1
|
Cheng Y, Shang Y, Zhang S, Fan S. The interplay between RNA m6A modification and radiation biology of cancerous and non-cancerous tissues: a narrative review. Cancer Biol Med 2025; 21:j.issn.2095-3941.2024.0415. [PMID: 39831771 PMCID: PMC11745087 DOI: 10.20892/j.issn.2095-3941.2024.0415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
The diverse radiation types in medical treatments and the natural environment elicit complex biological effects on both cancerous and non-cancerous tissues. Radiation therapy (RT) induces oncological responses, from molecular to phenotypic alterations, while simultaneously exerting toxic effects on healthy tissue. N6-methyladenosine (m6A), a prevalent modification on coding and non-coding RNAs, is a key epigenetic mark established by a set of evolutionarily conserved enzymes. The interplay between m6A modification and radiobiology of cancerous and non-cancerous tissues merits in-depth investigation. This review summarizes the roles of m6A in the biological effects induced by ionizing radiation and ultraviolet (UV) radiation. It begins with an overview of m6A modification and its detection methods, followed by a detailed examination of how m6A dynamically regulates the sensitivity of cancerous tissues to RT, the injury response in non-cancerous tissues, and the toxicological effects of UV exposure. Notably, this review underscores the importance of novel regulatory mechanisms of m6A and their potential clinical applications in identifying epigenetically modulated radiation-associated biomarkers for cancer therapy and estimation of radiation dosages. In conclusion, enzyme-mediated m6A-modification triggers alterations in target gene expression by affecting the metabolism of the modified RNAs, thus modulating progression and radiosensitivity in cancerous tissues, as well as radiation effects on normal tissues. Several promising avenues for future research are further discussed. This review highlights the importance of m6A modification in the context of radiation biology. Targeting epi-transcriptomic molecules might potentially provide a novel strategy for enhancing the radiosensitivity of cancerous tissues and mitigating radiation-induced injury to normal tissues.
Collapse
Affiliation(s)
- Yajia Cheng
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yue Shang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Shuqin Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Saijun Fan
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
2
|
Zhang R, Karijolich J. RNA recognition by PKR during DNA virus infection. J Med Virol 2024; 96:e29424. [PMID: 38285432 PMCID: PMC10832991 DOI: 10.1002/jmv.29424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Protein kinase R (PKR) is a double-stranded RNA (dsRNA) binding protein that plays a crucial role in innate immunity during viral infection and can restrict both DNA and RNA viruses. The potency of its antiviral function is further reflected by the large number of viral-encoded PKR antagonists. However, much about the regulation of dsRNA accumulation and PKR activation during viral infection remains unknown. Since DNA viruses do not have an RNA genome or RNA replication intermediates like RNA viruses do, PKR-mediated dsRNA detection in the context of DNA virus infection is particularly intriguing. Here, we review the current state of knowledge regarding the regulation of PKR activation and its antagonism during infection with DNA viruses.
Collapse
Affiliation(s)
- Ruilin Zhang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt Center for Immunobiology, Nashville. Nashville, TN 37232-2363, USA
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt Center for Immunobiology, Nashville. Nashville, TN 37232-2363, USA
| |
Collapse
|
3
|
Meng Q, Schatten H, Zhou Q, Chen J. Crosstalk between m6A and coding/non-coding RNA in cancer and detection methods of m6A modification residues. Aging (Albany NY) 2023; 15:6577-6619. [PMID: 37437245 PMCID: PMC10373953 DOI: 10.18632/aging.204836] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
N6-methyladenosine (m6A) is one of the most common and well-known internal RNA modifications that occur on mRNAs or ncRNAs. It affects various aspects of RNA metabolism, including splicing, stability, translocation, and translation. An abundance of evidence demonstrates that m6A plays a crucial role in various pathological and biological processes, especially in tumorigenesis and tumor progression. In this article, we introduce the potential functions of m6A regulators, including "writers" that install m6A marks, "erasers" that demethylate m6A, and "readers" that determine the fate of m6A-modified targets. We have conducted a review on the molecular functions of m6A, focusing on both coding and noncoding RNAs. Additionally, we have compiled an overview of the effects noncoding RNAs have on m6A regulators and explored the dual roles of m6A in the development and advancement of cancer. Our review also includes a detailed summary of the most advanced databases for m6A, state-of-the-art experimental and sequencing detection methods, and machine learning-based computational predictors for identifying m6A sites.
Collapse
Affiliation(s)
- Qingren Meng
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated with the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Qian Zhou
- International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong Province, China
| | - Jun Chen
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated with the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
4
|
Mfarej MG, Hyland CA, Sanchez AC, Falk MM, Iovine MK, Skibbens RV. Cohesin: an emerging master regulator at the heart of cardiac development. Mol Biol Cell 2023; 34:rs2. [PMID: 36947206 PMCID: PMC10162415 DOI: 10.1091/mbc.e22-12-0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Cohesins are ATPase complexes that play central roles in cellular processes such as chromosome division, DNA repair, and gene expression. Cohesinopathies arise from mutations in cohesin proteins or cohesin complex regulators and encompass a family of related developmental disorders that present with a range of severe birth defects, affect many different physiological systems, and often lead to embryonic fatality. Treatments for cohesinopathies are limited, in large part due to the lack of understanding of cohesin biology. Thus, characterizing the signaling networks that lie upstream and downstream of cohesin-dependent pathways remains clinically relevant. Here, we highlight alterations in cohesins and cohesin regulators that result in cohesinopathies, with a focus on cardiac defects. In addition, we suggest a novel and more unifying view regarding the mechanisms through which cohesinopathy-based heart defects may arise.
Collapse
Affiliation(s)
- Michael G. Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Caitlin A. Hyland
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Annie C. Sanchez
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Matthias M. Falk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - M. Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| |
Collapse
|
5
|
Pallotta MM, Di Nardo M, Sarogni P, Krantz ID, Musio A. Disease-associated c-MYC downregulation in human disorders of transcriptional regulation. Hum Mol Genet 2022; 31:1599-1609. [PMID: 34849865 PMCID: PMC9122636 DOI: 10.1093/hmg/ddab348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a rare multiorgan developmental disorder caused by pathogenic variants in cohesin genes. It is a genetically and clinically heterogeneous dominant (both autosomal and X-linked) rare disease. Increasing experimental evidence indicates that CdLS is caused by a combination of factors, such as gene expression dysregulation, accumulation of cellular damage and cellular aging, which collectively contribute to the CdLS phenotype. The CdLS phenotype overlaps with a number of related diagnoses such as KBG syndrome and Rubinstein-Taybi syndrome both caused by variants in chromatin-associated factors other than cohesin. The molecular basis underlying these overlapping phenotypes is not clearly defined. Here, we found that cells from individuals with CdLS and CdLS-related diagnoses are characterized by global transcription disturbance and share common dysregulated pathways. Intriguingly, c-MYC (subsequently referred to as MYC) is downregulated in all cell lines and represents a convergent hub lying at the center of dysregulated pathways. Subsequent treatment with estradiol restores MYC expression by modulating cohesin occupancy at its promoter region. In addition, MYC activation leads to modification in expression in hundreds of genes, which in turn reduce the oxidative stress level and genome instability. Together, these results show that MYC plays a pivotal role in the etiopathogenesis of CdLS and CdLS-related diagnoses and represents a potential therapeutic target for these conditions.
Collapse
Affiliation(s)
- Maria M Pallotta
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 56124 Pisa, Italy
| | - Maddalena Di Nardo
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 56124 Pisa, Italy
| | - Patrizia Sarogni
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 56124 Pisa, Italy
| | - Ian D Krantz
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, The Department of Pediatrics, The Children's Hospital of Philadelphia, and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonio Musio
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 56124 Pisa, Italy
| |
Collapse
|
6
|
Huang Y, Chen S, Pang L, Feng Z, Su H, Zhu W, Wei J. Isovitexin protects against acute liver injury by targeting PTEN, PI3K and BiP via modification of m6A. Eur J Pharmacol 2022; 917:174749. [PMID: 35007522 DOI: 10.1016/j.ejphar.2022.174749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
Isovitexin (IVT) has been shown to have a potential therapeutic effect on acute liver injury (ALI), but its underlying mechanisms especially the targets remain unclear, which was investigated in the present study. Briefly, the targets of IVT were predicted by bioinformatics and then were verified by multiple examinations using molecular docking, cellular thermal shift assay (CETSA), and Lipopolysaccharide/D-Galactosamine (LPS/D-GalN)-induced ALI animal model. The bioinformatic analysis predicted that the target genes of IVT against ALI were enriched into the PI3K/Akt and ERS-related pathways, in which, molecular docking and CETSA examination verified that the binding sites of IVT likely were PTEN, PI3K and BiP. Furthermore, the possible targets were also verified by animal experiments. The results revealed that IVT significantly ameliorated the hepatic injury, as evidenced by the attenuation of histopathological changes and the reduction in serum aminotransferase and total bilirubin activities. In addition, IVT treatment led to the reduction of PTEN, BiP and ERS-related targets expressions, as well as the elevation of PI3K, Akt and mTOR expressions. Notably, IVT significantly decreased total hepatic m6A level and m6A enrichment of PTEN and BiP, suggesting IVT regulated PTEN and BiP by modulating m6A modification. To sum up, the results indicate that IVT significantly ameliorates ALI, which is attributed to its ability to regulate the PI3K/Akt pathway and ERS by targeting PTEN, PI3K and BiP via modification of m6A. Our finding demonstrates that IVT may be a promising natural medicine for the treatment of ALI.
Collapse
Affiliation(s)
- Yushen Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Siyun Chen
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lijun Pang
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhongwen Feng
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Hongmei Su
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Wuchang Zhu
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jinbin Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China; National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
7
|
Zhao B, Wang W, Zhao Y, Qiao H, Gao Z, Chuai X. Regulation of Antiviral Immune Response by N 6-Methyladenosine of mRNA. Front Microbiol 2022; 12:789605. [PMID: 34975810 PMCID: PMC8716812 DOI: 10.3389/fmicb.2021.789605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Host innate and adaptive immune responses play a vital role in clearing infected viruses. Meanwhile, viruses also evolve a series of mechanisms to weaken the host immune responses and evade immune defense. Recently, N6-methyladenosine (m6A), the most prevalent mRNA modification, has been revealed to regulate multiple steps of RNA metabolism, such as mRNA splicing, localization, stabilization, and translation, thus participating in many biological phenomena, including viral infection. In the process of virus–host interaction, the m6A modification that presents on the virus RNA impedes capture by the pattern recognition receptors, and the m6A modification appearing on the host immune-related molecules regulate interferon response, immune cell differentiation, inflammatory cytokine production, and other immune responses induced by viral infection. This review summarizes the research advances about the regulatory role of m6A modification in the innate and adaptive immune responses during viral infections.
Collapse
Affiliation(s)
- Baoxin Zhao
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, China.,Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Weijie Wang
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, China.,Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Yan Zhao
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, China.,Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Hongxiu Qiao
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, China.,Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Zhiyun Gao
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, China.,Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Xia Chuai
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, China.,Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
8
|
Ma K, Han J, Zhang Z, Li H, Zhao Y, Zhu Q, Xie Y, Liu YG, Chen L. OsEDM2L mediates m 6 A of EAT1 transcript for proper alternative splicing and polyadenylation regulating rice tapetal degradation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1982-1994. [PMID: 34449974 DOI: 10.1111/jipb.13167] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
N6 -methyladenosine (m6 A) modification affects the post-transcriptional regulation of eukaryotic gene expression, but the underlying mechanisms and their effects in plants remain largely unknown. Here, we report that the N6 -adenine methyltransferase-like domain-containing protein ENHANCED DOWNY MILDEW 2-LIKE (OsEDM2L) is essential for rice (Oryza sativa L.) anther development. The osedm2l knockout mutant showed delayed tapetal programmed cell death (PCD) and defective pollen development. OsEDM2L interacts with the transcription factors basic helix-loop-helix 142 and TAPETUM DEGENERATION RETARDATION to regulate the expression of ETERNAL TAPETUM 1 (EAT1), a positive regulator of tapetal PCD. Mutation of OsEDM2L altered the transcriptomic m6 A landscape, and caused a distinct m6 A modification of the EAT1 transcript leading to dysregulation of its alternative splicing and polyadenylation, followed by suppression of the EAT1 target genes OsAP25 and OsAP37 for tapetal PCD. Therefore, OsEDM2L is indispensable for proper messenger RNA m6 A modification in rice anther development.
Collapse
Affiliation(s)
- Kun Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jingluan Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zixu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Heying Li
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanchang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
9
|
Gu W, Wang L, Gu R, Ouyang H, Bao B, Zheng L, Xu B. Defects of cohesin loader lead to bone dysplasia associated with transcriptional disturbance. J Cell Physiol 2021; 236:8208-8225. [PMID: 34170011 DOI: 10.1002/jcp.30491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023]
Abstract
Cohesin loader nipped-B-like protein (Nipbl) is increasingly recognized for its important role in development and cancer. Cornelia de Lange Syndrome (CdLS), mostly caused by heterozygous mutations of Nipbl, is an autosomal dominant disease characterized by multiorgan malformations. However, the regulatory role and underlying mechanism of Nipbl in skeletal development remain largely elusive. In this study, we constructed a Nipbl-a Cas9-knockout (KO) zebrafish, which displayed severe retardation of global growth and skeletal development. Deficiency of Nipbl remarkably compromised cell growth and survival, and osteogenic differentiation of mammalian osteoblast precursors. Furthermore, Nipbl depletion impaired the cell cycle process, and caused DNA damage accumulation and cellular senescence. In addition, nucleolar fibrillarin expression, global rRNA biogenesis, and protein translation were defective in the Nipbl-depleted osteoblast precursors. Interestingly, an integrated stress response inhibitor (ISRIB), partially rescued Nipbl depletion-induced cellular defects in proliferation and apoptosis, osteogenesis, and nucleolar function. Simultaneously, we performed transcriptome analysis of Nipbl deficiency on human neural crest cells and mouse embryonic fibroblasts in combination with Nipbl ChIP-Seq. We found that Nipbl deficiency caused thousands of differentially expressed genes including some important genes in bone and cartilage development. In conclusion, Nipbl deficiency compromised skeleton development through impairing osteoblast precursor cell proliferation and survival, and osteogenic differentiation, and also disturbing the expression of some osteogenesis-regulatory genes. Our study elucidated that Nipbl played a pivotal role in skeleton development, and supported the fact that treatment of ISRIB may provide an early intervention strategy to alleviate the bone dysplasia of CdLS.
Collapse
Affiliation(s)
- Weihuai Gu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lihong Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Renjie Gu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huiya Ouyang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baicheng Bao
- Hospital of Stomatology, Orthodontic Department, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Baoshan Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Ithal D, Sukumaran SK, Bhattacharjee D, Vemula A, Nadella R, Mahadevan J, Sud R, Viswanath B, Purushottam M, Jain S. Exome hits demystified: The next frontier. Asian J Psychiatr 2021; 59:102640. [PMID: 33892377 DOI: 10.1016/j.ajp.2021.102640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Severe mental illnesses such as schizophrenia and bipolar disorder have complex inheritance patterns, involving both common and rare variants. Whole exome sequencing is a promising approach to find out the rare genetic variants. We had previously reported several rare variants in multiplex families with severe mental illnesses. The current article tries to summarise the biological processes and pattern of expression of genes harbouring the aforementioned variants, linking them to known clinical manifestations through a methodical narrative review. Of the 28 genes considered for this review from 7 families with multiple affected individuals, 6 genes are implicated in various neuropsychiatric manifestations including some variations in the brain morphology assessed by magnetic resonance imaging. Another 15 genes, though associated with neuropsychiatric manifestations, did not have established brain morphological changes whereas the remaining 7 genes did not have any previously recorded neuropsychiatric manifestations at all. Wnt/b-catenin signaling pathway was associated with 6 of these genes and PI3K/AKT, calcium signaling, ERK, RhoA and notch signaling pathways had at least 2 gene associations. We present a comprehensive review of biological and clinical knowledge about the genes previously reported in multiplex families with severe mental illness. A 'disease in dish approach' can be helpful to further explore the fundamental mechanisms.
Collapse
Affiliation(s)
- Dhruva Ithal
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Salil K Sukumaran
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Debanjan Bhattacharjee
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Alekhya Vemula
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Ravi Nadella
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Jayant Mahadevan
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Reeteka Sud
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Meera Purushottam
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India.
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
11
|
Grazioli P, Parodi C, Mariani M, Bottai D, Di Fede E, Zulueta A, Avagliano L, Cereda A, Tenconi R, Wierzba J, Adami R, Iascone M, Ajmone PF, Vaccari T, Gervasini C, Selicorni A, Massa V. Lithium as a possible therapeutic strategy for Cornelia de Lange syndrome. Cell Death Dis 2021; 7:34. [PMID: 33597506 PMCID: PMC7889653 DOI: 10.1038/s41420-021-00414-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 01/17/2021] [Indexed: 01/31/2023]
Abstract
Cornelia de Lange Syndrome (CdLS) is a rare developmental disorder affecting a multitude of organs including the central nervous system, inducing a variable neurodevelopmental delay. CdLS malformations derive from the deregulation of developmental pathways, inclusive of the canonical WNT pathway. We have evaluated MRI anomalies and behavioral and neurological clinical manifestations in CdLS patients. Importantly, we observed in our cohort a significant association between behavioral disturbance and structural abnormalities in brain structures of hindbrain embryonic origin. Considering the cumulative evidence on the cohesin-WNT-hindbrain shaping cascade, we have explored possible ameliorative effects of chemical activation of the canonical WNT pathway with lithium chloride in different models: (I) Drosophila melanogaster CdLS model showing a significant rescue of mushroom bodies morphology in the adult flies; (II) mouse neural stem cells restoring physiological levels in proliferation rate and differentiation capabilities toward the neuronal lineage; (III) lymphoblastoid cell lines from CdLS patients and healthy donors restoring cellular proliferation rate and inducing the expression of CyclinD1. This work supports a role for WNT-pathway regulation of CdLS brain and behavioral abnormalities and a consistent phenotype rescue by lithium in experimental models.
Collapse
Affiliation(s)
- Paolo Grazioli
- grid.4708.b0000 0004 1757 2822Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Parodi
- grid.4708.b0000 0004 1757 2822Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Daniele Bottai
- grid.4708.b0000 0004 1757 2822Department of Health Sciences, Università degli Studi di Milano, Milan, Italy ,grid.4708.b0000 0004 1757 2822“Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | - Elisabetta Di Fede
- grid.4708.b0000 0004 1757 2822Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Aida Zulueta
- grid.4708.b0000 0004 1757 2822Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Laura Avagliano
- grid.4708.b0000 0004 1757 2822Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Anna Cereda
- Department of Pediatrics-ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Romano Tenconi
- grid.5608.b0000 0004 1757 3470Department of Pediatrics, University of Padova, Padova, Italy
| | - Jolanta Wierzba
- grid.11451.300000 0001 0531 3426Department of Pediatrics and Internal Medicine Nursing, Department of Rare Disorders, Medical University of Gdansk, Gdańsk, Poland
| | - Raffaella Adami
- grid.4708.b0000 0004 1757 2822Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria Iascone
- Department of Pediatrics-ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Paola Francesca Ajmone
- grid.414818.00000 0004 1757 8749Child and Adolescent Neuropsychiatric Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Thomas Vaccari
- grid.4708.b0000 0004 1757 2822Department of Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Cristina Gervasini
- grid.4708.b0000 0004 1757 2822Department of Health Sciences, Università degli Studi di Milano, Milan, Italy ,grid.4708.b0000 0004 1757 2822“Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | | | - Valentina Massa
- grid.4708.b0000 0004 1757 2822Department of Health Sciences, Università degli Studi di Milano, Milan, Italy ,grid.4708.b0000 0004 1757 2822“Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
12
|
Abstract
A fully functional placenta is critical for a successful pregnancy. In this issue of Developmental Cell, Singh et al. reveal that excessive placental DNA damage in murine models for Cornelia de Lange syndrome results in an inefficient and senescent placenta that impairs embryonic development.
Collapse
|
13
|
Spreafico M, Mangano E, Mazzola M, Consolandi C, Bordoni R, Battaglia C, Bicciato S, Marozzi A, Pistocchi A. The Genome-Wide Impact of Nipblb Loss-of-Function on Zebrafish Gene Expression. Int J Mol Sci 2020; 21:E9719. [PMID: 33352756 PMCID: PMC7766774 DOI: 10.3390/ijms21249719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022] Open
Abstract
Transcriptional changes normally occur during development but also underlie differences between healthy and pathological conditions. Transcription factors or chromatin modifiers are involved in orchestrating gene activity, such as the cohesin genes and their regulator NIPBL. In our previous studies, using a zebrafish model for nipblb knockdown, we described the effect of nipblb loss-of-function in specific contexts, such as central nervous system development and hematopoiesis. However, the genome-wide transcriptional impact of nipblb loss-of-function in zebrafish embryos at diverse developmental stages remains under investigation. By RNA-seq analyses in zebrafish embryos at 24 h post-fertilization, we examined genome-wide effects of nipblb knockdown on transcriptional programs. Differential gene expression analysis revealed that nipblb loss-of-function has an impact on gene expression at 24 h post fertilization, mainly resulting in gene inactivation. A similar transcriptional effect has also been reported in other organisms, supporting the use of zebrafish as a model to understand the role of Nipbl in gene regulation during early vertebrate development. Moreover, we unraveled a connection between nipblb-dependent differential expression and gene expression patterns of hematological cell populations and AML subtypes, enforcing our previous evidence on the involvement of NIPBL-related transcriptional dysregulation in hematological malignancies.
Collapse
Affiliation(s)
- Marco Spreafico
- Department of Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (M.S.); (M.M.); (C.B.); (A.M.)
| | - Eleonora Mangano
- Institute of Biomedical Technologies, Italian National Research Council (ITB-CNR), Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (E.M.); (C.C.); (R.B.)
| | - Mara Mazzola
- Department of Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (M.S.); (M.M.); (C.B.); (A.M.)
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, Italian National Research Council (ITB-CNR), Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (E.M.); (C.C.); (R.B.)
| | - Roberta Bordoni
- Institute of Biomedical Technologies, Italian National Research Council (ITB-CNR), Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (E.M.); (C.C.); (R.B.)
| | - Cristina Battaglia
- Department of Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (M.S.); (M.M.); (C.B.); (A.M.)
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio-Emilia, Via G. Campi 287, 41125 Modena, Italy;
| | - Anna Marozzi
- Department of Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (M.S.); (M.M.); (C.B.); (A.M.)
| | - Anna Pistocchi
- Department of Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; (M.S.); (M.M.); (C.B.); (A.M.)
| |
Collapse
|
14
|
Wu J, Li Y, Yu J, Gan Z, Wei W, Wang C, Zhang L, Wang T, Zhong X. Resveratrol Attenuates High-Fat Diet Induced Hepatic Lipid Homeostasis Disorder and Decreases m 6A RNA Methylation. Front Pharmacol 2020; 11:568006. [PMID: 33519432 PMCID: PMC7845411 DOI: 10.3389/fphar.2020.568006] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/13/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose: N 6-methyladenosine (m6A) mRNA methylation is affected by dietary factors and associated with lipid metabolism; however, whether the regulatory role of resveratrol in lipid metabolism is involved in m6A mRNA methylation remains unknown. Here, the objective of this study was to investigate the effect of resveratrol on hepatic lipid metabolism and m6A RNA methylation in the liver of mice. Methods: A total of 24 male mice were randomly allocated to LFD (low-fat diet), LFDR (low-fat diet + resveratrol), HFD (high-fat diet), and HFDR (high-fat diet + resveratrol) groups for 12 weeks (n = 6/group). Final body weight of mice was measured before sacrificing. Perirhemtric fat, abdominal and epididymal fat, liver tissues, and serum were collected at sacrifice and analyzed. Briefly, mice phenotype, lipid metabolic index, and m6A modification in the liver were assessed. Results: Compared to the HFD group, dietary resveratrol supplementation reduced the body weight and relative abdominal, epididymal, and perirhemtric fat weight in high-fat-exposed mice; however, resveratrol significantly increased average daily feed intake in mice given HFD. The amounts of serum low-density lipoprotein cholesterol (LDL), liver total cholesterol (TC), and triacylglycerol (TAG) were significantly decreased by resveratrol supplementation. In addition, resveratrol significantly enhanced the levels of peroxisome proliferator-activated receptor alpha (PPARα), peroxisome proliferator-activated receptor beta/delta (PPARβ/δ), cytochrome P450, family 4, subfamily a, polypeptide 10/14 (CYP4A10/14), acyl-CoA oxidase 1 (ACOX1), and fatty acid-binding protein 4 (FABP4) mRNA and inhibited acyl-CoA carboxylase (ACC) mRNA levels in the liver. Furthermore, the resveratrol in HFD increased the transcript levels of methyltransferase like 3 (METTL3), alkB homolog 5 (ALKBH5), fat mass and obesity associated protein (FTO), and YTH domain family 2 (YTHDF2), whereas it decreased the level of YTH domain family 3 (YTHDF3) and m6A abundance in mice liver. Conclusion: The beneficial effect of resveratrol on lipid metabolism disorder under HFD may be due to decrease of m6A RNA methylation and increase of PPARα mRNA, providing mechanistic insights into the function of resveratrol in alleviating the disturbance of lipid metabolism in mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Eiermann N, Haneke K, Sun Z, Stoecklin G, Ruggieri A. Dance with the Devil: Stress Granules and Signaling in Antiviral Responses. Viruses 2020; 12:v12090984. [PMID: 32899736 PMCID: PMC7552005 DOI: 10.3390/v12090984] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Cells have evolved highly specialized sentinels that detect viral infection and elicit an antiviral response. Among these, the stress-sensing protein kinase R, which is activated by double-stranded RNA, mediates suppression of the host translation machinery as a strategy to limit viral replication. Non-translating mRNAs rapidly condensate by phase separation into cytosolic stress granules, together with numerous RNA-binding proteins and components of signal transduction pathways. Growing evidence suggests that the integrated stress response, and stress granules in particular, contribute to antiviral defense. This review summarizes the current understanding of how stress and innate immune signaling act in concert to mount an effective response against virus infection, with a particular focus on the potential role of stress granules in the coordination of antiviral signaling cascades.
Collapse
Affiliation(s)
- Nina Eiermann
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Katharina Haneke
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Zhaozhi Sun
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
- Correspondence:
| |
Collapse
|
16
|
Singh VP, McKinney S, Gerton JL. Persistent DNA Damage and Senescence in the Placenta Impacts Developmental Outcomes of Embryos. Dev Cell 2020; 54:333-347.e7. [PMID: 32800293 DOI: 10.1016/j.devcel.2020.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/17/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Cohesin is an evolutionarily conserved chromosome-associated protein complex essential for chromosome segregation, gene expression, and repair of DNA damage. Mutations that affect this complex cause the human developmental disorder Cornelia de Lange syndrome (CdLS), thought to arise from defective embryonic transcription. We establish a significant role for placental defects in the development of CdLS mouse embryos (Nipbl and Hdac8). Placenta is a naturally senescent tissue; we demonstrate that persistent DNA damage potentiates senescence and activates cytokine signaling. Mutant embryo developmental outcomes are significantly improved in the context of a wild-type placenta or by genetically restricting cytokine signaling. Our study highlights that cohesin is required for maintaining ploidy and the repair of spontaneous DNA damage in placental cells, suggesting that genotoxic stress and ensuing placental senescence and cytokine production could represent a broad theme in embryo health and viability.
Collapse
Affiliation(s)
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
17
|
Sarogni P, Pallotta MM, Musio A. Cornelia de Lange syndrome: from molecular diagnosis to therapeutic approach. J Med Genet 2020; 57:289-295. [PMID: 31704779 PMCID: PMC7231464 DOI: 10.1136/jmedgenet-2019-106277] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/08/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
Cornelia de Lange syndrome (CdLS) is a severe genetic disorder characterised by multisystemic malformations. CdLS is due to pathogenetic variants in NIPBL, SMC1A, SMC3, RAD21 and HDAC8 genes which belong to the cohesin pathway. Cohesin plays a pivotal role in chromatid cohesion, gene expression, and DNA repair. In this review, we will discuss how perturbations in those biological processes contribute to CdLS phenotype and will emphasise the state-of-art of CdLS therapeutic approaches.
Collapse
Affiliation(s)
- Patrizia Sarogni
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Maria M Pallotta
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| |
Collapse
|
18
|
Latorre-Pellicer A, Ascaso Á, Trujillano L, Gil-Salvador M, Arnedo M, Lucia-Campos C, Antoñanzas-Pérez R, Marcos-Alcalde I, Parenti I, Bueno-Lozano G, Musio A, Puisac B, Kaiser FJ, Ramos FJ, Gómez-Puertas P, Pié J. Evaluating Face2Gene as a Tool to Identify Cornelia de Lange Syndrome by Facial Phenotypes. Int J Mol Sci 2020; 21:ijms21031042. [PMID: 32033219 PMCID: PMC7038094 DOI: 10.3390/ijms21031042] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 12/19/2022] Open
Abstract
Characteristic or classic phenotype of Cornelia de Lange syndrome (CdLS) is associated with a recognisable facial pattern. However, the heterogeneity in causal genes and the presence of overlapping syndromes have made it increasingly difficult to diagnose only by clinical features. DeepGestalt technology, and its app Face2Gene, is having a growing impact on the diagnosis and management of genetic diseases by analysing the features of affected individuals. Here, we performed a phenotypic study on a cohort of 49 individuals harbouring causative variants in known CdLS genes in order to evaluate Face2Gene utility and sensitivity in the clinical diagnosis of CdLS. Based on the profile images of patients, a diagnosis of CdLS was within the top five predicted syndromes for 97.9% of our cases and even listed as first prediction for 83.7%. The age of patients did not seem to affect the prediction accuracy, whereas our results indicate a correlation between the clinical score and affected genes. Furthermore, each gene presents a different pattern recognition that may be used to develop new neural networks with the goal of separating different genetic subtypes in CdLS. Overall, we conclude that computer-assisted image analysis based on deep learning could support the clinical diagnosis of CdLS.
Collapse
Affiliation(s)
- Ana Latorre-Pellicer
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, E-50009 Zaragoza, Spain; (A.L.-P.); (M.G.-S.); (M.A.); (C.L.-C.); (R.A.-P.); (B.P.); (F.J.R.)
| | - Ángela Ascaso
- Department of Paediatrics, Hospital Clínico Universitario “Lozano Blesa”, E-50009 Zaragoza, Spain; (Á.A.); (L.T.)
| | - Laura Trujillano
- Department of Paediatrics, Hospital Clínico Universitario “Lozano Blesa”, E-50009 Zaragoza, Spain; (Á.A.); (L.T.)
| | - Marta Gil-Salvador
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, E-50009 Zaragoza, Spain; (A.L.-P.); (M.G.-S.); (M.A.); (C.L.-C.); (R.A.-P.); (B.P.); (F.J.R.)
| | - Maria Arnedo
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, E-50009 Zaragoza, Spain; (A.L.-P.); (M.G.-S.); (M.A.); (C.L.-C.); (R.A.-P.); (B.P.); (F.J.R.)
| | - Cristina Lucia-Campos
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, E-50009 Zaragoza, Spain; (A.L.-P.); (M.G.-S.); (M.A.); (C.L.-C.); (R.A.-P.); (B.P.); (F.J.R.)
| | - Rebeca Antoñanzas-Pérez
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, E-50009 Zaragoza, Spain; (A.L.-P.); (M.G.-S.); (M.A.); (C.L.-C.); (R.A.-P.); (B.P.); (F.J.R.)
| | - Iñigo Marcos-Alcalde
- Molecular Modelling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), E-28049 Madrid, Spain;
- Bioscience Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, UFV, E-28223 Pozuelo de Alarcón, Spain
| | - Ilaria Parenti
- Section for Functional Genetics, Institute of Human Genetics, University of Lübeck, 23562 Lübeck, Germany; (I.P.); (F.J.K.)
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Gloria Bueno-Lozano
- Department of Paediatrics, Hospital Clínico Universitario “Lozano Blesa”, E-50009 Zaragoza, Spain; (Á.A.); (L.T.)
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, I-56124 Pisa, Italy;
| | - Beatriz Puisac
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, E-50009 Zaragoza, Spain; (A.L.-P.); (M.G.-S.); (M.A.); (C.L.-C.); (R.A.-P.); (B.P.); (F.J.R.)
| | - Frank J. Kaiser
- Section for Functional Genetics, Institute of Human Genetics, University of Lübeck, 23562 Lübeck, Germany; (I.P.); (F.J.K.)
- Institute for Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Feliciano J. Ramos
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, E-50009 Zaragoza, Spain; (A.L.-P.); (M.G.-S.); (M.A.); (C.L.-C.); (R.A.-P.); (B.P.); (F.J.R.)
- Department of Paediatrics, Hospital Clínico Universitario “Lozano Blesa”, E-50009 Zaragoza, Spain; (Á.A.); (L.T.)
| | - Paulino Gómez-Puertas
- Molecular Modelling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), E-28049 Madrid, Spain;
- Correspondence: (J.P.); (P.G.-P.); Tel.: +34-976-761677 (J.P.); +34-91-1964663 (P.G.-P.)
| | - Juan Pié
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, E-50009 Zaragoza, Spain; (A.L.-P.); (M.G.-S.); (M.A.); (C.L.-C.); (R.A.-P.); (B.P.); (F.J.R.)
- Correspondence: (J.P.); (P.G.-P.); Tel.: +34-976-761677 (J.P.); +34-91-1964663 (P.G.-P.)
| |
Collapse
|
19
|
Hood IV, Gordon JM, Bou-Nader C, Henderson FE, Bahmanjah S, Zhang J. Crystal structure of an adenovirus virus-associated RNA. Nat Commun 2019; 10:2871. [PMID: 31253805 PMCID: PMC6599070 DOI: 10.1038/s41467-019-10752-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022] Open
Abstract
Adenovirus Virus-Associated (VA) RNAs are the first discovered viral noncoding RNAs. By mimicking double-stranded RNAs (dsRNAs), the exceptionally abundant, multifunctional VA RNAs sabotage host machineries that sense, transport, process, or edit dsRNAs. How VA-I suppresses PKR activation despite its strong dsRNA character, and inhibits the crucial antiviral kinase to promote viral translation, remains largely unknown. Here, we report a 2.7 Å crystal structure of VA-I RNA. The acutely bent VA-I features an unusually structured apical loop, a wobble-enriched, coaxially stacked apical and tetra-stems necessary and sufficient for PKR inhibition, and a central domain pseudoknot that resembles codon-anticodon interactions and prevents PKR activation by VA-I. These global and local structural features collectively define VA-I as an archetypal PKR inhibitor made of RNA. The study provides molecular insights into how viruses circumnavigate cellular rules of self vs non-self RNAs to not only escape, but further compromise host innate immunity.
Collapse
Affiliation(s)
- Iris V Hood
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Room 4503, Bethesda, MD, 20892, USA
| | - Jackson M Gordon
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Room 4503, Bethesda, MD, 20892, USA
| | - Charles Bou-Nader
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Room 4503, Bethesda, MD, 20892, USA
| | - Frances E Henderson
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Room 4503, Bethesda, MD, 20892, USA
| | - Soheila Bahmanjah
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Room 4503, Bethesda, MD, 20892, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, 50 South Drive, Room 4503, Bethesda, MD, 20892, USA.
| |
Collapse
|
20
|
Lu N, Li X, Yu J, Li Y, Wang C, Zhang L, Wang T, Zhong X. Curcumin Attenuates Lipopolysaccharide-Induced Hepatic Lipid Metabolism Disorder by Modification of m 6 A RNA Methylation in Piglets. Lipids 2019; 53:53-63. [PMID: 29488640 DOI: 10.1002/lipd.12023] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/27/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
Abstract
N6 -methyladenosine (m6 A) regulates gene expression and affects cellular metabolism. In this study, we checked whether the regulation of lipid metabolism by curcumin is associated with m6 A RNA methylation. We investigated the effects of dietary curcumin supplementation on lipopolysaccharide (LPS)-induced liver injury and lipid metabolism disorder, and on m6 A RNA methylation in weaned piglets. A total of 24 Duroc × Large White × Landrace piglets were randomly assigned to control, LPS, and CurL (LPS challenge and 200 mg/kg dietary curcumin) groups (n = 8/group). The results showed that curcumin reduced the increase in relative liver weight as well as the concentrations of aspartate aminotransferase and lactate dehydrogenase induced by LPS injection in the plasma and liver of weaning piglets (p < 0.05). The amounts of total cholesterol and triacylglycerols were decreased by curcumin compared to that by the LPS injection (p < 0.05). Additionally, curcumin reduced the expression of Bcl-2 and Bax mRNA, whereas it increased the p53 mRNA level in the liver (p < 0.05). Curcumin inhibited the enhancement of SREBP-1c and SCD-1 mRNA levels induced by LPS in the liver. Notably, dietary curcumin affected the expression of METTL3, METTL14, ALKBH5, FTO, and YTHDF2 mRNA, and increased the abundance of m6 A in the liver of piglets. In conclusion, the protective effect of curcumin in LPS-induced liver injury and hepatic lipid metabolism disruption might be due to the increase in m6 A RNA methylation. Our study provides mechanistic insights into the effect of curcumin in protecting against hepatic injury during inflammation and metabolic diseases.
Collapse
Affiliation(s)
- Na Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xingmei Li
- Department of Animal Feed Science, Nanjing Hongshan Forest Zoo, Nanjing, People's Republic of China
| | - Jiayao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yi Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
21
|
Zheng L, Zhou H, Guo L, Xu X, Zhang S, Xu W, Mao W. Inhibition of NIPBL enhances the chemosensitivity of non-small-cell lung cancer cells via the DNA damage response and autophagy pathway. Onco Targets Ther 2018; 11:1941-1948. [PMID: 29670369 PMCID: PMC5896680 DOI: 10.2147/ott.s158655] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Previously, we reported that high expression of nipped-B-like protein (NIPBL) was strongly correlated with poor prognosis, tumor differentiation, and lymph node metastasis. Survival analysis indicated that NIPBL expression was a potential prognostic factor for non-small cell lung cancer (NSCLC). Moreover, loss of NIPBL decreased lung cancer cells proliferation, migration, invasion and promoted apoptosis as well as sensitivity to chemotherapeutic agents. However, the deep mechanisms were not explored. Purpose The objective of this study was to identify the role of NIPBL in DNA damage response, as well as autophagy pathway, so as to interpret the mechanisms of how NIPBL knockdown enhances the chemosensitivity of lung cancer cell. Methods Cells (NCI-H1299 and NCI-H1650) were transfected by specific siRNAs before immunofluorescence and single-cell gel electrophoresis, which were mainly used to observe the differences of DNA damage in different groups. Additionally, protein were obtained and then analyzed by western blot and mass spectroscopy. Results In this study, we found that knockdown of NIPBL resulted in accumulation of phosphorylated H2AX (γ-H2AX) foci and higher levels of DNA damage, as revealed by comet assay. Western blot assay revealed that loss of NIPBL decreased expression of ATM/ATR, Rad3-related protein and Ku70/Ku80, but increased expression of LC3-B and depletion of p62. Using mass spectroscopy, we identified eight proteins that were significantly differentially expressed upon NIPBL knockdown. Gene Ontology analysis revealed that these proteins are mainly involved in DNA repair, mismatch repair, and binding to damaged DNA. The expression changes in two of the proteins, MSH2 and STAT1, were verified by Western blotting in NIPBL-knockdown cells. Conclusions In summary, these results reflected that loss of NIPBL impairs the DNA damage response and promotes autophagy. And NIPBL suppression may represent a novel strategy for preventing chemotherapy resistance in lung cancer.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Oncology, The First Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Huanhuan Zhou
- Department of Oncology, The First Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Liwei Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoling Xu
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Shengjie Zhang
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Weizhen Xu
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.,Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Weimin Mao
- Department of Oncology, The First Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.,Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
NIPBL +/- haploinsufficiency reveals a constellation of transcriptome disruptions in the pluripotent and cardiac states. Sci Rep 2018; 8:1056. [PMID: 29348408 PMCID: PMC5773608 DOI: 10.1038/s41598-018-19173-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a complex disorder with multiple structural and developmental defects caused by mutations in structural and regulatory proteins involved in the cohesin complex. NIPBL, a cohesin regulatory protein, has been identified as a critical protein responsible for the orchestration of transcriptomic regulatory networks necessary for embryonic development. Mutations in NIPBL are responsible for the majority of cases of CdLS. Through RNA-sequencing of human induced pluripotent stem cells and in vitro-derived cardiomyocytes, we identified hundreds of mRNAs, pseudogenes, and non-coding RNAs with altered expression in NIPBL+/− patient-derived cells. We demonstrate that NIPBL haploinsufficiency leads to upregulation of gene sets identified in functions related to nucleosome, chromatin assembly, RNA modification and downregulation of Wnt signaling, cholesterol biosynthesis and vesicular transport in iPSC and cardiomyocytes. Mutations in NIPBL result in the dysregulation of many genes responsible for normal heart development likely resulting in the variety of structural cardiac defects observed in the CdLS population.
Collapse
|
23
|
Newkirk DA, Chen YY, Chien R, Zeng W, Biesinger J, Flowers E, Kawauchi S, Santos R, Calof AL, Lander AD, Xie X, Yokomori K. The effect of Nipped-B-like (Nipbl) haploinsufficiency on genome-wide cohesin binding and target gene expression: modeling Cornelia de Lange syndrome. Clin Epigenetics 2017; 9:89. [PMID: 28855971 PMCID: PMC5574093 DOI: 10.1186/s13148-017-0391-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cornelia de Lange syndrome (CdLS) is a multisystem developmental disorder frequently associated with heterozygous loss-of-function mutations of Nipped-B-like (NIPBL), the human homolog of Drosophila Nipped-B. NIPBL loads cohesin onto chromatin. Cohesin mediates sister chromatid cohesion important for mitosis but is also increasingly recognized as a regulator of gene expression. In CdLS patient cells and animal models, expression changes of multiple genes with little or no sister chromatid cohesion defect suggests that disruption of gene regulation underlies this disorder. However, the effect of NIPBL haploinsufficiency on cohesin binding, and how this relates to the clinical presentation of CdLS, has not been fully investigated. Nipbl haploinsufficiency causes CdLS-like phenotype in mice. We examined genome-wide cohesin binding and its relationship to gene expression using mouse embryonic fibroblasts (MEFs) from Nipbl+/- mice that recapitulate the CdLS phenotype. RESULTS We found a global decrease in cohesin binding, including at CCCTC-binding factor (CTCF) binding sites and repeat regions. Cohesin-bound genes were found to be enriched for histone H3 lysine 4 trimethylation (H3K4me3) at their promoters; were disproportionately downregulated in Nipbl mutant MEFs; and displayed evidence of reduced promoter-enhancer interaction. The results suggest that gene activation is the primary cohesin function sensitive to Nipbl reduction. Over 50% of significantly dysregulated transcripts in mutant MEFs come from cohesin target genes, including genes involved in adipogenesis that have been implicated in contributing to the CdLS phenotype. CONCLUSIONS Decreased cohesin binding at the gene regions is directly linked to disease-specific expression changes. Taken together, our Nipbl haploinsufficiency model allows us to analyze the dosage effect of cohesin loading on CdLS development.
Collapse
Affiliation(s)
- Daniel A. Newkirk
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697 USA
- Department of Computer Sciences, University of California, Irvine, CA 92697 USA
| | - Yen-Yun Chen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697 USA
- Current address: ResearchDx Inc., 5 Mason, Irvine, CA 92618 USA
| | - Richard Chien
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697 USA
- Current address: Thermo Fisher Scientific, Inc., 180 Oyster Point Blvd South, San Francisco, CA 94080 USA
| | - Weihua Zeng
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697 USA
- Current address: Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, CA 92697 USA
| | - Jacob Biesinger
- Department of Computer Sciences, University of California, Irvine, CA 92697 USA
- Current address: Verily Life Scienceds, 1600 Amphitheatre Pkwy, Mountain View, CA 94043 USA
| | - Ebony Flowers
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697 USA
- California State University Long Beach, Long Beach, CA 90840 USA
- Current address: UT Southwestern Medical Center, 5323 Harry Hines Blvd, NA8.124, Dallas, TX 75390 USA
| | - Shimako Kawauchi
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA 92697 USA
| | - Rosaysela Santos
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA 92697 USA
| | - Anne L. Calof
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA 92697 USA
| | - Arthur D. Lander
- Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, CA 92697 USA
| | - Xiaohui Xie
- Department of Computer Sciences, University of California, Irvine, CA 92697 USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697 USA
| |
Collapse
|
24
|
Yuen KC. Measurement of RNA-induced PKR Activation in vitro. Bio Protoc 2017; 7:e2178. [PMID: 34458488 DOI: 10.21769/bioprotoc.2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/31/2017] [Accepted: 02/22/2017] [Indexed: 11/02/2022] Open
Abstract
Protein kinase R (PKR) is one of the key RNA-activated sensors for innate immunity. PKR is activated by pathogenic or aberrant RNAs such as short double-stranded RNAs or those with imperfect secondary structures, as well as a reduction in the amount and number of RNA modifications. Activation of PKR may be an underlying mechanism for the pathogenesis of human diseases. In this protocol, I describe a method for studying levels of RNA-induced PKR activation in vitro.
Collapse
Affiliation(s)
- Kobe C Yuen
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Present address: 1 DNA Way, South San Francisco, USA
| |
Collapse
|
25
|
Hull CM, Bevilacqua PC. Discriminating Self and Non-Self by RNA: Roles for RNA Structure, Misfolding, and Modification in Regulating the Innate Immune Sensor PKR. Acc Chem Res 2016; 49:1242-9. [PMID: 27269119 DOI: 10.1021/acs.accounts.6b00151] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pathogens are recognized by the innate immune system in part via their unique and complex RNA signatures. A key sensor in human innate immunity is the RNA-activated protein kinase, protein kinase R (PKR), which has two double-stranded RNA (dsRNA) binding motifs (dsRBMs) at its N-terminus. Early studies described PKR as being activated potently by long stretches of perfect dsRNA, a signature typical of viruses. More recently, we and others have found that PKR is also activated by RNAs having structural defects such as bulges and internal loops. This Account describes advances in our understanding of the ability of PKR to detect diverse foreign RNAs and how that recognition plays significant roles in discriminating self from non-self. The experiments discussed employ a wide range of techniques including activation assays, native polyacrylamide gel electrophoresis (PAGE), protein footprinting, and small-angle X-ray scattering (SAXS). We discuss how misfolding and dimerization of RNA lead to activation of PKR. We also present recent findings on the activation of PKR by varied bacterial functional RNAs including ribozymes and riboswitches, which are among the few structured RNAs known to interact with PKR in a site-specific manner. Molecular models for how these structured RNAs activate PKR are provided. Studies by SAXS revealed that PKR straightens bent RNAs. Most external and internal RNA cellular modifications introduced in vitro and found naturally, such as the m7G cap and m6A group, abrogate activation of PKR, but other modifications, such as 5'-ppp and 2'-fluoro groups, are immunostimulatory and potential anticancer agents. Genome-wide studies of RNA folding in vitro and in vivo have provided fresh insights into general differences in RNA structure among bacteria, viruses, and human. These studies suggest that in vivo, cellular human RNAs are less folded than once thought, unwound by helicases, destabilized by m6A modifications, and often bound up with proteins, all conditions known to abrogate activation of PKR. It thus appears that non-self RNAs are detected as unmodified, naked RNAs with appreciable secondary and tertiary structure. Observation that PKR is activated by structured but otherwise diverse RNAs is consistent both with the broad-spectrum nature of innate immunity and the nonspecific recognition of RNA by the dsRBM family. These findings provide a possible explanation for the apparent absence of protein-free structured human RNAs, such as ribozymes and riboswitches.
Collapse
Affiliation(s)
- Chelsea M. Hull
- Department of Chemistry and Center for RNA Molecular
Biology and ‡Department of
Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Philip C. Bevilacqua
- Department of Chemistry and Center for RNA Molecular
Biology and ‡Department of
Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
26
|
Hull CM, Anmangandla A, Bevilacqua PC. Bacterial Riboswitches and Ribozymes Potently Activate the Human Innate Immune Sensor PKR. ACS Chem Biol 2016; 11:1118-27. [PMID: 27011290 DOI: 10.1021/acschembio.6b00081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The innate immune system provides the first line of defense against pathogens through the recognition of nonspecific patterns in RNA to protect the cell in a generalized way. The human RNA-activated protein kinase, PKR, is a dsRNA binding protein and an essential sensor in the innate immune response, which recognizes viral and bacterial pathogens through their RNAs. Upon activation via RNA-dependent autophosphorylation, PKR phosphorylates the eukaryotic initiation factor eIF2α, leading to termination of translation. PKR has a well-characterized role in recognizing viral RNA, where it binds long stretches of double-stranded RNA nonsequence specifically to promote activation; however, the mechanism by which bacterial RNA activates PKR and the mode by which self RNA avoids activating PKR are unknown. We characterized activation of PKR by three functional bacterial RNAs with pseudoknots and extensive tertiary structure: the cyclic di-GMP riboswitch, the glmS riboswitch-ribozyme, and the twister ribozyme, two of which are ligand-activated. These RNAs were found to activate PKR with comparable potency to long dsRNA. Enzymatic structure mapping in the absence and presence of PKR reveals a clear PKR footprint and provides a structural basis for how these bacterial RNAs activate PKR. In the case of the cyclic di-GMP riboswitch and the glmS riboswitch-ribozyme, PKR appears to dimerize on the peripheral double-stranded regions of the native RNA tertiary structure. Overall, these results provide new insights into how PKR acts as an innate immune signaling protein for the presence of bacteria and suggest a reason for the apparent absence of protein-free riboswitches and ribozymes in the human genome.
Collapse
Affiliation(s)
- Chelsea M. Hull
- Department
of Chemistry, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ananya Anmangandla
- Department
of Chemistry, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Philip C. Bevilacqua
- Department
of Chemistry, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|