Data were confirmed and extended by reverse transcription quantitative polymerase chain reaction analysis, and the expression of several HOXA5 candidate targets was shown to co-localize with Hoxa5 transcripts in precerebellar nuclei. Together, these new results revealed that HOXA5, through the regulation of key actors of the glutamatergic/GABAergic synapses and calcium signaling, might be involved in synaptogenesis, synaptic transmission, and synaptic plasticity of the cortico-ponto-cerebellar circuitry in the postnatal brainstem.
Collapse
Affiliation(s)
- Benoit Lizen
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Charlotte Moens
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jinane Mouheiche
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Thomas Sacré
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marie-Thérèse Ahn
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Lucie Jeannotte
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, QC, Canada.,Centre de Recherche sur le Cancer, Université Laval, Quebec City, QC, Canada.,Centre de Recherche, Centre Hospitalier Universitaire de Québec, Université Laval, Quebec City, QC, Canada
| | - Ahmad Salti
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Françoise Gofflot
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
22
|
Tsytsarev V, Arakawa H, Zhao S, Chédotal A, Erzurumlu RS. Behavioral Consequences of a Bifacial Map in the Mouse Somatosensory Cortex. J Neurosci 2017; 37:7209-7218. [PMID: 28663199 PMCID: PMC5546400 DOI: 10.1523/jneurosci.0598-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/14/2017] [Accepted: 06/19/2017] [Indexed: 02/04/2023] Open
Abstract
The whisker system is an important sensory organ with extensive neural representations in the brain of the mouse. Patterned neural modules (barrelettes) in the ipsilateral principal sensory nucleus of the trigeminal nerve (PrV) correspond to the whiskers. Axons of the PrV barrelette neurons cross the midline and confer the whisker-related patterning to the contralateral ventroposteromedial nucleus of the thalamus, and subsequently to the cortex. In this way, specific neural modules called barreloids and barrels in the contralateral thalamus and cortex represent each whisker. Partial midline crossing of the PrV axons, in a conditional Robo3 mutant (Robo3R3-5cKO) mouse line, leads to the formation of bilateral whisker maps in the ventroposteromedial, as well as the barrel cortex. We used voltage-sensitive dye optical imaging and somatosensory and motor behavioral tests to characterize the consequences of bifacial maps in the thalamocortical system. Voltage-sensitive dye optical imaging verified functional, bilateral whisker representation in the barrel cortex and activation of distinct cortical loci following ipsilateral and contralateral stimulation of the specific whiskers. The mutant animals were comparable with the control animals in sensorimotor tests. However, they showed noticeable deficits in all of the whisker-dependent or -related tests, including Y-maze exploration, horizontal surface approach, bridge crossing, gap crossing, texture discrimination, floating in water, and whisking laterality. Our results indicate that bifacial maps along the thalamocortical system do not offer a functional advantage. Instead, they lead to impairments, possibly due to the smaller size of the whisker-related modules and interference between the ipsilateral and contralateral whisker representations in the same thalamus and cortex.SIGNIFICANCE STATEMENT The whisker sensory system plays a quintessentially important role in exploratory behavior of mice and other nocturnal rodents. Here, we studied a novel mutant mouse line, in which the projections from the brainstem to the thalamus are disrupted. This led to formation of bilateral whisker maps in both the thalamus and the cortex. The two whisker maps crowd in a space normally devoted to the contralateral map alone and in a nonoverlapping fashion. Stimulation of the whiskers on either side activates the corresponding region of the map. Mice with bilateral whisker maps perform well in general sensorimotor tasks but show poor performance in specific tests that require whisker-dependent tactile discrimination. These observations indicate that contralateral, instead of bilateral, representation of the sensory space plays a critical role in acuity and fine discrimination during somesthesis.
Collapse
Affiliation(s)
- Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Hiroyuki Arakawa
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Shuxin Zhao
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Alain Chédotal
- Centre de Recherche Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S968, 75012 Paris, France
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| |
Collapse
|
23
|
Kratochwil CF, Maheshwari U, Rijli FM. The Long Journey of Pontine Nuclei Neurons: From Rhombic Lip to Cortico-Ponto-Cerebellar Circuitry. Front Neural Circuits 2017; 11:33. [PMID: 28567005 PMCID: PMC5434118 DOI: 10.3389/fncir.2017.00033] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/28/2017] [Indexed: 01/26/2023] Open
Abstract
The pontine nuclei (PN) are the largest of the precerebellar nuclei, neuronal assemblies in the hindbrain providing principal input to the cerebellum. The PN are predominantly innervated by the cerebral cortex and project as mossy fibers to the cerebellar hemispheres. Here, we comprehensively review the development of the PN from specification to migration, nucleogenesis and circuit formation. PN neurons originate at the posterior rhombic lip and migrate tangentially crossing several rhombomere derived territories to reach their final position in ventral part of the pons. The developing PN provide a classical example of tangential neuronal migration and a study system for understanding its molecular underpinnings. We anticipate that understanding the mechanisms of PN migration and assembly will also permit a deeper understanding of the molecular and cellular basis of cortico-cerebellar circuit formation and function.
Collapse
Affiliation(s)
- Claudius F Kratochwil
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of KonstanzKonstanz, Germany.,Zukunftskolleg, University of KonstanzKonstanz, Germany
| | - Upasana Maheshwari
- Friedrich Miescher Institute for Biomedical ResearchBasel, Switzerland.,University of BaselBasel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical ResearchBasel, Switzerland.,University of BaselBasel, Switzerland
| |
Collapse
|
24
|
Afferent Fiber Remodeling in the Somatosensory Thalamus of Mice as a Neural Basis of Somatotopic Reorganization in the Brain and Ectopic Mechanical Hypersensitivity after Peripheral Sensory Nerve Injury. eNeuro 2017; 4:eN-NWR-0345-16. [PMID: 28396882 PMCID: PMC5378058 DOI: 10.1523/eneuro.0345-16.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/22/2017] [Accepted: 03/03/2017] [Indexed: 01/12/2023] Open
Abstract
Plastic changes in the CNS in response to peripheral sensory nerve injury are a series of complex processes, ranging from local circuit remodeling to somatotopic reorganization. However, the link between circuit remodeling and somatotopic reorganization remains unclear. We have previously reported that transection of the primary whisker sensory nerve causes the abnormal rewiring of lemniscal fibers (sensory afferents) on a neuron in the mouse whisker sensory thalamus (V2 VPM). In the present study, using transgenic mice whose lemniscal fibers originate from the whisker sensory principle trigeminal nucleus (PrV2) are specifically labeled, we identified that the transection induced retraction of PrV2-originating lemniscal fibers and invasion of those not originating from PrV2 in the V2 VPM. This anatomical remodeling with somatotopic reorganization was highly correlated with the rewiring of lemniscal fibers. Origins of the non-PrV2-origin lemniscal fibers in the V2 VPM included the mandibular subregion of trigeminal nuclei and the dorsal column nuclei (DCNs), which normally represent body parts other than whiskers. The transection also resulted in ectopic receptive fields of V2 VPM neurons and extraterritorial pain behavior on the uninjured mandibular region of the face. The anatomical remodeling, emergence of ectopic receptive fields, and extraterritorial pain behavior all concomitantly developed within a week and lasted more than three months after the transection. Our findings, thus, indicate a strong linkage between these plastic changes after peripheral sensory nerve injury, which may provide a neural circuit basis underlying large-scale reorganization of somatotopic representation and abnormal ectopic sensations.
Collapse
|
25
|
Moreno-Juan V, Filipchuk A, Antón-Bolaños N, Mezzera C, Gezelius H, Andrés B, Rodríguez-Malmierca L, Susín R, Schaad O, Iwasato T, Schüle R, Rutlin M, Nelson S, Ducret S, Valdeolmillos M, Rijli FM, López-Bendito G. Prenatal thalamic waves regulate cortical area size prior to sensory processing. Nat Commun 2017; 8:14172. [PMID: 28155854 PMCID: PMC5296753 DOI: 10.1038/ncomms14172] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/06/2016] [Indexed: 11/27/2022] Open
Abstract
The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing. How sensory maps are formed in the brain is only partially understood. Here the authors describe spontaneous calcium waves that propagate across different sensory nuclei in the embryonic thalamus; disrupting the wave pattern triggers thalamic gene expression changes and eventually alters the size of cortical areas.
Collapse
Affiliation(s)
- Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Anton Filipchuk
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Noelia Antón-Bolaños
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Cecilia Mezzera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain.,Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Henrik Gezelius
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Belen Andrés
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Luis Rodríguez-Malmierca
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Rafael Susín
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Olivier Schaad
- NCCR frontiers in Genetics, University of Geneva, CH-1211 Geneva 4, Switzerland.,Department of Biochemistry, Sciences II, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Takuji Iwasato
- Division of Neurogenetics, National Institute of Genetics (NIG), Mishima 411-8540, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| | - Roland Schüle
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, Albert Ludwigs University, 79106 Freiburg, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Standort Freiburg, 79108 Freiburg, Germany
| | - Michael Rutlin
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA.,Department of Biochemistry and Molecular Biophysics, HHMI, Columbia University Medical Center, New York, New York 10032, USA
| | - Sacha Nelson
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Miguel Valdeolmillos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Spain
| |
Collapse
|
26
|
Lizen B, Hutlet B, Bissen D, Sauvegarde D, Hermant M, Ahn MT, Gofflot F. HOXA5 localization in postnatal and adult mouse brain is suggestive of regulatory roles in postmitotic neurons. J Comp Neurol 2016; 525:1155-1175. [PMID: 27650319 DOI: 10.1002/cne.24123] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 09/08/2016] [Accepted: 09/15/2016] [Indexed: 01/13/2023]
Abstract
Hoxa5 is a member of the Hox gene family, which plays critical roles in successive steps of the central nervous system formation during embryonic and fetal development. Hoxa5 expression in the adult mouse brain has been reported, suggesting that this gene may be functionally required in the brain after birth. To provide further insight into the Hoxa5 expression pattern and potential functions in the brain, we have characterized its neuroanatomical profile from embryonic stages to adulthood. While most Hox mapping studies have been based solely on transcript analysis, we extended our analysis to HOXA5 protein localization in adulthood using specific antibodies. Our results show that Hoxa5 expression appears in the most caudal part of the hindbrain at fetal stages, where it is maintained until adulthood. In the medulla oblongata and pons, we detected Hoxa5 expression in many precerebellar neurons and in several nuclei implicated in the control of autonomic functions. In these territories, the HOXA5 protein is present solely in neurons, specifically in γ-aminobutyric acid (GABA)ergic, glutamatergic, and catecholaminergic neurons. Finally, we also detected Hoxa5 transcripts, but not the HOXA5 protein, in the thalamus and the cortex, from postnatal stages to adult stages, and in the cerebellum at adulthood. We provide evidence that some larger variants of Hoxa5 transcripts are present in these territories. Our mapping analysis allowed us to build hypotheses regarding HOXA5 functions in the nervous system after birth, such as a potential role in the establishment and refinement/plasticity of precerebellar circuits during postnatal and adult life. J. Comp. Neurol. 525:1155-1175, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Benoit Lizen
- Institute of Life Sciences, Catholic University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Bertrand Hutlet
- Institute of Life Sciences, Catholic University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Diane Bissen
- Institute of Life Sciences, Catholic University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Deborah Sauvegarde
- Institute of Life Sciences, Catholic University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Maryse Hermant
- Institute of Life Sciences, Catholic University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Marie-Thérèse Ahn
- Institute of Life Sciences, Catholic University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Françoise Gofflot
- Institute of Life Sciences, Catholic University of Louvain, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|