1
|
Yan W, Saqirile, Li K, Li K, Wang C. The Role of N6-Methyladenosine in Mitochondrial Dysfunction and Pathology. Int J Mol Sci 2025; 26:3624. [PMID: 40332101 PMCID: PMC12026702 DOI: 10.3390/ijms26083624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Mitochondria are indispensable in cells and play crucial roles in maintaining cellular homeostasis, energy production, and regulating cell death. Mitochondrial dysfunction has various manifestations, causing different diseases by affecting the diverse functions of mitochondria in the body. Previous studies have mainly focused on mitochondrial-related diseases caused by nuclear gene mutations or mitochondrial gene mutations, or mitochondrial dysfunction resulting from epigenetic regulation, such as DNA and histone modification. In recent years, as a popular research area, m6A has been involved in a variety of important processes under physiological and pathological conditions. However, there are few summaries on how RNA methylation, especially m6A RNA methylation, affects mitochondrial function. Additionally, the role of m6A in pathology through influencing mitochondrial function may provide us with a new perspective on disease treatment. In this review, we summarize several manifestations of mitochondrial dysfunction and compile examples from recent years of how m6A affects mitochondrial function and its role in some diseases.
Collapse
Affiliation(s)
| | | | | | | | - Changshan Wang
- School of Life Science, Inner Mongolia University, Hohhot 010020, China; (W.Y.); (S.); (K.L.); (K.L.)
| |
Collapse
|
2
|
Yuan S, Kuai Z, Zhao F, Xu D, Wu W. Improving effect of physical exercise on heart failure: Reducing oxidative stress-induced inflammation by restoring Ca 2+ homeostasis. Mol Cell Biochem 2025; 480:2471-2486. [PMID: 39365389 DOI: 10.1007/s11010-024-05124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
Heart failure (HF) is associated with the occurrence of mitochondrial dysfunction. ATP produced by mitochondria through the tricarboxylic acid cycle is the main source of energy for the heart. Excessive release of Ca2+ from myocardial sarcoplasmic reticulum (SR) in HF leads to excessive Ca2+ entering mitochondria, which leads to mitochondrial dysfunction and REDOX imbalance. Excessive accumulation of ROS leads to mitochondrial structure damage, which cannot produce and provide energy. In addition, the accumulation of a large number of ROS can activate NF-κB, leading to myocardial inflammation. Energy deficit in the myocardium has long been considered to be the main mechanism connecting mitochondrial dysfunction and systolic failure. However, exercise can improve the Ca2+ imbalance in HF and restore the Ca2+ disorder in mitochondria. Similarly, exercise activates mitochondrial dynamics to improve mitochondrial function and reshape intact mitochondrial structure, rebalance mitochondrial REDOX, reduce excessive release of ROS, and rescue cardiomyocyte energy failure in HF. In this review, we summarize recent evidence that exercise can improve Ca2+ homeostasis in the SR and activate mitochondrial dynamics, improve mitochondrial function, and reduce oxidative stress levels in HF patients, thereby reducing chronic inflammation in HF patients. The improvement of mitochondrial dynamics is beneficial for ameliorating metabolic flow bottlenecks, REDOX imbalance, ROS balance, impaired mitochondrial Ca2+ homeostasis, and inflammation. Interpretation of these findings will lead to new approaches to disease mechanisms and treatment.
Collapse
Affiliation(s)
- Shunling Yuan
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| | - Zhongkai Kuai
- Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, China
| | - Fei Zhao
- Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, China.
| | - Diqun Xu
- School of Physical Education, Minnan Normal University, Zhangzhou, China.
| | - Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, China.
| |
Collapse
|
3
|
Li Y, Hu H, Chu C, Yang J. Mitochondrial calcium uniporter complex: An emerging therapeutic target for cardiovascular diseases (Review). Int J Mol Med 2025; 55:40. [PMID: 39749702 PMCID: PMC11758895 DOI: 10.3892/ijmm.2024.5481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025] Open
Abstract
Cardiovascular disease (CVD) is currently a major factor affecting human physical and mental health. In recent years, the relationship between intracellular Ca2+ and CVD has been extensively studied. Ca2+ movement across the mitochondrial inner membrane plays a vital role as an intracellular messenger, regulating energy metabolism and calcium homeostasis. It is also involved in pathological processes such as cardiomyocyte apoptosis, hypertrophy and fibrosis in CVD. The selective mitochondrial calcium uniporter complex (MCU complex) located in the inner membrane is essential for mitochondrial Ca2+ uptake. Therefore, the MCU complex is a potential therapeutic target for CVD. In this review, recent research progress on the pathophysiological mechanisms and therapeutic potential of the MCU complex in various CVDs was summarized, including myocardial ischemia‑reperfusion injury, pulmonary arterial hypertension, other peripheral vascular diseases, myocardial remodeling and arrhythmias. This review contributes to a deeper understanding of these mechanisms at the molecular level and highlights potential intervention targets for CVD treatment in clinical practice.
Collapse
Affiliation(s)
- Yaling Li
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Hongmin Hu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Chun Chu
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| |
Collapse
|
4
|
Gherardi G, Weiser A, Bermont F, Migliavacca E, Brinon B, Jacot GE, Hermant A, Sturlese M, Nogara L, Vascon F, De Mario A, Mattarei A, Garratt E, Burton M, Lillycrop K, Godfrey KM, Cendron L, Barron D, Moro S, Blaauw B, Rizzuto R, Feige JN, Mammucari C, De Marchi U. Mitochondrial calcium uptake declines during aging and is directly activated by oleuropein to boost energy metabolism and skeletal muscle performance. Cell Metab 2025; 37:477-495.e11. [PMID: 39603237 DOI: 10.1016/j.cmet.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/24/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Mitochondrial calcium (mtCa2+) uptake via the mitochondrial calcium uniporter (MCU) couples calcium homeostasis and energy metabolism. mtCa2+ uptake via MCU is rate-limiting for mitochondrial activation during muscle contraction, but its pathophysiological role and therapeutic application remain largely uncharacterized. By profiling human muscle biopsies, patient-derived myotubes, and preclinical models, we discovered a conserved downregulation of mitochondrial calcium uniporter regulator 1 (MCUR1) during skeletal muscle aging that associates with human sarcopenia and impairs mtCa2+ uptake and mitochondrial respiration. Through a screen of 5,000 bioactive molecules, we identify the natural polyphenol oleuropein as a specific MCU activator that stimulates mitochondrial respiration via mitochondrial calcium uptake 1 (MICU1) binding. Oleuropein activates mtCa2+ uptake and energy metabolism to enhance endurance and reduce fatigue in young and aged mice but not in muscle-specific MCU knockout (KO) mice. Our work demonstrates that impaired mtCa2+ uptake contributes to mitochondrial dysfunction during aging and establishes oleuropein as a novel food-derived molecule that specifically targets MCU to stimulate mitochondrial bioenergetics and muscle performance.
Collapse
Affiliation(s)
- Gaia Gherardi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Anna Weiser
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produit Nestlé S.A., EPFL Innovation Park, 1015 Lausanne, Switzerland; Molecular Nutritional Medicine, Else Kröner Fresenius Center for Nutritional Medicine, Technische Universität München, 85354 Freising, Germany
| | - Flavien Bermont
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produit Nestlé S.A., EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Eugenia Migliavacca
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produit Nestlé S.A., EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Benjamin Brinon
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produit Nestlé S.A., EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Guillaume E Jacot
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produit Nestlé S.A., EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Aurélie Hermant
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produit Nestlé S.A., EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Filippo Vascon
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Andrea Mattarei
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Emma Garratt
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton & University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Mark Burton
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Karen Lillycrop
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton & University Hospital Southampton NHS Foundation Trust, Southampton, UK; Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Keith M Godfrey
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton & University Hospital Southampton NHS Foundation Trust, Southampton, UK; Medical Research Council Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
| | - Laura Cendron
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Denis Barron
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produit Nestlé S.A., EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Bert Blaauw
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Myology Center (CIR-Myo), University of Padova, 35131 Padova, Italy.
| | - Jerome N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produit Nestlé S.A., EPFL Innovation Park, 1015 Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Cristina Mammucari
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Myology Center (CIR-Myo), University of Padova, 35131 Padova, Italy.
| | - Umberto De Marchi
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produit Nestlé S.A., EPFL Innovation Park, 1015 Lausanne, Switzerland.
| |
Collapse
|
5
|
Wang J, Jiang J, Hu H, Chen L. MCU complex: Exploring emerging targets and mechanisms of mitochondrial physiology and pathology. J Adv Res 2025; 68:271-298. [PMID: 38417574 PMCID: PMC11785567 DOI: 10.1016/j.jare.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND Globally, the onset and progression of multiple human diseases are associated with mitochondrial dysfunction and dysregulation of Ca2+ uptake dynamics mediated by the mitochondrial calcium uniporter (MCU) complex, which plays a key role in mitochondrial dysfunction. Despite relevant studies, the underlying pathophysiological mechanisms have not yet been fully elucidated. AIM OF REVIEW This article provides an in-depth analysis of the current research status of the MCU complex, focusing on its molecular composition, regulatory mechanisms, and association with diseases. In addition, we conducted an in-depth analysis of the regulatory effects of agonists, inhibitors, and traditional Chinese medicine (TCM) monomers on the MCU complex and their application prospects in disease treatment. From the perspective of medicinal chemistry, we conducted an in-depth analysis of the structure-activity relationship between these small molecules and MCU and deduced potential pharmacophores and binding pockets. Simultaneously, key structural domains of the MCU complex in Homo sapiens were identified. We also studied the functional expression of the MCU complex in Drosophila, Zebrafish, and Caenorhabditis elegans. These analyses provide a basis for exploring potential treatment strategies targeting the MCU complex and provide strong support for the development of future precision medicine and treatments. KEY SCIENTIFIC CONCEPTS OF REVIEW The MCU complex exhibits varying behavior across different tissues and plays various roles in metabolic functions. It consists of six MCU subunits, an essential MCU regulator (EMRE), and solute carrier 25A23 (SLC25A23). They regulate processes, such as mitochondrial Ca2+ (mCa2+) uptake, mitochondrial adenosine triphosphate (ATP) production, calcium dynamics, oxidative stress (OS), and cell death. Regulation makes it a potential target for treating diseases, especially cardiovascular diseases, neurodegenerative diseases, inflammatory diseases, metabolic diseases, and tumors.
Collapse
Affiliation(s)
- Jin Wang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Jinyong Jiang
- Department of Pharmacy, The First Affiliated Hospital of Jishou University, Jishou 416000, China
| | - Haoliang Hu
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China; College of Medicine, Hunan University of Arts and Science, Changde 415000, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang 421001, China.
| |
Collapse
|
6
|
Sun B, Si N, Wei X, Wang H, Wang H, Liu Y, Jiang S, Liu H, Yang J, Xia B, Chen L, Bian B, Zhao H. Multi-omics reveals bufadienolide Q-markers of Bufonis Venenum based on antitumor activity and cardiovascular toxicity in zebrafish. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155914. [PMID: 39121534 DOI: 10.1016/j.phymed.2024.155914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Bufonis Venenum (BV) is a traditional animal-based Chinese medicine with therapeutic effects against cancer. However, its clinical use is significantly restricted due to associated cardiovascular risks. BV's value in China's market is typically assessed based on "content priority," focusing on indicator components. However, these components of BV possess both antitumor activity and toxicity, and the correlation between the antitumor activity and toxicity of BV has not yet been elucidated. PURPOSE This study employs an integrated multi-omics approach to identify bufadienolide Q-markers and explore the correlation between BV's antitumor activity and toxicity. The aim is to establish a more comprehensive method for BV's quality. METHODS Normal zebrafish and HepG2 xenograft zebrafish were chosen as activity and toxicity evaluation models. Ultra-high performance liquid chromatography (UHPLC) coupled with a linear ion trap orbitrap (LTQ-Orbitrap) mass spectrometry was used to quantify eight batches of BV and key "toxic and effective" components were screened out. Transcriptomic and metabolomic analyses were performed to elucidate the regulatory mechanisms underlying the antitumor activity and cardiovascular toxicity of the key components in BV. RESULTS Eight key "toxic and effective" compounds were identified: resibufogenin, cinobufagin, arenobufagin, bufotalin, bufalin, gamabufotalin, desacetylcinobufagin, and telocinobufagin. The findings showed that bufalin and cinobufagin interfered with calcium homeostasis through CaV and CaSR, induced cardiotoxicity, and upregulated CASP9 to activate myocardial cell apoptosis. However, desacetylcinobufagin exhibited greater potential in terms of anti-tumor effects. Combining the results of untargeted and targeted metabolomics revealed that desacetylcinobufagin could have a callback effect on differential lipids and correct abnormal energy and amino acid metabolism caused by cancer, similar to cinobufagin and bufalin. Microscale thermophoresis (MST) ligand binding measurements also showed that the binding of desacetylcinobufagin to GPX4 has a more potent ability to induce ferroptosis in tumor cells compared to cinobufagin. CONCLUSION An innovative evaluation method based on the zebrafish was developed to investigate the relationship between the toxicity and efficacy of BV. This study identified toxicity and activity Q-markers and explored the mechanism between the two effects of BV. The research data could offer valuable insights into the efficacy of BV. Additionally, desacetylcinobufagin, an active ingredient with low toxicity, was found to enhance the quality of BV.
Collapse
Affiliation(s)
- Bo Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaolu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huijun Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuyang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shan Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huining Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiaying Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bo Xia
- Hunter Biotechnology Inc., Zhejiang Hangzhou 310051, China
| | - Lihua Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
7
|
Toussaint A, Singh M, Wang G, Driscoll M, Bhatt V, Ndong JDLC, Shuaib S, Zoltowski H, Gilleran J, Peng Y, Tsymbal A, Jia D, Roberge J, Chiou H, Guo JY, Herranz D, Langenfeld J. BMP receptor 2 inhibition regulates mitochondrial bioenergetics to induce synergistic cell death with BCL-2 inhibitors in leukemia and NSLC cells. RESEARCH SQUARE 2024:rs.3.rs-5065904. [PMID: 39315260 PMCID: PMC11419183 DOI: 10.21203/rs.3.rs-5065904/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background Bone morphogenetic protein (BMP) signaling cascade is a phylogenetically conserved stem cell regulator that is aberrantly expressed in non-small cell lung cancer (NSLC) and leukemias. BMP signaling negatively regulates mitochondrial bioenergetics in lung cancer cells. The impact of inhibiting BMP signaling on mitochondrial bioenergetics and the effect this has on the survival of NSLC and leukemia cells are not known. Methods Utilizing the BMP type 2 receptor (BMPR2) JL189, BMPR2 knockout (KO) in cancer cells, and BMP loss of function mutants in C elegans, we determined the effects of BMPR2 inhibition (BMPR2i) on TCA cycle metabolic intermediates, mitochondrial respiration, and the regulation of mitochondrial superoxide anion (SOA) and Ca++ levels. We also examined whether BMPR2i altered the threshold cancer therapeutics induce cell death in NSLC and leukemia cell lines. KO of the mitochondria uniporter (MCU) was used to determine the mechanism BMPR2i regulates the uptake of Ca++ into the mitochondria, mitochondrial bioenergetics, and cell death. Results BMPR2i increases mtCa++ levels and enhances mitochondrial bioenergetics in both NSLC and leukemia cell lines that is conserved in C elegans. BMPR2i induced increase in mtCa++ levels is regulated through the MCU, effecting mitochondria mass and cell survival. BMPR2i synergistically induced cell death when combined with BCL-2 inhibitors or microtubule targeting agents in both NSLC and leukemia cells. Cell death is caused by synergistic increase in mitochondrial ROS and Ca++ levels. BMPR2i enhances Ca++ uptake into the mitochondria induced by reactive oxygen species (ROS) produced by cancer therapeutics. Both acute myeloid leukemia (AML) and T-cell lymphoblastic leukemia cells lines were more responsive to the JL189 alone and when combined with venetoclax or navitoclax compared to NSLC.
Collapse
|
8
|
Balderas E, Lee SHJ, Rai NK, Mollinedo DM, Duron HE, Chaudhuri D. Mitochondrial Calcium Regulation of Cardiac Metabolism in Health and Disease. Physiology (Bethesda) 2024; 39:0. [PMID: 38713090 PMCID: PMC11460536 DOI: 10.1152/physiol.00014.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Oxidative phosphorylation is regulated by mitochondrial calcium (Ca2+) in health and disease. In physiological states, Ca2+ enters via the mitochondrial Ca2+ uniporter and rapidly enhances NADH and ATP production. However, maintaining Ca2+ homeostasis is critical: insufficient Ca2+ impairs stress adaptation, and Ca2+ overload can trigger cell death. In this review, we delve into recent insights further defining the relationship between mitochondrial Ca2+ dynamics and oxidative phosphorylation. Our focus is on how such regulation affects cardiac function in health and disease, including heart failure, ischemia-reperfusion, arrhythmias, catecholaminergic polymorphic ventricular tachycardia, mitochondrial cardiomyopathies, Barth syndrome, and Friedreich's ataxia. Several themes emerge from recent data. First, mitochondrial Ca2+ regulation is critical for fuel substrate selection, metabolite import, and matching of ATP supply to demand. Second, mitochondrial Ca2+ regulates both the production and response to reactive oxygen species (ROS), and the balance between its pro- and antioxidant effects is key to how it contributes to physiological and pathological states. Third, Ca2+ exerts localized effects on the electron transport chain (ETC), not through traditional allosteric mechanisms but rather indirectly. These effects hinge on specific transporters, such as the uniporter or the Na+/Ca2+ exchanger, and may not be noticeable acutely, contributing differently to phenotypes depending on whether Ca2+ transporters are acutely or chronically modified. Perturbations in these novel relationships during disease states may either serve as compensatory mechanisms or exacerbate impairments in oxidative phosphorylation. Consequently, targeting mitochondrial Ca2+ holds promise as a therapeutic strategy for a variety of cardiac diseases characterized by contractile failure or arrhythmias.
Collapse
Affiliation(s)
- Enrique Balderas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Sandra H J Lee
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Neeraj K Rai
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - David M Mollinedo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Hannah E Duron
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, Biochemistry, Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
9
|
Guo J, Wang Y, Shi C, Zhang D, Zhang Q, Wang L, Gong Z. Mitochondrial calcium uniporter complex: Unveiling the interplay between its regulators and calcium homeostasis. Cell Signal 2024; 121:111284. [PMID: 38964444 DOI: 10.1016/j.cellsig.2024.111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The mitochondrial calcium uniporter complex (MCUc), serving as the specific channel for calcium influx into the mitochondrial matrix, is integral to calcium homeostasis and cellular integrity. Given its importance, ongoing research spans various disease models to understand the properties of the MCUc in pathophysiological contexts, but reported a different conclusion. Therefore, this review delves into the profound connection between MCUc-mediated calcium transients and cellular signaling pathways, mitochondrial dynamics, metabolism, and cell death. Additionally, we shed light on the recent advancements concerning the structural intricacies and auxiliary components of the MCUc in both resting and activated states. Furthermore, emphasis is placed on novel extrinsic and intrinsic regulators of the MCUc and their therapeutic implications across a spectrum of diseases. Meanwhile, we employed molecular docking simulations and identified candidate traditional Chinese medicine components with potential binding sites to the MCUc, potentially offering insights for further research on MCUc modulation.
Collapse
Affiliation(s)
- Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingqi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Rai AK, Sanghvi S, Muthukumaran NS, Chandrasekera D, Kadam A, Kishore J, Kyriazis ID, Tomar D, Ponnalagu D, Shettigar V, Khan M, Singh H, Goukassian D, Katare R, Garikipati VNS. Role of mitochondrial ribosomal protein L7/L12 (MRPL12) in diabetic ischemic heart disease. Free Radic Biol Med 2024; 222:531-538. [PMID: 38977138 DOI: 10.1016/j.freeradbiomed.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Myocardial infarction (MI) is a significant cause of death in diabetic patients. Growing evidence suggests that mitochondrial dysfunction contributes to heart failure in diabetes. However, the molecular mechanisms of mitochondrial dysfunction mediating heart failure in diabetes are still poorly understood. METHODS We examined MRPL12 levels in right atrial appendage tissues from diabetic patients undergoing coronary artery bypass graft (CABG) surgery. Using AC-16 cells overexpressing MRPL12 under normal and hyperglycemic conditions we performed mitochondrial functional assays OXPHOS, bioenergetics, mitochondrial membrane potential, ATP production and cell death. RESULTS We observed elevated MRPL12 levels in heart tissue samples from diabetic patients with ischemic heart disease compared to non-diabetic patients. Overexpression of MRPL12 under hyperglycemic conditions did not affect oxidative phosphorylation (OXPHOS) levels, cellular ATP levels, or cardiomyocyte cell death. However, notable impairment in mitochondrial membrane potential (MMP) was observed under hyperglycemic conditions, along with alterations in both basal respiration oxygen consumption rate (OCR) and maximal respiratory capacity OCR. CONCLUSIONS Overall, our results suggest that MRPL12 may have a compensatory role in the diabetic myocardium with ischemic heart disease, suggesting that MRPL12 may implicate in the pathophysiology of MI in diabetes.
Collapse
MESH Headings
- Aged
- Animals
- Female
- Humans
- Male
- Middle Aged
- Adenosine Triphosphate/metabolism
- Atrial Appendage/metabolism
- Atrial Appendage/pathology
- Coronary Artery Bypass
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/complications
- Membrane Potential, Mitochondrial
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/genetics
- Mitochondrial Proteins/metabolism
- Mitochondrial Proteins/genetics
- Myocardial Ischemia/metabolism
- Myocardial Ischemia/pathology
- Myocardial Ischemia/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidative Phosphorylation
- Ribosomal Proteins/metabolism
- Ribosomal Proteins/genetics
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
Collapse
Affiliation(s)
- Amit Kumar Rai
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Shridhar Sanghvi
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
| | | | - Dhananjie Chandrasekera
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ashlesha Kadam
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jahnavi Kishore
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Ioannis D Kyriazis
- Department of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Dhanendra Tomar
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Devasena Ponnalagu
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Vikram Shettigar
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Mahmood Khan
- Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - David Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, USA; Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
11
|
Lebas M, Chinigò G, Courmont E, Bettaieb L, Machmouchi A, Goveia J, Beatovic A, Van Kerckhove J, Robil C, Angulo FS, Vedelago M, Errerd A, Treps L, Gao V, Delgado De la Herrán HC, Mayeuf-Louchart A, L’homme L, Chamlali M, Dejos C, Gouyer V, Garikipati VNS, Tomar D, Yin H, Fukui H, Vinckier S, Stolte A, Conradi LC, Infanti F, Lemonnier L, Zeisberg E, Luo Y, Lin L, Desseyn JL, Pickering G, Kishore R, Madesh M, Dombrowicz D, Perocchi F, Staels B, Pla AF, Gkika D, Cantelmo AR. Integrated single-cell RNA-seq analysis reveals mitochondrial calcium signaling as a modulator of endothelial-to-mesenchymal transition. SCIENCE ADVANCES 2024; 10:eadp6182. [PMID: 39121218 PMCID: PMC11313856 DOI: 10.1126/sciadv.adp6182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
Endothelial cells (ECs) are highly plastic, capable of differentiating into various cell types. Endothelial-to-mesenchymal transition (EndMT) is crucial during embryonic development and contributes substantially to vascular dysfunction in many cardiovascular diseases (CVDs). While targeting EndMT holds therapeutic promise, understanding its mechanisms and modulating its pathways remain challenging. Using single-cell RNA sequencing on three in vitro EndMT models, we identified conserved gene signatures. We validated original regulators in vitro and in vivo during embryonic heart development and peripheral artery disease. EndMT induction led to global expression changes in all EC subtypes rather than in mesenchymal clusters. We identified mitochondrial calcium uptake as a key driver of EndMT; inhibiting mitochondrial calcium uniporter (MCU) prevented EndMT in vitro, and conditional Mcu deletion in ECs blocked mesenchymal activation in a hind limb ischemia model. Tissues from patients with critical limb ischemia with EndMT features exhibited significantly elevated endothelial MCU. These findings highlight MCU as a regulator of EndMT and a potential therapeutic target.
Collapse
Affiliation(s)
- Mathilde Lebas
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Evan Courmont
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Louay Bettaieb
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Amani Machmouchi
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | | | | | | | - Cyril Robil
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Fabiola Silva Angulo
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Mauro Vedelago
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Alina Errerd
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
- Molecular Biosciences/Cancer Biology Program, Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lucas Treps
- Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France
| | - Vance Gao
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | | | - Alicia Mayeuf-Louchart
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Laurent L’homme
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Mohamed Chamlali
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Camille Dejos
- INSERM, U1003 - PHYCEL - Physiologie Cellulaire, Université de Lille, F-59000 Lille, France
| | - Valérie Gouyer
- Université de Lille, Inserm, CHU Lille, U1286 Infinite, F-59000 Lille, France
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Dhanendra Tomar
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Hao Yin
- Robarts Research Institute, Western University, London, Canada
| | - Hajime Fukui
- National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Anneke Stolte
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany
| | | | - Loic Lemonnier
- INSERM, U1003 - PHYCEL - Physiologie Cellulaire, Université de Lille, F-59000 Lille, France
| | - Elisabeth Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jean-Luc Desseyn
- Université de Lille, Inserm, CHU Lille, U1286 Infinite, F-59000 Lille, France
| | - Geoffrey Pickering
- Robarts Research Institute, Western University, London, Canada
- Department of Medicine, Biochemistry, and Medical Biophysics, Western University, London, Canada
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140 USA
| | - Muniswamy Madesh
- Department of Medicine, Center for Mitochondrial Medicine, Division of Cardiology, University of Texas Health San Antonio, San Antonio, TX 78229 USA
| | - David Dombrowicz
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Fabiana Perocchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Bart Staels
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
- INSERM, U1003 - PHYCEL - Physiologie Cellulaire, Université de Lille, F-59000 Lille, France
| | - Dimitra Gkika
- Université de Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Anna Rita Cantelmo
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| |
Collapse
|
12
|
Vue Z, Murphy A, Le H, Neikirk K, Garza-Lopez E, Marshall AG, Mungai M, Jenkins B, Vang L, Beasley HK, Ezedimma M, Manus S, Whiteside A, Forni MF, Harris C, Crabtree A, Albritton CF, Jamison S, Demirci M, Prasad P, Oliver A, Actkins KV, Shao J, Zaganjor E, Scudese E, Rodriguez B, Koh A, Rabago I, Moore JE, Nguyen D, Aftab M, Kirk B, Li Y, Wandira N, Ahmad T, Saleem M, Kadam A, Katti P, Koh HJ, Evans C, Koo YD, Wang E, Smith Q, Tomar D, Williams CR, Sweetwyne MT, Quintana AM, Phillips MA, Hubert D, Kirabo A, Dash C, Jadiya P, Kinder A, Ajijola OA, Miller-Fleming TW, McReynolds MR, Hinton A. MICOS Complex Loss Governs Age-Associated Murine Mitochondrial Architecture and Metabolism in the Liver, While Sam50 Dictates Diet Changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599846. [PMID: 38979162 PMCID: PMC11230271 DOI: 10.1101/2024.06.20.599846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The liver, the largest internal organ and a metabolic hub, undergoes significant declines due to aging, affecting mitochondrial function and increasing the risk of systemic liver diseases. How the mitochondrial three-dimensional (3D) structure changes in the liver across aging, and the biological mechanisms regulating such changes confers remain unclear. In this study, we employed Serial Block Face-Scanning Electron Microscopy (SBF-SEM) to achieve high-resolution 3D reconstructions of murine liver mitochondria to observe diverse phenotypes and structural alterations that occur with age, marked by a reduction in size and complexity. We also show concomitant metabolomic and lipidomic changes in aged samples. Aged human samples reflected altered disease risk. To find potential regulators of this change, we examined the Mitochondrial Contact Site and Cristae Organizing System (MICOS) complex, which plays a crucial role in maintaining mitochondrial architecture. We observe that the MICOS complex is lost during aging, but not Sam50. Sam50 is a component of the sorting and assembly machinery (SAM) complex that acts in tandem with the MICOS complex to modulate cristae morphology. In murine models subjected to a high-fat diet, there is a marked depletion of the mitochondrial protein SAM50. This reduction in Sam50 expression may heighten the susceptibility to liver disease, as our human biobank studies corroborate that Sam50 plays a genetically regulated role in the predisposition to multiple liver diseases. We further show that changes in mitochondrial calcium dysregulation and oxidative stress accompany the disruption of the MICOS complex. Together, we establish that a decrease in mitochondrial complexity and dysregulated metabolism occur with murine liver aging. While these changes are partially be regulated by age-related loss of the MICOS complex, the confluence of a murine high-fat diet can also cause loss of Sam50, which contributes to liver diseases. In summary, our study reveals potential regulators that affect age-related changes in mitochondrial structure and metabolism, which can be targeted in future therapeutic techniques.
Collapse
Affiliation(s)
- Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alexandria Murphy
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Brenita Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Mariaassumpta Ezedimma
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sasha Manus
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Maria Fernanda Forni
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Chanel Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208-3501, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Claude F. Albritton
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208-3501, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sydney Jamison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mert Demirci
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ky’Era V. Actkins
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Benjamin Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Izabella Rabago
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Johnathan E. Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Desiree Nguyen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Muhammad Aftab
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Benjamin Kirk
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Yahang Li
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Nelson Wandira
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Taseer Ahmad
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab,40100, Pakistan
| | - Mohammad Saleem
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, 517619, India
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Chantell Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Young Do Koo
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, Iowa, USA1
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Dhanendra Tomar
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab,40100, Pakistan
| | - Clintoria R. Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Mariya T. Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Anita M. Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Mark A. Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - David Hubert
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232, USA
- Vanderbilt Institute for Global Health, Nashville, TN, 37232, USA
| | - Chandravanu Dash
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN, United States
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - André Kinder
- Artur Sá Earp Neto University Center – UNIFASE-FMP, Petrópolis Medical School, Brazil
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, CA, USA
| | - Tyne W. Miller-Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
13
|
Amjid U, Aziz U, Habib U, Jabeen I. Biological regulatory network analysis for targeting the mitochondrial calcium uniporter (MCU) mediated calcium (Ca 2+) transport in neurodegenerative disorders. Cell Biochem Funct 2024; 42:e4082. [PMID: 38944766 DOI: 10.1002/cbf.4082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
Calcium (Ca2+) has been observed as the most important ion involved in a series of cellular processes and its homeostasis is critical for normal cellular functions. Mitochondrial calcium uniporter (MCU) complex has been recognized as the most important calcium-specific channel located in the inner mitochondrial membrane and is one of the major players in maintaining the Ca2+ homeostasis by transporting Ca2+ across the mitochondrial membrane. Furthermore, dysregulation of the mitochondrial Ca2+ homeostasis has been orchestrated to neurodegenerative response. This necessitates quantitative evaluation of the MCU-dependent mROS production and subsequent cellular responses for more specific therapeutic interventions against neurodegenerative disorders. Towards this goal, here we present a biological regulatory network of MCU to dynamically simulate the MCU-mediated ROS production and its response in neurodegeneration. Previously, ruthenium complex RuRed and its derivatives have been reported to show low nM to high µM potency against MCU to maintain cytosolic Ca2+ (cCa2+) homeostasis by modulating mitochondrial Ca2+ (mCa2+) uptake. Therefore, structural modeling and dynamic simulation of MCU pore-forming subunit is performed to probe the interaction profiling of previously reported Ru265 and its derivatives compounds with MCU. The current study highlighted MCU as a potential drug target in neurodegenerative disorders. Furthermore, ASP261 and GLU264 amino acid residues in DIME motif of MCU pore-forming subunits are identified as crucial for modulating the activity of MCU in neurodegenerative disorders.
Collapse
Affiliation(s)
- Umar Amjid
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences & Technology (NUST), Islamabad, Pakistan
- Department of Paediatrics and Child Health, Medical College, Aga Khan University Hospital, Karachi, Pakistan
| | - Ubair Aziz
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Uzma Habib
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Ishrat Jabeen
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
14
|
Vecellio Reane D, Serna JDC, Raffaello A. Unravelling the complexity of the mitochondrial Ca 2+ uniporter: regulation, tissue specificity, and physiological implications. Cell Calcium 2024; 121:102907. [PMID: 38788256 DOI: 10.1016/j.ceca.2024.102907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Calcium (Ca2+) signalling acts a pleiotropic message within the cell that is decoded by the mitochondria through a sophisticated ion channel known as the Mitochondrial Ca2+ Uniporter (MCU) complex. Under physiological conditions, mitochondrial Ca2+ signalling is crucial for coordinating cell activation with energy production. Conversely, in pathological scenarios, it can determine the fine balance between cell survival and death. Over the last decade, significant progress has been made in understanding the molecular bases of mitochondrial Ca2+ signalling. This began with the elucidation of the MCU channel components and extended to the elucidation of the mechanisms that regulate its activity. Additionally, increasing evidence suggests molecular mechanisms allowing tissue-specific modulation of the MCU complex, tailoring channel activity to the specific needs of different tissues or cell types. This review aims to explore the latest evidence elucidating the regulation of the MCU complex, the molecular factors controlling the tissue-specific properties of the channel, and the physiological and pathological implications of mitochondrial Ca2+ signalling in different tissues.
Collapse
Affiliation(s)
- Denis Vecellio Reane
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum Munich, Germany.
| | - Julian D C Serna
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Anna Raffaello
- Department of Biomedical Sciences, University of Padova, Italy.
| |
Collapse
|
15
|
Colussi DM, Stathopulos PB. The mitochondrial calcium uniporter: Balancing tumourigenic and anti-tumourigenic responses. J Physiol 2024; 602:3315-3339. [PMID: 38857425 DOI: 10.1113/jp285515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
Increased malignancy and poor treatability associated with solid tumour cancers have commonly been attributed to mitochondrial calcium (Ca2+) dysregulation. The mitochondrial Ca2+ uniporter complex (mtCU) is the predominant mode of Ca2+ uptake into the mitochondrial matrix. The main components of mtCU are the pore-forming mitochondrial Ca2+ uniporter (MCU) subunit, MCU dominant-negative beta (MCUb) subunit, essential MCU regulator (EMRE) and the gatekeeping mitochondrial Ca2+ uptake 1 and 2 (MICU1 and MICU2) proteins. In this review, we describe mtCU-mediated mitochondrial Ca2+ dysregulation in solid tumour cancer types, finding enhanced mtCU activity observed in colorectal cancer, breast cancer, oral squamous cell carcinoma, pancreatic cancer, hepatocellular carcinoma and embryonal rhabdomyosarcoma. By contrast, decreased mtCU activity is associated with melanoma, whereas the nature of mtCU dysregulation remains unclear in glioblastoma. Furthermore, we show that numerous polymorphisms associated with cancer may alter phosphorylation sites on the pore forming MCU and MCUb subunits, which cluster at interfaces with EMRE. We highlight downstream/upstream biomolecular modulators of MCU and MCUb that alter mtCU-mediated mitochondrial Ca2+ uptake and may be used as biomarkers or to aid in the development of novel cancer therapeutics. Additionally, we provide an overview of the current small molecule inhibitors of mtCU that interact with the Asp residue of the critical Asp-Ile-Met-Glu motif or through other allosteric regulatory mechanisms to block Ca2+ permeation. Finally, we describe the relationship between MCU- and MCUb-mediating microRNAs and mitochondrial Ca2+ uptake that should be considered in the discovery of new treatment approaches for cancer.
Collapse
Affiliation(s)
- Danielle M Colussi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
16
|
Ge WD, Du TT, Wang CY, Sun LN, Wang YQ. Calcium signaling crosstalk between the endoplasmic reticulum and mitochondria, a new drug development strategies of kidney diseases. Biochem Pharmacol 2024; 225:116278. [PMID: 38740223 DOI: 10.1016/j.bcp.2024.116278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Calcium (Ca2+) acts as a second messenger and constitutes a complex and large information exchange system between the endoplasmic reticulum (ER) and mitochondria; this process is involved in various life activities, such as energy metabolism, cell proliferation and apoptosis. Increasing evidence has suggested that alterations in Ca2+ crosstalk between the ER and mitochondria, including alterations in ER and mitochondrial Ca2+ channels and related Ca2+ regulatory proteins, such as sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), inositol 1,4,5-trisphosphate receptor (IP3R), and calnexin (CNX), are closely associated with the development of kidney disease. Therapies targeting intracellular Ca2+ signaling have emerged as an emerging field in the treatment of renal diseases. In this review, we focused on recent advances in Ca2+ signaling, ER and mitochondrial Ca2+ monitoring methods and Ca2+ homeostasis in the development of renal diseases and sought to identify new targets and insights for the treatment of renal diseases by targeting Ca2+ channels or related Ca2+ regulatory proteins.
Collapse
Affiliation(s)
- Wen-Di Ge
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Tian-Tian Du
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Cao-Yang Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China.
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
17
|
Noble M, Colussi DM, Junop M, Stathopulos PB. The MCU and MCUb amino-terminal domains tightly interact: mechanisms for low conductance assembly of the mitochondrial calcium uniporter complex. iScience 2024; 27:109699. [PMID: 38706857 PMCID: PMC11068563 DOI: 10.1016/j.isci.2024.109699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/12/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
The mitochondrial calcium (Ca2+) uniporter (MCU) complex is regulated via integration of the MCU dominant negative beta subunit (MCUb), a low conductance paralog of the main MCU pore forming protein. The MCU amino (N)-terminal domain (NTD) also modulates channel function through cation binding to the MCU regulating acidic patch (MRAP). MCU and MCUb have high sequence similarities, yet the structural and functional roles of MCUb-NTD remain unknown. Here, we report that MCUb-NTD exhibits α-helix/β-sheet structure with a high thermal stability, dependent on protein concentration. Remarkably, MCU- and MCUb-NTDs heteromerically interact with ∼nM affinity, increasing secondary structure and stability and structurally perturbing MRAP. Further, we demonstrate MCU and MCUb co-localization is suppressed upon NTD deletion concomitant with increased mitochondrial Ca2+ uptake. Collectively, our data show that MCU:MCUb NTD tight interactions are promoted by enhanced regular structure and stability, augmenting MCU:MCUb co-localization, lowering mitochondrial Ca2+ uptake and implicating an MRAP-sensing mechanism.
Collapse
Affiliation(s)
- Megan Noble
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada
| | - Danielle M. Colussi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada
| | - Murray Junop
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada
| |
Collapse
|
18
|
Ponnusamy T, Velusamy P, Shanmughapriya S. Mrs2-mediated mitochondrial magnesium uptake is essential for the regulation of MCU-mediated mitochondrial Ca 2+ uptake and viability. Mitochondrion 2024; 76:101877. [PMID: 38599304 DOI: 10.1016/j.mito.2024.101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/07/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Mitochondrial Ca2+ uptake is essential in regulating bioenergetics, cell death, and cytosolic Ca2+ transients. Mitochondrial Calcium Uniporter (MCU) mediates the mitochondrial Ca2+ uptake. Though MCU regulation by MICUs is unequivocally established, there needs to be more knowledge of whether divalent cations regulate MCU. Here, we set out to understand the mitochondrial matrix Mg2+-dependent regulation of MCU activity. We showed that decreased matrix [Mg2+] is associated with increased MCU activity and significantly prompted mitochondrial permeability transition pore opening. Our findings support the critical role of mMg2+ in regulating MCU activity.
Collapse
Affiliation(s)
- Thiruvelselvan Ponnusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Prema Velusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
19
|
Goujon M, Liang Z, Soriano-Castell D, Currais A, Maher P. The Neuroprotective Flavonoids Sterubin and Fisetin Maintain Mitochondrial Health under Oxytotic/Ferroptotic Stress and Improve Bioenergetic Efficiency in HT22 Neuronal Cells. Antioxidants (Basel) 2024; 13:460. [PMID: 38671908 PMCID: PMC11047672 DOI: 10.3390/antiox13040460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The global increase in the aging population has led to a rise in many age-related diseases with continuing unmet therapeutic needs. Research into the molecular mechanisms underlying both aging and neurodegeneration has identified promising therapeutic targets, such as the oxytosis/ferroptosis cell death pathway, in which mitochondrial dysfunction plays a critical role. This study focused on sterubin and fisetin, two flavonoids from the natural pharmacopeia previously identified as strong inhibitors of the oxytosis/ferroptosis pathway. Here, we investigated the effects of the compounds on the mitochondrial physiology in HT22 hippocampal nerve cells under oxytotic/ferroptotic stress. We show that the compounds can restore mitochondrial homeostasis at the level of redox regulation, calcium uptake, biogenesis, fusion/fission dynamics, and modulation of respiration, leading to the enhancement of bioenergetic efficiency. However, mitochondria are not required for the neuroprotective effects of sterubin and fisetin, highlighting their diverse homeostatic impacts. Sterubin and fisetin, thus, provide opportunities to expand drug development strategies for anti-oxytotic/ferroptotic agents and offer new perspectives on the intricate interplay between mitochondrial function, cellular stress, and the pathophysiology of aging and age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Marie Goujon
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, San Diego, CA 92037, USA
| | - Zhibin Liang
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, San Diego, CA 92037, USA
| | - David Soriano-Castell
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, San Diego, CA 92037, USA
| | - Antonio Currais
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, San Diego, CA 92037, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, San Diego, CA 92037, USA
| |
Collapse
|
20
|
Bharat V, Durairaj AS, Vanhauwaert R, Li L, Muir CM, Chandra S, Kwak CS, Le Guen Y, Nandakishore P, Hsieh CH, Rensi SE, Altman RB, Greicius MD, Feng L, Wang X. A mitochondrial inside-out iron-calcium signal reveals drug targets for Parkinson's disease. Cell Rep 2023; 42:113544. [PMID: 38060381 PMCID: PMC10804639 DOI: 10.1016/j.celrep.2023.113544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/11/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Dysregulated iron or Ca2+ homeostasis has been reported in Parkinson's disease (PD) models. Here, we discover a connection between these two metals at the mitochondria. Elevation of iron levels causes inward mitochondrial Ca2+ overflow, through an interaction of Fe2+ with mitochondrial calcium uniporter (MCU). In PD neurons, iron accumulation-triggered Ca2+ influx across the mitochondrial surface leads to spatially confined Ca2+ elevation at the outer mitochondrial membrane, which is subsequently sensed by Miro1, a Ca2+-binding protein. A Miro1 blood test distinguishes PD patients from controls and responds to drug treatment. Miro1-based drug screens in PD cells discover Food and Drug Administration-approved T-type Ca2+-channel blockers. Human genetic analysis reveals enrichment of rare variants in T-type Ca2+-channel subtypes associated with PD status. Our results identify a molecular mechanism in PD pathophysiology and drug targets and candidates coupled with a convenient stratification method.
Collapse
Affiliation(s)
- Vinita Bharat
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aarooran S Durairaj
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roeland Vanhauwaert
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Li Li
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Colin M Muir
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Graduate Program of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sujyoti Chandra
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chulhwan S Kwak
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Institut du Cerveau - Paris Brain Institute - ICM, 75013 Paris, France
| | | | - Chung-Han Hsieh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stefano E Rensi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Russ B Altman
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
21
|
Yan X, Zhang Q, Ma X, Zhong Y, Tang H, Mai S. The mechanism of biomineralization: Progress in mineralization from intracellular generation to extracellular deposition. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:181-190. [PMID: 37388714 PMCID: PMC10302165 DOI: 10.1016/j.jdsr.2023.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Biomineralization is a highly regulated process that results in the deposition of minerals in a precise manner, ultimately producing skeletal and dental hard tissues. Recent studies have highlighted the crucial role played by intracellular processes in initiating biomineralization. These processes involve various organelles, such as the endoplasmic reticulum(ER), mitochondria, and lysosomes, in the formation, accumulation, maturation, and secretion of calcium phosphate (CaP) particles. Particularly, the recent in-depth study of the dynamic process of the formation of amorphous calcium phosphate(ACP) precursors among organelles has made great progress in the development of the integrity of the biomineralization chain. However, the precise mechanisms underlying these intracellular processes remain unclear, and they cannot be fully integrated with the extracellular mineralization mechanism and the physicochemical structure development of the mineralization particles. In this review, we aim to focus on the recent progress made in understanding intracellular mineralization organelles' processes and their relationship with the physicochemical structure development of CaP and extracellular deposition of CaP particles.
Collapse
Affiliation(s)
- Xin Yan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xinyue Ma
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yewen Zhong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hengni Tang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Sui Mai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Di Leo V, Bernardino Gomes TM, Vincent AE. Interactions of mitochondrial and skeletal muscle biology in mitochondrial myopathy. Biochem J 2023; 480:1767-1789. [PMID: 37965929 PMCID: PMC10657187 DOI: 10.1042/bcj20220233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Mitochondrial dysfunction in skeletal muscle fibres occurs with both healthy aging and a range of neuromuscular diseases. The impact of mitochondrial dysfunction in skeletal muscle and the way muscle fibres adapt to this dysfunction is important to understand disease mechanisms and to develop therapeutic interventions. Furthermore, interactions between mitochondrial dysfunction and skeletal muscle biology, in mitochondrial myopathy, likely have important implications for normal muscle function and physiology. In this review, we will try to give an overview of what is known to date about these interactions including metabolic remodelling, mitochondrial morphology, mitochondrial turnover, cellular processes and muscle cell structure and function. Each of these topics is at a different stage of understanding, with some being well researched and understood, and others in their infancy. Furthermore, some of what we know comes from disease models. Whilst some findings are confirmed in humans, where this is not yet the case, we must be cautious in interpreting findings in the context of human muscle and disease. Here, our goal is to discuss what is known, highlight what is unknown and give a perspective on the future direction of research in this area.
Collapse
Affiliation(s)
- Valeria Di Leo
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
| | - Tiago M. Bernardino Gomes
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Amy E. Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
| |
Collapse
|
23
|
Lee SH, Duron HE, Chaudhuri D. Beyond the TCA cycle: new insights into mitochondrial calcium regulation of oxidative phosphorylation. Biochem Soc Trans 2023; 51:1661-1673. [PMID: 37641565 PMCID: PMC10508640 DOI: 10.1042/bst20230012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
While mitochondria oxidative phosphorylation is broadly regulated, the impact of mitochondrial Ca2+ on substrate flux under both physiological and pathological conditions is increasingly being recognized. Under physiologic conditions, mitochondrial Ca2+ enters through the mitochondrial Ca2+ uniporter and boosts ATP production. However, maintaining Ca2+ homeostasis is crucial as too little Ca2+ inhibits adaptation to stress and Ca2+ overload can trigger cell death. In this review, we discuss new insights obtained over the past several years expanding the relationship between mitochondrial Ca2+ and oxidative phosphorylation, with most data obtained from heart, liver, or skeletal muscle. Two new themes are emerging. First, beyond boosting ATP synthesis, Ca2+ appears to be a critical determinant of fuel substrate choice between glucose and fatty acids. Second, Ca2+ exerts local effects on the electron transport chain indirectly, not via traditional allosteric mechanisms. These depend critically on the transporters involved, such as the uniporter or the Na+-Ca2+ exchanger. Alteration of these new relationships during disease can be either compensatory or harmful and suggest that targeting mitochondrial Ca2+ may be of therapeutic benefit during diseases featuring impairments in oxidative phosphorylation.
Collapse
Affiliation(s)
- Sandra H. Lee
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
| | - Hannah E. Duron
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, Biochemistry, Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
24
|
Popoiu TA, Maack C, Bertero E. Mitochondrial calcium signaling and redox homeostasis in cardiac health and disease. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1235188. [PMID: 39086688 PMCID: PMC11285591 DOI: 10.3389/fmmed.2023.1235188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/10/2023] [Indexed: 08/02/2024]
Abstract
The energy demand of cardiomyocytes changes continuously in response to variations in cardiac workload. Cardiac excitation-contraction coupling is fueled primarily by adenosine triphosphate (ATP) production by oxidative phosphorylation in mitochondria. The rate of mitochondrial oxidative metabolism is matched to the rate of ATP consumption in the cytosol by the parallel activation of oxidative phosphorylation by calcium (Ca2+) and adenosine diphosphate (ADP). During cardiac workload transitions, Ca2+ accumulates in the mitochondrial matrix, where it stimulates the activity of the tricarboxylic acid cycle. In this review, we describe how mitochondria internalize and extrude Ca2+, the relevance of this process for ATP production and redox homeostasis in the healthy heart, and how derangements in ion handling cause mitochondrial and cardiomyocyte dysfunction in heart failure.
Collapse
Affiliation(s)
- Tudor-Alexandru Popoiu
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
- “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Edoardo Bertero
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
- Chair of Cardiovascular Disease, Department of Internal Medicine and Specialties, University of Genoa, Genova, Italy
| |
Collapse
|
25
|
Kadam A, Jadiya P, Tomar D. Post-translational modifications and protein quality control of mitochondrial channels and transporters. Front Cell Dev Biol 2023; 11:1196466. [PMID: 37601094 PMCID: PMC10434574 DOI: 10.3389/fcell.2023.1196466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Mitochondria play a critical role in energy metabolism and signal transduction, which is tightly regulated by proteins, metabolites, and ion fluxes. Metabolites and ion homeostasis are mainly mediated by channels and transporters present on mitochondrial membranes. Mitochondria comprise two distinct compartments, the outer mitochondrial membrane (OMM) and the inner mitochondrial membrane (IMM), which have differing permeabilities to ions and metabolites. The OMM is semipermeable due to the presence of non-selective molecular pores, while the IMM is highly selective and impermeable due to the presence of specialized channels and transporters which regulate ion and metabolite fluxes. These channels and transporters are modulated by various post-translational modifications (PTMs), including phosphorylation, oxidative modifications, ions, and metabolites binding, glycosylation, acetylation, and others. Additionally, the mitochondrial protein quality control (MPQC) system plays a crucial role in ensuring efficient molecular flux through the mitochondrial membranes by selectively removing mistargeted or defective proteins. Inefficient functioning of the transporters and channels in mitochondria can disrupt cellular homeostasis, leading to the onset of various pathological conditions. In this review, we provide a comprehensive overview of the current understanding of mitochondrial channels and transporters in terms of their functions, PTMs, and quality control mechanisms.
Collapse
Affiliation(s)
- Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
26
|
Li C, Sun J, Zhang X, Zhou M, Gan X. Implications of MCU complex in metabolic diseases. FASEB J 2023; 37:e23046. [PMID: 37389546 DOI: 10.1096/fj.202300218r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Metabolic diseases are considered the primary culprit for physical and mental health of individuals. Although the diagnosis of these diseases is relatively easy, more effective and convenient potent drugs are still being explored. Ca2+ across the inner mitochondrial membrane is a vital intracellular messenger that regulates energy metabolism and cellular Ca2+ homeostasis and is involved in cell death. Mitochondria rely on a selective mitochondrial Ca2+ unidirectional transport complex (MCU complex) in their inner membrane for Ca2+ uptake. We found that the channel contains several subunits and undergoes dramatic transformations in various pathological processes, especially in metabolic diseases. In this way, we believe that the MCU complex becomes a target with significant potential for these diseases. However, there is no review linking the two factors, thus hindering the possibility of new drug production. Here, we highlight the connection between MCU complex-related Ca2+ transport and the pathophysiology of metabolic diseases, adding understanding and insight at the molecular level to provide new insights for targeting MCU to reverse metabolism-related diseases.
Collapse
Affiliation(s)
- Chen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jiyu Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Xidan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Min Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Xueqi Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Ponnusamy T, Velusamy P, Kumar A, Morris D, Zhang X, Ning G, Klinger M, Copper JE, Rajan S, Cheung JY, Natarajaseenivasan K, Mnatsakanyan N, Shanmughapriya S. Mitochondrial Magnesium is the cationic rheostat for MCU-mediated mitochondrial Ca 2+ uptake. RESEARCH SQUARE 2023:rs.3.rs-3088175. [PMID: 37502932 PMCID: PMC10371168 DOI: 10.21203/rs.3.rs-3088175/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Calcium (Ca2+) uptake by mitochondria is essential in regulating bioenergetics, cell death, and cytosolic Ca2+ transients. Mitochondrial Calcium Uniporter (MCU) mediates the mitochondrial Ca2+ uptake. MCU is a heterooligomeric complex with a pore-forming component and accessory proteins required for channel activity. Though MCU regulation by MICUs is unequivocally established, there needs to be more knowledge of whether divalent cations regulate MCU. Here we set out to understand the mitochondrial matrix Mg2+-dependent regulation of MCU activity. We showed Mrs2 as the authentic mammalian mitochondrial Mg2+ channel using the planar lipid bilayer recordings. Using a liver-specific Mrs2 KO mouse model, we showed that decreased matrix [Mg2+] is associated with increased MCU activity and matrix Ca2+ overload. The disruption of Mg2+dependent MCU regulation significantly prompted mitochondrial permeability transition pore opening-mediated cell death during tissue IR injury. Our findings support a critical role for mMg2+ in regulating MCU activity and attenuating mCa2+ overload.
Collapse
Affiliation(s)
- Thiruvelselvan Ponnusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Prema Velusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Amrendra Kumar
- Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Daniel Morris
- Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Xueqian Zhang
- Cardiovascular Medicine, Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Gang Ning
- Microscopy Core Facility, Penn State Huck Institutes of the Life Sciences, University Park, PA 16802, USA
| | - Marianne Klinger
- Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Jean E. Copper
- Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Sudarsan Rajan
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Joseph Y Cheung
- Department of Renal Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Nelli Mnatsakanyan
- Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
28
|
Novorolsky RJ, Kasheke GDS, Hakim A, Foldvari M, Dorighello GG, Sekler I, Vuligonda V, Sanders ME, Renden RB, Wilson JJ, Robertson GS. Preserving and enhancing mitochondrial function after stroke to protect and repair the neurovascular unit: novel opportunities for nanoparticle-based drug delivery. Front Cell Neurosci 2023; 17:1226630. [PMID: 37484823 PMCID: PMC10360135 DOI: 10.3389/fncel.2023.1226630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
The neurovascular unit (NVU) is composed of vascular cells, glia, and neurons that form the basic component of the blood brain barrier. This intricate structure rapidly adjusts cerebral blood flow to match the metabolic needs of brain activity. However, the NVU is exquisitely sensitive to damage and displays limited repair after a stroke. To effectively treat stroke, it is therefore considered crucial to both protect and repair the NVU. Mitochondrial calcium (Ca2+) uptake supports NVU function by buffering Ca2+ and stimulating energy production. However, excessive mitochondrial Ca2+ uptake causes toxic mitochondrial Ca2+ overloading that triggers numerous cell death pathways which destroy the NVU. Mitochondrial damage is one of the earliest pathological events in stroke. Drugs that preserve mitochondrial integrity and function should therefore confer profound NVU protection by blocking the initiation of numerous injury events. We have shown that mitochondrial Ca2+ uptake and efflux in the brain are mediated by the mitochondrial Ca2+ uniporter complex (MCUcx) and sodium/Ca2+/lithium exchanger (NCLX), respectively. Moreover, our recent pharmacological studies have demonstrated that MCUcx inhibition and NCLX activation suppress ischemic and excitotoxic neuronal cell death by blocking mitochondrial Ca2+ overloading. These findings suggest that combining MCUcx inhibition with NCLX activation should markedly protect the NVU. In terms of promoting NVU repair, nuclear hormone receptor activation is a promising approach. Retinoid X receptor (RXR) and thyroid hormone receptor (TR) agonists activate complementary transcriptional programs that stimulate mitochondrial biogenesis, suppress inflammation, and enhance the production of new vascular cells, glia, and neurons. RXR and TR agonism should thus further improve the clinical benefits of MCUcx inhibition and NCLX activation by increasing NVU repair. However, drugs that either inhibit the MCUcx, or stimulate the NCLX, or activate the RXR or TR, suffer from adverse effects caused by undesired actions on healthy tissues. To overcome this problem, we describe the use of nanoparticle drug formulations that preferentially target metabolically compromised and damaged NVUs after an ischemic or hemorrhagic stroke. These nanoparticle-based approaches have the potential to improve clinical safety and efficacy by maximizing drug delivery to diseased NVUs and minimizing drug exposure in healthy brain and peripheral tissues.
Collapse
Affiliation(s)
- Robyn J. Novorolsky
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Gracious D. S. Kasheke
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Antoine Hakim
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Marianna Foldvari
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Gabriel G. Dorighello
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben Gurion University, Beersheva, Israel
| | | | | | - Robert B. Renden
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, College of Arts and Sciences, Cornell University, Ithaca, NY, United States
| | - George S. Robertson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
29
|
De Mario A, D'Angelo D, Zanotti G, Raffaello A, Mammucari C. The mitochondrial calcium uniporter complex–A play in five acts. Cell Calcium 2023; 112:102720. [PMID: 37001308 DOI: 10.1016/j.ceca.2023.102720] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Mitochondrial Ca2+ (mitCa2+) uptake controls both intraorganellar and cytosolic functions. Within the organelle, [Ca2+] increases regulate the activity of tricarboxylic acid (TCA) cycle enzymes, thus sustaining oxidative metabolism and ATP production. Reactive oxygen species (ROS) are also generated as side products of oxygen consumption. At the same time, mitochondria act as buffers of cytosolic Ca2+ (cytCa2+) increases, thus regulating Ca2+-dependent cellular processes. In pathological conditions, mitCa2+ overload triggers the opening of the mitochondrial permeability transition pore (mPTP) and the release of apoptotic cofactors. MitCa2+ uptake occurs in response of local [Ca2+] increases in sites of proximity between the endoplasmic reticulum (ER) and the mitochondria and is mediated by the mitochondrial Ca2+ uniporter (MCU), a highly selective channel of the inner mitochondrial membrane (IMM). Both channel and regulatory subunits form the MCU complex (MCUC). Cryogenic electron microscopy (Cryo-EM) and crystal structures revealed the correct assembly of MCUC and the function of critical residues for the regulation of Ca2+ conductance.
Collapse
|
30
|
Shrestha J, Santerre M, Allen CN, Arjona SP, Hooper R, Mukerjee R, Kaul M, Shcherbik N, Soboloff J, Sawaya BE. HIV-1 gp120 protein promotes HAND through the calcineurin pathway activation. Mitochondrion 2023; 70:31-40. [PMID: 36925028 PMCID: PMC10484070 DOI: 10.1016/j.mito.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
For over two decades, highly active antiretroviral therapy (HAART) was able to help prolong the life expectancy of people living with HIV-1 (PLWH) and eliminate the virus to an undetectable level. However, an increased prevalence of HIV- associated neurocognitive disorders (HAND) was observed. These symptoms range from neuronal dysfunction to cell death. Among the markers of neuronal deregulation, we cite the alteration of synaptic plasticity and neuronal communications. Clinically, these dysfunctions led to neurocognitive disorders such as learning alteration and loss of spatial memory, which promote premature brain aging even in HAART-treated patients. In support of these observations, we showed that the gp120 protein deregulates miR-499-5p and its downstream target, the calcineurin (CaN) protein. The gp120 protein also promotes the accumulation of calcium (Ca2+) and reactive oxygen species (ROS) inside the neurons leading to the activation of CaN and the inhibition of miR-499-5p. gp120 protein also caused mitochondrial fragmentation and changes in shape and size. The use of mimic miR-499 restored mitochondrial functions, appearance, and size. These results demonstrated the additional effect of the gp120 protein on neurons through the miR-499-5p/calcineurin pathway.
Collapse
Affiliation(s)
- Jenny Shrestha
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA.
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Charles N Allen
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Sterling P Arjona
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Robert Hooper
- FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Ruma Mukerjee
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Department of Psychiatry, UCSD, San Diego, CA, USA; Division of Biomedical Sciences, School of Medicine, UCR, Riverside, CA, USA
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Jonathan Soboloff
- FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA; Department of Cancer and Cellular Biology, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA; Department of Cancer and Cellular Biology, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA.
| |
Collapse
|
31
|
MacEwen MJ, Sancak Y. Beyond the matrix: structural and physiological advancements in mitochondrial calcium signaling. Biochem Soc Trans 2023; 51:665-673. [PMID: 36960768 PMCID: PMC10212541 DOI: 10.1042/bst20220317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/25/2023]
Abstract
Mitochondrial calcium (Ca2+) signaling has long been known to regulate diverse cellular functions, ranging from ATP production via oxidative phosphorylation, to cytoplasmic Ca2+ signaling to apoptosis. Central to mitochondrial Ca2+ signaling is the mitochondrial Ca2+ uniporter complex (MCUC) which enables Ca2+ flux from the cytosol into the mitochondrial matrix. Several pivotal discoveries over the past 15 years have clarified the identity of the proteins comprising MCUC. Here, we provide an overview of the literature on mitochondrial Ca2+ biology and highlight recent findings on the high-resolution structure, dynamic regulation, and new functions of MCUC, with an emphasis on publications from the last five years. We discuss the importance of these findings for human health and the therapeutic potential of targeting mitochondrial Ca2+ signaling.
Collapse
Affiliation(s)
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, WA 98195, U.S.A
| |
Collapse
|
32
|
Tomar D, Thomas M, Garbincius JF, Kolmetzky DW, Salik O, Jadiya P, Joseph SK, Carpenter AC, Hajnóczky G, Elrod JW. MICU1 regulates mitochondrial cristae structure and function independently of the mitochondrial Ca 2+ uniporter channel. Sci Signal 2023; 16:eabi8948. [PMID: 37098122 PMCID: PMC10388395 DOI: 10.1126/scisignal.abi8948] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 03/30/2023] [Indexed: 04/27/2023]
Abstract
MICU1 is a calcium (Ca2+)-binding protein that regulates the mitochondrial Ca2+ uniporter channel complex (mtCU) and mitochondrial Ca2+ uptake. MICU1 knockout mice display disorganized mitochondrial architecture, a phenotype that is distinct from that of mice with deficiencies in other mtCU subunits and, thus, is likely not explained by changes in mitochondrial matrix Ca2+ content. Using proteomic and cellular imaging techniques, we found that MICU1 localized to the mitochondrial contact site and cristae organizing system (MICOS) and directly interacted with the MICOS components MIC60 and CHCHD2 independently of the mtCU. We demonstrated that MICU1 was essential for MICOS complex formation and that MICU1 ablation resulted in altered cristae organization, mitochondrial ultrastructure, mitochondrial membrane dynamics, and cell death signaling. Together, our results suggest that MICU1 is an intermembrane space Ca2+ sensor that modulates mitochondrial membrane dynamics independently of matrix Ca2+ uptake. This system enables distinct Ca2+ signaling in the mitochondrial matrix and at the intermembrane space to modulate cellular energetics and cell death in a concerted manner.
Collapse
Affiliation(s)
- Dhanendra Tomar
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Manfred Thomas
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Joanne F. Garbincius
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Devin W. Kolmetzky
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Oniel Salik
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
- Health and Exercise Physiology, Ursinus College, Collegeville, PA 19426, USA
| | - Pooja Jadiya
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Suresh K. Joseph
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - April C. Carpenter
- Health and Exercise Physiology, Ursinus College, Collegeville, PA 19426, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - John W. Elrod
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| |
Collapse
|
33
|
Garbincius JF, Luongo TS, Lambert JP, Mangold AS, Murray EK, Hildebrand AN, Jadiya P, Elrod JW. MCU gain- and loss-of-function models define the duality of mitochondrial calcium uptake in heart failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537222. [PMID: 37131819 PMCID: PMC10153142 DOI: 10.1101/2023.04.17.537222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background Mitochondrial calcium (mCa2+) uptake through the mitochondrial calcium uniporter channel (mtCU) stimulates metabolism to meet acute increases in cardiac energy demand. However, excessive mCa2+ uptake during stress, as in ischemia-reperfusion, initiates permeability transition and cell death. Despite these often-reported acute physiological and pathological effects, a major unresolved controversy is whether mtCU-dependent mCa2+ uptake and long-term elevation of cardiomyocyte mCa2+ contributes to the heart's adaptation during sustained increases in workload. Objective We tested the hypothesis that mtCU-dependent mCa2+ uptake contributes to cardiac adaptation and ventricular remodeling during sustained catecholaminergic stress. Methods Mice with tamoxifen-inducible, cardiomyocyte-specific gain (αMHC-MCM × flox-stop-MCU; MCU-Tg) or loss (αMHC-MCM × Mcufl/fl; Mcu-cKO) of mtCU function received 2-wk catecholamine infusion. Results Cardiac contractility increased after 2d of isoproterenol in control, but not Mcu-cKO mice. Contractility declined and cardiac hypertrophy increased after 1-2-wk of isoproterenol in MCU-Tg mice. MCU-Tg cardiomyocytes displayed increased sensitivity to Ca2+- and isoproterenol-induced necrosis. However, loss of the mitochondrial permeability transition pore (mPTP) regulator cyclophilin D failed to attenuate contractile dysfunction and hypertrophic remodeling, and increased isoproterenol-induced cardiomyocyte death in MCU-Tg mice. Conclusions mtCU mCa2+ uptake is required for early contractile responses to adrenergic signaling, even those occurring over several days. Under sustained adrenergic load excessive MCU-dependent mCa2+ uptake drives cardiomyocyte dropout, perhaps independent of classical mitochondrial permeability transition pore opening, and compromises contractile function. These findings suggest divergent consequences for acute versus sustained mCa2+ loading, and support distinct functional roles for the mPTP in settings of acute mCa2+ overload versus persistent mCa2+ stress.
Collapse
Affiliation(s)
- Joanne F. Garbincius
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Timothy S. Luongo
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jonathan P. Lambert
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Adam S. Mangold
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Emma K. Murray
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Alycia N. Hildebrand
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Pooja Jadiya
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - John W. Elrod
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
34
|
Madaris TR, Venkatesan M, Maity S, Stein MC, Vishnu N, Venkateswaran MK, Davis JG, Ramachandran K, Uthayabalan S, Allen C, Osidele A, Stanley K, Bigham NP, Bakewell TM, Narkunan M, Le A, Karanam V, Li K, Mhapankar A, Norton L, Ross J, Aslam MI, Reeves WB, Singh BB, Caplan J, Wilson JJ, Stathopulos PB, Baur JA, Madesh M. Limiting Mrs2-dependent mitochondrial Mg 2+ uptake induces metabolic programming in prolonged dietary stress. Cell Rep 2023; 42:112155. [PMID: 36857182 PMCID: PMC10134742 DOI: 10.1016/j.celrep.2023.112155] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/28/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
The most abundant cellular divalent cations, Mg2+ (mM) and Ca2+ (nM-μM), antagonistically regulate divergent metabolic pathways with several orders of magnitude affinity preference, but the physiological significance of this competition remains elusive. In mice consuming a Western diet, genetic ablation of the mitochondrial Mg2+ channel Mrs2 prevents weight gain, enhances mitochondrial activity, decreases fat accumulation in the liver, and causes prominent browning of white adipose. Mrs2 deficiency restrains citrate efflux from the mitochondria, making it unavailable to support de novo lipogenesis. As citrate is an endogenous Mg2+ chelator, this may represent an adaptive response to a perceived deficit of the cation. Transcriptional profiling of liver and white adipose reveals higher expression of genes involved in glycolysis, β-oxidation, thermogenesis, and HIF-1α-targets, in Mrs2-/- mice that are further enhanced under Western-diet-associated metabolic stress. Thus, lowering mMg2+ promotes metabolism and dampens diet-induced obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Travis R Madaris
- Department of Medicine, Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine, Cardiology/Diabetes Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Manigandan Venkatesan
- Department of Medicine, Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine, Cardiology/Diabetes Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Soumya Maity
- Department of Medicine, Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine, Cardiology/Diabetes Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Miriam C Stein
- Department of Medicine, Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine, Cardiology/Diabetes Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Neelanjan Vishnu
- Department of Medicine, Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine, Cardiology/Diabetes Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Mridula K Venkateswaran
- Department of Medicine, Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine, Cardiology/Diabetes Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - James G Davis
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19103, USA
| | - Karthik Ramachandran
- Department of Medicine, Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine, Cardiology/Diabetes Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | | | - Cristel Allen
- Department of Medicine, Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine, Cardiology/Diabetes Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Ayodeji Osidele
- Department of Medicine, Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine, Cardiology/Diabetes Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Kristen Stanley
- Department of Medicine, Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine, Cardiology/Diabetes Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Nicholas P Bigham
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Terry M Bakewell
- Department of Medicine, Cardiology/Diabetes Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Melanie Narkunan
- Department of Medicine, Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine, Cardiology/Diabetes Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Amy Le
- Department of Medicine, Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine, Cardiology/Diabetes Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Varsha Karanam
- Department of Medicine, Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine, Cardiology/Diabetes Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Kang Li
- Department of Medicine, Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine, Cardiology/Diabetes Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Aum Mhapankar
- Department of Medicine, Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine, Cardiology/Diabetes Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Luke Norton
- Department of Medicine, Cardiology/Diabetes Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jean Ross
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - M Imran Aslam
- Department of Medicine, Cardiology/Diabetes Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - W Brian Reeves
- Department of Medicine, Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine, Cardiology/Diabetes Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Brij B Singh
- Department of Medicine, Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jeffrey Caplan
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19103, USA.
| | - Muniswamy Madesh
- Department of Medicine, Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Medicine, Cardiology/Diabetes Divisions, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
35
|
Jadiya P, Cohen HM, Kolmetzky DW, Kadam AA, Tomar D, Elrod JW. Neuronal loss of NCLX-dependent mitochondrial calcium efflux mediates age-associated cognitive decline. iScience 2023; 26:106296. [PMID: 36936788 PMCID: PMC10014305 DOI: 10.1016/j.isci.2023.106296] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/12/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Mitochondrial calcium overload contributes to neurodegenerative disease development and progression. We recently reported that loss of the mitochondrial sodium/calcium exchanger (NCLX), the primary mechanism of mCa2+ efflux, promotes mCa2+ overload, metabolic derangement, redox stress, and cognitive decline in models of Alzheimer's disease (AD). However, whether disrupted mCa2+ signaling contributes to neuronal pathology and cognitive decline independent of pre-existing amyloid or tau pathology remains unknown. Here, we generated mice with neuronal deletion of the mitochondrial sodium/calcium exchanger (NCLX, Slc8b1 gene), and evaluated age-associated changes in cognitive function and neuropathology. Neuronal loss of NCLX resulted in an age-dependent decline in spatial and cued recall memory, moderate amyloid deposition, mild tau pathology, synaptic remodeling, and indications of cell death. These results demonstrate that loss of NCLX-dependent mCa2+ efflux alone is sufficient to induce an Alzheimer's disease-like pathology and highlights the promise of therapies targeting mCa2+ exchange.
Collapse
Affiliation(s)
- Pooja Jadiya
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Henry M. Cohen
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Devin W. Kolmetzky
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ashlesha A. Kadam
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Dhanendra Tomar
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - John W. Elrod
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
36
|
Liu H, Wang R, OuYang H, Wang Y, Wu J, Li M, Hu Y, Yao Y, Liu Y, Ji Y. Cadmium induced mouse spermatogonia apoptosis via mitochondrial calcium overload mediated by IP 3R-MCU signal pathway. Toxicology 2023; 486:153448. [PMID: 36731763 DOI: 10.1016/j.tox.2023.153448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023]
Abstract
Cadmium (Cd) is a toxic metal and also a well-known reproductive toxicant. Cd could induce germ cells apoptosis in mouse testes, however, the mechanism remains unclear. This study designed in vitro using GC-1 spermatogonial (spg) cells to explore the cytotoxicity and the molecular mechanisms induced by cadmium chloride(CdCl2). As expected, CdCl2 elevated the levels of reactive oxygen species (ROS) and induced the release of AIF and Cyt-c from the mitochondria to the cytosol in spermatogonia. Correspondingly, CdCl2 apparently increased the apoptotic rate in spermatogonia. Further researches found that CdCl2 could activate IP3R-MCU pathway, trigger Ca2+ transfer from endoplasmic reticulum to mitochondria, and cause mitochondrial Ca2+ overload. BAPTA acetoxymethyl ester (BAPTA-AM), a calcium chelator, almost completely attenuated IP3R phosphorylation, inhibited the mRNA and protein expression levels of VDAC1, MCU and MCUR1 upregulated by CdCl2, reduced the calcium ion content in the mitochondria. Moreover, BAPTA-AM could decrease the level of ROS, antagonize CdCl2-induced release of AIF and Cyt-c from the mitochondria to the cytosol and alleviate CdCl2-induced apoptosis in spermatogonia. As above, these results provided the evidence that CdCl2 might induce apoptosis of spermatogonia via mitochondrial Ca2+ overload mediated by IP3R-MCU signal pathway.
Collapse
Affiliation(s)
- Hao Liu
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, Anhui, China
| | - Rong Wang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, Anhui, China
| | - Huijuan OuYang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, Anhui, China
| | - Yi Wang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Jie Wu
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Mengyuan Li
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yuan Hu
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yuyou Yao
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 230032 Anhui, China
| | - Yehao Liu
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 230032 Anhui, China.
| | - Yanli Ji
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 230032 Anhui, China.
| |
Collapse
|
37
|
Sánchez-Aguilera P, López-Crisosto C, Norambuena-Soto I, Penannen C, Zhu J, Bomer N, Hoes MF, Van Der Meer P, Chiong M, Westenbrink BD, Lavandero S. IGF-1 boosts mitochondrial function by a Ca 2+ uptake-dependent mechanism in cultured human and rat cardiomyocytes. Front Physiol 2023; 14:1106662. [PMID: 36846332 PMCID: PMC9944404 DOI: 10.3389/fphys.2023.1106662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
A physiological increase in cardiac workload results in adaptive cardiac remodeling, characterized by increased oxidative metabolism and improvements in cardiac performance. Insulin-like growth factor-1 (IGF-1) has been identified as a critical regulator of physiological cardiac growth, but its precise role in cardiometabolic adaptations to physiological stress remains unresolved. Mitochondrial calcium (Ca2+) handling has been proposed to be required for sustaining key mitochondrial dehydrogenase activity and energy production during increased workload conditions, thus ensuring the adaptive cardiac response. We hypothesized that IGF-1 enhances mitochondrial energy production through a Ca2+-dependent mechanism to ensure adaptive cardiomyocyte growth. We found that stimulation with IGF-1 resulted in increased mitochondrial Ca2+ uptake in neonatal rat ventricular myocytes and human embryonic stem cell-derived cardiomyocytes, estimated by fluorescence microscopy and indirectly by a reduction in the pyruvate dehydrogenase phosphorylation. We showed that IGF-1 modulated the expression of mitochondrial Ca2+ uniporter (MCU) complex subunits and increased the mitochondrial membrane potential; consistent with higher MCU-mediated Ca2+ transport. Finally, we showed that IGF-1 improved mitochondrial respiration through a mechanism dependent on MCU-mediated Ca2+ transport. In conclusion, IGF-1-induced mitochondrial Ca2+ uptake is required to boost oxidative metabolism during cardiomyocyte adaptive growth.
Collapse
Affiliation(s)
- Pablo Sánchez-Aguilera
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile,Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Camila López-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Penannen
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jumo Zhu
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Matijn F. Hoes
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands,Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands,CARIM School for Cardiovascular Diseases, Maastricht, Netherlands
| | - Peter Van Der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - B. Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands,*Correspondence: B. Daan Westenbrink, ; Sergio Lavandero,
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Facultad de Medicina, Universidad de Chile, Santiago, Chile,Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States,*Correspondence: B. Daan Westenbrink, ; Sergio Lavandero,
| |
Collapse
|
38
|
Son J, Jung O, Kim JH, Park KS, Kweon HS, Nguyen NT, Lee YJ, Cha H, Lee Y, Tran Q, Seo Y, Park J, Choi J, Cheong H, Lee SY. MARS2 drives metabolic switch of non-small-cell lung cancer cells via interaction with MCU. Redox Biol 2023; 60:102628. [PMID: 36774778 PMCID: PMC9947422 DOI: 10.1016/j.redox.2023.102628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Mitochondrial methionyl-tRNA synthetase (MARS2) canonically mediates the formation of fMet-tRNAifMet for mitochondrial translation initiation. Mitochondrial calcium uniporter (MCU) is a major gate of Ca2+ flux from cytosol into the mitochondrial matrix. We found that MARS2 interacts with MCU and stimulates mitochondrial Ca2+ influx. Methionine binding to MARS2 would act as a molecular switch that regulates MARS2-MCU interaction. Endogenous knockdown of MARS2 attenuates mitochondrial Ca2+ influx and induces p53 upregulation through the Ca2+-dependent CaMKII/CREB signaling. Subsequently, metabolic rewiring from glycolysis into pentose phosphate pathway is triggered and cellular reactive oxygen species level decreases. This metabolic switch induces inhibition of epithelial-mesenchymal transition (EMT) via cellular redox regulation. Expression of MARS2 is regulated by ZEB1 transcription factor in response to Wnt signaling. Our results suggest the mechanisms of mitochondrial Ca2+ uptake and metabolic control of cancer that are exerted by the key factors of the mitochondrial translational machinery and Ca2+ homeostasis.
Collapse
Affiliation(s)
- Juhyeon Son
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi, 13120, South Korea
| | - Okkeun Jung
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi, 13120, South Korea
| | - Jong Heon Kim
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea,Department of Cancer Biomedical Science, Graduate School of Cancer Sciences and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea
| | - Kyu Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Gangwon, 26424, South Korea
| | - Hee-Seok Kweon
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju, Chungbuk, 28119, South Korea
| | - Nhung Thi Nguyen
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Gangwon, 26424, South Korea
| | - Yu Jin Lee
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi, 13120, South Korea
| | - Hansol Cha
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi, 13120, South Korea
| | - Yejin Lee
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi, 13120, South Korea
| | - Quangdon Tran
- Department of Pharmacology and Medical Sciences, Metabolic Syndrom and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | - Yoona Seo
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea,Department of Cancer Biomedical Science, Graduate School of Cancer Sciences and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea
| | - Jongsun Park
- Department of Pharmacology and Medical Sciences, Metabolic Syndrom and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | - Jungwon Choi
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea
| | - Heesun Cheong
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, South Korea
| | - Sang Yeol Lee
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi, 13120, South Korea.
| |
Collapse
|
39
|
Patel A, Pietromicca JG, Venkatesan M, Maity S, Bard JE, Madesh M, Alevriadou BR. Modulation of the mitochondrial Ca 2+ uniporter complex subunit expression by different shear stress patterns in vascular endothelial cells. Physiol Rep 2023; 11:e15588. [PMID: 36754446 PMCID: PMC9908435 DOI: 10.14814/phy2.15588] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023] Open
Abstract
Mitochondrial calcium (m Ca2+ ) uptake occurs via the Mitochondrial Ca2+ Uniporter (MCU) complex and plays a critical role in mitochondrial dynamics, mitophagy, and apoptosis. MCU complex activity is in part modulated by the expression of its regulatory subunits. Cardiovascular disease models demonstrated altered gene/protein expression of one or multiple subunits in different cells, including vascular endothelial cells (ECs). MCU complex activity was found necessary for stable flow (s-flow)-induced mitophagy and promotion of an atheroprotective EC phenotype. Disturbed flow (d-flow) is known to lead to an atheroprone phenotype. Despite the role of MCU in flow-regulated EC function, flow-induced alterations in MCU complex subunit expression are currently unknown. We exposed cultured human ECs to atheroprotective (steady shear stress, SS) or atheroprone flow (oscillatory shear stress, OS) and measured mRNA and protein levels of the MCU complex members. SS and OS differentially modulated subunit expression at gene/protein levels. Protein expression changes of the core MCU, m Ca2+ uptake 1 (MICU1) and MCU regulator 1 (MCUR1) subunits in SS- and OS-exposed, compared to static, ECs suggested an enhanced m Ca2+ influx under each flow and a potential contribution to EC dysfunction under OS. In silico analysis of a single-cell RNA-sequencing dataset was employed to extract transcript values of MCU subunits in mouse carotid ECs from regions exposed to s-flow or d-flow. Mcu and Mcur1 genes showed significant differences in expression after prolonged exposure to each flow. The differential expression of MCU complex subunits indicated a tight regulation of the complex activity under physiological and pathological hemodynamic conditions.
Collapse
Affiliation(s)
- Akshar Patel
- Vascular Mechanobiology Laboratory, Department of Biomedical Engineering, and Center for Cell, Gene, and Tissue EngineeringUniversity at Buffalo – The State University of New YorkBuffaloNew YorkUSA
| | - Julia G. Pietromicca
- Vascular Mechanobiology Laboratory, Department of Biomedical Engineering, and Center for Cell, Gene, and Tissue EngineeringUniversity at Buffalo – The State University of New YorkBuffaloNew YorkUSA
| | - Manigandan Venkatesan
- Department of Medicine, Center for Mitochondrial MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Soumya Maity
- Department of Medicine, Center for Mitochondrial MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Jonathan E. Bard
- Genomics and Bioinformatics Core, Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo – The State University of New YorkBuffaloNew YorkUSA
| | - Muniswamy Madesh
- Department of Medicine, Center for Mitochondrial MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - B. Rita Alevriadou
- Vascular Mechanobiology Laboratory, Department of Biomedical Engineering, and Center for Cell, Gene, and Tissue EngineeringUniversity at Buffalo – The State University of New YorkBuffaloNew YorkUSA
| |
Collapse
|
40
|
Walters GC, Usachev YM. Mitochondrial calcium cycling in neuronal function and neurodegeneration. Front Cell Dev Biol 2023; 11:1094356. [PMID: 36760367 PMCID: PMC9902777 DOI: 10.3389/fcell.2023.1094356] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Mitochondria are essential for proper cellular function through their critical roles in ATP synthesis, reactive oxygen species production, calcium (Ca2+) buffering, and apoptotic signaling. In neurons, Ca2+ buffering is particularly important as it helps to shape Ca2+ signals and to regulate numerous Ca2+-dependent functions including neuronal excitability, synaptic transmission, gene expression, and neuronal toxicity. Over the past decade, identification of the mitochondrial Ca2+ uniporter (MCU) and other molecular components of mitochondrial Ca2+ transport has provided insight into the roles that mitochondrial Ca2+ regulation plays in neuronal function in health and disease. In this review, we discuss the many roles of mitochondrial Ca2+ uptake and release mechanisms in normal neuronal function and highlight new insights into the Ca2+-dependent mechanisms that drive mitochondrial dysfunction in neurologic diseases including epilepsy, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We also consider how targeting Ca2+ uptake and release mechanisms could facilitate the development of novel therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Grant C. Walters
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| | - Yuriy M. Usachev
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
41
|
Kafkova A, Tilokani L, Trčka F, Šrámková V, Vancová M, Bílý T, Nebesářová J, Prudent J, Trnka J. Selective and reversible disruption of mitochondrial inner membrane protein complexes by lipophilic cations. Mitochondrion 2023; 68:60-71. [PMID: 36402364 DOI: 10.1016/j.mito.2022.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
Triphenylphosphonium (TPP) derivatives are commonly used to target chemical into mitochondria. We show that alkyl-TPP cause reversible, dose- and hydrophobicity-dependent alterations of mitochondrial morphology and function and a selective decrease of mitochondrial inner membrane proteins including subunits of the respiratory chain complexes, as well as components of the mitochondrial calcium uniporter complex. The treatment with alkyl-TPP resulted in the cleavage of the pro-fusion and cristae organisation regulator Optic atrophy-1. The structural and functional effects of alkyl-TPP were found to be reversible and not merely due to loss of membrane potential. A similar effect was observed with the mitochondria-targeted antioxidant MitoQ.
Collapse
Affiliation(s)
- Anezka Kafkova
- Laboratory for Metabolism and Bioenergetics, Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Czech Republic
| | - Lisa Tilokani
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Filip Trčka
- Laboratory for Metabolism and Bioenergetics, Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Czech Republic
| | - Veronika Šrámková
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Tomáš Bílý
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Jana Nebesářová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Laboratory of Electron Microscopy, Faculty of Science, Charles University, Prague, Czech Republic
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Jan Trnka
- Laboratory for Metabolism and Bioenergetics, Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Czech Republic.
| |
Collapse
|
42
|
Colussi DM, Stathopulos PB. From passage to inhibition: Uncovering the structural and physiological inhibitory mechanisms of MCUb in mitochondrial calcium regulation. FASEB J 2023; 37:e22678. [PMID: 36538269 PMCID: PMC10107711 DOI: 10.1096/fj.202201080r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Mitochondrial calcium (Ca2+ ) regulation is critically implicated in the regulation of bioenergetics and cell fate. Ca2+ , a universal signaling ion, passively diffuses into the mitochondrial intermembrane space (IMS) through voltage-dependent anion channels (VDAC), where uptake into the matrix is tightly regulated across the inner mitochondrial membrane (IMM) by the mitochondrial Ca2+ uniporter complex (mtCU). In recent years, immense progress has been made in identifying and characterizing distinct structural and physiological mechanisms of mtCU component function. One of the main regulatory components of the Ca2+ selective mtCU channel is the mitochondrial Ca2+ uniporter dominant-negative beta subunit (MCUb). The structural mechanisms underlying the inhibitory effect(s) exerted by MCUb are poorly understood, despite high homology to the main mitochondrial Ca2+ uniporter (MCU) channel-forming subunits. In this review, we provide an overview of the structural differences between MCUb and MCU, believed to contribute to the inhibition of mitochondrial Ca2+ uptake. We highlight the possible structural rationale for the absent interaction between MCUb and the mitochondrial Ca2+ uptake 1 (MICU1) gatekeeping subunit and a potential widening of the pore upon integration of MCUb into the channel. We discuss physiological and pathophysiological information known about MCUb, underscoring implications in cardiac function and arrhythmia as a basis for future therapeutic discovery. Finally, we discuss potential post-translational modifications on MCUb as another layer of important regulation.
Collapse
Affiliation(s)
- Danielle M Colussi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
43
|
Delgado BD, Long SB. Mechanisms of ion selectivity and throughput in the mitochondrial calcium uniporter. SCIENCE ADVANCES 2022; 8:eade1516. [PMID: 36525497 PMCID: PMC9757755 DOI: 10.1126/sciadv.ade1516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The mitochondrial calcium uniporter, which regulates aerobic metabolism by catalyzing mitochondrial Ca2+ influx, is arguably the most selective ion channel known. The mechanisms for this exquisite Ca2+ selectivity have not been defined. Here, using a reconstituted system, we study the electrical properties of the channel's minimal Ca2+-conducting complex, MCU-EMRE, from Tribolium castaneum to probe ion selectivity mechanisms. The wild-type TcMCU-EMRE complex recapitulates hallmark electrophysiological properties of endogenous Uniporter channels. Through interrogation of pore-lining mutants, we find that a ring of glutamate residues, the "E-locus," serves as the channel's selectivity filter. Unexpectedly, a nearby "D-locus" at the mouth of the pore has diminutive influence on selectivity. Anomalous mole fraction effects indicate that multiple Ca2+ ions are accommodated within the E-locus. By facilitating ion-ion interactions, the E-locus engenders both exquisite Ca2+ selectivity and high ion throughput. Direct comparison with structural information yields the basis for selective Ca2+ conduction by the channel.
Collapse
Affiliation(s)
- Bryce D. Delgado
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Graduate Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Stephen B. Long
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
44
|
Patel A, Simkulet M, Maity S, Venkatesan M, Matzavinos A, Madesh M, Alevriadou BR. The mitochondrial Ca 2+ uniporter channel synergizes with fluid shear stress to induce mitochondrial Ca 2+ oscillations. Sci Rep 2022; 12:21161. [PMID: 36476944 PMCID: PMC9729216 DOI: 10.1038/s41598-022-25583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The mitochondrial calcium (Ca2+) uniporter (MCU) channel is responsible for mitochondrial Ca2+ influx. Its expression was found to be upregulated in endothelial cells (ECs) under cardiovascular disease conditions. Since the role of MCU in regulating cytosolic Ca2+ homeostasis in ECs exposed to shear stress (SS) is unknown, we studied mitochondrial Ca2+ dynamics (that is known to decode cytosolic Ca2+ signaling) in sheared ECs. To understand cause-and-effect, we ectopically expressed MCU in ECs. A higher percentage of MCU-transduced ECs exhibited mitochondrial Ca2+ transients/oscillations, and at higher frequency, under SS compared to sheared control ECs. Transients/oscillations correlated with mitochondrial reactive oxygen species (mROS) flashes and mitochondrial membrane potential (ΔΨm) flickers, and depended on activation of the mechanosensitive Piezo1 channel and the endothelial nitric oxide synthase (eNOS). A positive feedback loop composed of mitochondrial Ca2+ uptake/mROS flashes/ΔΨm flickers and endoplasmic reticulum Ca2+ release, in association with Piezo1 and eNOS, provided insights into the mechanism by which SS, under conditions of high MCU activity, may shape vascular EC energetics and function.
Collapse
Affiliation(s)
- Akshar Patel
- grid.273335.30000 0004 1936 9887Vascular Mechanobiology Laboratory, Department of Biomedical Engineering, and Center for Cell, Gene, and Tissue Engineering, University at Buffalo – The State University of New York, Buffalo, NY 14260 USA
| | - Matthew Simkulet
- grid.273335.30000 0004 1936 9887Vascular Mechanobiology Laboratory, Department of Biomedical Engineering, and Center for Cell, Gene, and Tissue Engineering, University at Buffalo – The State University of New York, Buffalo, NY 14260 USA
| | - Soumya Maity
- grid.267309.90000 0001 0629 5880Center for Mitochondrial Medicine, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229 USA
| | - Manigandan Venkatesan
- grid.267309.90000 0001 0629 5880Center for Mitochondrial Medicine, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229 USA
| | - Anastasios Matzavinos
- grid.7870.80000 0001 2157 0406Institute for Mathematical and Computational Engineering, Pontifical Catholic University of Chile, Santiago, Chile
| | - Muniswamy Madesh
- grid.267309.90000 0001 0629 5880Center for Mitochondrial Medicine, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229 USA
| | - B. Rita Alevriadou
- grid.273335.30000 0004 1936 9887Vascular Mechanobiology Laboratory, Department of Biomedical Engineering, and Center for Cell, Gene, and Tissue Engineering, University at Buffalo – The State University of New York, Buffalo, NY 14260 USA
| |
Collapse
|
45
|
Zhang L, Qi J, Zhang X, Zhao X, An P, Luo Y, Luo J. The Regulatory Roles of Mitochondrial Calcium and the Mitochondrial Calcium Uniporter in Tumor Cells. Int J Mol Sci 2022; 23:6667. [PMID: 35743109 PMCID: PMC9223557 DOI: 10.3390/ijms23126667] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Mitochondria, as the main site of cellular energy metabolism and the generation of oxygen free radicals, are the key switch for mitochondria-mediated endogenous apoptosis. Ca2+ is not only an important messenger for cell proliferation, but it is also an indispensable signal for cell death. Ca2+ participates in and plays a crucial role in the energy metabolism, physiology, and pathology of mitochondria. Mitochondria control the uptake and release of Ca2+ through channels/transporters, such as the mitochondrial calcium uniporter (MCU), and influence the concentration of Ca2+ in both mitochondria and cytoplasm, thereby regulating cellular Ca2+ homeostasis. Mitochondrial Ca2+ transport-related processes are involved in important biological processes of tumor cells including proliferation, metabolism, and apoptosis. In particular, MCU and its regulatory proteins represent a new era in the study of MCU-mediated mitochondrial Ca2+ homeostasis in tumors. Through an in-depth analysis of the close correlation between mitochondrial Ca2+ and energy metabolism, autophagy, and apoptosis of tumor cells, we can provide a valuable reference for further understanding of how mitochondrial Ca2+ regulation helps diagnosis and therapy.
Collapse
Affiliation(s)
- Linlin Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Jingyi Qi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Xu Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Xiya Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Peng An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| | - Junjie Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (J.Q.); (X.Z.); (X.Z.)
| |
Collapse
|
46
|
Garbincius JF, Luongo TS, Jadiya P, Hildebrand AN, Kolmetzky DW, Mangold AS, Roy R, Ibetti J, Nwokedi M, Koch WJ, Elrod JW. Enhanced NCLX-dependent mitochondrial Ca 2+ efflux attenuates pathological remodeling in heart failure. J Mol Cell Cardiol 2022; 167:52-66. [PMID: 35358843 PMCID: PMC9107512 DOI: 10.1016/j.yjmcc.2022.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Mitochondrial calcium (mCa2+) uptake couples changes in cardiomyocyte energetic demand to mitochondrial ATP production. However, excessive mCa2+ uptake triggers permeability transition and necrosis. Despite these established roles during acute stress, the involvement of mCa2+ signaling in cardiac adaptations to chronic stress remains poorly defined. Changes in NCLX expression are reported in heart failure (HF) patients and models of cardiac hypertrophy. Therefore, we hypothesized that altered mCa2+ homeostasis contributes to the hypertrophic remodeling of the myocardium that occurs upon a sustained increase in cardiac workload. The impact of mCa2+ flux on cardiac function and remodeling was examined by subjecting mice with cardiomyocyte-specific overexpression (OE) of the mitochondrial Na+/Ca2+ exchanger (NCLX), the primary mediator of mCa2+ efflux, to several well-established models of hypertrophic and non-ischemic HF. Cardiomyocyte NCLX-OE preserved contractile function, prevented hypertrophy and fibrosis, and attenuated maladaptive gene programs in mice subjected to chronic pressure overload. Hypertrophy was attenuated in NCLX-OE mice, prior to any decline in cardiac contractility. NCLX-OE similarly attenuated deleterious cardiac remodeling in mice subjected to chronic neurohormonal stimulation. However, cardiomyocyte NCLX-OE unexpectedly reduced overall survival in mice subjected to severe neurohormonal stress with angiotensin II + phenylephrine. Adenoviral NCLX expression limited mCa2+ accumulation, oxidative metabolism, and de novo protein synthesis during hypertrophic stimulation of cardiomyocytes in vitro. Our findings provide genetic evidence for the contribution of mCa2+ to early pathological remodeling in non-ischemic heart disease, but also highlight a deleterious consequence of increasing mCa2+ efflux when the heart is subjected to extreme, sustained neurohormonal stress.
Collapse
Affiliation(s)
- Joanne F Garbincius
- Center for Translational Medicine, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Timothy S Luongo
- Center for Translational Medicine, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Pooja Jadiya
- Center for Translational Medicine, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Alycia N Hildebrand
- Center for Translational Medicine, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Devin W Kolmetzky
- Center for Translational Medicine, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Adam S Mangold
- Center for Translational Medicine, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Rajika Roy
- Center for Translational Medicine, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jessica Ibetti
- Center for Translational Medicine, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mary Nwokedi
- Center for Translational Medicine, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Walter J Koch
- Center for Translational Medicine, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - John W Elrod
- Center for Translational Medicine, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
47
|
Garbincius JF, Elrod JW. Mitochondrial calcium exchange in physiology and disease. Physiol Rev 2022; 102:893-992. [PMID: 34698550 PMCID: PMC8816638 DOI: 10.1152/physrev.00041.2020] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/16/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
The uptake of calcium into and extrusion of calcium from the mitochondrial matrix is a fundamental biological process that has critical effects on cellular metabolism, signaling, and survival. Disruption of mitochondrial calcium (mCa2+) cycling is implicated in numerous acquired diseases such as heart failure, stroke, neurodegeneration, diabetes, and cancer and is genetically linked to several inherited neuromuscular disorders. Understanding the mechanisms responsible for mCa2+ exchange therefore holds great promise for the treatment of these diseases. The past decade has seen the genetic identification of many of the key proteins that mediate mitochondrial calcium uptake and efflux. Here, we present an overview of the phenomenon of mCa2+ transport and a comprehensive examination of the molecular machinery that mediates calcium flux across the inner mitochondrial membrane: the mitochondrial uniporter complex (consisting of MCU, EMRE, MICU1, MICU2, MICU3, MCUB, and MCUR1), NCLX, LETM1, the mitochondrial ryanodine receptor, and the mitochondrial permeability transition pore. We then consider the physiological implications of mCa2+ flux and evaluate how alterations in mCa2+ homeostasis contribute to human disease. This review concludes by highlighting opportunities and challenges for therapeutic intervention in pathologies characterized by aberrant mCa2+ handling and by summarizing critical unanswered questions regarding the biology of mCa2+ flux.
Collapse
Affiliation(s)
- Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
48
|
Chemotherapy Resistance: Role of Mitochondrial and Autophagic Components. Cancers (Basel) 2022; 14:cancers14061462. [PMID: 35326612 PMCID: PMC8945922 DOI: 10.3390/cancers14061462] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chemotherapy resistance is a common occurrence during cancer treatment that cancer researchers are attempting to understand and overcome. Mitochondria are a crucial intracellular signaling core that are becoming important determinants of numerous aspects of cancer genesis and progression, such as metabolic reprogramming, metastatic capability, and chemotherapeutic resistance. Mitophagy, or selective autophagy of mitochondria, can influence both the efficacy of tumor chemotherapy and the degree of drug resistance. Regardless of the fact that mitochondria are well-known for coordinating ATP synthesis from cellular respiration in cellular bioenergetics, little is known its mitophagy regulation in chemoresistance. Recent advancements in mitochondrial research, mitophagy regulatory mechanisms, and their implications for our understanding of chemotherapy resistance are discussed in this review. Abstract Cancer chemotherapy resistance is one of the most critical obstacles in cancer therapy. One of the well-known mechanisms of chemotherapy resistance is the change in the mitochondrial death pathways which occur when cells are under stressful situations, such as chemotherapy. Mitophagy, or mitochondrial selective autophagy, is critical for cell quality control because it can efficiently break down, remove, and recycle defective or damaged mitochondria. As cancer cells use mitophagy to rapidly sweep away damaged mitochondria in order to mediate their own drug resistance, it influences the efficacy of tumor chemotherapy as well as the degree of drug resistance. Yet despite the importance of mitochondria and mitophagy in chemotherapy resistance, little is known about the precise mechanisms involved. As a consequence, identifying potential therapeutic targets by analyzing the signal pathways that govern mitophagy has become a vital research goal. In this paper, we review recent advances in mitochondrial research, mitophagy control mechanisms, and their implications for our understanding of chemotherapy resistance.
Collapse
|
49
|
Mitochondrial Ca 2+ Homeostasis: Emerging Roles and Clinical Significance in Cardiac Remodeling. Int J Mol Sci 2022; 23:ijms23063025. [PMID: 35328444 PMCID: PMC8954803 DOI: 10.3390/ijms23063025] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are the sites of oxidative metabolism in eukaryotes where the metabolites of sugars, fats, and amino acids are oxidized to harvest energy. Notably, mitochondria store Ca2+ and work in synergy with organelles such as the endoplasmic reticulum and extracellular matrix to control the dynamic balance of Ca2+ concentration in cells. Mitochondria are the vital organelles in heart tissue. Mitochondrial Ca2+ homeostasis is particularly important for maintaining the physiological and pathological mechanisms of the heart. Mitochondrial Ca2+ homeostasis plays a key role in the regulation of cardiac energy metabolism, mechanisms of death, oxygen free radical production, and autophagy. The imbalance of mitochondrial Ca2+ balance is closely associated with cardiac remodeling. The mitochondrial Ca2+ uniporter (mtCU) protein complex is responsible for the uptake and release of mitochondrial Ca2+ and regulation of Ca2+ homeostasis in mitochondria and consequently, in cells. This review summarizes the mechanisms of mitochondrial Ca2+ homeostasis in physiological and pathological cardiac remodeling and the regulatory effects of the mitochondrial calcium regulatory complex on cardiac energy metabolism, cell death, and autophagy, and also provides the theoretical basis for mitochondrial Ca2+ as a novel target for the treatment of cardiovascular diseases.
Collapse
|
50
|
Liang Z, Soriano-Castell D, Kepchia D, Duggan BM, Currais A, Schubert D, Maher P. Cannabinol inhibits oxytosis/ferroptosis by directly targeting mitochondria independently of cannabinoid receptors. Free Radic Biol Med 2022; 180:33-51. [PMID: 34999187 PMCID: PMC8840979 DOI: 10.1016/j.freeradbiomed.2022.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
The oxytosis/ferroptosis regulated cell death pathway recapitulates many features of mitochondrial dysfunction associated with the aging brain and has emerged as a potential key mediator of neurodegeneration. It has thus been proposed that the oxytosis/ferroptosis pathway can be used to identify novel drug candidates for the treatment of age-associated neurodegenerative diseases that act by preserving mitochondrial function. Previously, we identified cannabinol (CBN) as a potent neuroprotector. Here, we demonstrate that not only does CBN protect nerve cells from oxytosis/ferroptosis in a manner that is dependent on mitochondria and it does so independently of cannabinoid receptors. Specifically, CBN directly targets mitochondria and preserves key mitochondrial functions including redox regulation, calcium uptake, membrane potential, bioenergetics, biogenesis, and modulation of fusion/fission dynamics that are disrupted following induction of oxytosis/ferroptosis. These protective effects of CBN are at least partly mediated by the promotion of endogenous antioxidant defenses and the activation of AMP-activated protein kinase (AMPK) signaling. Together, our data highlight the potential of mitochondrially-targeted compounds such as CBN as novel oxytotic/ferroptotic inhibitors to rescue mitochondrial dysfunction as well as opportunities for the discovery and development of future neurotherapeutics.
Collapse
Affiliation(s)
- Zhibin Liang
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, United States; The Paul F. Glenn Center for Biology of Aging Research, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, United States.
| | - David Soriano-Castell
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Devin Kepchia
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Brendan M Duggan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, United States
| | - Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - David Schubert
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, United States; The Paul F. Glenn Center for Biology of Aging Research, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, United States.
| |
Collapse
|