1
|
Wu J, Zhang M, Tao J, Liu M, Xiong J, Jiang T, Wang Y, Li X, Li Y, Yin C, Zhang S, Liu X, Zhang Y. Structural characterization, derivatization, and bioactivities of secondary metabolites produced by termite-associated Streptomyces lannensis BYF-106. Microbiol Spectr 2025; 13:e0181824. [PMID: 40231832 PMCID: PMC12054111 DOI: 10.1128/spectrum.01818-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 02/24/2025] [Indexed: 04/16/2025] Open
Abstract
Two new C-glycoside angucycline-related analogs, urdamycin Y (1) and grincamycin W (2), as well as eight known metabolites (3-10), were identified from termite-associated Streptomyces lannensis BYF-106 based on global natural products social molecular networking (GNPS). The putative biosynthetic pathways of urdamycin Y (1) and grincamycin W (2) were proposed using bioinformatic analysis of the full genome of S. lannensis BYF-106. In addition, four new derivative compounds (4A, 5A, 6A, and 6B) were synthesized via acetylation and methylation, respectively. Partial compounds were evaluated in vitro for antibacterial, anti-inflammatory, and cytotoxic activities. Vineomycinone B2 (3), fridamycin D (4), and 6-hydroxytetrangulol (5) displayed broad-spectrum antibacterial activities against S. aureus, methicillin-resistant S. aureus, and P. syringae pv. actinidae. Furthermore, urdamycin Y (1) exhibited potent inhibition on NO production, with an IC50 value of 4.8 µM, which was comparable to that of Bay11-7082 with an IC50 value of 2.1 µM. Subsequently, the possible anti-inflammatory mechanism of urdamycin Y (1) was explored by molecular docking simulation. Finally, most of the tested metabolites showed significant cytotoxic activities against HCT-116, HT-29, and A375. Notably, 6-hydroxytetrangulol (5) and the acetyl derivative 5A showed extremely strong cytotoxic activities against HCT-116, with IC50 values of 9.8 and 2.2 µM, respectively. Moreover, 5A showed extremely strong cytotoxic activity against A375 (IC50 <0.2 µM), and the conceivable cytotoxic activity mechanism was also proposed by molecular docking. These findings indicated metabolites of insect-associated S. lannensis BYF-106 might be a potential source for developing new bioactive drugs in food, agriculture, and biomedical fields.IMPORTANCEFrequent attention to soil microorganisms has led to the rediscovery of known compounds. By contrast, insect-associated Streptomyces have been shown to produce a more diverse array of unique bioactive secondary metabolites compared to soil Streptomyces. In our ongoing effort to explore structurally diverse bioactive natural products from termite-associated Streptomyces, we discovered that the strain S. lannensis BYF-106 exhibited potent bioactivity. Chemical investigation of BYF-106 resulted in the isolation of two new C-glycoside angucycline-related analogs: urdamycin Y (1) and grincamycin W (2). In addition, four new derivative compounds (4A, 5A, 6A, and 6B) were synthesized through acetylation and methylation, respectively. Urdamycin Y (1) exhibited a strong inhibitory effect on NO production, and most of the tested metabolites showed significant cytotoxic activity. These findings indicate that the metabolites of BYF-106 may offer promising avenues for the exploration and development of new bioactive drugs.
Collapse
Affiliation(s)
- Jun Wu
- School of Life Science, Anhui Agricultural University, Hefei, China
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
| | - Miao Zhang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Jian Tao
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - MengRu Liu
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - JianHao Xiong
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - TaoShan Jiang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - YaXuan Wang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - XiaoHong Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - YueYue Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - CaiPing Yin
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - ShuXiang Zhang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - XinHua Liu
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - YingLao Zhang
- School of Life Science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Gadal S, Boyer JA, Roy SF, Outmezguine NA, Sharma M, Li H, Fan N, Chan E, Romin Y, Barlas A, Chang Q, Pancholi P, Timaul NM, Overholtzer M, Yaeger R, Manova-Todorova K, de Stanchina E, Bosenberg MW, Rosen N. Tumorigenesis Driven by BRAFV600E Requires Secondary Mutations That Overcome Its Feedback Inhibition of RAC1 and Migration. Cancer Res 2025; 85:1611-1627. [PMID: 39992718 PMCID: PMC12046322 DOI: 10.1158/0008-5472.can-24-2220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/19/2024] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
BRAF V600E mutations occur in 46% of melanomas and drive high levels of ERK activity and ERK-dependent proliferation. However, BRAFV600E is insufficient to drive melanoma in genetically engineered mouse models, and 82% of human benign nevi harbor BRAFV600E mutations. We found that BRAFV600E inhibited mesenchymal migration by causing feedback inhibition of RAC1 activity. ERK pathway inhibition induced RAC1 activation and restored migration and invasion. In cells with BRAFV600E, mutant RAC1 or PTEN inactivation restored RAC1 activity and cell motility. Together, these lesions occurred in 26% of melanomas with BRAFV600E mutations. Thus, although BRAFV600E activation of ERK deregulates cell proliferation, it prevents full malignant transformation by causing feedback inhibition of RAC1. Secondary mutations are, therefore, required for tumorigenesis. One mechanism underlying tumor evolution may be the selection of lesions that rescue the deleterious effects of oncogenic drivers. Significance: Secondary genetic lesions that rescue BRAFV600E/ERK-induced feedback inhibition on cell migration are required for tumorigenesis, indicating that oncogenic feedback may shape the genetic landscape and select for mutations that are therapeutic targets.
Collapse
Affiliation(s)
- Sunyana Gadal
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacob A. Boyer
- Ludwig Institute for Cancer Research, Princeton University, Princeton, New Jersey
| | - Simon F. Roy
- Department of Dermatology, Yale University, New Haven, Connecticut
- Department of Pathology, Yale University, New Haven, Connecticut
| | - Noah A. Outmezguine
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Malvika Sharma
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hongyan Li
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ning Fan
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric Chan
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yevgeniy Romin
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Afsar Barlas
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Qing Chang
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Priya Pancholi
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neilawattie Merna Timaul
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marcus W. Bosenberg
- Department of Dermatology, Yale University, New Haven, Connecticut
- Department of Pathology, Yale University, New Haven, Connecticut
| | - Neal Rosen
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
3
|
Hou J, Mei K, Wang D, Ke S, Chen X, Shang J, Li G, Gao Y, Xiong H, Zhang H, Chen L, Zhang W, Deng Y, Hong X, Liu DA, Hu T, Guo W, Zhan YY. TGM1/3-mediated transamidation of Exo70 promotes tumor metastasis upon LKB1 inactivation. Cell Rep 2024; 43:114604. [PMID: 39146185 DOI: 10.1016/j.celrep.2024.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/10/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024] Open
Abstract
Exo70, a key exocyst complex component, is crucial for cell motility and extracellular matrix (ECM) remodeling in cancer metastasis. Despite its potential as a drug target, Exo70's post-translational modifications (PTMs) are poorly characterized. Here, we report that Exo70 is transamidated on Gln5 with Lys56 of cystatin A by transglutaminases TGM1 and TGM3, promoting tumor metastasis. This modification enhances Exo70's association with other exocyst subunits, essential for secreting matrix metalloproteinases, forming invadopodia, and delivering integrins to the leading edge. Tumor suppressor liver kinase B1 (LKB1), whose inactivation accelerates metastasis, phosphorylates TGM1 and TGM3 at Thr386 and Thr282, respectively, to inhibit their interaction with Exo70 and the following transamidation. Cantharidin, a US Food and Drug Administration (FDA)-approved drug, inhibits Exo70 transamidation to restrain tumor cell migration and invasion. Together, our findings highlight Exo70 transamidation as a key molecular mechanism and target and propose cantharidin as a therapeutic strategy with direct clinical translational value for metastatic cancers, especially those with LKB1 loss.
Collapse
Affiliation(s)
- Jihuan Hou
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Daxuan Wang
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Sunkui Ke
- Department of Thoracic Surgery, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004, China
| | - Xiong Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jin Shang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Guixia Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Huifang Xiong
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Haoran Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Lu Chen
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Wenqing Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yabin Deng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiaoting Hong
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Di-Ao Liu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yan-Yan Zhan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Dymerska D, Marusiak AA. Drivers of cancer metastasis - Arise early and remain present. Biochim Biophys Acta Rev Cancer 2024; 1879:189060. [PMID: 38151195 DOI: 10.1016/j.bbcan.2023.189060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Cancer and its metastases arise from mutations of genes, drivers that promote a tumor's growth. Analyses of driver events provide insights into cancer cell history and may lead to a better understanding of oncogenesis. We reviewed 27 metastatic research studies, including pan-cancer studies, individual cancer studies, and phylogenetic analyses, and summarized our current knowledge of metastatic drivers. All of the analyzed studies had a high level of consistency of driver mutations between primary tumors and metastasis, indicating that most drivers appear early in cancer progression and are maintained in metastatic cells. Additionally, we reviewed data from around 50,000 metastatic cancer patients and compiled a list of genes altered in metastatic lesions. We performed Gene Ontology analysis and confirmed that the most significantly enriched processes in metastatic lesions were the epigenetic regulation of gene expression, signal transduction, cell cycle, programmed cell death, DNA damage, hypoxia and EMT. In this review, we explore the most recent discoveries regarding genetic factors in the advancement of cancer, specifically those that drive metastasis.
Collapse
Affiliation(s)
- Dagmara Dymerska
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland.
| | - Anna A Marusiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
5
|
Xiang J, Zheng B, Zhao L, He Y, Lou F, Li R, Fu M, Huang X, Zhang W, Hong X, Xiao L, Hu T. Exo70 Promotes the Invasion of Pancreatic Cancer Cells via the Regulation of Exosomes. Cancers (Basel) 2024; 16:336. [PMID: 38254825 PMCID: PMC10813805 DOI: 10.3390/cancers16020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Pancreatic cancer (PC) is an aggressive and fatal malignant tumor, and exosomes have been reported to be closely related to PC invasion and metastasis. Here we found that Exo70, a key subunit of the exocyst complex, promoted PC metastasis by regulating the secretion of tumor exosomes. Clinical sample studies showed that Exo70 was highly expressed in PC and negatively correlated with patients' survival. Exo70 promoted PC cell lines' invasion and migration. Interestingly, knockdown of Exo70, or using an Exo70 inhibitor (ES2) inhibited the secretion of tumor exosomes and increased the accumulation of cellular vesicles. Furthermore, Exo70 was found to accumulate in the exosomes, which then fused with neighboring PC cells and promoted their invasion. Moreover, Exo70 increased the expression of exosomal PD-L1, leading to the immune escape of PC cells. In vivo, knockdown of Exo70 or treatment with ES2 both decreased the tumor metastasis of PC cells in mice. This study provides new insight into the mechanism of invasion and metastasis in PC and identifies Exo70 as a potential prognostic factor and therapeutic target for PC.
Collapse
Affiliation(s)
- Jingzhou Xiang
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.X.); (B.Z.); (L.Z.); (R.L.); (M.F.); (W.Z.); (X.H.)
| | - Bowen Zheng
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.X.); (B.Z.); (L.Z.); (R.L.); (M.F.); (W.Z.); (X.H.)
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, China
| | - Lingying Zhao
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.X.); (B.Z.); (L.Z.); (R.L.); (M.F.); (W.Z.); (X.H.)
| | - Yuting He
- Department of Oncology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Y.H.); (F.L.); (X.H.)
| | - Fanzhuoran Lou
- Department of Oncology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Y.H.); (F.L.); (X.H.)
| | - Runyang Li
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.X.); (B.Z.); (L.Z.); (R.L.); (M.F.); (W.Z.); (X.H.)
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, China
| | - Miao Fu
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.X.); (B.Z.); (L.Z.); (R.L.); (M.F.); (W.Z.); (X.H.)
| | - Xintian Huang
- Department of Oncology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Y.H.); (F.L.); (X.H.)
| | - Wenqing Zhang
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.X.); (B.Z.); (L.Z.); (R.L.); (M.F.); (W.Z.); (X.H.)
| | - Xiaoting Hong
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.X.); (B.Z.); (L.Z.); (R.L.); (M.F.); (W.Z.); (X.H.)
| | - Li Xiao
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.X.); (B.Z.); (L.Z.); (R.L.); (M.F.); (W.Z.); (X.H.)
- Department of Oncology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; (Y.H.); (F.L.); (X.H.)
| | - Tianhui Hu
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.X.); (B.Z.); (L.Z.); (R.L.); (M.F.); (W.Z.); (X.H.)
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| |
Collapse
|
6
|
Beretti F, Gatti M, Zavatti M, Bassoli S, Pellacani G, Maraldi T. Reactive Oxygen Species Regulation of Chemoresistance and Metastatic Capacity of Melanoma: Role of the Cancer Stem Cell Marker CD271. Biomedicines 2023; 11:biomedicines11041229. [PMID: 37189846 DOI: 10.3390/biomedicines11041229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
BRAF mutations are present in 30-50% of cases of cutaneous melanoma, and treatment with selective BRAF and MEK inhibitors has been introduced. However, the development of resistance to these drugs often occurs. Chemo-resistant melanoma cells show increased expression of CD271, a stem cell marker that features increased migration. Concordantly, resistance to the selective inhibitor of oncogenic BRAFV600E/K, vemurafenib, is mediated by the increased expression of CD271. It has recently been shown that the BRAF pathway leads to an overexpression of the NADPH oxidase Nox4, which produces reactive oxygen species (ROS). Here, we examined in vitro how Nox-derived ROS in BRAF-mutated melanoma cells regulates their drug sensitivity and metastatic potential. We demonstrated that DPI, a Nox inhibitor, reduced the resistance of a melanoma cell line (SK-MEL-28) and a primary culture derived from a BRAFV600E-mutated biopsy to vemurafenib. DPI treatment affected the expression of CD271 and the ERK and Akt signaling pathways, leading to a drop in epithelial-mesenchymal transition (EMT), which undoubtedly promotes an invasive phenotype in melanoma. More importantly, the scratch test demonstrated the efficacy of the Nox inhibitor (DPI) in blocking migration, supporting its use to counteract drug resistance and thus cell invasion and metastasis in BRAF-mutated melanoma.
Collapse
Affiliation(s)
- Francesca Beretti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Martina Gatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Manuela Zavatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Sara Bassoli
- Department of Dermatology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanni Pellacani
- Department of Dermatology, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00185 Rome, Italy
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
7
|
Chen AT, Xiao Y, Tang X, Baqri M, Gao X, Reschke M, Sheu WC, Long G, Zhou Y, Deng G, Zhang S, Deng Y, Bai Z, Kim D, Huttner A, Kunes R, Günel M, Moliterno J, Saltzman WM, Fan R, Zhou J. Cross-platform analysis reveals cellular and molecular landscape of glioblastoma invasion. Neuro Oncol 2023; 25:482-494. [PMID: 35901838 PMCID: PMC10013636 DOI: 10.1093/neuonc/noac186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Improved treatment of glioblastoma (GBM) needs to address tumor invasion, a hallmark of the disease that remains poorly understood. In this study, we profiled GBM invasion through integrative analysis of histological and single-cell RNA sequencing (scRNA-seq) data from 10 patients. METHODS Human histology samples, patient-derived xenograft mouse histology samples, and scRNA-seq data were collected from 10 GBM patients. Tumor invasion was characterized and quantified at the phenotypic level using hematoxylin and eosin and Ki-67 histology stains. Crystallin alpha B (CRYAB) and CD44 were identified as regulators of tumor invasion from scRNA-seq transcriptomic data and validated in vitro, in vivo, and in a mouse GBM resection model. RESULTS At the cellular level, we found that invasive GBM are less dense and proliferative than their non-invasive counterparts. At the molecular level, we identified unique transcriptomic features that significantly contribute to GBM invasion. Specifically, we found that CRYAB significantly contributes to postoperative recurrence and is highly co-expressed with CD44 in invasive GBM samples. CONCLUSIONS Collectively, our analysis identifies differentially expressed features between invasive and nodular GBM, and describes a novel relationship between CRYAB and CD44 that contributes to tumor invasiveness, establishing a cellular and molecular landscape of GBM invasion.
Collapse
Affiliation(s)
| | | | | | - Mehdi Baqri
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Xingchun Gao
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Melanie Reschke
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Wendy C Sheu
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Gretchen Long
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Yu Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Gang Deng
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Shenqi Zhang
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Yanxiang Deng
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Anita Huttner
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Russell Kunes
- Department of Statistics, Columbia University, New York, NY, USA
| | - Murat Günel
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | | | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Rong Fan
- Corresponding Authors: Rong Fan, PhD, Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT 06511, USA (); Jiangbing Zhou, PhD, Department of Neurosurgery, Yale University, 310 Cedar Street, New Haven, CT 06510, USA ()
| | - Jiangbing Zhou
- Corresponding Authors: Rong Fan, PhD, Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT 06511, USA (); Jiangbing Zhou, PhD, Department of Neurosurgery, Yale University, 310 Cedar Street, New Haven, CT 06510, USA ()
| |
Collapse
|
8
|
Cabaço LC, Tomás A, Pojo M, Barral DC. The Dark Side of Melanin Secretion in Cutaneous Melanoma Aggressiveness. Front Oncol 2022; 12:887366. [PMID: 35619912 PMCID: PMC9128548 DOI: 10.3389/fonc.2022.887366] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Skin cancers are among the most common cancers worldwide and are increasingly prevalent. Cutaneous melanoma (CM) is characterized by the malignant transformation of melanocytes in the epidermis. Although CM shows lower incidence than other skin cancers, it is the most aggressive and responsible for the vast majority of skin cancer-related deaths. Indeed, 75% of patients present with invasive or metastatic tumors, even after surgical excision. In CM, the photoprotective pigment melanin, which is produced by melanocytes, plays a central role in the pathology of the disease. Melanin absorbs ultraviolet radiation and scavenges reactive oxygen/nitrogen species (ROS/RNS) resulting from the radiation exposure. However, the scavenged ROS/RNS modify melanin and lead to the induction of signature DNA damage in CM cells, namely cyclobutane pyrimidine dimers, which are known to promote CM immortalization and carcinogenesis. Despite triggering the malignant transformation of melanocytes and promoting initial tumor growth, the presence of melanin inside CM cells is described to negatively regulate their invasiveness by increasing cell stiffness and reducing elasticity. Emerging evidence also indicates that melanin secreted from CM cells is required for the immunomodulation of tumor microenvironment. Indeed, melanin transforms dermal fibroblasts in cancer-associated fibroblasts, suppresses the immune system and promotes tumor angiogenesis, thus sustaining CM progression and metastasis. Here, we review the current knowledge on the role of melanin secretion in CM aggressiveness and the molecular machinery involved, as well as the impact in tumor microenvironment and immune responses. A better understanding of this role and the molecular players involved could enable the modulation of melanin secretion to become a therapeutic strategy to impair CM invasion and metastasis and, hence, reduce the burden of CM-associated deaths.
Collapse
Affiliation(s)
- Luís C. Cabaço
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Tomás
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Duarte C. Barral
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
9
|
Huang H, Huang G, Tan Z, Hu Y, Shan L, Zhou J, Zhang X, Ma S, Lv W, Huang T, Liu Y, Wang D, Zhao X, Lin Y, Rong Z. Engineered Cas12a-Plus nuclease enables gene editing with enhanced activity and specificity. BMC Biol 2022; 20:91. [PMID: 35468792 PMCID: PMC9040236 DOI: 10.1186/s12915-022-01296-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background The CRISPR-Cas12a (formerly Cpf1) system is a versatile gene-editing tool with properties distinct from the broadly used Cas9 system. Features such as recognition of T-rich protospacer-adjacent motif (PAM) and generation of sticky breaks, as well as amenability for multiplex editing in a single crRNA and lower off-target nuclease activity, broaden the targeting scope of available tools and enable more accurate genome editing. However, the widespread use of the nuclease for gene editing, especially in clinical applications, is hindered by insufficient activity and specificity despite previous efforts to improve the system. Currently reported Cas12a variants achieve high activity with a compromise of specificity. Here, we used structure-guided protein engineering to improve both editing efficiency and targeting accuracy of Acidaminococcus sp. Cas12a (AsCas12a) and Lachnospiraceae bacterium Cas12a (LbCas12a). Results We created new AsCas12a variant termed “AsCas12a-Plus” with increased activity (1.5~2.0-fold improvement) and specificity (reducing off-targets from 29 to 23 and specificity index increased from 92% to 94% with 33 sgRNAs), and this property was retained in multiplex editing and transcriptional activation. When used to disrupt the oncogenic BRAFV600E mutant, AsCas12a-Plus showed less off-target activity while maintaining comparable editing efficiency and BRAFV600E cancer cell killing. By introducing the corresponding substitutions into LbCas12a, we also generated LbCas12a-Plus (activity improved ~1.1-fold and off-targets decreased from 20 to 12 while specificity index increased from 78% to 89% with 15 sgRNAs), suggesting this strategy may be generally applicable across Cas12a orthologs. We compared Cas12a-Plus, other variants described in this study, and the reported enCas12a-HF, enCas12a, and Cas12a-ultra, and found that Cas12a-Plus outperformed other variants with a good balance for enhanced activity and improved specificity. Conclusions Our discoveries provide alternative AsCas12a and LbCas12a variants with high specificity and activity, which expand the gene-editing toolbox and can be more suitable for clinical applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01296-1.
Collapse
Affiliation(s)
- Hongxin Huang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Guanjie Huang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Zhihong Tan
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Yongfei Hu
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lin Shan
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Jiajian Zhou
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Xin Zhang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Shufeng Ma
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Weiqi Lv
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Tao Huang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.,Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Yuchen Liu
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Dong Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyang Zhao
- Department of Development, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China. .,Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zhili Rong
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China. .,Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China. .,Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
McNeal AS, Belote RL, Zeng H, Urquijo M, Barker K, Torres R, Curtin M, Shain AH, Andtbacka RHI, Holmen S, Lum DH, McCalmont TH, VanBrocklin MW, Grossman D, Wei ML, Lang UE, Judson-Torres RL. BRAF V600E induces reversible mitotic arrest in human melanocytes via microrna-mediated suppression of AURKB. eLife 2021; 10:e70385. [PMID: 34812139 PMCID: PMC8610417 DOI: 10.7554/elife.70385] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022] Open
Abstract
Benign melanocytic nevi frequently emerge when an acquired BRAFV600E mutation triggers unchecked proliferation and subsequent arrest in melanocytes. Recent observations have challenged the role of oncogene-induced senescence in melanocytic nevus formation, necessitating investigations into alternative mechanisms for the establishment and maintenance of proliferation arrest in nevi. We compared the transcriptomes of melanocytes from healthy human skin, nevi, and melanomas arising from nevi and identified a set of microRNAs as highly expressed nevus-enriched transcripts. Two of these microRNAs-MIR211-5p and MIR328-3p-induced mitotic failure, genome duplication, and proliferation arrest in human melanocytes through convergent targeting of AURKB. We demonstrate that BRAFV600E induces a similar proliferation arrest in primary human melanocytes that is both reversible and conditional. Specifically, BRAFV600E expression stimulates either arrest or proliferation depending on the differentiation state of the melanocyte. We report genome duplication in human melanocytic nevi, reciprocal expression of AURKB and microRNAs in nevi and melanomas, and rescue of arrested human nevus cells with AURKB expression. Taken together, our data describe an alternative molecular mechanism for melanocytic nevus formation that is congruent with both experimental and clinical observations.
Collapse
Affiliation(s)
- Andrew S McNeal
- University of California, San FranciscoSan FranciscoUnited States
| | | | - Hanlin Zeng
- Huntsman Cancer Inst.Salt Lake CityUnited States
| | | | | | - Rodrigo Torres
- University of California, San FranciscoSan FranciscoUnited States
| | | | - A Hunter Shain
- University of California, San FranciscoSan FranciscoUnited States
| | - Robert HI Andtbacka
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - Sheri Holmen
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - David H Lum
- Huntsman Cancer Inst.Salt Lake CityUnited States
| | | | - Matt W VanBrocklin
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - Douglas Grossman
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - Maria L Wei
- University of California, San FranciscoSan FranciscoUnited States
| | - Ursula E Lang
- University of California, San FranciscoSan FranciscoUnited States
| | - Robert L Judson-Torres
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| |
Collapse
|
11
|
Yu Y, Tao M, Xu L, Cao L, Le B, An N, Dong J, Xu Y, Yang B, Li W, Liu B, Wu Q, Lu Y, Xie Z, Lian X. Systematic screening reveals synergistic interactions that overcome MAPK inhibitor resistance in cancer cells. Cancer Biol Med 2021; 19:j.issn.2095-3941.2020.0560. [PMID: 34106558 PMCID: PMC8832956 DOI: 10.20892/j.issn.2095-3941.2020.0560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/13/2021] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Effective adjuvant therapeutic strategies are urgently needed to overcome MAPK inhibitor (MAPKi) resistance, which is one of the most common forms of resistance that has emerged in many types of cancers. Here, we aimed to systematically identify the genetic interactions underlying MAPKi resistance, and to further investigate the mechanisms that produce the genetic interactions that generate synergistic MAPKi resistance. METHODS We conducted a comprehensive pair-wise sgRNA-based high-throughput screening assay to identify synergistic interactions that sensitized cancer cells to MAPKi, and validated 3 genetic combinations through competitive growth, cell viability, and spheroid formation assays. We next conducted Kaplan-Meier survival analysis based on The Cancer Genome Atlas database and conducted immunohistochemistry to determine the clinical relevance of these synergistic combinations. We also investigated the MAPKi resistance mechanisms of these validated synergistic combinations by using co-immunoprecipitation, Western blot, qRT-PCR, and immunofluorescence assays. RESULTS We constructed a systematic interaction network of MAPKi resistance and identified 3 novel synergistic combinations that effectively targeted MAPKi resistance (ITGB3 + IGF1R, ITGB3 + JNK, and HDGF + LGR5). We next analyzed their clinical relevance and the mechanisms by which they sensitized cancer cells to MAPKi exposure. Specifically, we discovered a novel protein complex, HDGF-LGR5, that adaptively responded to MAPKi to enhance cancer cell stemness, which was up- or downregulated by the inhibitors of ITGB3 + JNK or ITGB3 + IGF1R. CONCLUSIONS Pair-wise sgRNA library screening provided systematic insights into elucidating MAPKi resistance in cancer cells. ITGB3- + IGF1R-targeting drugs (cilengitide + linsitinib) could be used as an effective therapy for suppressing the adaptive formation of the HDGF-LGR5 protein complex, which enhanced cancer stemness during MAPKi stress.
Collapse
Affiliation(s)
- Yu Yu
- Department of Cell Biology, Basic Medical College, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Minzhen Tao
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Libin Xu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lei Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Baoyu Le
- Beijing Syngentech Co., Ltd, Beijing 102206, China
| | - Na An
- Beijing Syngentech Co., Ltd, Beijing 102206, China
| | - Jilin Dong
- Beijing Syngentech Co., Ltd, Beijing 102206, China
| | - Yajie Xu
- Beijing Syngentech Co., Ltd, Beijing 102206, China
| | - Baoxing Yang
- Beijing Syngentech Co., Ltd, Beijing 102206, China
| | - Wei Li
- Beijing Syngentech Co., Ltd, Beijing 102206, China
| | - Bing Liu
- Beijing Syngentech Co., Ltd, Beijing 102206, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yinying Lu
- The Comprehensive Liver Cancer Center, The 5th Medical Center of PLA General Hospital, Beijing 100039, China
| | - Zhen Xie
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Xiaohua Lian
- Department of Cell Biology, Basic Medical College, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
12
|
Moreiras H, Seabra MC, Barral DC. Melanin Transfer in the Epidermis: The Pursuit of Skin Pigmentation Control Mechanisms. Int J Mol Sci 2021; 22:4466. [PMID: 33923362 PMCID: PMC8123122 DOI: 10.3390/ijms22094466] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/27/2022] Open
Abstract
The mechanisms by which the pigment melanin is transferred from melanocytes and processed within keratinocytes to achieve skin pigmentation remain ill-characterized. Nevertheless, several models have emerged in the past decades to explain the transfer process. Here, we review the proposed models for melanin transfer in the skin epidermis, the available evidence supporting each one, and the recent observations in favor of the exo/phagocytosis and shed vesicles models. In order to reconcile the transfer models, we propose that different mechanisms could co-exist to sustain skin pigmentation under different conditions. We also discuss the limited knowledge about melanin processing within keratinocytes. Finally, we pinpoint new questions that ought to be addressed to solve the long-lasting quest for the understanding of how basal skin pigmentation is controlled. This knowledge will allow the emergence of new strategies to treat pigmentary disorders that cause a significant socio-economic burden to patients and healthcare systems worldwide and could also have relevant cosmetic applications.
Collapse
Affiliation(s)
| | | | - Duarte C. Barral
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (H.M.); (M.C.S.)
| |
Collapse
|
13
|
Novel and Potent Small Molecules against Melanoma Harboring BRAF Class I/II/III Mutants for Overcoming Drug Resistance. Int J Mol Sci 2021; 22:ijms22073783. [PMID: 33917428 PMCID: PMC8038755 DOI: 10.3390/ijms22073783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Melanoma accounts for the majority of skin cancer deaths. About 50% of all melanomas are associated with BRAF mutations. BRAF mutations are classified into three classes with regard to dependency on RAF dimerization and RAS signaling. The most frequently occurring class I BRAF V600 mutations are sensitive to vemurafenib whereas class II and class III mutants, non-V600 BRAF mutants are resistant to vemurafenib. Herein we report six pyrimido[4,5-d]pyrimidin-2-one derivatives possessing highly potent anti-proliferative activities on melanoma cells harboring BRAF class I/II/III mutants. Novel and most potent derivative, SIJ1777, possesses not only two-digit nanomolar potency but also 2 to 14-fold enhanced anti-proliferative activities compared with reference compound, GNF-7 against melanoma cells (SK-MEL-2, SK-MEL-28, A375, WM3670, WM3629). Moreover, SIJ1777 substantially inhibits the activation of MEK, ERK, and AKT and remarkably induces apoptosis and significantly blocks migration, invasion, and anchorage-independent growth of melanoma cells harboring BRAF class I/II/II mutations while both vemurafenib and PLX8394 have little to no effects on melanoma cells expressing BRAF class II/III mutations. Taken together, our six GNF-7 derivatives exhibit highly potent activities against melanoma cells harboring class I/II/III BRAF mutations compared with vemurafenib as well as PLX8394.
Collapse
|
14
|
Schmidlin CJ, Tian W, Dodson M, Chapman E, Zhang DD. FAM129B-dependent activation of NRF2 promotes an invasive phenotype in BRAF mutant melanoma cells. Mol Carcinog 2021; 60:331-341. [PMID: 33684228 DOI: 10.1002/mc.23295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Incidence of melanoma continues to rise in the United States with ~100,000 new cases diagnosed in 2019. While the 5-year survival rate of melanoma is 99% when localized, the rate of survival drops to 22.5% when distant disease is detected. As such, an area of great interest is understanding the mechanisms that promote melanoma metastasis so that better potential therapeutic targets can be discovered. Herein, we demonstrate that activation of NRF2 by FAM129B contributes to increased metastatic potential of BRAF V600E mutant melanoma cells. Specifically, FAM129B induces NRF2 by competing for Kelch-like ECH-associated protein 1 (KEAP1) binding (the negative regulator of NRF2) via an ETGE motif. Furthermore, we show that phosphorylation of FAM129B plays a role in mediating the interaction between FAM129B and KEAP1, as the phosphorylation status of FAM129B dictates its subcellular localization. When phosphorylated, FAM129B is found primarily in the cytosol where it can bind to KEAP1, but upon inhibition of mitogen-activated protein kinase kinase activity, FAM129B is localized to the cell membrane and no longer interacts with KEAP1. In BRAF V600E mutant melanoma, the mitogen-activated protein kinase pathway leads to hyperphosphorylation of FAM129B, and therefore FAM129B localizes to the cytosol, binds KEAP1, and upregulates NRF2. Importantly, genetic modulation or pharmacological inhibition that results in a decrease in FAM129B protein level or its phosphorylation decreases migration and invasion of mutant melanoma in an NRF2-dependent manner. Overall, these data indicate that phosphorylation of FAM129B plays a significant role in driving the metastatic potential of BRAF V600E melanoma via upregulation of the NRF2 signaling pathway.
Collapse
Affiliation(s)
- Cody J Schmidlin
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | - Wang Tian
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | - Matthew Dodson
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | - Eli Chapman
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | - Donna D Zhang
- Deparment of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA.,Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
15
|
Lira M, Zamorano P, Cerpa W. Exo70 intracellular redistribution after repeated mild traumatic brain injury. Biol Res 2021; 54:5. [PMID: 33593425 PMCID: PMC7885507 DOI: 10.1186/s40659-021-00329-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Exo70 is a subunit of the greater exocyst complex, a collection of proteins that oversees cellular membrane addition and polarized exocytosis by acting as a tethering intermediate between the plasma membrane and newly synthesized secretory vesicles. Although Exo70 function has been implicated in several developmental events including cytokinesis and the establishment of cell polarity, its role in neuropathologies is poorly understood. On the other hand, traumatic brain injury is the result of mechanical external force including contusion, fast acceleration, and expansive waves that produce temporal or permanent cognitive damage and triggers physical and psychosocial alterations including headache, memory problems, attention deficits, difficulty thinking, mood swings, and frustration. Traumatic brain injury is a critical health problem on a global scale, constituting a major cause of deaths and disability among young adults. Trauma-related cellular damage includes redistribution of N-methyl-D-aspartate receptors outside of the synaptic compartment triggering detrimental effects to neurons. The exocyst has been related to glutamate receptor constitutive trafficking/delivery towards synapse as well. This work examines whether the exocyst complex subunit Exo70 participates in traumatic brain injury and if it is redistributed among subcellular compartments RESULTS: Our analysis shows that Exo70 expression is not altered upon injury induction. By using subcellular fractionation, we determined that Exo70 is redistributed from microsomes fraction into the synaptic compartment after brain trauma. In the synaptic compartment, we also show that the exocyst complex assembly and its interaction with GluN2B are increased. Finally, we show that the Exo70 pool that is redistributed comes from the plasma membrane. CONCLUSIONS The present findings position Exo70 in the group of proteins that could modulate GluN2B synaptic availability in acute neuropathology like a traumatic brain injury. By acting as a nucleator factor, Exo70 is capable of redirecting the ensembled complex into the synapse. We suggest that this redistribution is part of a compensatory mechanism by which Exo70 is able to maintain GluN2B partially on synapses. Hence, reducing the detrimental effects associated with TBI pathophysiology.
Collapse
Affiliation(s)
- Matías Lira
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O´Higgins 340, Santiago, Chile
| | - Pedro Zamorano
- Departamento Biomédico, Universidad de Antofagasta, Antofagasta, Chile.,Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Waldo Cerpa
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O´Higgins 340, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
16
|
Novikov NM, Zolotaryova SY, Gautreau AM, Denisov EV. Mutational drivers of cancer cell migration and invasion. Br J Cancer 2021; 124:102-114. [PMID: 33204027 PMCID: PMC7784720 DOI: 10.1038/s41416-020-01149-0] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Genomic instability and mutations underlie the hallmarks of cancer-genetic alterations determine cancer cell fate by affecting cell proliferation, apoptosis and immune response, and increasing data show that mutations are involved in metastasis, a crucial event in cancer progression and a life-threatening problem in cancer patients. Invasion is the first step in the metastatic cascade, when tumour cells acquire the ability to move, penetrate into the surrounding tissue and enter lymphatic and blood vessels in order to disseminate. A role for genetic alterations in invasion is not universally accepted, with sceptics arguing that cellular motility is related only to external factors such as hypoxia, chemoattractants and the rigidity of the extracellular matrix. However, increasing evidence shows that mutations might trigger and accelerate the migration and invasion of different types of cancer cells. In this review, we summarise data from published literature on the effect of chromosomal instability and genetic mutations on cancer cell migration and invasion.
Collapse
Affiliation(s)
- Nikita M Novikov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Sofia Y Zolotaryova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Alexis M Gautreau
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| |
Collapse
|
17
|
Jamshed M, Sankaranarayanan S, Abhinandan K, Samuel MA. Stigma Receptivity Is Controlled by Functionally Redundant MAPK Pathway Components in Arabidopsis. MOLECULAR PLANT 2020; 13:1582-1593. [PMID: 32890733 DOI: 10.1101/2020.03.09.983767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/25/2020] [Accepted: 08/28/2020] [Indexed: 05/22/2023]
Abstract
In angiosperms, the process of pollination relies on species-specific interaction and signaling between the male (pollen) and female (pistil) counterparts where the interplay between several pollen and stigma proteins decides the fate of the pollen. In Brassicaceae, the dry stigmatic papillary cells control pollen germination by releasing resources only to compatible pollen thereby allowing pollen to hydrate and germinate. Despite the identification of a number of stigmatic proteins that facilitate pollination responses, the signaling mechanisms that regulate functions of these proteins have remained unknown. Here, we show that, in Arabidopsis, an extremely functionally redundant mitogen-activated protein kinase (MAPK) cascade is required for maintaining stigma receptivity to accept compatible pollen. Our genetic analyses demonstrate that in stigmas, five MAPK kinases (MKKs), MKK1/2/3/7/9 are required to transmit upstream signals to two MPKs, MPK3/4, to mediate compatible pollination. Compromised functions of these five MKKs in the quintuple mutant (mkk1/2/3RNAi/mkk7/9) phenocopied pollination defects observed in the mpk4RNAi/mpk3 double mutant. We further show that this MAPK nexus converges on Exo70A1, a previously identified stigma receptivity factor essential for pollination. Given that pollination is the crucial initial step during plant reproduction, understanding the mechanisms that govern successful pollination could lead to development of strategies to improve crop yield.
Collapse
Affiliation(s)
- Muhammad Jamshed
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada; Senior Scientist, Frontier Agri-Science Inc, 98 Ontario Street, Port Hope, ON L1A 2V2, Canada
| | - Subramanian Sankaranarayanan
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada; Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Kumar Abhinandan
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Marcus A Samuel
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
18
|
Jamshed M, Sankaranarayanan S, Abhinandan K, Samuel MA. Stigma Receptivity Is Controlled by Functionally Redundant MAPK Pathway Components in Arabidopsis. MOLECULAR PLANT 2020; 13:1582-1593. [PMID: 32890733 DOI: 10.1016/j.molp.2020.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/25/2020] [Accepted: 08/28/2020] [Indexed: 05/27/2023]
Abstract
In angiosperms, the process of pollination relies on species-specific interaction and signaling between the male (pollen) and female (pistil) counterparts where the interplay between several pollen and stigma proteins decides the fate of the pollen. In Brassicaceae, the dry stigmatic papillary cells control pollen germination by releasing resources only to compatible pollen thereby allowing pollen to hydrate and germinate. Despite the identification of a number of stigmatic proteins that facilitate pollination responses, the signaling mechanisms that regulate functions of these proteins have remained unknown. Here, we show that, in Arabidopsis, an extremely functionally redundant mitogen-activated protein kinase (MAPK) cascade is required for maintaining stigma receptivity to accept compatible pollen. Our genetic analyses demonstrate that in stigmas, five MAPK kinases (MKKs), MKK1/2/3/7/9 are required to transmit upstream signals to two MPKs, MPK3/4, to mediate compatible pollination. Compromised functions of these five MKKs in the quintuple mutant (mkk1/2/3RNAi/mkk7/9) phenocopied pollination defects observed in the mpk4RNAi/mpk3 double mutant. We further show that this MAPK nexus converges on Exo70A1, a previously identified stigma receptivity factor essential for pollination. Given that pollination is the crucial initial step during plant reproduction, understanding the mechanisms that govern successful pollination could lead to development of strategies to improve crop yield.
Collapse
Affiliation(s)
- Muhammad Jamshed
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada; Senior Scientist, Frontier Agri-Science Inc, 98 Ontario Street, Port Hope, ON L1A 2V2, Canada
| | - Subramanian Sankaranarayanan
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada; Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Kumar Abhinandan
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Marcus A Samuel
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
19
|
Vidal A, Redmer T. Decoding the Role of CD271 in Melanoma. Cancers (Basel) 2020; 12:cancers12092460. [PMID: 32878000 PMCID: PMC7564075 DOI: 10.3390/cancers12092460] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022] Open
Abstract
The evolution of melanoma, the most aggressive type of skin cancer, is triggered by driver mutations that are acquired in the coding regions of particularly BRAF (rat fibrosarcoma serine/threonine kinase, isoform B) or NRAS (neuroblastoma-type ras sarcoma virus) in melanocytes. Although driver mutations strongly determine tumor progression, additional factors are likely required and prerequisite for melanoma formation. Melanocytes are formed during vertebrate development in a well-controlled differentiation process of multipotent neural crest stem cells (NCSCs). However, mechanisms determining the properties of melanocytes and melanoma cells are still not well understood. The nerve growth factor receptor CD271 is likewise expressed in melanocytes, melanoma cells and NCSCs and programs the maintenance of a stem-like and migratory phenotype via a comprehensive network of associated genes. Moreover, CD271 regulates phenotype switching, a process that enables the rapid and reversible conversion of proliferative into invasive or non-stem-like states into stem-like states by yet largely unknown mechanisms. Here, we summarize current findings about CD271-associated mechanisms in melanoma cells and illustrate the role of CD271 for melanoma cell migration and metastasis, phenotype-switching, resistance to therapeutic interventions, and the maintenance of an NCSC-like state.
Collapse
|
20
|
The first small molecules capable of strongly suppressing proliferation of cancer cells harboring BRAF class I/II/III mutations. Biochem Biophys Res Commun 2020; 532:315-320. [PMID: 32873393 DOI: 10.1016/j.bbrc.2020.07.110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/23/2020] [Indexed: 01/15/2023]
Abstract
BRAF mutants are categorized into three classes according to dependency on RAS signaling and RAF dimerization-dependency. Class I BRAF V600 mutants (RAS-independent monomer) are sensitive to vemurafenib. In contrast, both class II mutants (RAS-independent dimer) and class III mutants (RAS-dependent heterodimer) are insensitive to vemurafenib. It is not likely that BRAF inhibitors capable of inhibiting all classes of BRAF mutants are currently available. Herein, we report GNF-7 and its novel derivative, SIJ1227 as the first BRAF inhibitors capable of inhibiting all classes of BRAF mutants. Compared with vemurafenib and PLX8394, both GNF-7 and SIJ1227 possess much more strong anti-proliferative activities on melanoma (A375 and C8161) and lung cancer cells (H1755 and H1666) harboring BRAF V600E (class I mutant), BRAF G464E/G469A (class II mutant) and BRAF G466V (class III mutant), respectively. Also, both GNF-7 and SIJ1227 are capable of inhibiting more strongly colony formation than vemurafenib and PLX8394 in 3D soft agar assay using C8161 melanoma cells. In addition, GNF-7 and SIJ1227 suppress more strongly migration/invasion of these cancer cells than vemurafenib and PLX8394. Taken together, both GNF-7 and SIJ1227 are much superior to vemurafenib and PLX8394 in terms of capability to inhibit all classes of BRAF mutants.
Collapse
|
21
|
Rather RA, Bhagat M, Singh SK. Oncogenic BRAF, endoplasmic reticulum stress, and autophagy: Crosstalk and therapeutic targets in cutaneous melanoma. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2020; 785:108321. [PMID: 32800272 DOI: 10.1016/j.mrrev.2020.108321] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023]
Abstract
BRAF is a member of the RAF family of serine/threonine-specific protein kinases. Oncogenic BRAF, in particular, BRAF V600E, can disturb the normal protein folding machinery in the endoplasmic reticulum (ER) leading to accumulation of unfolded/misfolded proteins in the ER lumen, a condition known as endoplasmic reticulum (ER) stress. To alleviate such conditions, ER-stressed cells have developed a highly robust and adaptable signaling network known as unfolded protein response (UPR). UPR is ordinarily a cytoprotective response and usually operates through the induction of autophagy, an intracellular lysosomal degradation pathway that directs damaged proteins, protein aggregates, and damaged organelles for bulk degradation and recycling. Both ER stress and autophagy are involved in the progression and chemoresistance of melanoma. Melanoma, which arises as a result of malignant transformation of melanocytes, exhibits exceptionally high therapeutic resistance. Many mechanisms of therapeutic resistance have been identified in individual melanoma patients and in preclinical BRAF-driven melanoma models. Recently, it has been recognized that oncogenic BRAF interacts with GRP78 and removes its inhibitory influence on the three fundamental ER stress sensors of UPR, PERK, IRE1α, and ATF6. Dissociation of GRP78 from these ER stress sensors prompts UPR that subsequently activates cytoprotective autophagy. Thus, pharmacological inhibition of BRAF-induced ER stress-mediated autophagy can potentially resensitize BRAF mutant melanoma tumors to apoptosis. However, the underlying molecular mechanism of how oncogenic BRAF elevates the basal level of ER stress-mediated autophagy in melanoma tumors is not well characterized. A better understanding of the crosstalk between oncogenic BRAF, ER stress and autophagy may provide a rationale for improving existing cancer therapies and identify novel targets for therapeutic intervention of melanoma.
Collapse
Affiliation(s)
- Rafiq A Rather
- School of Biotechnology, University of Jammu, Jammu and Kashmir, 180006, India.
| | - Madhulika Bhagat
- School of Biotechnology, University of Jammu, Jammu and Kashmir, 180006, India
| | - Shashank K Singh
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| |
Collapse
|
22
|
Loss of Spry1 reduces growth of BRAF V600-mutant cutaneous melanoma and improves response to targeted therapy. Cell Death Dis 2020; 11:392. [PMID: 32444628 PMCID: PMC7244546 DOI: 10.1038/s41419-020-2585-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
Mitogen-activated protein kinase (MAPK) pathway activation is a central step in BRAFV600-mutant cutaneous melanoma (CM) pathogenesis. In the last years, Spry1 has been frequently described as an upstream regulator of MAPK signaling pathway. However, its specific role in BRAFV600-mutant CM is still poorly defined. Here, we report that Spry1 knockdown (Spry1KO) in three BRAFV600-mutant CM cell lines markedly induced cell cycle arrest and apoptosis, repressed cell proliferation in vitro, and impaired tumor growth in vivo. Furthermore, our findings indicated that Spry1KO reduced the expression of several markers of epithelial–mesenchymal transition, such as MMP-2 both in vitro and in vivo. These effects were associated with a sustained and deleterious phosphorylation of ERK1/2. In addition, p38 activation along with an increase in basal ROS levels were found in Spry1KO clones compared to parental CM cell lines, suggesting that BRAFV600-mutant CM may restrain the activity of Spry1 to avoid oncogenic stress and to enable tumor growth. Consistent with this hypothesis, treatment with the BRAF inhibitor (BRAFi) vemurafenib down-regulated Spry1 levels in parental CM cell lines, indicating that Spry1 expression is sustained by the MAPK/ERK signaling pathway in a positive feedback loop that safeguards cells from the potentially toxic effects of ERK1/2 hyperactivation. Disruption of this feedback loop rendered Spry1KO cells more susceptible to apoptosis and markedly improved response to BRAFi both in vitro and in vivo, as a consequence of the detrimental effect of ERK1/2 hyperactivation observed upon Spry1 abrogation. Therefore, targeting Spry1 might offer a treatment strategy for BRAFV600-mutant CM by inducing the toxic effects of ERK-mediated signaling.
Collapse
|
23
|
Protein Kinase Cα Promotes Proliferation and Migration of Schwann Cells by Activating ERK Signaling Pathway. Neuroscience 2020; 433:94-107. [PMID: 32171817 DOI: 10.1016/j.neuroscience.2020.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/28/2022]
Abstract
Wallerian degeneration (WD) and axon regeneration generally take place following peripheral nerve injury (PNI). Schwann cells (SCs) and macrophages play major role in WD. SCs, acting as repair cells and primary signal mediators, dedifferentiate and proliferate to remove the debris, form Büngner's bands and secrete trophic factors during these processes. However, the underlying mechanisms remain poorly understood. Here, we found that protein kinase Cα (PKCα), a serine/threonine kinase, expressed in SCs was significantly up-regulated after PNI. Activating PKCα with phorbol 12-myristate 13-acetate (PMA), a phorbol ester binds and activates PKCα) promoted SCs proliferation and migration. While, silence of PKCα by siRNAs inhibited these processes. PD184352, an inhibitor of MEK1, reversed the effect induced by PMA on SCs. Mechanism studies revealed that PKCα functioned through activating the ERK signaling pathway. Furthermore, PKCα also exhibited a neuroprotective role by upregulating the expression of neurotrophic factors in SCs. To sum up, this study offers novel insights for clarifying our understanding of the involvement of PKCα in the mechanism of peripheral nerve degeneration as well as regeneration.
Collapse
|
24
|
Tian Y, Guo W. A Review of the Molecular Pathways Involved in Resistance to BRAF Inhibitors in Patients with Advanced-Stage Melanoma. Med Sci Monit 2020; 26:e920957. [PMID: 32273491 PMCID: PMC7169438 DOI: 10.12659/msm.920957] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Melanoma is an aggressive malignancy of melanocytes and most commonly arises in the skin. In 2002, BRAF gene mutations were identified in melanoma, and this finding resulted in the development of several small-molecule molecular inhibitors that specifically targeted the BRAF V600E mutation. The development of targeted therapies for advanced-stage melanoma, including tyrosine kinase inhibitors (TKIs) of the BRAF (V600E) kinase, vemurafenib and dabrafenib, have been approved for the treatment of advanced melanoma leading to improved clinical outcomes. However, the development of BRAF inhibitor (BRAFi) resistance has significantly reduced the therapeutic efficacy after prolonged treatment. Recent studies have identified the molecular mechanisms for BRAFi resistance. This review aims to describe the impact of BRAFi resistance on the pathogenesis of melanoma, the current status of molecular pathways involved in BRAFi resistance, including intrinsic resistance, adaptive resistance, and acquired resistance. This review will discuss how an understanding of the mechanisms associated with BRAFi resistance may aid the identification of useful strategies for overcoming the resistance to BRAF-targeted therapy in patients with advanced-stage melanoma.
Collapse
Affiliation(s)
- Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
25
|
ULK1 phosphorylates Exo70 to suppress breast cancer metastasis. Nat Commun 2020; 11:117. [PMID: 31913283 PMCID: PMC6949295 DOI: 10.1038/s41467-019-13923-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/02/2019] [Indexed: 01/17/2023] Open
Abstract
Increased expression of protein kinase ULK1 was reported to negatively correlate with breast cancer metastasis. Here we report that ULK1 suppresses the migration and invasion of human breast cancer cells. The suppressive effect is mediated through direct phosphorylation of Exo70, a key component of the exocyst complex. ULK1 phosphorylation inhibits Exo70 homo-oligomerization as well as its assembly to the exocyst complex, which are needed for cell protrusion formation and matrix metalloproteinases secretion during cell invasion. Reversely, upon growth factor stimulation, Exo70 is phosphorylated by ERK1/2, which in turn suppresses its phosphorylation by ULK1. Together, our study identifies Exo70 as a substrate of ULK1 that inhibits cancer metastasis, and demonstrates that two counteractive regulatory mechanisms are well orchestrated during tumor cell invasion. Elevated expression of ULK1 is known to be inversely correlated with breast cancer metastasis. Here, the authors report Exo70 as a substrate of ULK1 that suppresses cancer metastasis, and show that ERK1/2 mediated phosphorylation of Exo70 leads to opposing effects on tumour cell invasion.
Collapse
|
26
|
Manninen AA, Gardberg M, Juteau S, Ilmonen S, Jukonen J, Andersson N, Carpén O. BRAF immunohistochemistry predicts sentinel lymph node involvement in intermediate thickness melanomas. PLoS One 2019; 14:e0216043. [PMID: 31039200 PMCID: PMC6490950 DOI: 10.1371/journal.pone.0216043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/12/2019] [Indexed: 12/31/2022] Open
Abstract
Background Sentinel node biopsy (SNB) is an important step in melanoma staging and prognostication. It is commonly performed for patients with intermediate thickness melanomas, based on clinicopathological features. However, only 20–25% of patients eventually demonstrate nodal involvement. The aim of this study was to evaluate whether tissue biomarkers with links to melanoma biology, together with clinicopathological parameters, could aid in the prediction of sentinel node involvement and improve selection of patients for SNB. In addition, we examined the role of these clinical or biological markers in disease outcome. Methods We collected a case-control cohort of 140 intermediate thickness (Breslow 0,9–4,0mm) melanoma patients with or without SNB involvement matched for age, gender, Breslow thickness and location. From this cohort, we tested the predictive value of common clinicopathological parameters (ulceration, mitotic count and tumor regression) and FMNL-2, ezrin and BRAF V600E immunoreactivity, for sentinel node involvement and survival. We further analyzed the correlations in the superficial spreading melanoma subtype. Results Based on our case control analysis, of the markers, BRAF V600E status (p = 0.010) and mitotic count (p = 0.036) correlated with SNB involvement. SNB status was a strong independent prognosticator for recurrence free survival (RFS p<0.001), melanoma specific survival (MSS p = 0.000) and overall survival (OS p = 0.029). In the superficially spreading melanoma subgroup, BRAF V600E positivity indicated poorer RFS (p = 0.039) and OS (p = 0.012). By combining the Breslow thickness, mitotic count and BRAF immunohistochemistry, we identified a group of superficially spreading melanomas with an excellent survival probability independent of SNB status. Conclusions These results demonstrate that BRAF immunohistochemistry could serve as a useful addition to a marker panel for selecting intermediate thickness melanoma patients for SNB.
Collapse
Affiliation(s)
- Atte A. Manninen
- Department of Plastic Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maria Gardberg
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku and Turku University Hospital, Turku, Finland
| | - Susanna Juteau
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Suvi Ilmonen
- Department of Plastic Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Joonas Jukonen
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Noora Andersson
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Olli Carpén
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
27
|
Frazao A, Rethacker L, Messaoudene M, Avril MF, Toubert A, Dulphy N, Caignard A. NKG2D/NKG2-Ligand Pathway Offers New Opportunities in Cancer Treatment. Front Immunol 2019; 10:661. [PMID: 30984204 PMCID: PMC6449444 DOI: 10.3389/fimmu.2019.00661] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
The antitumor functions of NK cells are regulated by the integration of positive and negative signals triggered by numerous membrane receptors present on the NK cells themselves. Among the main activating receptors, NKG2D binds several stress-induced molecules on tumor targets. Engagement of NKG2D by its ligands (NKG2D-Ls) induces NK cell activation leading to production of cytokines and target cell lysis. These effects have therapeutic potential as NKG2D-Ls are widely expressed by solid tumors, whereas their expression in healthy cells is limited. Here, we describe the genetic and environmental factors regulating the NKG2D/NKG2D-L pathway in tumors. NKG2D-L expression is linked to cellular stress and cell proliferation, and has been associated with oncogenic mutations. Tumors have been found to alter their to NKG2D-L expression as they progress, which interferes with the antitumor function of the pathway. Nevertheless, this pathway could be advantageously exploited for cancer therapy. Various cancer treatments, including chemotherapy and targeted therapies, indirectly interfere with the cellular and soluble forms of NKG2D-Ls. In addition, NKG2D introduced into chimeric antigen receptors in T- and NK cells is a promising tumor immunotherapy approach.
Collapse
Affiliation(s)
- Alexandra Frazao
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Louise Rethacker
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | - Meriem Messaoudene
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France.,U1015 INSERM-CIC, Institut Gustave Roussy, Villejuif, France
| | - Marie-Françoise Avril
- Assistance Publique-Hôpitaux de Paris, Department of Dermatology, Hospital Cochin, University Paris Descartes, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Antoine Toubert
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Department of Immunology and Histocompatibility, Paris, France
| | - Nicolas Dulphy
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Department of Immunology and Histocompatibility, Paris, France
| | - Anne Caignard
- INSERMU1160, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
28
|
Ercolano G, De Cicco P, Frecentese F, Saccone I, Corvino A, Giordano F, Magli E, Fiorino F, Severino B, Calderone V, Citi V, Cirino G, Ianaro A. Anti-metastatic Properties of Naproxen-HBTA in a Murine Model of Cutaneous Melanoma. Front Pharmacol 2019; 10:66. [PMID: 30800067 PMCID: PMC6376415 DOI: 10.3389/fphar.2019.00066] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/18/2019] [Indexed: 12/28/2022] Open
Abstract
The beneficial effects of H2S-release and of COXs-inhibition have been exploited in the design of novel anti-inflammatory drugs, the H2S-releasing non-steroidal anti-inflammatory drugs (H2S-NSAIDs), showing promising potential for chemoprevention in cancers. Here, we evaluated the efficacy of a new H2S-releasing derivative of naproxen, named naproxen-4-hydroxybenzodithioate (naproxen-HBTA), in reducing metastatic melanoma features, both in vitro and in vivo. The novel H2S donor has been prepared following a synthetic scheme that provided high yields and purity. In particular, we investigated the effect of naproxen-HBTA in vitro on several metastatic features of human melanoma cells such as proliferation, migration, invasion, and colonies formation and in vivo in a model of cutaneous melanoma. Cell culture studies demonstrated that naproxen-HBTA induced caspase 3-mediated apoptosis and inhibited motility, invasiveness, and focus formation. Finally, daily oral treatment with naproxen-HBTA significantly suppressed melanoma growth and progression in mice. In conclusion, by using this dual approach we propose that the COX-2 and H2S pathways could be regarded as novel therapeutic targets/tools to generate new treatment options based on "combination therapy" for melanoma.
Collapse
Affiliation(s)
- Giuseppe Ercolano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Paola De Cicco
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Irene Saccone
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Corvino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Flavia Giordano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Elisa Magli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Beatrice Severino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | - Giuseppe Cirino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Ianaro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
29
|
AMPK Promotes SPOP-Mediated NANOG Degradation to Regulate Prostate Cancer Cell Stemness. Dev Cell 2018; 48:345-360.e7. [PMID: 30595535 DOI: 10.1016/j.devcel.2018.11.033] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/11/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022]
Abstract
NANOG is an essential transcriptional factor for the maintenance of embryonic stem cells (ESCs) and cancer stem cells (CSCs) in prostate cancer (PCa). However, the regulation mechanism of NANOG protein stability in cancer progression is still elusive. Here, we report that NANOG is degraded by SPOP, a frequently mutated tumor suppressor of PCa. Cancer-associated mutations of SPOP or the mutation of NANOG at S68Y abrogates the SPOP-mediated NANOG degradation, leading to elevated PCa cancer stemness and poor prognosis. In addition, SPOP-mediated NANOG degradation is controlled by the AMPK-BRAF signal axis through the phosphorylation of NANOG at Ser68, which blocked the interaction between SPOP and NANOG. Thus, our study provides a regulation mechanism of PCa stemness controlled by phosphorylation-mediated NANOG stability, which helps to identify novel drug targets and improve therapeutic strategy for PCa.
Collapse
|
30
|
Redmer T. Deciphering mechanisms of brain metastasis in melanoma - the gist of the matter. Mol Cancer 2018; 17:106. [PMID: 30053879 PMCID: PMC6064184 DOI: 10.1186/s12943-018-0854-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Metastasis to distant organs and particularly the brain still represents the most serious obstacle in melanoma therapies. Melanoma cells acquire a phenotype to metastasize to the brain and successfully grow there through complex mechanisms determined by microenvironmental than rather genetic cues. There do appear to be some prerequisites, including the presence of oncogenic BRAF or NRAS mutations and a loss of PTEN. Further mediators of the brain metastatic phenotype appear to be the high activation of the PI3K/AKT or STAT3 pathway or high levels of PLEKHA5 and MMP2 in metastatic cells. A yet undefined subset of brain metastases exhibit a high level of expression of CD271 that is associated with stemness, migration and survival. Hence, CD271 expression may determine specific properties of brain metastatic melanoma cells. Environmental cues - in particular those provided by brain parenchymal cells such as astrocytes - seem to help specifically guide melanoma cells that express CCR4 or CD271, potential "homing receptors". Upon entering the brain, these cells interact with brain parenchyma cells and are thereby reprogrammed to adopt a neurological phenotype. Several lines of evidence suggest that current therapies may have a negative effect by activating a program that drives tumor cells toward stemness and metastasis. Yet significant improvements have expanded the therapeutic options for treating brain metastases from melanoma, by combining potent BRAF inhibitors such as dabrafenib with checkpoint inhibitors or stereotactic surgery. Further progress toward developing new therapeutic strategies will require a more profound understanding of the mechanisms that underlie brain metastasis in melanoma.
Collapse
Affiliation(s)
- Torben Redmer
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany. .,Department of Medical Biochemistry, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
31
|
Zeng H, Jorapur A, Shain AH, Lang UE, Torres R, Zhang Y, McNeal AS, Botton T, Lin J, Donne M, Bastian IN, Yu R, North JP, Pincus L, Ruben BS, Joseph NM, Yeh I, Bastian BC, Judson RL. Bi-allelic Loss of CDKN2A Initiates Melanoma Invasion via BRN2 Activation. Cancer Cell 2018; 34:56-68.e9. [PMID: 29990501 PMCID: PMC6084788 DOI: 10.1016/j.ccell.2018.05.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 02/12/2018] [Accepted: 05/30/2018] [Indexed: 02/03/2023]
Abstract
Loss of the CDKN2A tumor suppressor is associated with melanoma metastasis, but the mechanisms connecting the phenomena are unknown. Using CRISPR-Cas9 to engineer a cellular model of melanoma initiation from primary human melanocytes, we discovered that a lineage-restricted transcription factor, BRN2, is downstream of CDKN2A and directly regulated by E2F1. In a cohort of melanocytic tumors that capture distinct progression stages, we observed that CDKN2A loss coincides with both the onset of invasive behavior and increased BRN2 expression. Loss of the CDKN2A protein product p16INK4A permitted metastatic dissemination of human melanoma lines in mice, a phenotype rescued by inhibition of BRN2. These results demonstrate a mechanism by which CDKN2A suppresses the initiation of melanoma invasion through inhibition of BRN2.
Collapse
Affiliation(s)
- Hanlin Zeng
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Aparna Jorapur
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - A Hunter Shain
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Ursula E Lang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Rodrigo Torres
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Yuntian Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Andrew S McNeal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Thomas Botton
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew Donne
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ingmar N Bastian
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Richard Yu
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA; Faculty of Medicine, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Jeffrey P North
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Laura Pincus
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Beth S Ruben
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA; Palo Alto Medical Foundation, Palo Alto, CA 94301, USA
| | - Nancy M Joseph
- Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Iwei Yeh
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Boris C Bastian
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94115, USA
| | - Robert L Judson
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA.
| |
Collapse
|
32
|
Meirson T, Gil-Henn H. Targeting invadopodia for blocking breast cancer metastasis. Drug Resist Updat 2018; 39:1-17. [PMID: 30075834 DOI: 10.1016/j.drup.2018.05.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
Abstract
Dissemination of cancer cells from the primary tumor and their spread to distant sites of the body is the leading cause of mortality in metastatic cancer patients. Metastatic cancer cells invade surrounding tissues and blood vessels by forming F-actin-rich protrusions known as invadopodia, which degrade the extracellular matrix and enable invasion of tumor cells through it. Invadopodia have now been observed in vivo, and recent evidence demonstrates direct molecular links between assembly of invadopodia and cancer metastasis in both mouse models and in human patients. While significant progress has been achieved in the last decade in understanding the molecular mechanisms and signaling pathways regulating invadopodia formation and function, the application of this knowledge to development of prognostic and therapeutic approaches for cancer metastasis has not been discussed before. Here, we provide a detailed overview of current prognostic markers and tests for cancer metastasis and discuss their advantages, disadvantages, and their predicted efficiency. Using bioinformatic patient database analysis, we demonstrate, for the first time, a significant correlation between invadopodia-associated genes to breast cancer metastasis, suggesting that invadopodia could be used as both a prognostic marker and as a therapeutic target for blocking cancer metastasis. We include here a novel network interaction map of invadopodia-associated proteins with currently available inhibitors, demonstrating a central role for the recently identified EGFR-Pyk2-Src-Arg-cortactin invadopodial pathway, to which re-purposing of existent inhibitors could be used to block breast cancer metastasis. We then present an updated overview of current cancer-related clinical trials, demonstrating the negligible number of trials focusing on cancer metastasis. We also discuss the difficulties and complexity of performing cancer metastasis clinical trials, and the possible development of anti-metastasis drug resistance when using a prolonged preventive treatment with invadopodia inhibitors. This review presents a new perspective on invadopodia-mediated tumor invasiveness and may lead to the development of novel prognostic and therapeutic approaches for cancer metastasis.
Collapse
Affiliation(s)
- Tomer Meirson
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Hava Gil-Henn
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| |
Collapse
|
33
|
Montor WR, Salas AROSE, Melo FHMD. Receptor tyrosine kinases and downstream pathways as druggable targets for cancer treatment: the current arsenal of inhibitors. Mol Cancer 2018; 17:55. [PMID: 29455659 PMCID: PMC5817866 DOI: 10.1186/s12943-018-0792-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/01/2018] [Indexed: 12/23/2022] Open
Abstract
Searching for targets that allow pharmacological inhibition of cell proliferation in over-proliferative states, such as cancer, leads us to finely understand the complex mechanisms orchestrating the perfect control of mitosis number, frequency and pace as well as the molecular arrangements that induce cells to enter functional quiescence and brings them back to cycling in specific conditions. Although the mechanisms regulating cell proliferation have been described several years ago, never before has so much light been shed over this machinery as during the last decade when therapy targets have been explored and molecules, either synthetic or in the form of antibodies with the potential of becoming cancer drugs were produced and adjusted for specific binding and function. Proteins containing tyrosine kinase domains, either membrane receptors or cytoplasmic molecules, plus the ones activated by those in downstream pathways, having tyrosine kinase domains or not, such as RAS which is a GTPase and serine/threonine kinases such as RAF, play crucial role in conducting proliferation information from cell surroundings to the nucleus where gene expression takes place. Tyrosine kinases phosphorylate tyrosine residues in an activating mode and are found in important growth factor receptors, such as for ligands from families collectively known as VEGF, PDGF and EGF, to name a few and in intracellular downstream molecules. They all play important roles in normal physiology and are commonly found mutated or overexpressed in neoplastic states. Our objective here is to present such kinases as druggable targets for cancer therapy, highlighting the ones for which the pharmacological arsenal is available, discussing specificity, resistance mechanisms and treatment alternatives in cases of resistance, plus listing potential targets that have not been successfully worked yet.
Collapse
Affiliation(s)
- Wagner Ricardo Montor
- Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
34
|
Maiques O, Barceló C, Panosa A, Pijuan J, Orgaz JL, Rodriguez-Hernandez I, Matas-Nadal C, Tell G, Vilella R, Fabra A, Puig S, Sanz-Moreno V, Matias-Guiu X, Canti C, Herreros J, Marti RM, Macià A. T-type calcium channels drive migration/invasion in BRAFV600E melanoma cells through Snail1. Pigment Cell Melanoma Res 2018; 31:484-495. [PMID: 29385656 DOI: 10.1111/pcmr.12690] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/23/2017] [Indexed: 12/26/2022]
Abstract
Melanoma is a malignant tumor derived from melanocytes. Once disseminated, it is usually highly resistant to chemotherapy and is associated with poor prognosis. We have recently reported that T-type calcium channels (TTCCs) are overexpressed in melanoma cells and play an important role in melanoma progression. Importantly, TTCC pharmacological blockers reduce proliferation and deregulate autophagy leading to apoptosis. Here, we analyze the role of autophagy during migration/invasion of melanoma cells. TTCC Cav3.1 and LC3-II proteins are highly expressed in BRAFV600E compared with NRAS mutant melanomas, both in cell lines and biopsies. Chloroquine, pharmacological blockade, or gene silencing of TTCCs inhibit the autophagic flux and impair the migration and invasion capabilities, specifically in BRAFV600E melanoma cells. Snail1 plays an important role in motility and invasion of melanoma cells. We show that Snail1 is strongly expressed in BRAFV600E melanoma cells and patient biopsies, and its expression decreases when autophagy is blocked. These results demonstrate a role of Snail1 during BRAFV600E melanoma progression and strongly suggest that targeting macroautophagy and, particularly TTCCs, might be a good therapeutic strategy to inhibit metastasis of the most common melanoma type (BRAFV600E).
Collapse
Affiliation(s)
| | | | | | | | - Jose L Orgaz
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, London, UK
| | - Irene Rodriguez-Hernandez
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, London, UK
| | - Clara Matas-Nadal
- Department of Dermatology, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, Lleida, Spain
| | - Gemma Tell
- Melanoma Unit, Department of Dermatology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centre of Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ramón Vilella
- Department of Immunology, Hospital Clínic, Barcelona, Spain
| | - Angels Fabra
- Molecular Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Susana Puig
- Melanoma Unit, Department of Dermatology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Centre of Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Victoria Sanz-Moreno
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, London, UK
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, Lleida, Spain.,Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | | | - Rosa M Marti
- Department of Dermatology, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, Lleida, Spain.,Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Anna Macià
- University of Lleida, IRBLleida, Lleida, Spain
| |
Collapse
|
35
|
Mei K, Li Y, Wang S, Shao G, Wang J, Ding Y, Luo G, Yue P, Liu JJ, Wang X, Dong MQ, Wang HW, Guo W. Cryo-EM structure of the exocyst complex. Nat Struct Mol Biol 2018; 25:139-146. [PMID: 29335562 PMCID: PMC5971111 DOI: 10.1038/s41594-017-0016-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/07/2017] [Indexed: 12/22/2022]
Abstract
The exocyst is an evolutionarily conserved octameric protein complex that mediates the tethering of post-Golgi secretory vesicles to the plasma membrane during exocytosis and is implicated in many cellular processes such as cell polarization, cytokinesis, ciliogenesis and tumor invasion. Using cryo-EM and chemical cross-linking MS (CXMS), we solved the structure of the Saccharomyces cerevisiae exocyst complex at an average resolution of 4.4 Å. Our model revealed the architecture of the exocyst and led to the identification of the helical bundles that mediate the assembly of the complex at its core. Sequence analysis suggests that these regions are evolutionarily conserved across eukaryotic systems. Additional cell biological data suggest a mechanism for exocyst assembly that leads to vesicle tethering at the plasma membrane.
Collapse
Affiliation(s)
- Kunrong Mei
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yan Li
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Shaoxiao Wang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Guangcan Shao
- National Institute of Biological Sciences, Beijing, China
| | - Jia Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Yuehe Ding
- National Institute of Biological Sciences, Beijing, China
| | - Guangzuo Luo
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Peng Yue
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jun-Jie Liu
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xinquan Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China. .,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China. .,School of Life Sciences, Tsinghua University, Beijing, China. .,Tsinghua-Peking Joint Center for Life Sciences, Beijing, China.
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
36
|
LKB1 loss cooperating with BRAF V600E promotes melanoma cell invasion and migration by up-regulation MMP-2 via PI3K/Akt/mTOR pathway. Oncotarget 2017; 8:113847-113857. [PMID: 29371951 PMCID: PMC5768368 DOI: 10.18632/oncotarget.22943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/04/2017] [Indexed: 11/25/2022] Open
Abstract
The serine/threonine kinase LKB1, act as a tumor suppressor, has been reported in several sporadic cancers. However, how the loss of LKB1 promotes melanoma invasion and metastasis remains incompletely understood. In this study, we inactivated LKB1expression by RNA interference in BRAF mutation and wild type melanoma cells respectively. We found LKB1 inactivation cooperate with BRAF V600E lead to melanoma cells more aggressive by a series of experiments including wound scratch test, Transwell assay. While single alteration, either LKB1 loss or BRAF V600E, fails to enhance melanoma cells invasion ability. Mechanistically, LKB1 loss synergism with BRAF V600E resulted in the activation of the PI3K/Akt/mTOR signaling pathway and significant up-regulation expression of MMP-2. In addition, LKB1 expression in human melanoma tissues was negatively associated with MMP-2 expression in the presence of BRAF V600E. Thus, our findings indicate a probable explanation on LKB1 function as a tumor suppressor in melanoma and a new therapeutic strategy for melanoma by targeting on BRAF and LKB1 together.
Collapse
|
37
|
Abstract
Polarized exocytosis is generally considered as the multistep vesicular trafficking process in which membrane-bounded carriers are transported from the Golgi or endosomal compartments to specific sites of the plasma membrane. Polarized exocytosis in cells is achieved through the coordinated actions of membrane trafficking machinery and cytoskeleton orchestrated by signaling molecules such as the Rho family of small GTPases. Elucidating the molecular mechanisms of polarized exocytosis is essential to our understanding of a wide range of pathophysiological processes from neuronal development to tumor invasion.
Collapse
Affiliation(s)
- Jingwen Zeng
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| | - Shanshan Feng
- Key Laboratory for Regenerative Medicine of Ministry of Education and Department of Developmental & Regenerative Biology, Jinan University, Guangzhou 510632, P.R. China
| | - Bin Wu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| |
Collapse
|
38
|
Xi LC, Ji YX, Yin D, Zhao ZX, Huang SC, Yu SL, Liu BY, Li HY. Effects of Dermatopontin gene silencing on apoptosis and proliferation of osteosarcoma MG‑63 cells. Mol Med Rep 2017; 17:422-427. [PMID: 29115446 DOI: 10.3892/mmr.2017.7866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/19/2017] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the effect of Dermatopontin (DPT) gene silencing on the apoptosis and proliferation of osteosarcoma MG‑63 cells. Three eukaryotic expression vectors of short hairpin (sh)RNA fragments targeting different loci of DPT were designed and transfected into an osteosarcoma cell line MG‑63. The cells were assigned to a blank, shRNA‑control, DPT‑shRNA‑a, DPT‑shRNA‑b or DPT‑shRNA‑c group. The shRNA with the highest silencing efficiency was screened using reverse transcription‑quantitative polymerase chain reaction and western blotting. The screened shRNA was transfected into MG‑63 cells. The proliferation, cell cycle and apoptosis of MG‑63 cells were measured using a Cell Counting Kit‑8 assay, flow cytometry and Annexin V‑fluorescein isothiocyanate assay. The recombinant plasmids containing DPT shRNA were successfully constructed. DPT gene silencing was able to significantly reduce the proliferation rate of MG‑63 cells (P<0.05). The proportion of cells in the G0/G1 phase and in the G2/M phase increased significantly (both P<0.05), while the proportion of cells in the S phase decreased (P<0.05). Furthermore, the cell apoptosis rate increased significantly (P<0.05). These results demonstrate that DPT gene silencing is able to reduce the proliferation of MG‑63 cells, slow down cell cycle progression and promote apoptosis, hence may become a novel target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Li-Cheng Xi
- Department of Orthopedics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Yun-Xi Ji
- Department of Orthopedics, Zhejiang Provincial Hospital of TCM, Hangzhou, Zhejiang 310000, P.R. China
| | - Dong Yin
- Department of Orthopedics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Zi-Xing Zhao
- Department of Orthopedics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Si-Cheng Huang
- Department of Orthopedics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Shao-Lin Yu
- Department of Orthopedics, Ji'an Central Hospital, Ji'an, Jiangxi 343000, P.R. China
| | - Bo-Yu Liu
- Department of Orthopedics, Liuzhou Work's Hospital, Liuzhou, Guangxi 530021, P.R. China
| | - Hong-Yu Li
- Department of Orthopedics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
39
|
Tanimura S, Takeda K. ERK signalling as a regulator of cell motility. J Biochem 2017; 162:145-154. [PMID: 28903547 DOI: 10.1093/jb/mvx048] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/17/2017] [Indexed: 01/21/2023] Open
Abstract
Cell motility is regulated by multiple processes, including cell protrusion, cell retraction, cell-matrix adhesion, polarized exocytosis and polarized vesicle trafficking, each of which is spatiotemporally controlled by various intracellular signalling pathways. Dysregulation of cell motility leads to pathological conditions, such as tumour invasion and metastasis. Accumulating evidence has revealed that extracellular signal-regulated kinase (ERK) signalling is one of the critical regulators of cell motility, although it is classically known as an important regulator of cell proliferation, differentiation and survival through regulation of gene expression. ERK and its downstream kinase, p90 ribosomal S6 kinase (RSK), dynamically regulate cell motility mainly through direct phosphorylation of various molecules that are not necessarily involved in the regulation of gene transcription and translation. In this review, we summarize how ERK signalling regulates cell motility by focusing on the components of the cell motility machinery that are directly regulated by ERK or RSK.
Collapse
Affiliation(s)
- Susumu Tanimura
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kohsuke Takeda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
40
|
Abstract
Melanoma cell expression of the nerve growth factor receptor CD271 is associated with stem-like properties. However, the contributing role of the receptor in melanoma cell migration is elusive. Here, we explored extracranial (skin, soft tissue, lymph node and liver, n = 13) and matched brain metastases (BM, n = 12) and observed a heterogeneous distribution of phenotypically distinct subsets of CD271+ cells. In addition, we observed that CD271 expression gradually rises along with melanoma progression and metastasis by exploration of publicly available expression data of nevi, primary melanoma (n = 31) and melanoma metastases (n = 54). Furthermore, we observed highest levels of CD271 in BM. Sub-clustering identified 99 genes differentially expressed among CD271high and CD271low (p < 0.05) BM-subgroups. Comparative analysis of subsets revealed increased ( ≥ 1.5fold, log2) expression of migration-associated genes and enrichment of CD271-responsible genes involved in DNA-repair and stemness. Live cell-imaging based scratch-wound assays of melanoma cells with stable knock-down of CD271 revealed a significantly reduced cell migration (3.9fold, p = 1.2E-04) and a reduced expression of FGF13, CSPG4, HMGA2 and AKT3 major candidate regulatory genes of melanoma cell migration. In summary, we provide new insights in melanoma cell migration and suggest that CD271 serves as a candidate regulator, sufficient to determine cellular properties of melanoma brain metastatic cells.
Collapse
|
41
|
Xiao L, Zheng K, Lv X, Hou J, Xu L, Zhao Y, Song F, Fan Y, Cao H, Zhang W, Hong X, Zhan YY, Hu T. Exo70 is an independent prognostic factor in colon cancer. Sci Rep 2017; 7:5039. [PMID: 28698570 PMCID: PMC5505949 DOI: 10.1038/s41598-017-05308-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/26/2017] [Indexed: 12/31/2022] Open
Abstract
Exo70, a key component of the Exocyst complex, plays important roles in human cancer progression beyond exocytosis. However, the expression of Exo70 and its prognostic value for patients with colon cancer has not been well investigated to date. In this study, we observed that the mRNA and protein levels of Exo70 were upregulated in 11 of 13 colon cancer tissues, compared with their normal counterparts, which was validated by immunohistochemical analysis in a tissue microarray containing 89 pairs of colon cancer tissues and the matched adjacent normal tissues. Statistical analysis revealed that Exo70 expression is positively correlated with tumor size, invasion depth, TNM stage and distant metastasis. Kaplan-Meier survival analysis showed that colon cancer patients with higher Exo70 expression have a poorer clinical outcome than those with lower Exo70 expression. Multivariate Cox regression analysis revealed that Exo70, age and distant metastasis were there independent prognostic factors for overall survival rate of colon cancer patients. Through gain- and loss of Exo70 in colon cancer cells, we found that Exo70 could enhance the migration ability of colon cancer cells. Taken together, our studies revealed that Exo70 might be a promising negative prognostic factor and a potential therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Li Xiao
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
- Department of Oncology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, 361004, Fujian Province, P.R. China
| | - Kaifeng Zheng
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Xia Lv
- Department of Oncology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, 361004, Fujian Province, P.R. China
| | - Jihuan Hou
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Liang Xu
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Yujie Zhao
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Fei Song
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Yaqiong Fan
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Hanwei Cao
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Wenqing Zhang
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Xiaoting Hong
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China
| | - Yan-Yan Zhan
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China.
| | - Tianhui Hu
- Cancer Research Center, Xiamen University Medical College, Xiamen, 361102, Fujian Province, P.R. China.
| |
Collapse
|
42
|
Abstract
The exocyst complex mediates the tethering of secretory vesicles to the plasma membrane before SNARE-mediated membrane fusion. Recent studies have implicated the exocyst in a wide range of cellular processes. Particularly, research on the Exo70 subunit of the complex has linked the function of the exocyst in exocytosis to cell adhesion, migration and invasion. In this review, we will discuss the recent work on how Exo70 regulates these cellular processes, and how small GTPases and kinases interact with Exo70 to orchestrate its function in exocytosis and cytoskeleton organization. The study of Exo70 contributes to the understanding of many pathophysiological processes from organogenesis to cancer metastasis.
Collapse
Affiliation(s)
- Yueyao Zhu
- a Department of Biology, University of Pennsylvania , Philadelphia , PA , USA
| | - Bin Wu
- a Department of Biology, University of Pennsylvania , Philadelphia , PA , USA
| | - Wei Guo
- a Department of Biology, University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|