1
|
Peluzzo AM, St Paul A, Corbett CB, Kelemen SE, Fossati S, Liu X, Autieri MV. IL-19 Is a Novel Lymphangiocrine Factor Inducing Lymphangiogenesis and Lymphatic Junctional Regulation. Arterioscler Thromb Vasc Biol 2025. [PMID: 40371466 DOI: 10.1161/atvbaha.125.322669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND The lymphatic system functions by removing fluid, macromolecules, and immune cells to maintain tissue homeostasis. The structural organization of junctional protein complexes is vital to lymphatic function where initial lymphatics have permeable button junctions and collecting lymphatics have relatively impermeable zipper junctions. During inflammation, this junctional morphology appears to reverse, contributing to overall lymphatic malfunction. Little is known about the effects of immunomodulatory cytokines on lymphatic vessel formation and function during inflammation. The purpose of this study is to test the hypothesis that IL (interleukin)-19 promotes lymphangiogenesis and proper lymphatic function during inflammation. METHODS We used cultured human dermal lymphatic endothelial cells to determine IL-19 expression and its effects on lymphangiogenesis assays. Immunocytochemistry and electric cell-substrate impedance sensing determined effects on junctional morphology as it relates to permeability in vitro. RNA sequencing determined the effects of IL-19 on gene expression. Il19-/-Ldlr-/- double knockout mice were used to determine IL-19 effects on lymphatic function and lymphatic vessel visualization in vivo. RESULTS Endogenous IL-19 expression is induced by exogenous IL-19 and VEGF (vascular endothelial growth factor) C stimulation. IL-19 is lymphangiogenic, increasing human dermal lymphatic endothelial cell migration, network formation, and proliferation. IL-19 induces expression of transcription factors and permeability-associated genes. IL-19 induces rapid VE-cadherin (vascular endothelial cadherin) phosphorylation, increases permeability of human dermal lymphatic endothelial cell monolayers, and mitigates oxidized low-density lipoprotein-associated decrease in human dermal lymphatic endothelial cell permeability. In vivo, Il19-/-Ldlr-/- double knockout mice on a high-fat diet have impaired lymphatic drainage, decreased lymphatic branch points, and increased percentage of zippered junctions compared with control mice. CONCLUSIONS Taken together, these data show that IL-19 has potent effects on lymphatic vessel formation and function in vitro and that IL-19 regulates lymphatic drainage in vivo. IL-19 may represent an immunomodulatory cytokine with therapeutic potential for improving impaired lymphatic function consequent to inflammation.
Collapse
Affiliation(s)
- Amanda M Peluzzo
- Lemole Center for Integrated Lymphatics and Vascular Research (A.M.P., A.S.P., C.B.C., S.E.K., X.L., M.V.A.)
| | - Amanda St Paul
- Lemole Center for Integrated Lymphatics and Vascular Research (A.M.P., A.S.P., C.B.C., S.E.K., X.L., M.V.A.)
| | - Cali B Corbett
- Lemole Center for Integrated Lymphatics and Vascular Research (A.M.P., A.S.P., C.B.C., S.E.K., X.L., M.V.A.)
| | - Sheri E Kelemen
- Lemole Center for Integrated Lymphatics and Vascular Research (A.M.P., A.S.P., C.B.C., S.E.K., X.L., M.V.A.)
| | - Silvia Fossati
- Alzheimer's Center at Temple, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.F.)
| | - Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research (A.M.P., A.S.P., C.B.C., S.E.K., X.L., M.V.A.)
| | - Michael V Autieri
- Lemole Center for Integrated Lymphatics and Vascular Research (A.M.P., A.S.P., C.B.C., S.E.K., X.L., M.V.A.)
| |
Collapse
|
2
|
Kuonqui KG, Campbell AC, Pollack BL, Shin J, Sarker A, Brown S, Park HJ, Mehrara BJ, Kataru RP. Regulation of VEGFR3 signaling in lymphatic endothelial cells. Front Cell Dev Biol 2025; 13:1527971. [PMID: 40046235 PMCID: PMC11880633 DOI: 10.3389/fcell.2025.1527971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/22/2025] [Indexed: 03/09/2025] Open
Abstract
The receptor tyrosine kinase vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3) is the principal transmembrane receptor responsible for sensing and coordinating cellular responses to environmental lymphangiogenic stimuli in lymphatic endothelial cells (LECs). VEGFC and D (VEGFC/D) function as the cognate ligands to VEGFR3 by stimulating autophosphorylation of intracellular VEGFR3 tyrosine kinase domains that activate signal cascades involved in lymphatic growth and survival. VEGFR3 primarily promotes downstream signaling through the phosphoinositide 3-kinase (PI3K) and Ras signaling cascades that promote functions including cell proliferation and migration. The importance of VEGFR3 cascades in lymphatic physiology is underscored by identification of dysfunctional VEGFR3 signaling across several lymphatic-related diseases. Recently, our group has shown that intracellular modification of VEGFR3 signaling is a potent means of inducing lymphangiogenesis independent of VEGFC. This is important because long-term treatment with recombinant VEGFC may have deleterious consequences due to off-target effects. A more complete understanding of VEGFR3 signaling pathways may lead to novel drug development strategies. The purpose of this review is to 1) characterize molecular mediators of VEGFC/VEGFR3 downstream signaling activation and their functional roles in LEC physiology and 2) explore molecular regulation of overall VEGFR3 expression and activity within LECs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Raghu P. Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
3
|
Huang J, Liao C, Yang J, Zhang L. The role of vascular and lymphatic networks in bone and joint homeostasis and pathology. Front Endocrinol (Lausanne) 2024; 15:1465816. [PMID: 39324127 PMCID: PMC11422228 DOI: 10.3389/fendo.2024.1465816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
The vascular and lymphatic systems are integral to maintaining skeletal homeostasis and responding to pathological conditions in bone and joint tissues. This review explores the interplay between blood vessels and lymphatic vessels in bones and joints, focusing on their roles in homeostasis, regeneration, and disease progression. Type H blood vessels, characterized by high expression of CD31 and endomucin, are crucial for coupling angiogenesis with osteogenesis, thus supporting bone homeostasis and repair. These vessels facilitate nutrient delivery and waste removal, and their dysfunction can lead to conditions such as ischemia and arthritis. Recent discoveries have highlighted the presence and significance of lymphatic vessels within bone tissue, challenging the traditional view that bones are devoid of lymphatics. Lymphatic vessels contribute to interstitial fluid regulation, immune cell trafficking, and tissue repair through lymphangiocrine signaling. The pathological alterations in these networks are closely linked to inflammatory joint diseases, emphasizing the need for further research into their co-regulatory mechanisms. This comprehensive review summarizes the current understanding of the structural and functional aspects of vascular and lymphatic networks in bone and joint tissues, their roles in homeostasis, and the implications of their dysfunction in disease. By elucidating the dynamic interactions between these systems, we aim to enhance the understanding of their contributions to skeletal health and disease, potentially informing the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Jingxiong Huang
- Center of Stomatology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Chengcheng Liao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Guizhou, Zunyi, China
| | - Jian Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liang Zhang
- Center of Stomatology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Panara V, Yu H, Peng D, Staxäng K, Hodik M, Filipek-Gorniok B, Kazenwadel J, Skoczylas R, Mason E, Allalou A, Harvey NL, Haitina T, Hogan BM, Koltowska K. Multiple cis-regulatory elements control prox1a expression in distinct lymphatic vascular beds. Development 2024; 151:dev202525. [PMID: 38722096 PMCID: PMC11128278 DOI: 10.1242/dev.202525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/21/2024] [Indexed: 05/15/2024]
Abstract
During embryonic development, lymphatic endothelial cell (LEC) precursors are distinguished from blood endothelial cells by the expression of Prospero-related homeobox 1 (Prox1), which is essential for lymphatic vasculature formation in mouse and zebrafish. Prox1 expression initiation precedes LEC sprouting and migration, serving as the marker of specified LECs. Despite its crucial role in lymphatic development, Prox1 upstream regulation in LECs remains to be uncovered. SOX18 and COUP-TFII are thought to regulate Prox1 in mice by binding its promoter region. However, the specific regulation of Prox1 expression in LECs remains to be studied in detail. Here, we used evolutionary conservation and chromatin accessibility to identify enhancers located in the proximity of zebrafish prox1a active in developing LECs. We confirmed the functional role of the identified sequences through CRISPR/Cas9 mutagenesis of a lymphatic valve enhancer. The deletion of this region results in impaired valve morphology and function. Overall, our results reveal an intricate control of prox1a expression through a collection of enhancers. Ray-finned fish-specific distal enhancers drive pan-lymphatic expression, whereas vertebrate-conserved proximal enhancers refine expression in functionally distinct subsets of lymphatic endothelium.
Collapse
Affiliation(s)
- Virginia Panara
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
- Beijer Gene and Neuro Laboratory, Uppsala University, Uppsala 75185, Sweden
| | - Hujun Yu
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology and Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Di Peng
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Karin Staxäng
- BioVis Core Facility, Platform EM, Uppsala University, Uppsala 75185, Sweden
| | - Monika Hodik
- BioVis Core Facility, Platform EM, Uppsala University, Uppsala 75185, Sweden
| | - Beata Filipek-Gorniok
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Jan Kazenwadel
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5001, Australia
| | - Renae Skoczylas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
| | - Elizabeth Mason
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Amin Allalou
- Uppsala University, Department of Information Technology, Division of Visual Information and Interaction, and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala 75185, Sweden
| | - Natasha L. Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, Uppsala 75236, Sweden
| | - Benjamin M. Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology and Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Katarzyna Koltowska
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75185, Sweden
- Beijer Gene and Neuro Laboratory, Uppsala University, Uppsala 75185, Sweden
| |
Collapse
|
5
|
Payne S, Neal A, De Val S. Transcription factors regulating vasculogenesis and angiogenesis. Dev Dyn 2024; 253:28-58. [PMID: 36795082 PMCID: PMC10952167 DOI: 10.1002/dvdy.575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Transcription factors (TFs) play a crucial role in regulating the dynamic and precise patterns of gene expression required for the initial specification of endothelial cells (ECs), and during endothelial growth and differentiation. While sharing many core features, ECs can be highly heterogeneous. Differential gene expression between ECs is essential to pattern the hierarchical vascular network into arteries, veins and capillaries, to drive angiogenic growth of new vessels, and to direct specialization in response to local signals. Unlike many other cell types, ECs have no single master regulator, instead relying on differing combinations of a necessarily limited repertoire of TFs to achieve tight spatial and temporal activation and repression of gene expression. Here, we will discuss the cohort of TFs known to be involved in directing gene expression during different stages of mammalian vasculogenesis and angiogenesis, with a primary focus on development.
Collapse
Affiliation(s)
- Sophie Payne
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Alice Neal
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Sarah De Val
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| |
Collapse
|
6
|
Montenegro-Navarro N, García-Báez C, García-Caballero M. Molecular and metabolic orchestration of the lymphatic vasculature in physiology and pathology. Nat Commun 2023; 14:8389. [PMID: 38104163 PMCID: PMC10725466 DOI: 10.1038/s41467-023-44133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
Lymphangiogenesis refers to the generation of new lymphatic vessels from pre-existing ones. During development and particular adult states, lymphatic endothelial cells (LEC) undergo reprogramming of their transcriptomic and signaling networks to support the high demands imposed by cell proliferation and migration. Although there has been substantial progress in identifying growth factors and signaling pathways controlling lymphangiogenesis in the last decades, insights into the role of metabolism in lymphatic cell functions are just emerging. Despite numerous similarities between the main metabolic pathways existing in LECs, blood ECs (BEC) and other cell types, accumulating evidence has revealed that LECs acquire a unique metabolic signature during lymphangiogenesis, and their metabolic engine is intertwined with molecular regulatory networks, resulting in a tightly regulated and interconnected process. Considering the implication of lymphatic dysfunction in cancer and lymphedema, alongside other pathologies, recent findings hold promising opportunities to develop novel therapeutic approaches. In this review, we provide an overview of the status of knowledge in the molecular and metabolic network regulating the lymphatic vasculature in health and disease.
Collapse
Affiliation(s)
- Nieves Montenegro-Navarro
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Claudia García-Báez
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain.
| |
Collapse
|
7
|
Fujino M, Ojima M, Takahashi S. Exploring Large MAF Transcription Factors: Functions, Pathology, and Mouse Models with Point Mutations. Genes (Basel) 2023; 14:1883. [PMID: 37895232 PMCID: PMC10606904 DOI: 10.3390/genes14101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Large musculoaponeurotic fibrosarcoma (MAF) transcription factors contain acidic, basic, and leucine zipper regions. Four types of MAF have been elucidated in mice and humans, namely c-MAF, MAFA, MAFB, and NRL. This review aimed to elaborate on the functions of MAF transcription factors that have been studied in vivo so far, as well as describe the pathology of human patients and corresponding mouse models with c-MAF, MAFA, and MAFB point mutations. To identify the functions of MAF transcription factors in vivo, we generated genetically modified mice lacking c-MAF, MAFA, and MAFB and analyzed their phenotypes. Further, in recent years, c-MAF, MAFA, and MAFB have been identified as causative genes underpinning many rare diseases. Careful observation of human patients and animal models is important to examine the pathophysiological mechanisms underlying these conditions for targeted therapies. Murine models exhibit phenotypes similar to those of human patients with c-MAF, MAFA, and MAFB mutations. Therefore, generating these animal models emphasizes their usefulness for research uncovering the pathophysiology of point mutations in MAF transcription factors and the development of etiology-based therapies.
Collapse
Affiliation(s)
- Mitsunori Fujino
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (M.F.); (M.O.)
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Masami Ojima
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (M.F.); (M.O.)
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (M.F.); (M.O.)
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| |
Collapse
|
8
|
Grimm L, Mason E, Yu H, Dudczig S, Panara V, Chen T, Bower NI, Paterson S, Rondon Galeano M, Kobayashi S, Senabouth A, Lagendijk AK, Powell J, Smith KA, Okuda KS, Koltowska K, Hogan BM. Single-cell analysis of lymphatic endothelial cell fate specification and differentiation during zebrafish development. EMBO J 2023:e112590. [PMID: 36912146 DOI: 10.15252/embj.2022112590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
During development, the lymphatic vasculature forms as a second network derived chiefly from blood vessels. The transdifferentiation of embryonic venous endothelial cells (VECs) into lymphatic endothelial cells (LECs) is a key step in this process. Specification, differentiation and maintenance of LEC fate are all driven by the transcription factor Prox1, yet the downstream mechanisms remain to be elucidated. We here present a single-cell transcriptomic atlas of lymphangiogenesis in zebrafish, revealing new markers and hallmarks of LEC differentiation over four developmental stages. We further profile single-cell transcriptomic and chromatin accessibility changes in zygotic prox1a mutants that are undergoing a LEC-VEC fate shift. Using maternal and zygotic prox1a/prox1b mutants, we determine the earliest transcriptomic changes directed by Prox1 during LEC specification. This work altogether reveals new downstream targets and regulatory regions of the genome controlled by Prox1 and presents evidence that Prox1 specifies LEC fate primarily by limiting blood vascular and haematopoietic fate. This extensive single-cell resource provides new mechanistic insights into the enigmatic role of Prox1 and the control of LEC differentiation in development.
Collapse
Affiliation(s)
- Lin Grimm
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Elizabeth Mason
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Hujun Yu
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Stefanie Dudczig
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Virginia Panara
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Tyrone Chen
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Scott Paterson
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Maria Rondon Galeano
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Sakurako Kobayashi
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Anne Senabouth
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD, Australia.,Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Anne K Lagendijk
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Joseph Powell
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD, Australia.,Garvan Institute of Medical Research, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Kensington, Sydney, NSW, Australia.,Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Kelly A Smith
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Kazuhide S Okuda
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Katarzyna Koltowska
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Benjamin M Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD, Australia.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
9
|
González-Hernández S, Mukouyama YS. Lymphatic vasculature in the central nervous system. Front Cell Dev Biol 2023; 11:1150775. [PMID: 37091974 PMCID: PMC10119411 DOI: 10.3389/fcell.2023.1150775] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
The central nervous system (CNS) is considered as an immune privilege organ, based on experiments in the mid 20th century showing that the brain fails to mount an efficient immune response against an allogeneic graft. This suggests that in addition to the presence of the blood-brain barrier (BBB), the apparent absence of classical lymphatic vasculature in the CNS parenchyma limits the capacity for an immune response. Although this view is partially overturned by the recent discovery of the lymphatic-like hybrid vessels in the Schlemm's canal in the eye and the lymphatic vasculature in the outmost layer of the meninges, the existence of lymphatic vessels in the CNS parenchyma has not been reported. Two potential mechanisms by which lymphatic vasculature may arise in the organs are: 1) sprouting and invasion of lymphatic vessels from the surrounding tissues into the parenchyma and 2) differentiation of blood endothelial cells into lymphatic endothelial cells in the parenchyma. Considering these mechanisms, we here discuss what causes the dearth of lymphatic vessels specifically in the CNS parenchyma.
Collapse
|
10
|
Shiiya T, Hirashima M. From lymphatic endothelial cell migration to formation of tubular lymphatic vascular network. Front Physiol 2023; 14:1124696. [PMID: 36895637 PMCID: PMC9989012 DOI: 10.3389/fphys.2023.1124696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
During development, lymphatic endothelial cell (LEC) progenitors differentiate from venous endothelial cells only in limited regions of the body. Thus, LEC migration and subsequent tube formation are essential processes for the development of tubular lymphatic vascular network throughout the body. In this review, we discuss chemotactic factors, LEC-extracellular matrix interactions and planar cell polarity regulating LEC migration and formation of tubular lymphatic vessels. Insights into molecular mechanisms underlying these processes will help in understanding not only physiological lymphatic vascular development but lymphangiogenesis associated with pathological conditions such as tumors and inflammation.
Collapse
Affiliation(s)
- Tomohiro Shiiya
- Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masanori Hirashima
- Division of Pharmacology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
11
|
Ujiie N, Kume T. Mechanical forces in lymphatic vessel development: Focus on transcriptional regulation. Front Physiol 2022; 13:1066460. [PMID: 36439271 PMCID: PMC9685408 DOI: 10.3389/fphys.2022.1066460] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
The lymphatic system is crucial for the maintenance of interstitial fluid and protein homeostasis. It has important roles in collecting excess plasma and interstitial fluid leaked from blood vessels, lipid absorption and transportation in the digestive system, and immune surveillance and response. The development of lymphatic vessels begins during fetal life as lymphatic endothelial progenitor cells first differentiate into lymphatic endothelial cells (LECs) by expressing the master lymphatic vascular regulator, prospero-related homeobox 1 (PROX1). The lymphatic vasculature forms a hierarchical network that consists of blind-ended and unidirectional vessels. Although much progress has been made in the elucidation of the cellular and molecular mechanisms underlying the formation of the lymphatic vascular system, the causes of lymphatic vessel abnormalities and disease are poorly understood and complicated; specifically, the mechanistic basis for transcriptional dysregulation in lymphatic vessel development remains largely unclear. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms of lymphatic vascular development, including LEC differentiation, lymphangiogenesis, and valve formation, and the significance of mechanical forces in lymphatic vessels, with a focus on transcriptional regulation. We also summarize the current knowledge on epigenetic mechanisms of lymphatic gene expression.
Collapse
|
12
|
Hikichi H, Seto S, Wakabayashi K, Hijikata M, Keicho N. Transcription factor MAFB controls type I and II interferon response-mediated host immunity in Mycobacterium tuberculosis-infected macrophages. Front Microbiol 2022; 13:962306. [DOI: 10.3389/fmicb.2022.962306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
MAFB, v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B, has been identified as a candidate gene for early tuberculosis (TB) onset in Thai and Japanese populations. Here, we investigated the genome-wide transcriptional profiles of MAFB-knockdown (KD) macrophages infected with Mycobacterium tuberculosis (Mtb) to highlight the potential role of MAFB in host immunity against TB. Gene expression analysis revealed impaired type I and type II interferon (IFN) responses and enhanced oxidative phosphorylation in MAFB-KD macrophages infected with Mtb. The expression of inflammatory chemokines, including IFN-γ-inducible genes, was confirmed to be significantly reduced by knockdown of MAFB during Mtb infection. A similar effect of MAFB knockdown on type I and type II IFN responses and oxidative phosphorylation was also observed when Mtb-infected macrophages were activated by IFN-γ. Taken together, our results demonstrate that MAFB is involved in the immune response and metabolism in Mtb-infected macrophages, providing new insight into MAFB as a candidate gene to guide further study to control TB.
Collapse
|
13
|
Role of Transcriptional and Epigenetic Regulation in Lymphatic Endothelial Cell Development. Cells 2022; 11:cells11101692. [PMID: 35626729 PMCID: PMC9139870 DOI: 10.3390/cells11101692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
The lymphatic system is critical for maintaining the homeostasis of lipids and interstitial fluid and regulating the immune cell development and functions. Developmental anomaly-induced lymphatic dysfunction is associated with various pathological conditions, including lymphedema, inflammation, and cancer. Most lymphatic endothelial cells (LECs) are derived from a subset of endothelial cells in the cardinal vein. However, recent studies have reported that the developmental origin of LECs is heterogeneous. Multiple regulatory mechanisms, including those mediated by signaling pathways, transcription factors, and epigenetic pathways, are involved in lymphatic development and functions. Recent studies have demonstrated that the epigenetic regulation of transcription is critical for embryonic LEC development and functions. In addition to the chromatin structures, epigenetic modifications may modulate transcriptional signatures during the development or differentiation of LECs. Therefore, the understanding of the epigenetic mechanisms involved in the development and function of the lymphatic system can aid in the management of various congenital or acquired lymphatic disorders. Future studies must determine the role of other epigenetic factors and changes in mammalian lymphatic development and function. Here, the recent findings on key factors involved in the development of the lymphatic system and their epigenetic regulation, LEC origins from different organs, and lymphatic diseases are reviewed.
Collapse
|
14
|
Panara V, Monteiro R, Koltowska K. Epigenetic Regulation of Endothelial Cell Lineages During Zebrafish Development-New Insights From Technical Advances. Front Cell Dev Biol 2022; 10:891538. [PMID: 35615697 PMCID: PMC9125237 DOI: 10.3389/fcell.2022.891538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/10/2022] [Indexed: 01/09/2023] Open
Abstract
Epigenetic regulation is integral in orchestrating the spatiotemporal regulation of gene expression which underlies tissue development. The emergence of new tools to assess genome-wide epigenetic modifications has enabled significant advances in the field of vascular biology in zebrafish. Zebrafish represents a powerful model to investigate the activity of cis-regulatory elements in vivo by combining technologies such as ATAC-seq, ChIP-seq and CUT&Tag with the generation of transgenic lines and live imaging to validate the activity of these regulatory elements. Recently, this approach led to the identification and characterization of key enhancers of important vascular genes, such as gata2a, notch1b and dll4. In this review we will discuss how the latest technologies in epigenetics are being used in the zebrafish to determine chromatin states and assess the function of the cis-regulatory sequences that shape the zebrafish vascular network.
Collapse
Affiliation(s)
- Virginia Panara
- Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rui Monteiro
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Centre of Genome Biology, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
15
|
Peng D, Ando K, Hußmann M, Gloger M, Skoczylas R, Mochizuki N, Betsholtz C, Fukuhara S, Schulte-Merker S, Lawson ND, Koltowska K. Proper migration of lymphatic endothelial cells requires survival and guidance cues from arterial mural cells. eLife 2022; 11:e74094. [PMID: 35316177 PMCID: PMC9042226 DOI: 10.7554/elife.74094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The migration of lymphatic endothelial cells (LECs) is key for the development of the complex and vast lymphatic vascular network that pervades most tissues in an organism. In zebrafish, arterial intersegmental vessels together with chemokines have been shown to promote lymphatic cell migration from the horizontal myoseptum (HM). We observed that emergence of mural cells around the intersegmental arteries coincides with lymphatic departure from HM which raised the possibility that arterial mural cells promote LEC migration. Our live imaging and cell ablation experiments revealed that LECs migrate slower and fail to establish the lymphatic vascular network in the absence of arterial mural cells. We determined that mural cells are a source for the C-X-C motif chemokine 12 (Cxcl12a and Cxcl12b), vascular endothelial growth factor C (Vegfc) and collagen and calcium-binding EGF domain-containing protein 1 (Ccbe1). We showed that chemokine and growth factor signalling function cooperatively to induce robust LEC migration. Specifically, Vegfc-Vegfr3 signalling, but not chemokines, induces extracellular signal-regulated kinase (ERK) activation in LECs, and has an additional pro-survival role in LECs during the migration. Together, the identification of mural cells as a source for signals that guide LEC migration and survival will be important in the future design for rebuilding lymphatic vessels in disease contexts.
Collapse
Affiliation(s)
- Di Peng
- Uppsala University, Immunology Genetics and PathologyUppsalaSweden
| | - Koji Ando
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | - Melina Hußmann
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU MünsterMünsterGermany
| | - Marleen Gloger
- Uppsala University, Immunology Genetics and PathologyUppsalaSweden
| | - Renae Skoczylas
- Uppsala University, Immunology Genetics and PathologyUppsalaSweden
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research InstituteSuitaJapan
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala UniversityUppsalaSweden
- Department of Medicine Huddinge (MedH), Karolinska Institutet, Campus FlemingsbergHuddingeSweden
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU MünsterMünsterGermany
| | - Nathan D Lawson
- Department of Molecular, Cellular, and Cancer Biology, University of Massachusetts Medical SchoolWorcesterUnited States
| | | |
Collapse
|
16
|
Tabrizi ZB, Ahmed NS, Horder JL, Storr SJ, Benest AV. Transcription Factor Control of Lymphatic Quiescence and Maturation of Lymphatic Neovessels in Development and Physiology. Front Physiol 2021; 12:672987. [PMID: 34795596 PMCID: PMC8593113 DOI: 10.3389/fphys.2021.672987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/30/2021] [Indexed: 11/25/2022] Open
Abstract
The lymphatic system is a vascular system comprising modified lymphatic endothelial cells, lymph nodes and other lymphoid organs. The system has diverse, but critical functions in both physiology and pathology, and forms an interface between the blood vascular and immune system. It is increasingly evident that remodelling of the lymphatic system occurs alongside remodelling of the blood microvascular system, which is now considered a hallmark of most pathological conditions as well as being critical for normal development. Much attention has focussed on how the blood endothelium undergoes phenotypic switching in development and disease, resulting in over two decades of research to probe the mechanisms underlying the resulting heterogeneity. The lymphatic system has received less attention, and consequently there are fewer descriptions of functional and molecular heterogeneity, but differential transcription factor activity is likely an important control mechanism. Here we introduce and discuss significant transcription factors of relevance to coordinating cellular responses during lymphatic remodelling as the lymphatic endothelium dynamically changes from quiescence to actively remodelling.
Collapse
Affiliation(s)
- Zarah B Tabrizi
- Endothelial Quiescence Group, University of Nottingham, Nottingham, United Kingdom
| | - Nada S Ahmed
- Endothelial Quiescence Group, University of Nottingham, Nottingham, United Kingdom
| | - Joseph L Horder
- Endothelial Quiescence Group, University of Nottingham, Nottingham, United Kingdom
| | - Sarah J Storr
- Nottingham Breast Cancer Research Centre, Centre for Cancer Sciences School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Andrew V Benest
- Endothelial Quiescence Group, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
17
|
Ducoli L, Detmar M. Beyond PROX1: transcriptional, epigenetic, and noncoding RNA regulation of lymphatic identity and function. Dev Cell 2021; 56:406-426. [PMID: 33621491 DOI: 10.1016/j.devcel.2021.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/08/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
The lymphatic vascular system acts as the major transportation highway of tissue fluids, and its activation or impairment is associated with a wide range of diseases. There has been increasing interest in understanding the mechanisms that control lymphatic vessel formation (lymphangiogenesis) and function in development and disease. Here, we discuss recent insights into new players whose identification has contributed to deciphering the lymphatic regulatory code. We reveal how lymphatic endothelial cells, the building blocks of lymphatic vessels, utilize their transcriptional, post-transcriptional, and epigenetic portfolio to commit to and maintain their vascular lineage identity and function, with a particular focus on development.
Collapse
Affiliation(s)
- Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland; Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology and University of Zürich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
18
|
Francois M, Oszmiana A, Harvey NL. When form meets function: the cells and signals that shape the lymphatic vasculature during development. Development 2021; 148:268989. [PMID: 34080610 DOI: 10.1242/dev.167098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The lymphatic vasculature is an integral component of the cardiovascular system. It is essential to maintain tissue fluid homeostasis, direct immune cell trafficking and absorb dietary lipids from the digestive tract. Major advances in our understanding of the genetic and cellular events important for constructing the lymphatic vasculature during development have recently been made. These include the identification of novel sources of lymphatic endothelial progenitor cells, the recognition of lymphatic endothelial cell specialisation and heterogeneity, and discovery of novel genes and signalling pathways underpinning developmental lymphangiogenesis. Here, we review these advances and discuss how they inform our understanding of lymphatic network formation, function and dysfunction.
Collapse
Affiliation(s)
- Mathias Francois
- The David Richmond Laboratory for Cardiovascular Development: Gene Regulation and Editing Program, The Centenary Institute, The University of Sydney, SOLES, 2006 Camperdown, Australia
| | - Anna Oszmiana
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide 5001, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide 5001, Australia
| |
Collapse
|
19
|
Takahashi S. Functional analysis of large MAF transcription factors and elucidation of their relationships with human diseases. Exp Anim 2021; 70:264-271. [PMID: 33762508 PMCID: PMC8390310 DOI: 10.1538/expanim.21-0027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The large MAF transcription factor group is a group of transcription factors with an acidic region, a basic region, and a leucine zipper region. Four types of MAF, MAFA, MAFB, c-MAF, and NRL, have been identified in humans and mice. In order to elucidate the functions of the large MAF transcription factor group in vivo, our research group created genetically modified MAFA-, MAFB-, and c-MAF-deficient mice and analyzed their phenotypes. MAFA is expressed in pancreatic β cells and is essential for insulin transcription and secretion. MAFB is essential for the development of pancreatic endocrine cells, formation of inner ears, podocyte function in the kidneys, and functional differentiation of macrophages. c-MAF is essential for lens formation and osteoblast differentiation. Furthermore, a single-base mutation in genes encoding the large MAF transcription factor group causes congenital renal disease, eye disease, bone disease, diabetes, and tumors in humans. This review describes the functions of large MAF transcription factors in vivo and their relationships with human diseases.
Collapse
Affiliation(s)
- Satoru Takahashi
- Department of Anatomy and Embryology, Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
20
|
Ducoli L, Agrawal S, Sibler E, Kouno T, Tacconi C, Hon CC, Berger SD, Müllhaupt D, He Y, Kim J, D'Addio M, Dieterich LC, Carninci P, de Hoon MJL, Shin JW, Detmar M. LETR1 is a lymphatic endothelial-specific lncRNA governing cell proliferation and migration through KLF4 and SEMA3C. Nat Commun 2021; 12:925. [PMID: 33568674 PMCID: PMC7876020 DOI: 10.1038/s41467-021-21217-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 01/20/2021] [Indexed: 01/30/2023] Open
Abstract
Recent studies have revealed the importance of long noncoding RNAs (lncRNAs) as tissue-specific regulators of gene expression. There is ample evidence that distinct types of vasculature undergo tight transcriptional control to preserve their structure, identity, and functions. We determine a comprehensive map of lineage-specific lncRNAs in human dermal lymphatic and blood vascular endothelial cells (LECs and BECs), combining RNA-Seq and CAGE-Seq. Subsequent antisense oligonucleotide-knockdown transcriptomic profiling of two LEC- and two BEC-specific lncRNAs identifies LETR1 as a critical gatekeeper of the global LEC transcriptome. Deep RNA-DNA, RNA-protein interaction studies, and phenotype rescue analyses reveal that LETR1 is a nuclear trans-acting lncRNA modulating, via key epigenetic factors, the expression of essential target genes, including KLF4 and SEMA3C, governing the growth and migratory ability of LECs. Together, our study provides several lines of evidence supporting the intriguing concept that every cell type expresses precise lncRNA signatures to control lineage-specific regulatory programs.
Collapse
Affiliation(s)
- Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Saumya Agrawal
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Eliane Sibler
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Tsukasa Kouno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Chung-Chao Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Simone D Berger
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Daniela Müllhaupt
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Yuliang He
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Molecular and Translational Biomedicine PhD Program, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Jihye Kim
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Marco D'Addio
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Michiel J L de Hoon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Jay W Shin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
- RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan.
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Abstract
The lymphatic vasculature is a vital component of the vertebrate vascular system that mediates tissue fluid homeostasis, lipid uptake and immune surveillance. The development of the lymphatic vasculature starts in the early vertebrate embryo, when a subset of blood vascular endothelial cells of the cardinal veins acquires lymphatic endothelial cell fate. These cells sprout from the veins, migrate, proliferate and organize to give rise to a highly structured and unique vascular network. Cellular cross-talk, cell-cell communication and the interpretation of signals from surrounding tissues are all essential for coordinating these processes. In this chapter, we highlight new findings and review research progress with a particular focus on LEC migration and guidance, expansion of the LEC lineage, network remodeling and morphogenesis of the lymphatic vasculature.
Collapse
|
22
|
Geng X, Yanagida K, Akwii RG, Choi D, Chen L, Ho Y, Cha B, Mahamud MR, Berman de Ruiz K, Ichise H, Chen H, Wythe JD, Mikelis CM, Hla T, Srinivasan RS. S1PR1 regulates the quiescence of lymphatic vessels by inhibiting laminar shear stress-dependent VEGF-C signaling. JCI Insight 2020; 5:137652. [PMID: 32544090 DOI: 10.1172/jci.insight.137652] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
During the growth of lymphatic vessels (lymphangiogenesis), lymphatic endothelial cells (LECs) at the growing front sprout by forming filopodia. Those tip cells are not exposed to circulating lymph, as they are not lumenized. In contrast, LECs that trail the growing front are exposed to shear stress, become quiescent, and remodel into stable vessels. The mechanisms that coordinate the opposed activities of lymphatic sprouting and maturation remain poorly understood. Here, we show that the canonical tip cell marker Delta-like 4 (DLL4) promotes sprouting lymphangiogenesis by enhancing VEGF-C/VEGF receptor 3 (VEGFR3) signaling. However, in lumenized lymphatic vessels, laminar shear stress (LSS) inhibits the expression of DLL4, as well as additional tip cell markers. Paradoxically, LSS also upregulates VEGF-C/VEGFR3 signaling in LECs, but sphingosine 1-phosphate receptor 1 (S1PR1) activity antagonizes LSS-mediated VEGF-C signaling to promote lymphatic vascular quiescence. Correspondingly, S1pr1 loss in LECs induced lymphatic vascular hypersprouting and hyperbranching, which could be rescued by reducing Vegfr3 gene dosage in vivo. In addition, S1PR1 regulates lymphatic vessel maturation by inhibiting RhoA activity to promote membrane localization of the tight junction molecule claudin-5. Our findings suggest a potentially new paradigm in which LSS induces quiescence and promotes the survival of LECs by downregulating DLL4 and enhancing VEGF-C signaling, respectively. S1PR1 dampens LSS/VEGF-C signaling, thereby preventing sprouting from quiescent lymphatic vessels. These results also highlight the distinct roles that S1PR1 and DLL4 play in LECs when compared with their known roles in the blood vasculature.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Keisuke Yanagida
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Racheal G Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Dongwon Choi
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Lijuan Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - YenChun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Karen Berman de Ruiz
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Hirotake Ichise
- Institute for Animal Research, Faculty of Medicine, University of Ryukyus, Nishihara-cho, Okinawa, Japan
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Joshua D Wythe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
23
|
Rondon-Galeano M, Skoczylas R, Bower NI, Simons C, Gordon E, Francois M, Koltowska K, Hogan BM. MAFB modulates the maturation of lymphatic vascular networks in mice. Dev Dyn 2020; 249:1201-1216. [PMID: 32525258 DOI: 10.1002/dvdy.209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Lymphatic vessels play key roles in tissue fluid homeostasis, immune cell trafficking and in diverse disease settings. Lymphangiogenesis requires lymphatic endothelial cell (LEC) differentiation, proliferation, migration, and co-ordinated network formation, yet the transcriptional regulators underpinning these processes remain to be fully understood. The transcription factor MAFB was recently identified as essential for lymphangiogenesis in zebrafish and in cultured human LECs. MAFB is activated in response to VEGFC-VEGFR3 signaling and acts as a downstream effector. However, it remains unclear if the role of MAFB in lymphatic development is conserved in the mammalian embryo. RESULTS We generated a Mafb loss-of-function mouse using CRISPR/Cas9 gene editing. Mafb mutant mice presented with perinatal lethality associated with cyanosis. We identify a role for MAFB in modifying lymphatic network morphogenesis in the developing dermis, as well as developing and postnatal diaphragm. Furthermore, mutant vessels displayed excessive smooth muscle cell coverage, suggestive of a defect in the maturation of lymphatic networks. CONCLUSIONS This work confirms a conserved role for MAFB in murine lymphatics that is subtle and modulatory and may suggest redundancy in MAF family transcription factors during lymphangiogenesis.
Collapse
Affiliation(s)
- Maria Rondon-Galeano
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Renae Skoczylas
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Cas Simons
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Emma Gordon
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Mathias Francois
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Centenary Institute, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Katarzyna Koltowska
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Anatomy and Neuroscience and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Soler Palacios B, Nieto C, Fajardo P, González de la Aleja A, Andrés N, Dominguez-Soto Á, Lucas P, Cuenda A, Rodríguez-Frade JM, Martínez-A C, Villares R, Corbí ÁL, Mellado M. Growth Hormone Reprograms Macrophages toward an Anti-Inflammatory and Reparative Profile in an MAFB-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2020; 205:776-788. [PMID: 32591394 DOI: 10.4049/jimmunol.1901330] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/24/2020] [Indexed: 12/12/2022]
Abstract
Growth hormone (GH), a pleiotropic hormone secreted by the pituitary gland, regulates immune and inflammatory responses. In this study, we show that GH regulates the phenotypic and functional plasticity of macrophages both in vitro and in vivo. Specifically, GH treatment of GM-CSF-primed monocyte-derived macrophages promotes a significant enrichment of anti-inflammatory genes and dampens the proinflammatory cytokine profile through PI3K-mediated downregulation of activin A and upregulation of MAFB, a critical transcription factor for anti-inflammatory polarization of human macrophages. These in vitro data correlate with improved remission of inflammation and mucosal repair during recovery in the acute dextran sodium sulfate-induced colitis model in GH-overexpressing mice. In this model, in addition to the GH-mediated effects on other immune cells, we observed that macrophages from inflamed gut acquire an anti-inflammatory/reparative profile. Overall, these data indicate that GH reprograms inflammatory macrophages to an anti-inflammatory phenotype and improves resolution during pathologic inflammatory responses.
Collapse
Affiliation(s)
- Blanca Soler Palacios
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Concha Nieto
- Departamento de Biología Molecular y Celular, Centro de Investigaciones Biológicas/Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Pilar Fajardo
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Arturo González de la Aleja
- Departamento de Biología Molecular y Celular, Centro de Investigaciones Biológicas/Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Nuria Andrés
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Ángeles Dominguez-Soto
- Departamento de Biología Molecular y Celular, Centro de Investigaciones Biológicas/Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Pilar Lucas
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Ana Cuenda
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - José Miguel Rodríguez-Frade
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Carlos Martínez-A
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Ricardo Villares
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Ángel L Corbí
- Departamento de Biología Molecular y Celular, Centro de Investigaciones Biológicas/Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Mario Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| |
Collapse
|
25
|
|
26
|
Dieterich LC, Tacconi C, Menzi F, Proulx ST, Kapaklikaya K, Hamada M, Takahashi S, Detmar M. Lymphatic MAFB regulates vascular patterning during developmental and pathological lymphangiogenesis. Angiogenesis 2020; 23:411-423. [PMID: 32307629 PMCID: PMC7311381 DOI: 10.1007/s10456-020-09721-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/07/2020] [Indexed: 12/27/2022]
Abstract
MAFB is a transcription factor involved in the terminal differentiation of several cell types, including macrophages and keratinocytes. MAFB is also expressed in lymphatic endothelial cells (LECs) and is upregulated by VEGF-C/VEGFR-3 signaling. Recent studies have revealed that MAFB regulates several genes involved in lymphatic differentiation and that global Mafb knockout mice show defects in patterning of lymphatic vessels during embryogenesis. However, it has remained unknown whether this effect is LEC-intrinsic and whether MAFB might also be involved in postnatal lymphangiogenesis. We established conditional, lymphatic-specific Mafb knockout mice and found comparable lymphatic patterning defects during embryogenesis as in the global MAFB knockout. Lymphatic MAFB deficiency resulted in increased lymphatic branching in the diaphragm at P7, but had no major effect on lymphatic patterning or function in healthy adult mice. By contrast, tumor-induced lymphangiogenesis was enhanced in mice lacking lymphatic MAFB. Together, these data reveal that LEC-expressed MAFB is involved in lymphatic vascular morphogenesis during embryonic and postnatal development as well as in pathological conditions. Therefore, MAFB could represent a target for therapeutic modulation of lymphangiogenesis.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Franziska Menzi
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Steven T Proulx
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Kübra Kapaklikaya
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland.
- ETH Zurich, HCI H303, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland.
| |
Collapse
|
27
|
Cohen B, Tempelhof H, Raz T, Oren R, Nicenboim J, Bochner F, Even R, Jelinski A, Eilam R, Ben-Dor S, Adaddi Y, Golani O, Lazar S, Yaniv K, Neeman M. BACH family members regulate angiogenesis and lymphangiogenesis by modulating VEGFC expression. Life Sci Alliance 2020; 3:e202000666. [PMID: 32132179 PMCID: PMC7063472 DOI: 10.26508/lsa.202000666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/23/2022] Open
Abstract
Angiogenesis and lymphangiogenesis are key processes during embryogenesis as well as under physiological and pathological conditions. Vascular endothelial growth factor C (VEGFC), the ligand for both VEGFR2 and VEGFR3, is a central lymphangiogenic regulator that also drives angiogenesis. Here, we report that members of the highly conserved BACH (BTB and CNC homology) family of transcription factors regulate VEGFC expression, through direct binding to its promoter. Accordingly, down-regulation of bach2a hinders blood vessel formation and impairs lymphatic sprouting in a Vegfc-dependent manner during zebrafish embryonic development. In contrast, BACH1 overexpression enhances intratumoral blood vessel density and peritumoral lymphatic vessel diameter in ovarian and lung mouse tumor models. The effects on the vascular compartment correlate spatially and temporally with BACH1 transcriptional regulation of VEGFC expression. Altogether, our results uncover a novel role for the BACH/VEGFC signaling axis in lymphatic formation during embryogenesis and cancer, providing a novel potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Batya Cohen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Hanoch Tempelhof
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Raz
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Roni Oren
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Julian Nicenboim
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Filip Bochner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Even
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Adam Jelinski
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Raya Eilam
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Adaddi
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shlomi Lazar
- Department of Pharmacology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Neeman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
28
|
Pawlak JB, Caron KM. Lymphatic Programing and Specialization in Hybrid Vessels. Front Physiol 2020; 11:114. [PMID: 32153423 PMCID: PMC7044189 DOI: 10.3389/fphys.2020.00114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
Building on a large body of existing blood vascular research, advances in lymphatic research have helped kindle broader investigations into vascular diversity and endothelial plasticity. While the endothelium of blood and lymphatic vessels can be distinguished by a variety of molecular markers, the endothelia of uniquely diverse vascular beds can possess distinctly heterogeneous or hybrid expression patterns. These expression patterns can then provide further insight on the development of these vessels and how they perform their specialized function. In this review we examine five highly specialized hybrid vessel beds that adopt partial lymphatic programing for their specialized vascular functions: the high endothelial venules of secondary lymphoid organs, the liver sinusoid, the Schlemm’s canal of the eye, the renal ascending vasa recta, and the remodeled placental spiral artery. We summarize the morphology and endothelial expression pattern of these vessels, compare them to each other, and interrogate their specialized functions within the broader blood and lymphatic vascular systems.
Collapse
Affiliation(s)
- John B Pawlak
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
29
|
Roosenboom J, Indencleef K, Lee MK, Hoskens H, White JD, Liu D, Hecht JT, Wehby GL, Moreno LM, Hodges-Simeon C, Feingold E, Marazita ML, Richmond S, Shriver MD, Claes P, Shaffer JR, Weinberg SM. SNPs Associated With Testosterone Levels Influence Human Facial Morphology. Front Genet 2018; 9:497. [PMID: 30405702 PMCID: PMC6206510 DOI: 10.3389/fgene.2018.00497] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/05/2018] [Indexed: 12/28/2022] Open
Abstract
Many factors influence human facial morphology, including genetics, age, nutrition, biomechanical forces, and endocrine factors. Moreover, facial features clearly differ between males and females, and these differences are driven primarily by the influence of sex hormones during growth and development. Specific genetic variants are known to influence circulating sex hormone levels in humans, which we hypothesize, in turn, affect facial features. In this study, we investigated the effects of testosterone-related genetic variants on facial morphology. We tested 32 genetic variants across 22 candidate genes related to levels of testosterone, sex hormone-binding globulin (SHGB) and dehydroepiandrosterone sulfate (DHEAS) in three cohorts of healthy individuals for which 3D facial surface images were available (Pittsburgh 3DFN, Penn State and ALSPAC cohorts; total n = 7418). Facial shape was described using a recently developed extension of the dense-surface correspondence approach, in which the 3D facial surface was partitioned into a set of 63 hierarchically organized modules. Each variant was tested against each of the facial surface modules in a multivariate genetic association-testing framework and meta-analyzed. Additionally, the association between these candidate SNPs and five facial ratios was investigated in the Pittsburgh 3DFN cohort. Two significant associations involving intronic variants of SHBG were found: both rs12150660 (p = 1.07E-07) and rs1799941 (p = 6.15E-06) showed an effect on mandible shape. Rs8023580 (an intronic variant of NR2F2-AS1) showed an association with the total and upper facial width to height ratios (p = 9.61E-04 and p = 7.35E-04, respectively). These results indicate that testosterone-related genetic variants affect normal-range facial morphology, and in particular, facial features known to exhibit strong sexual dimorphism in humans.
Collapse
Affiliation(s)
- Jasmien Roosenboom
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Karlijne Indencleef
- ESAT-PSI, Department of Electrical Engineering, Medical Imaging Research Center, KU Leuven, Leuven, Belgium
| | - Myoung Keun Lee
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hanne Hoskens
- ESAT-PSI, Department of Electrical Engineering, Medical Imaging Research Center, KU Leuven, Leuven, Belgium
| | - Julie D. White
- Department of Anthropology, Penn State University, University Park, PA, United States
| | - Dongjing Liu
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jacqueline T. Hecht
- Department of Pediatrics, University of Texas McGovern Medical Center, Houston, TX, United States
| | - George L. Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, IA, United States
| | - Lina M. Moreno
- Department of Orthodontics, University of Iowa, Iowa City, IA, United States
| | | | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mary L. Marazita
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, College of Biomedical and Life Sciences, Cardiff, United Kingdom
| | - Mark D. Shriver
- Department of Anthropology, Penn State University, University Park, PA, United States
| | - Peter Claes
- ESAT-PSI, Department of Electrical Engineering, Medical Imaging Research Center, KU Leuven, Leuven, Belgium
| | - John R. Shaffer
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Seth M. Weinberg
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
30
|
Wong BW, Zecchin A, García-Caballero M, Carmeliet P. Emerging Concepts in Organ-Specific Lymphatic Vessels and Metabolic Regulation of Lymphatic Development. Dev Cell 2018; 45:289-301. [PMID: 29738709 DOI: 10.1016/j.devcel.2018.03.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/12/2017] [Accepted: 03/26/2018] [Indexed: 02/08/2023]
Abstract
The lymphatic system has been less well characterized than the blood vascular system; however, work in recent years has uncovered novel regulators and non-venous lineages that contribute to lymphatic formation in various organs. Further, the identification of organ-specific lymphatic beds underscores their potential interaction with organ development and function, and highlights the possibility of targeting these organ-specific lymphatics beds in disease. This review focuses on newly described metabolic and epigenetic regulators of lymphangiogenesis and the interplay between lymphatic development and function in a number of major organ systems.
Collapse
Affiliation(s)
- Brian W Wong
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Herestraat 49 - B912, Leuven 3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Annalisa Zecchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Herestraat 49 - B912, Leuven 3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Melissa García-Caballero
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Herestraat 49 - B912, Leuven 3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Herestraat 49 - B912, Leuven 3000, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven 3000, Belgium.
| |
Collapse
|
31
|
Transcriptional regulation of endothelial cell behavior during sprouting angiogenesis. Nat Commun 2017; 8:726. [PMID: 28959057 PMCID: PMC5620061 DOI: 10.1038/s41467-017-00738-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 07/25/2017] [Indexed: 01/29/2023] Open
Abstract
Mediating the expansion of vascular beds in many physiological and pathological settings, angiogenesis requires dynamic changes in endothelial cell behavior. However, the molecular mechanisms governing endothelial cell activity during different phases of vascular growth, remodeling, maturation, and quiescence remain elusive. Here, we characterize dynamic gene expression changes during postnatal development and identify critical angiogenic factors in mouse retinal endothelial cells. Using actively translating transcriptome analysis and in silico computational analyses, we determine candidate regulators controlling endothelial cell behavior at different developmental stages. We further show that one of the identified candidates, the transcription factor MafB, controls endothelial sprouting in vitro and in vivo, and perform an integrative analysis of RNA-Seq and ChIP-Seq data to define putative direct MafB targets, which are activated or repressed by the transcriptional regulator. Together, our results identify novel cell-autonomous regulatory mechanisms controlling sprouting angiogenesis. Angiogenesis is a complex process that requires coordinated changes in endothelial cell behavior. Here the authors use Ribo-tag and RNA-Seq to determine temporal profiles of transcriptional activity during postnatal retinal angiogenesis, identifying transcriptional regulators of the process.
Collapse
|
32
|
Dieterich LC, Ducoli L, Shin JW, Detmar M. Distinct transcriptional responses of lymphatic endothelial cells to VEGFR-3 and VEGFR-2 stimulation. Sci Data 2017; 4:170106. [PMID: 28850122 PMCID: PMC5574372 DOI: 10.1038/sdata.2017.106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/31/2017] [Indexed: 12/25/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) and their receptors play crucial roles in the formation of blood and lymphatic vessels during embryogenesis, and also under pathologic conditions in the adult. Despite intensive efforts over the last decades to elucidate the precise functions of VEGFs, transcriptional responses to VEGF receptor stimulation are still not fully characterized. To investigate the specific transcriptional effects of VEGFR-2 and VEGFR-3 activation, we performed a correlation analysis of previously published CAGE sequencing and microarray data of human lymphatic endothelial cells (LECs) stimulated with distinct VEGFs acting through either VEGFR-2 or VEGFR-3. We identified that specific activation of VEGFR-3 by VEGF-C156S results in the downregulation of many genes involved in immune regulation and inflammation, suggesting that VEGFR-3 stimulation has direct anti-inflammatory effects. Comparing CAGE and microarray data sets, we furthermore identified a small number of genes that showed a receptor-dependent response in LECs, demonstrating that these receptors, despite activating very similar signaling pathways, fulfill overlapping but not identical functions within the same cell type (LECs).
Collapse
Affiliation(s)
- Lothar C. Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Jay W. Shin
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
33
|
Baluk P, Yao LC, Flores JC, Choi D, Hong YK, McDonald DM. Rapamycin reversal of VEGF-C-driven lymphatic anomalies in the respiratory tract. JCI Insight 2017; 2:90103. [PMID: 28814666 DOI: 10.1172/jci.insight.90103] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 07/06/2017] [Indexed: 12/17/2022] Open
Abstract
Lymphatic malformations are serious but poorly understood conditions that present therapeutic challenges. The goal of this study was to compare strategies for inducing regression of abnormal lymphatics and explore underlying mechanisms. CCSP-rtTA/tetO-VEGF-C mice, in which doxycycline regulates VEGF-C expression in the airway epithelium, were used as a model of pulmonary lymphangiectasia. After doxycycline was stopped, VEGF-C expression returned to normal, but lymphangiectasia persisted for at least 9 months. Inhibition of VEGFR-2/VEGFR-3 signaling, Notch, β-adrenergic receptors, or autophagy and antiinflammatory steroids had no noticeable effect on the amount or severity of lymphangiectasia. However, rapamycin inhibition of mTOR reduced lymphangiectasia by 76% within 7 days without affecting normal lymphatics. Efficacy of rapamycin was not increased by coadministration with the other agents. In prevention trials, rapamycin suppressed VEGF-C-driven mTOR phosphorylation and lymphatic endothelial cell sprouting and proliferation. However, in reversal trials, no lymphatic endothelial cell proliferation was present to block in established lymphangiectasia, and rapamycin did not increase caspase-dependent apoptosis. However, rapamycin potently suppressed Prox1 and VEGFR-3. These experiments revealed that lymphangiectasia is remarkably resistant to regression but is responsive to rapamycin, which rapidly reduces and normalizes the abnormal lymphatics without affecting normal lymphatics.
Collapse
Affiliation(s)
- Peter Baluk
- Cardiovascular Research Institute, Department of Anatomy, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Li-Chin Yao
- Cardiovascular Research Institute, Department of Anatomy, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Julio C Flores
- Cardiovascular Research Institute, Department of Anatomy, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Dongwon Choi
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Young-Kwon Hong
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Donald M McDonald
- Cardiovascular Research Institute, Department of Anatomy, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
34
|
Cuevas VD, Anta L, Samaniego R, Orta-Zavalza E, Vladimir de la Rosa J, Baujat G, Domínguez-Soto Á, Sánchez-Mateos P, Escribese MM, Castrillo A, Cormier-Daire V, Vega MA, Corbí ÁL. MAFB Determines Human Macrophage Anti-Inflammatory Polarization: Relevance for the Pathogenic Mechanisms Operating in Multicentric Carpotarsal Osteolysis. THE JOURNAL OF IMMUNOLOGY 2017; 198:2070-2081. [PMID: 28093525 DOI: 10.4049/jimmunol.1601667] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022]
Abstract
Macrophage phenotypic and functional heterogeneity derives from tissue-specific transcriptional signatures shaped by the local microenvironment. Most studies addressing the molecular basis for macrophage heterogeneity have focused on murine cells, whereas the factors controlling the functional specialization of human macrophages are less known. M-CSF drives the generation of human monocyte-derived macrophages with a potent anti-inflammatory activity upon stimulation. We now report that knockdown of MAFB impairs the acquisition of the anti-inflammatory profile of human macrophages, identify the MAFB-dependent gene signature in human macrophages and illustrate the coexpression of MAFB and MAFB-target genes in CD163+ tissue-resident and tumor-associated macrophages. The contribution of MAFB to the homeostatic/anti-inflammatory macrophage profile is further supported by the skewed polarization of monocyte-derived macrophages from multicentric carpotarsal osteolysis (Online Mendelian Inheritance in Man #166300), a pathology caused by mutations in the MAFB gene. Our results demonstrate that MAFB critically determines the acquisition of the anti-inflammatory transcriptional and functional profiles of human macrophages.
Collapse
Affiliation(s)
- Víctor D Cuevas
- Laboratorio de Células Mieloides, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Laura Anta
- Servicio de Cirugía Ortopédica y Traumatología, Complejo Hospitalario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Rafael Samaniego
- Laboratorio de Inmuno-Oncología, Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
| | - Emmanuel Orta-Zavalza
- Laboratorio de Células Mieloides, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Juan Vladimir de la Rosa
- Instituto de Investigaciones Biomedicas Alberto Sols, Consejo Superior de Investigaciones Científicas, 28029 Madrid, Spain
| | - Geneviève Baujat
- Unidad de Biomedicina, Instituto de Investigaciones Biomédicas-Universidad de Las Palmas de Gran Canaria (ULPGC), Instituto Universitario de Investigaciones Biomedicas y Sanitarias de la ULPGC, 35001 Las Palmas, Spain.,Département de Génétique, INSERM U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades, 75015 Paris, France; and
| | - Ángeles Domínguez-Soto
- Laboratorio de Células Mieloides, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Paloma Sánchez-Mateos
- Laboratorio de Inmuno-Oncología, Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
| | - María M Escribese
- Institute for Applied Molecular Medicine, School of Medicine, University CEU San Pablo, Madrid, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomedicas Alberto Sols, Consejo Superior de Investigaciones Científicas, 28029 Madrid, Spain
| | - Valérie Cormier-Daire
- Unidad de Biomedicina, Instituto de Investigaciones Biomédicas-Universidad de Las Palmas de Gran Canaria (ULPGC), Instituto Universitario de Investigaciones Biomedicas y Sanitarias de la ULPGC, 35001 Las Palmas, Spain.,Département de Génétique, INSERM U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades, 75015 Paris, France; and
| | - Miguel A Vega
- Laboratorio de Células Mieloides, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain;
| | - Ángel L Corbí
- Laboratorio de Células Mieloides, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain;
| |
Collapse
|
35
|
Padberg Y, Schulte-Merker S, van Impel A. The lymphatic vasculature revisited-new developments in the zebrafish. Methods Cell Biol 2016; 138:221-238. [PMID: 28129845 DOI: 10.1016/bs.mcb.2016.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The lymphatic system is lined by endothelial cells and part of the vasculature. It is essential for tissue fluid homeostasis, absorption of dietary fats, and immune surveillance in vertebrates. Misregulation of lymphatic vessel formation and dysfunction of the lymphatic system have been indicated in a number of pathological conditions including lymphedema formation, obesity or chronic inflammatory diseases such as rheumatoid arthritis. In zebrafish, lymphatics were discovered about 10years ago, and the underlying molecular pathways involved in its development have since been studied in detail. Due to its superior live cell imaging possibilities and the broad tool kit for forward and reverse genetics, the zebrafish has become an important model organism to study the development of the lymphatic system during early embryonic development. In the current review, we will focus on the key players during zebrafish lymphangiogenesis and compare the roles of these genes to their mammalian counterparts. In particular, we will focus on novel findings that shed new light on the molecular mechanisms of lymphatic cell fate specification, as well as sprouting and migration of lymphatic precursor cells.
Collapse
Affiliation(s)
- Y Padberg
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, University of Münster, Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC M 1003-CiM), University of Münster, Münster, Germany
| | - S Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, University of Münster, Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC M 1003-CiM), University of Münster, Münster, Germany
| | - A van Impel
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, University of Münster, Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC M 1003-CiM), University of Münster, Münster, Germany
| |
Collapse
|
36
|
Zhang L, Gallup M, Zlock L, Feeling Chen YT, Finkbeiner WE, McNamara NA. Cigarette Smoke Mediates Nuclear to Cytoplasmic Trafficking of Transcriptional Inhibitor Kaiso through MUC1 and P120-Catenin. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3146-3159. [PMID: 27765636 DOI: 10.1016/j.ajpath.2016.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 08/18/2016] [Accepted: 08/29/2016] [Indexed: 12/13/2022]
Abstract
Lung cancer is the leading cause of cancer-related death, and 87% of these deaths are directly attributable to smoking. Using three-dimensional cultures of primary human bronchial epithelial cells, we demonstrated that loss of adherens junction protein, epithelial cadherin, and the aberrant interaction of its adherens junction binding partner, p120-catenin (p120ctn), with the cytoplasmic tail of apical mucin-1 (MUC1-CT) represent initiating steps in the epithelial-to-mesenchymal transition. Smoke provoked the rapid nuclear entry of p120ctn in complex with MUC1-CT that was inhibited using the MUC1-CT inhibitory peptides, PMIP and GO-201. Nuclear entry of p120ctn promoted its interaction with transcriptional repressor kaiso and the rapid shuttling of kaiso to the cytoplasm. Nuclear exit of kaiso permitted the up-regulation of oncogenic transcription factors Fos/phospho-Ser32 Fos, FosB, Fra1/phospho-Ser265 Fra1, which was inhibited through suppression of p120ctn's nuclear export using leptomycin-B. These data indicated that smoke-induced nuclear-to-cytoplasmic translocation of kaiso depends on the nuclear import of p120ctn in complex with MUC1-CT and the nuclear export of kaiso in complex with p120ctn. The presence of MUC1-CT/p120ctn and p120ctn/kaiso complexes in lung squamous cell carcinoma and adenocarcinoma specimens from human patients confirms the clinical relevance of these events. Thus, enhancing kaiso's suppressor role of protumor genes by sequestering kaiso in the nucleus of a smoker's airway epithelium may represent a novel approach of treating lung cancer.
Collapse
Affiliation(s)
- Lili Zhang
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, California
| | - Marianne Gallup
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, California
| | - Lorna Zlock
- Department of Pathology, University of California, San Francisco, San Francisco, California
| | - Yu Ting Feeling Chen
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, California
| | - Walter E Finkbeiner
- Department of Pathology, University of California, San Francisco, San Francisco, California
| | - Nancy A McNamara
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, California; Department of Anatomy and Ophthalmology, University of California, San Francisco, San Francisco, California; School of Optometry and Vision Science Graduate Program, University of California, Berkeley, Berkeley, California.
| |
Collapse
|
37
|
Blei F. Update September 2016. Lymphat Res Biol 2016. [DOI: 10.1089/lrb.2016.29012.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Semo J, Nicenboim J, Yaniv K. Development of the lymphatic system: new questions and paradigms. Development 2016; 143:924-35. [PMID: 26980792 DOI: 10.1242/dev.132431] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The lymphatic system is a blind-ended network of vessels that plays important roles in mediating tissue fluid homeostasis, intestinal lipid absorption and the immune response. A profound understanding of the development of lymphatic vessels, as well as of the molecular cues governing their formation and morphogenesis, might prove essential for our ability to treat lymphatic-related diseases. The embryonic origins of lymphatic vessels have been debated for over a century, with a model claiming a venous origin for the lymphatic endothelium being predominant. However, recent studies have provided new insights into the origins of lymphatic vessels. Here, we review the molecular mechanisms controlling lymphatic specification and sprouting, and we discuss exciting findings that shed new light on previously uncharacterized sources of lymphatic endothelial cells.
Collapse
Affiliation(s)
- Jonathan Semo
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Julian Nicenboim
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
39
|
Klein S, Dieterich LC, Mathelier A, Chong C, Sliwa-Primorac A, Hong YK, Shin JW, Lizio M, Itoh M, Kawaji H, Lassmann T, Daub CO, Arner E, Carninci P, Hayashizaki Y, Forrest ARR, Wasserman WW, Detmar M. DeepCAGE transcriptomics identify HOXD10 as a transcription factor regulating lymphatic endothelial responses to VEGF-C. J Cell Sci 2016; 129:2573-85. [PMID: 27199372 DOI: 10.1242/jcs.186767] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/11/2016] [Indexed: 01/15/2023] Open
Abstract
Lymphangiogenesis plays a crucial role during development, in cancer metastasis and in inflammation. Activation of VEGFR-3 (also known as FLT4) by VEGF-C is one of the main drivers of lymphangiogenesis, but the transcriptional events downstream of VEGFR-3 activation are largely unknown. Recently, we identified a wave of immediate early transcription factors that are upregulated in human lymphatic endothelial cells (LECs) within the first 30 to 80 min after VEGFR-3 activation. Expression of these transcription factors must be regulated by additional pre-existing transcription factors that are rapidly activated by VEGFR-3 signaling. Using transcription factor activity analysis, we identified the homeobox transcription factor HOXD10 to be specifically activated at early time points after VEGFR-3 stimulation, and to regulate expression of immediate early transcription factors, including NR4A1. Gain- and loss-of-function studies revealed that HOXD10 is involved in LECs migration and formation of cord-like structures. Furthermore, HOXD10 regulates expression of VE-cadherin, claudin-5 and NOS3 (also known as e-NOS), and promotes lymphatic endothelial permeability. Taken together, these results reveal an important and unanticipated role of HOXD10 in the regulation of VEGFR-3 signaling in lymphatic endothelial cells, and in the control of lymphangiogenesis and permeability.
Collapse
Affiliation(s)
- Sarah Klein
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich 8093, Switzerland
| | - Lothar C Dieterich
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich 8093, Switzerland
| | - Anthony Mathelier
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Chloé Chong
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich 8093, Switzerland
| | - Adriana Sliwa-Primorac
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich 8093, Switzerland
| | - Young-Kwon Hong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Jay W Shin
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Marina Lizio
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Masayoshi Itoh
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Hideya Kawaji
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Timo Lassmann
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa 230-0045, Japan Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia 6008, Australia
| | - Carsten O Daub
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Erik Arner
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa 230-0045, Japan
| | | | - Piero Carninci
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshihide Hayashizaki
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama 351-0198, Japan
| | - Alistair R R Forrest
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa 230-0045, Japan Cancer and Cell Biology Division, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, the University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Michael Detmar
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|