1
|
Preckwinkel P, Mir KUI, Otto FW, Elrewany H, Sinz A, Hüttelmaier S, Bley N, Gutschner T. Long Non-Coding RNAs and RNA-Binding Proteins in Pancreatic Cancer Development and Progression. Cancers (Basel) 2025; 17:1601. [PMID: 40427100 PMCID: PMC12110025 DOI: 10.3390/cancers17101601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer and is responsible for about 467,000 cancer deaths annually. An oftentimes asymptomatic early phase of this disease results in a delayed diagnosis, and patients often present with advanced disease. Current treatment options have limited survival benefits, and only a minor patient population carries actionable genomic alterations. Hence, innovative personalized treatment strategies that consider molecular, cellular and functional analyses are urgently needed for pancreatic cancer patients. However, the majority of the genetic alterations found in PDAC are currently undruggable, or patients' response is not as expected. Therefore, non-genomic biomarkers and alternative molecular targets should be considered in order to advance the clinical management of PDAC patients. In line with this, recent gene expression and single-cell transcriptome analyses have identified molecular subtypes and transcriptional cell states that affect disease progression and drug efficiency. In this review, we will introduce long non-coding RNAs (lncRNAs) as well as RNA-binding proteins (RBPs) that are able to modulate the transcriptome of a cell through diverse mechanisms, thereby contributing to disease progression. We will provide a brief overview about the general functions of lncRNAs and RBPs, respectively. Subsequently, we will highlight selected lncRNAs and RBPs that have been shown to play a role in PDAC development, progression and drug response. Finally, we will present strategies aiming to interfere with the expression and function of lncRNAs and RBPs.
Collapse
Affiliation(s)
- Pit Preckwinkel
- Section for RNA Biology and Pathogenesis, Institute of Molecular Medicine, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Khursheed Ul Islam Mir
- Section for Molecular Cell Biology, Institute of Molecular Medicine, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.U.I.M.); (H.E.); (S.H.)
| | - Florian W. Otto
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (F.W.O.); (A.S.)
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Hend Elrewany
- Section for Molecular Cell Biology, Institute of Molecular Medicine, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.U.I.M.); (H.E.); (S.H.)
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (F.W.O.); (A.S.)
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Stefan Hüttelmaier
- Section for Molecular Cell Biology, Institute of Molecular Medicine, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.U.I.M.); (H.E.); (S.H.)
| | - Nadine Bley
- Section for Molecular Cell Biology, Institute of Molecular Medicine, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (K.U.I.M.); (H.E.); (S.H.)
| | - Tony Gutschner
- Section for RNA Biology and Pathogenesis, Institute of Molecular Medicine, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| |
Collapse
|
2
|
Anisimova AS, Karagöz GE. HaloPROTAC3 treatment activates the unfolded protein response of the endoplasmic reticulum in nonengineered mammalian cell lines. Mol Biol Cell 2025; 36:mr3. [PMID: 40105918 DOI: 10.1091/mbc.e24-08-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Proteins fused to HaloTag, an engineered haloalkane dehalogenase, can be depleted by a heterobifunctional degrader compound HaloPROTAC3. The binding of HaloPROTAC3 to both the HaloTag and the E3 ligase von Hippel-Lindau (VHL) brings them into proximity and mediates the degradation of the HaloTag fusion proteins. Here, we generated a colon cancer cell line HCT116 expressing HaloTag fused to the RNA-binding protein IGF2BP3 to study its function. HaloPROTAC3 treatment depleted 75% of HaloTag-IGF2BP3 in 5 h. Transcriptomics revealed that HaloPROTAC3 treatment resulted in the destabilization of IGF2BP3 target mRNAs and activated the unfolded protein response (UPR). Surprisingly, we found that HaloPROTAC3 results in UPR activation in nonengineered mammalian cells. Our data demonstrate that HaloPROTAC3 causes mild endoplasmic reticulum stress independent of IGF2BP3 function and shall guide future studies using the HaloPROTAC3 protein depletion strategy.
Collapse
Affiliation(s)
- Aleksandra S Anisimova
- Max Perutz Labs Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - G Elif Karagöz
- Max Perutz Labs Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Zeng X, Zhang Y, Shapaer T, Abudoukelimu A, Zhao Z, Ma B. IGF2BP3 prefers to regulate alternative splicing of genes associated with the progression of gastric cancer in AGS cells. Discov Oncol 2025; 16:235. [PMID: 39998701 PMCID: PMC11861459 DOI: 10.1007/s12672-025-01880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Gastric cancer (GC) has become the fifth largest malignant tumor in the world, with a mortality rate ranking fourth. IGF2BP3, as a multifunctional RNA binding protein, is involved in regulating alternative splicing (AS) and m6A modification, and plays a carcinogenic role in the development of gastric cancer, while little is known about the impact of IGF2BP3 on alternative splicing in gastric cancer cells and the underlying mechanism. In this study, we overexpressed IGF2BP3 (IGF2BP3-OE) in gastric cancer AGS cells and obtained transcriptome sequencing data (RNA-seq) to explore the effects of IGF2BP3 on gene expression and AS. The RNA binding profile of IGF2BP3 was utilized to identify how IGF2BP3 binds to and modulate expression and AS patterns of target genes. IGF2BP3-OE resulted in 479 differentially expressed genes (DEGs), majority of which were downregulated. We selected 20 DEGs and validated their expression pattern by RT-qPCR experiment, including ZFAS1, DUSP9, GPX3, IDH2, and H19 that were associated with GC development. More importantly, IGF2BP3-OE significantly modulated AS pattern of thousands of genes, which were enriched in mRNA splicing, cell proliferation, and translation pathways. By integrating the RNA binding profile of IGF2BP3, we found IGF2BP3 binding preferred to modulate the splicing pattern of bound genes, and the overlapped genes were also enriched in mRNA splicing pathways. We validated the AS pattern changes of S100A4 and PLK3 by RT-qPCR. IGF2BP3 probably modulate GC development by regulating AS profile in GC cells. In summary, we explored the dysregulated transcriptome profile that IGF2BP3 affects gene expression and alternative splicing by binding to mRNA, and thus plays a role in the development of GC cells. The IGF2BP3 and identified targets has potential value for GC treatment in future.
Collapse
Affiliation(s)
- Xiangyue Zeng
- Gastroenterology Department II, The Affiliated Tumor Hospital of Xinjiang Medical University, Ürümqi, 830011, China
| | - Yu Zhang
- Gastroenterology Department II, The Affiliated Tumor Hospital of Xinjiang Medical University, Ürümqi, 830011, China
| | - Tiannake Shapaer
- Gastroenterology Department II, The Affiliated Tumor Hospital of Xinjiang Medical University, Ürümqi, 830011, China
| | - Abulajiang Abudoukelimu
- Gastroenterology Department II, The Affiliated Tumor Hospital of Xinjiang Medical University, Ürümqi, 830011, China
| | - Zeliang Zhao
- Gastroenterology Department II, The Affiliated Tumor Hospital of Xinjiang Medical University, Ürümqi, 830011, China
| | - Binlin Ma
- Breast and Thyroid Surgery Department, The Affiliated Tumor Hospital of Xinjiang Medical University, Ürümqi, 830011, China.
| |
Collapse
|
4
|
Cui X, Chang M, Wang Y, Liu J, Sun Z, Sun Q, Sun Y, Ren J, Li W. Helicobacter pylori reduces METTL14-mediated VAMP3 m 6A modification and promotes the development of gastric cancer by regulating LC3C-mediated c-Met recycling. Cell Death Discov 2025; 11:13. [PMID: 39827141 PMCID: PMC11742886 DOI: 10.1038/s41420-025-02289-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Helicobacter pylori (H. pylori) plays an important role in the malignant transformation of the gastric mucosa from chronic inflammation to cancer. However, the mechanisms underlying the epigenetic regulation of gastric carcinogenesis mediated by H. pylori remain unclear. Here, we uncover that H. pylori inhibits METTL14 by upregulating ATF3. METTL14 inhibits gastric cancer (GC) cell proliferation and metastasis in vitro and in vivo. Downregulation of METTL14 inhibits Vesicle-associated membrane protein-3 (VAMP3) by reducing the m6A modification level of VAMP3 mRNA and the stability of IGF2BP2-dependent mRNA. H. pylori also accelerates the malignant progression of GC by regulating VAMP3/LC3C-mediated c-Met recycling. Moreover, the expression of METTL14 and VAMP3 in Hp+ chronic gastritis tissues is much lower than that in Hp- chronic gastritis tissues. METTL14 and VAMP3 expression levels are downregulated notably in cancerous tissues of patients with GC. Therefore, our results show a novel METTL14-VAMP3-LC3C-c-Met signalling axis in the GC development mediated by H. pylori infection, which reveals a novel m6A epigenetic modification mechanism for GC and provides potential prognostic biomarkers for GC progression.
Collapse
Affiliation(s)
- Xixi Cui
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Mingjie Chang
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yuqiong Wang
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Jiayi Liu
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Zenghui Sun
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Qiyu Sun
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yundong Sun
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Juchao Ren
- Department of Urology, Qilu Hospital, Shandong University, Jinan, PR China
| | - Wenjuan Li
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Pathogenic biology, School of basic medical sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
5
|
Sharma G, Gutierrez M, Jones AE, Jaiswal AK, Neeb ZT, Rios A, Thaxton ML, Lin TL, Tran TM, Kabbani LES, Ritter AJ, Stiles L, Hoeve JT, Divakaruni AS, Sanford JR, Rao DS. Metabolic regulation of RNA methylation by the m 6A-reader IGF2BP3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621399. [PMID: 39554138 PMCID: PMC11565949 DOI: 10.1101/2024.10.31.621399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The interplay of RNA modifications - deposited by "writers", removed by "erasers" and identified by RNA binding proteins known as "readers" - forms the basis of the epitranscriptomic gene regulation hypothesis. Recent studies have identified the oncofetal RNA-binding protein IGF2BP3 as a "reader" of the N6-methyladenosine (m6A) modification and crucial for regulating gene expression. Yet, how its function as a reader overlaps with its critical oncogenic function in leukemia remains an open question. Here, we report the novel finding that the reader IGF2BP3 reprograms cellular metabolism, resulting in an altered ability of the "writers" to modify the epitranscriptome. In leukemia cells, IGF2BP3 supports increased glycolytic flux and one-carbon metabolism, leading to increased production of S-adenosyl methionine (SAM), a key substrate for methylation reactions within the cell. IGF2BP3 directly regulates the translation of MAT2B, the regulatory subunit of the methionine-adenosyltransferase complex, which is the final enzyme in a pathway leading to SAM production. This, in turn, results in increased m6A modifications on RNA, resulting in positive feedback regulation. This novel mechanism illustrates how metabolism mutually acts with epitranscriptomic modifications, underscoring the pervasive impact of IGF2BP3 in gene regulatory mechanisms governing a broad range of cancer-specific processes.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Martin Gutierrez
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Amit Kumar Jaiswal
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Zachary T Neeb
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA
| | - Amy Rios
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michelle L Thaxton
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Tasha L Lin
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Tiffany M Tran
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lyna E S Kabbani
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA
| | - Alexander J Ritter
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA
| | - Linsey Stiles
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Johanna Ten Hoeve
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA Metabolomics Center, University of California, Los Angeles, CA, 90095, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeremy R Sanford
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA
- Center for Biomolecular Science & Engineering, University of California Santa Cruz, Santa Cruz, CA
| | - Dinesh S Rao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
6
|
Duan M, Liu H, Xu S, Yang Z, Zhang F, Wang G, Wang Y, Zhao S, Jiang X. IGF2BPs as novel m 6A readers: Diverse roles in regulating cancer cell biological functions, hypoxia adaptation, metabolism, and immunosuppressive tumor microenvironment. Genes Dis 2024; 11:890-920. [PMID: 37692485 PMCID: PMC10491980 DOI: 10.1016/j.gendis.2023.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 09/12/2023] Open
Abstract
m6A methylation is the most frequent modification of mRNA in eukaryotes and plays a crucial role in cancer progression by regulating biological functions. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BP) are newly identified m6A 'readers'. They belong to a family of RNA-binding proteins, which bind to the m6A sites on different RNA sequences and stabilize them to promote cancer progression. In this review, we summarize the mechanisms by which different upstream factors regulate IGF2BP in cancer. The current literature analyzed here reveals that the IGF2BP family proteins promote cancer cell proliferation, survival, and chemoresistance, inhibit apoptosis, and are also associated with cancer glycolysis, angiogenesis, and the immune response in the tumor microenvironment. Therefore, with the discovery of their role as 'readers' of m6A and the characteristic re-expression of IGF2BPs in cancers, it is important to elucidate their mechanism of action in the immunosuppressive tumor microenvironment. We also describe in detail the regulatory and interaction network of the IGF2BP family in downstream target RNAs and discuss their potential clinical applications as diagnostic and prognostic markers, as well as recent advances in IGF2BP biology and associated therapeutic value.
Collapse
Affiliation(s)
- Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Haiyang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Shasha Xu
- Department of Gastroendoscopy, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Fusheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Guang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Yutian Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Shan Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110002, China
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| |
Collapse
|
7
|
Lin TL, Jaiswal AK, Ritter AJ, Reppas J, Tran TM, Neeb ZT, Katzman S, Thaxton ML, Cohen A, Sanford JR, Rao DS. Targeting IGF2BP3 enhances antileukemic effects of menin-MLL inhibition in MLL-AF4 leukemia. Blood Adv 2024; 8:261-275. [PMID: 38048400 PMCID: PMC10824693 DOI: 10.1182/bloodadvances.2023011132] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
ABSTRACT RNA-binding proteins (RBPs) are emerging as a novel class of therapeutic targets in cancer, including in leukemia, given their important role in posttranscriptional gene regulation, and have the unexplored potential to be combined with existing therapies. The RBP insulin-like growth factor 2 messenger RNA-binding protein 3 (IGF2BP3) has been found to be a critical regulator of MLL-AF4 leukemogenesis and represents a promising therapeutic target. Here, we study the combined effects of targeting IGF2BP3 and menin-MLL interaction in MLL-AF4-driven leukemia in vitro and in vivo, using genetic inhibition with CRISPR-Cas9-mediated deletion of Igf2bp3 and pharmacologic inhibition of the menin-MLL interaction with multiple commercially available inhibitors. Depletion of Igf2bp3 sensitized MLL-AF4 leukemia to the effects of menin-MLL inhibition on cell growth and leukemic initiating cells in vitro. Mechanistically, we found that both Igf2bp3 depletion and menin-MLL inhibition led to increased differentiation in vitro and in vivo, seen in functional readouts and by gene expression analyses. IGF2BP3 knockdown had a greater effect on increasing survival and attenuating disease than pharmacologic menin-MLL inhibition with small molecule MI-503 alone and showed enhanced antileukemic effects in combination. Our work shows that IGF2BP3 is an oncogenic amplifier of MLL-AF4-mediated leukemogenesis and a potent therapeutic target, providing a paradigm for targeting leukemia at both the transcriptional and posttranscriptional level.
Collapse
Affiliation(s)
- Tasha L. Lin
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Amit K. Jaiswal
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Alexander J. Ritter
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA
| | - Jenna Reppas
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Tiffany M. Tran
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Zachary T. Neeb
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA
| | - Sol Katzman
- Center for Biomolecular Science & Engineering, University of California Santa Cruz, Santa Cruz, CA
| | - Michelle L. Thaxton
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Amanda Cohen
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Jeremy R. Sanford
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA
- Center for Biomolecular Science & Engineering, University of California Santa Cruz, Santa Cruz, CA
| | - Dinesh S. Rao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
8
|
Jaiswal AK, Thaxton ML, Scherer GM, Sorrentino JP, Garg NK, Rao DS. Small molecule inhibition of RNA binding proteins in haematologic cancer. RNA Biol 2024; 21:1-14. [PMID: 38329136 PMCID: PMC10857685 DOI: 10.1080/15476286.2024.2303558] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024] Open
Abstract
In recent years, advances in biomedicine have revealed an important role for post-transcriptional mechanisms of gene expression regulation in pathologic conditions. In cancer in general and leukaemia specifically, RNA binding proteins have emerged as important regulator of RNA homoeostasis that are often dysregulated in the disease state. Having established the importance of these pathogenetic mechanisms, there have been a number of efforts to target RNA binding proteins using oligonucleotide-based strategies, as well as with small organic molecules. The field is at an exciting inflection point with the convergence of biomedical knowledge, small molecule screening strategies and improved chemical methods for synthesis and construction of sophisticated small molecules. Here, we review the mechanisms of post-transcriptional gene regulation, specifically in leukaemia, current small-molecule based efforts to target RNA binding proteins, and future prospects.
Collapse
Affiliation(s)
- Amit K. Jaiswal
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Michelle L. Thaxton
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Georgia M. Scherer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Jacob P. Sorrentino
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Neil K. Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Dinesh S. Rao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Jing X, Han C, Li Q, Li F, Zhang J, Jiang Q, Zhao F, Guo C, Chen J, Jiang T, Wang X, Chen Y, Huang C. IGF2BP3-EGFR-AKT axis promotes breast cancer MDA-MB-231 cell growth. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119542. [PMID: 37474008 DOI: 10.1016/j.bbamcr.2023.119542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) is an emerging prognostic indicator, and its elevated expression correlates with malignancy in a broad spectrum of cancers. However, its regulatory networks have not yet been reported. In this study, we identified the regulatory targets of IGF2BP3 in breast cancer MDA-MB-231 cells using RNA immunoprecipitation sequencing (RIP-seq) and high-throughput RNA-sequencing (RNA-seq). We discovered that these targets were enriched in the inflammatory response, endoplasmic reticulum stress, cell cycle, and cancer-related pathways, providing a new perspective for better understanding the functional mechanisms of IGF2BP3. Moreover, we identified that the epidermal growth factor receptor (EGFR), a downstream target, is regulated by IGF2BP3. IGF2BP3 binds to and protects EGFR mRNA from degradation and facilitates cell proliferation via the EGFR/AKT pathway in MDA-MB-231 cells. In addition, IGF2BP3 expression was robust and could not be altered by stimulation with EGF and anti-EGFR siRNA or EGFR signaling pathway inhibitors (gefitinib, LY294002 and SL-327). These results demonstrate that IGF2BP3, as a stubborn oncogene, promotes triple-negative breast cancer MDA-MB-231 cell proliferation by strengthening the role of the EGFR-AKT axis.
Collapse
Affiliation(s)
- Xintao Jing
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Cong Han
- Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Qian Li
- Department of Gastroenterology, The first Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi, China
| | - Fang Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Jinyuan Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Qiuyu Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Fei Zhao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Chen Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Jinfeng Chen
- Target Discovery Institute, NDM Research Building, Oxford Ludwig Institute of Cancer Research, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Ting Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Xiaofei Wang
- Biomedical Experimental Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yanke Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China.
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
10
|
Anisimova AS, Karagöz GE. Optimized infrared photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (IR-PAR-CLIP) protocol identifies novel IGF2BP3-interacting RNAs in colon cancer cells. RNA (NEW YORK, N.Y.) 2023; 29:1818-1836. [PMID: 37582618 PMCID: PMC10578486 DOI: 10.1261/rna.079714.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
The conserved family of RNA-binding proteins (RBPs), IGF2BPs, plays an essential role in posttranscriptional regulation controlling mRNA stability, localization, and translation. Mammalian cells express three isoforms of IGF2BPs: IGF2BP1-3. IGF2BP3 is highly overexpressed in cancer cells, and its expression correlates with a poor prognosis in various tumors. Therefore, revealing its target RNAs with high specificity in healthy tissues and in cancer cells is of crucial importance. Photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) identifies the binding sites of RBPs on their target RNAs at nucleotide resolution in a transcriptome-wide manner. Here, we optimized the PAR-CLIP protocol to study RNA targets of endogenous IGF2BP3 in a human colorectal carcinoma cell line. To this end, we first established an immunoprecipitation protocol to obtain highly pure endogenous IGF2BP3-RNA complexes. Second, we modified the protocol to use highly sensitive infrared (IR) fluorescent dyes instead of radioactive probes to visualize IGF2BP3-crosslinked RNAs. We named the modified method "IR-PAR-CLIP." Third, we compared RNase cleavage conditions and found that sequence preferences of the RNases impact the number of the identified IGF2BP3 targets and introduce a systematic bias in the identified RNA motifs. Fourth, we adapted the single adapter circular ligation approach to increase the efficiency in library preparation. The optimized IR-PAR-CLIP protocol revealed novel RNA targets of IGF2BP3 in a human colorectal carcinoma cell line. We anticipate that our IR-PAR-CLIP approach provides a framework for studies of other RBPs.
Collapse
Affiliation(s)
- Aleksandra S Anisimova
- Max Perutz Labs, Vienna BioCenter Campus (VBC), 1030 Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030 Vienna, Austria
| | - G Elif Karagöz
- Max Perutz Labs, Vienna BioCenter Campus (VBC), 1030 Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, 1030 Vienna, Austria
| |
Collapse
|
11
|
Budhraja S, Doborjeh M, Singh B, Tan S, Doborjeh Z, Lai E, Merkin A, Lee J, Goh W, Kasabov N. Filter and Wrapper Stacking Ensemble (FWSE): a robust approach for reliable biomarker discovery in high-dimensional omics data. Brief Bioinform 2023; 24:bbad382. [PMID: 37889118 PMCID: PMC10605029 DOI: 10.1093/bib/bbad382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Selecting informative features, such as accurate biomarkers for disease diagnosis, prognosis and response to treatment, is an essential task in the field of bioinformatics. Medical data often contain thousands of features and identifying potential biomarkers is challenging due to small number of samples in the data, method dependence and non-reproducibility. This paper proposes a novel ensemble feature selection method, named Filter and Wrapper Stacking Ensemble (FWSE), to identify reproducible biomarkers from high-dimensional omics data. In FWSE, filter feature selection methods are run on numerous subsets of the data to eliminate irrelevant features, and then wrapper feature selection methods are applied to rank the top features. The method was validated on four high-dimensional medical datasets related to mental illnesses and cancer. The results indicate that the features selected by FWSE are stable and statistically more significant than the ones obtained by existing methods while also demonstrating biological relevance. Furthermore, FWSE is a generic method, applicable to various high-dimensional datasets in the fields of machine intelligence and bioinformatics.
Collapse
Affiliation(s)
- Sugam Budhraja
- Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology, 55 Wellesley Street East, 1010 Auckland, New Zealand
| | - Maryam Doborjeh
- Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology, 55 Wellesley Street East, 1010 Auckland, New Zealand
| | - Balkaran Singh
- Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology, 55 Wellesley Street East, 1010 Auckland, New Zealand
| | - Samuel Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Zohreh Doborjeh
- School of Population Health, The University of Auckland, Grafton, 1023,Auckland, New Zealand
| | - Edmund Lai
- Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology, 55 Wellesley Street East, 1010 Auckland, New Zealand
| | - Alexander Merkin
- National Institute for Stroke and Applied Neuroscience, Auckland University of Technology, 55 Wellesley Street East, 1010 Auckland, New Zealand
| | - Jimmy Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
- Institute of Mental Health, 10 Buangkok View, 539747, Singapore
| | - Wilson Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
- Center for Biomedical Informatics, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore
| | - Nikola Kasabov
- Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology, 55 Wellesley Street East, 1010 Auckland, New Zealand
- Intelligent Systems Research Center, Ulster University, Magee Campus, Derry, BT48 7JL, Ulster, United Kingdom
- Auckland Bioengineering Institute, The University of Auckland, 6/70 Symonds Street, 1010 Auckland, New Zealand
- Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
12
|
Klingbeil KD, Tang JP, Graham DS, Lofftus SY, Jaiswal AK, Lin TL, Frias C, Chen LY, Nakasaki M, Dry SM, Crompton JG, Eilber FC, Rao DS, Kalbasi A, Kadera BE. IGF2BP3 as a Prognostic Biomarker in Well-Differentiated/Dedifferentiated Liposarcoma. Cancers (Basel) 2023; 15:4489. [PMID: 37760460 PMCID: PMC10526143 DOI: 10.3390/cancers15184489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Although IGF2BP3 has been implicated in tumorigenesis and poor outcomes in multiple cancers, its role in soft-tissue sarcoma (STS) remains unknown. Preliminary data have suggested an association with IGF2BP3 expression among patients with well-differentiated/dedifferentiated liposarcoma (WD/DD LPS), a disease where molecular risk stratification is lacking. METHODS We examined the survival associations of IGF2BP3 via univariate and multivariate Cox regression in three unique datasets: (1) the Cancer Genome Atlas (TCGA), (2) an in-house gene microarray, and (3) an in-house tissue microarray (TMA). A fourth dataset, representing an independent in-house TMA, was used for validation. RESULTS Within the TCGA dataset, IGF2BP3 expression was a poor prognostic factor uniquely in DD LPS (OS 1.6 vs. 5.0 years, p = 0.009). Within the microarray dataset, IGF2BP3 expression in WD/DD LPS was associated with worse survival (OS 7.7 vs. 21.5 years, p = 0.02). IGF2BP3 protein expression also portended worse survival in WD/DD LPS (OS 3.7 vs. 13.8 years, p < 0.001), which was confirmed in our validation cohort (OS 2.7 vs. 14.9 years, p < 0.001). In the multivariate model, IGF2BP3 was an independent risk factor for OS, (HR 2.55, p = 0.034). CONCLUSION IGF2BP3 is highly expressed in a subset of WD/DD LPS. Across independent datasets, IGF2BP3 is also a biomarker of disease progression and worse survival.
Collapse
Affiliation(s)
- Kyle D. Klingbeil
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90049, USA (C.F.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jack Pengfei Tang
- University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Danielle S. Graham
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90049, USA (C.F.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Serena Y. Lofftus
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90049, USA (C.F.)
| | - Amit Kumar Jaiswal
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Tasha L. Lin
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Chris Frias
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90049, USA (C.F.)
| | - Lucia Y. Chen
- Department of Medicine, Statistics Core, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Manando Nakasaki
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Sarah M. Dry
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Joseph G. Crompton
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90049, USA (C.F.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fritz C. Eilber
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90049, USA (C.F.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dinesh S. Rao
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anusha Kalbasi
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Brian E. Kadera
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90049, USA (C.F.)
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Deng X, Qing Y, Horne D, Huang H, Chen J. The roles and implications of RNA m 6A modification in cancer. Nat Rev Clin Oncol 2023; 20:507-526. [PMID: 37221357 DOI: 10.1038/s41571-023-00774-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
N6-Methyladenosine (m6A), the most prevalent internal modification in eukaryotic mRNA, has been extensively and increasingly studied over the past decade. Dysregulation of RNA m6A modification and its associated machinery, including writers, erasers and readers, is frequently observed in various cancer types, and the dysregulation profiles might serve as diagnostic, prognostic and/or predictive biomarkers. Dysregulated m6A modifiers have been shown to function as oncoproteins or tumour suppressors with essential roles in cancer initiation, progression, metastasis, metabolism, therapy resistance and immune evasion as well as in cancer stem cell self-renewal and the tumour microenvironment, highlighting the therapeutic potential of targeting the dysregulated m6A machinery for cancer treatment. In this Review, we discuss the mechanisms by which m6A modifiers determine the fate of target RNAs and thereby influence protein expression, molecular pathways and cell phenotypes. We also describe the state-of-the-art methodologies for mapping global m6A epitranscriptomes in cancer. We further summarize discoveries regarding the dysregulation of m6A modifiers and modifications in cancer, their pathological roles, and the underlying molecular mechanisms. Finally, we discuss m6A-related prognostic and predictive molecular biomarkers in cancer as well as the development of small-molecule inhibitors targeting oncogenic m6A modifiers and their activity in preclinical models.
Collapse
Affiliation(s)
- Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - David Horne
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Huilin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA.
- Gehr Family Center for Leukemia Research & City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA.
| |
Collapse
|
14
|
Liu H, Li Z, Zhang L, Zhang M, Liu S, Wang J, Yang C, Peng Q, Du C, Jiang N. Necroptosis-Related Prognostic Model for Pancreatic Carcinoma Reveals Its Invasion and Metastasis Potential through Hybrid EMT and Immune Escape. Biomedicines 2023; 11:1738. [PMID: 37371833 DOI: 10.3390/biomedicines11061738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Necroptosis, pro-inflammatory programmed necrosis, has been reported to exert momentous roles in pancreatic cancer (PC). Herein, the objective of this study is to construct a necroptosis-related prognostic model for detecting pancreatic cancer. In this study, the intersection between necroptosis-related genes and differentially expressed genes (DEGs) of pancreatic ductal adenocarcinoma (PDAC) was obtained based on GeneCards database, GEO database (GSE28735 and GSE15471), and verified using The Cancer Genome Atlas (TCGA). Next, a prognostic model with Cox and LASSO regression analysis, and divided the patients into high-risk and low-risk groups. Subsequently, the Kaplan-Meier (KM) survival curve and the receiver operating characteristic (ROC) curves were generated to assess the predictive ability of overall survival (OS) of PC patients. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to predict the potential biofunction and possible mechanical pathways. The EMTome database and an immune analysis were applied to further explore underlying mechanism. Finally, clinical samples of PDAC patients were utilized to verify the expression of model genes via immunohistochemistry (IHC), and the normal human pancreatic ductal cell line, hTERT-HPNE as well as human pancreatic ductal carcinoma cell lines, PANC-1 and PL45, were used to identify the levels of model genes by Western blot (WB) and immunofluorescence (IF) in vitro. The results showed that 13 necroptosis-related DEGs (NRDEGs) were screened based on GEO database, and finally four of five prognostic genes, including KRT7, KRT19, IGF2BP3, CXCL5, were further identified by TCGA to successfully construct a prognostic model. Univariate and multivariate Cox analysis ultimately confirmed that this prognostic model has independent prognostic significance, KM curve suggested that the OS of low-risk group was longer than high-risk group, and the area under receiver (AUC) of ROC for 1, 3, 5 years was 0.733, 0.749 and 0.667, respectively. A GO analysis illustrated that model genes may participate in cell-cell junction, cadherin binding, cell adhesion molecule binding, and neutrophil migration and chemotaxis, while KEGG showed involvement in PI3K-Akt signaling pathway, ECMreceptor interaction, IL-17 signaling pathway, TNF signaling pathway, etc. Moreover, our results showed KRT7 and KRT19 were closely related to EMT markers, and EMTome database manifested that KRT7 and KRT19 are highly expressed in both primary and metastatic pancreatic cancer, declaring that model genes promoted invasion and metastasis potential through EMT. In addition, four model genes were positively correlated with Th2, which has been reported to take part in promoting immune escape, while model genes except CXCL5 were negatively correlated with TFH cells, indicating that model genes may participate in immunity. Additionally, IHC results showed that model genes were higher expressed in PC tissues than that in adjacent tumor tissues, and WB and IF also suggested that model genes were more highly expressed in PANC-1 and PL45 than in hTERT-HPNE. Tracing of a necroptosis-related prognostic model for pancreatic carcinoma reveals its invasion and metastasis potential through EMT and immunity. The construction of this model and the possible mechanism of necroptosis in PDAC was preliminarily explored to provide reliable new biomarkers for the early diagnosis, treatment, and prognosis for pancreatic cancer patients.
Collapse
Affiliation(s)
- Haichuan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhenghang Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - La Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mi Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shanshan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jianwei Wang
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Changhong Yang
- Department of Bioinformatics, Chongqing Medical University, Chongqing 400016, China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Chengyou Du
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
15
|
Scalia P, Williams SJ, Fujita-Yamaguchi Y. Human IGF2 Gene Epigenetic and Transcriptional Regulation: At the Core of Developmental Growth and Tumorigenic Behavior. Biomedicines 2023; 11:1655. [PMID: 37371750 DOI: 10.3390/biomedicines11061655] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Regulation of the human IGF2 gene displays multiple layers of control, which secures a genetically and epigenetically predetermined gene expression pattern throughout embryonal growth and postnatal life. These predominantly nuclear regulatory mechanisms converge on the function of the IGF2-H19 gene cluster on Chromosome 11 and ultimately affect IGF2 gene expression. Deregulation of such control checkpoints leads to the enhancement of IGF2 gene transcription and/or transcript stabilization, ultimately leading to IGF-II peptide overproduction. This type of anomaly is responsible for the effects observed in terms of both abnormal fetal growth and increased cell proliferation, typically observed in pediatric overgrowth syndromes and cancer. We performed a review of relevant experimental work on the mechanisms affecting the human IGF2 gene at the epigenetic, transcriptional and transcript regulatory levels. The result of our work, indeed, provides a wider and diversified scenario for IGF2 gene activation than previously envisioned by shedding new light on its extended regulation. Overall, we focused on the functional integration between the epigenetic and genetic machinery driving its overexpression in overgrowth syndromes and malignancy, independently of the underlying presence of loss of imprinting (LOI). The molecular landscape provided at last strengthens the role of IGF2 in cancer initiation, progression and malignant phenotype maintenance. Finally, this review suggests potential actionable targets for IGF2 gene- and regulatory protein target-degradation therapies.
Collapse
Key Words
- (IGF2/H19) IG-DMR, intergenic differentially methylated region
- BWS, Beckwith–Wiedemann syndrome
- CCD, centrally conserved domain
- CNV, copy number variation
- CTCF, CCCTC binding factor
- DMD, differentially methylated domain
- DMR, differentially methylated region
- GOM, gain of methylation
- ICR1, imprinting control region 1
- IGF-II, insulin-like growth factor-2 peptide
- IGF2, insulin-like growth factor 2 gene
- LOI, loss of imprinting
- LOM, loss of methylation
- MOI, maintenance of imprinting
- SRS, Silver Russel Syndrome
- TF: transcription factor
- UPD, uniparental disomy
- WT1, Wilms Tumor protein 1
- mRNA transcript
- p0–p4: IGF2 promoters 0–4
Collapse
Affiliation(s)
- Pierluigi Scalia
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA, and 93100 Caltanissetta, Italy
- Sbarro Cancer Institute for Cancer Research and Molecular Medicine, CST, Biology Department, Temple University, Philadelphia, PA 19122, USA
| | - Stephen J Williams
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA, and 93100 Caltanissetta, Italy
- Sbarro Cancer Institute for Cancer Research and Molecular Medicine, CST, Biology Department, Temple University, Philadelphia, PA 19122, USA
| | - Yoko Fujita-Yamaguchi
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
16
|
Li M, Thorne RF, Wang R, Cao L, Cheng F, Sun X, Wu M, Ma J, Liu L. Sestrin2-mediated disassembly of stress granules dampens aerobic glycolysis to overcome glucose starvation. Cell Death Discov 2023; 9:127. [PMID: 37059726 PMCID: PMC10103035 DOI: 10.1038/s41420-023-01411-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
Sestrins are a small gene family of pleiotropic factors whose actions promote cell adaptation to a range of stress conditions. In this report we disclose the selective role of Sestrin2 (SESN2) in dampening aerobic glycolysis to adapt to limiting glucose conditions. Removal of glucose from hepatocellular carcinoma (HCC) cells inhibits glycolysis associated with the downregulation of the rate-limiting glycolytic enzyme hexokinase 2 (HK2). Moreover, the accompanying upregulation of SESN2 through an NRF2/ATF4-dependent mechanism plays a direct role in HK2 regulation by destabilizing HK2 mRNA. We show SESN2 competes with insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) for binding with the 3'-UTR region of HK2 mRNA. Interactions between IGF2BP3 and HK2 mRNA result in their coalescence into stress granules via liquid-liquid phase separation (LLPS), a process which serves to stabilize HK2 mRNA. Conversely, the enhanced expression and cytoplasmic localization of SESN2 under glucose deprivation conditions favors the downregulation of HK2 levels via decreases in the half-life of HK2 mRNA. The resulting dampening of glucose uptake and glycolytic flux inhibits cell proliferation and protect cells from glucose starvation-induced apoptotic cell death. Collectively, our findings reveal an intrinsic survival mechanism allowing cancer cells to overcome chronic glucose shortages, also providing new mechanistic insights into SESN2 as an RNA-binding protein with a role in reprogramming of cancer cell metabolism.
Collapse
Affiliation(s)
- Mingyue Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Rick Francis Thorne
- Translational Research Institute of People's Hospital of Zhengzhou University and Academy of Medical Sciences, Zhengzhou University, 450053, Zhengzhou, Henan, China
| | - Ruijie Wang
- Translational Research Institute of People's Hospital of Zhengzhou University and Academy of Medical Sciences, Zhengzhou University, 450053, Zhengzhou, Henan, China
| | - Leixi Cao
- Translational Research Institute of People's Hospital of Zhengzhou University and Academy of Medical Sciences, Zhengzhou University, 450053, Zhengzhou, Henan, China
| | - Fangyuan Cheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Xuedan Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China
| | - Mian Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.
- Translational Research Institute of People's Hospital of Zhengzhou University and Academy of Medical Sciences, Zhengzhou University, 450053, Zhengzhou, Henan, China.
| | - Jianli Ma
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, 150081, Harbin, Heilongjiang, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, Anhui, China.
| |
Collapse
|
17
|
Wu X, Wang W, Fan S, You L, Li F, Zhang X, Wu H, Tang J, Qi Y, Feng W, Yan L, Ren M. U-shaped association between serum IGF2BP3 and T2DM: A cross-sectional study in Chinese population. J Diabetes 2023; 15:349-361. [PMID: 36891946 PMCID: PMC10101838 DOI: 10.1111/1753-0407.13378] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
OBJECTIVE To clarify the expression of N6-methyladenosine (m6 A) modulators involved in the pathogenesis of type 2 diabetes mellitus (T2DM). We further explored the association of serum insulin-like growth factor 2 mRNA-binding proteins 3 (IGF2BP3) levels and odds of T2DM in a high-risk population. METHODS The gene expression data set GSE25724 was obtained from the Gene Expression Omnibus, and a cluster heatmap was generated by using the R package ComplexHeatmap. Differential expression analysis for 13 m6 A RNA methylation regulators between nondiabetic controls and T2DM subjects was performed using an unpaired t test. A cross-sectional design, including 393 subjects (131 patients with newly diagnosed T2DM, 131 age- and sex-matched subjects with prediabetes, and 131 healthy controls), was carried out. The associations between serum IGF2BP3 concentrations and T2DM were modeled by restricted cubic spline and logistic regression models. RESULTS Two upregulated (IGF2BP2 and IGF2BP3) and 5 downregulated (methyltransferase-like 3 [METTL3], alkylation repair homolog protein 1 [ALKBH1], YTH domain family 2 [YTHDF2], YTHDF3, and heterogeneous nuclear ribonucleoprotein [HNRNPC]) m6 A-related genes were found in islet samples of T2DM patients. A U-shaped association existed between serum IGF2BP3 levels and odds of T2DM according to cubic natural spline analysis models, after adjustment for body mass index, waist circumference, diastolic blood pressure, total cholesterol, and triglyeride. Multivariate logistic regression showed that progressively higher odds of T2DM were observed when serum IGF2BP3 levels were below 0.62 ng/mL (odds ratio 3.03 [95% confidence interval 1.23-7.47]) in model 4. CONCLUSION Seven significantly altered m6 A RNA methylation genes were identified in T2DM. There was a U-shaped association between serum IGF2BP3 levels and odds of T2DM in the general Chinese adult population. This study provides important evidence for further examination of the role of m6 A RNA methylation, especially serum IGF2BP3 in T2DM risk assessment.
Collapse
Affiliation(s)
- Xiaoying Wu
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Department of EndocrinologyNational Center of Gerontology, Beijing Hospital, Peking University Fifth School of Clinical MedicineBeijingChina
| | - Wei Wang
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Shujin Fan
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Lili You
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Feng Li
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Xiaoyun Zhang
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Hongshi Wu
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Juying Tang
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Yiqin Qi
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Wanting Feng
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Li Yan
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Meng Ren
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
18
|
Gui Z, Li J, Li J, Li X, Chen L, Ma Z, Tang X, Gong X, Chai X, Lu F, Li M, Ma H, Li X, Ye X. Berberine promotes IGF2BP3 ubiquitination by TRIM21 to induce G1/S phase arrest in colorectal cancer cells. Chem Biol Interact 2023; 374:110408. [PMID: 36822301 DOI: 10.1016/j.cbi.2023.110408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
The increasing incidence of colorectal cancer (CRC) has become a major global public health burden. The natural drug Berberine (BBR) has shown potential in preventing CRC, and IGF2 mRNA binding protein 3 (IGF2BP3) may be a target of BBR. This study aims to investigate the mechanisms of BBR acting on IGF2BP3 to improve CRC. The results showed that IGF2BP3 played an important role in the development of CRC. BBR down-regulated IGF2BP3 expression and inhibited CRC growth in mice. Cell thermodynamic stability analysis (CETSA) and drug affinity responsive target stability (DARTS) analysis showed BBR may bind to IGF2BP3. BBR may induce structural changes in IGF2BP3 and decrease its protein stability in cytoplasm. The results from Co-Immunoprecipitation (Co-IP) suggested that BBR promoted the ubiquitination of IGF2BP3 by tripartite motif-containing protein 21 (TRIM21). Through RNA binding protein Immunoprecipitation (RIP) assay, it was found BBR inhibited the stabilization of CDK4/CCND1 mRNA by IGF2BP3 and promoted G1/S phase arrest in CRC cells. Overexpression of IGF2BP3 in vitro and in vivo attenuated the inhibition of CRC growth by BBR. This work demonstrated the potential of BBR targeting to IGF2BP3 in improving CRC and provided a new strategy for clinical treatment on CRC as well as novel anticancer drug design based on IGF2BP3 and TRIM21.
Collapse
Affiliation(s)
- Zhenwei Gui
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jingwei Li
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Juan Li
- School of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400716, China
| | - Xiaoduo Li
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lihong Chen
- School of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400716, China
| | - Zhengcai Ma
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiang Tang
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaobao Gong
- School of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400716, China
| | - Xue Chai
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Fangfang Lu
- School of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400716, China
| | - Mengmeng Li
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hang Ma
- School of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400716, China.
| | - Xuegang Li
- School of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, 400716, China.
| | - Xiaoli Ye
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
19
|
Sun K, Yao H, Zhang P, Sun Y, Ma J, Xia Q. Emerging landscape of circFNDC3B and its role in human malignancies. Front Oncol 2023; 13:1097956. [PMID: 36793611 PMCID: PMC9924128 DOI: 10.3389/fonc.2023.1097956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, more attention has been paid to expanding the abundance of Circular RNAs (circRNAs), while the circRNAs that have been found to have significant functions have not been studied in different diseases. CircFNDC3B is one of the most researched circRNAs generated from fibronectin type III domain-containing protein 3B (FNDC3B) gene. Accumulating researches have reported the multiple functions of circFNDC3B in different cancer types and other non-neoplastic diseases, and predicted that circFNDC3B might be a potential biomarker. Notably, circFNDC3B can play roles in different diseases by binding to various microRNAs (miRNAs), binding to RNA-binding proteins (RBPs), or encoding functional peptides. This paper systematically summarizes the biogenesis and function of circRNAs, reviews and discusses the roles and molecular mechanisms of circFNDC3B and its target genes in different cancers and non-neoplastic diseases, which will do favor to broaden our comprehension of the function of circRNAs and facilitate subsequent research on circFNDC3B.
Collapse
Affiliation(s)
- Kai Sun
- Department of Urology, Shandong Province Hospital, Shandong University, Jinan, China
| | - Huibao Yao
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Peizhi Zhang
- Department of Urology, Shandong Province Hospital, Shandong University, Jinan, China
| | - Yanning Sun
- Department of Urology, Shandong Province Hospital, Shandong University, Jinan, China
| | - Jian Ma
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Qinghua Xia
- Department of Urology, Shandong Province Hospital, Shandong University, Jinan, China
| |
Collapse
|
20
|
Ramesh-Kumar D, Guil S. The IGF2BP family of RNA binding proteins links epitranscriptomics to cancer. Semin Cancer Biol 2022; 86:18-31. [PMID: 35643219 DOI: 10.1016/j.semcancer.2022.05.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023]
Abstract
RNA binding proteins that act at the post-transcriptional level display a richness of mechanisms to modulate the transcriptional output and respond to changing cellular conditions. The family of IGF2BP proteins recognize mRNAs modified by methylation and lengthen their lifecycle in the context of stable ribonucleoprotein particles to promote cancer progression. They are emerging as key 'reader' proteins in the epitranscriptomic field, driving the fate of bound substrates under physiological and disease conditions. Recent developments in the field include the recognition that noncoding substrates play crucial roles in mediating the pro-growth features of IGF2BP family, not only as regulated targets, but also as modulators of IGF2BP function themselves. In this review, we summarize the regulatory roles of IGF2BP proteins and link their molecular role as m6A modification readers to the cellular phenotype, thus providing a comprehensive insight into IGF2BP function.
Collapse
Affiliation(s)
- Deepthi Ramesh-Kumar
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia 08916, Spain
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia 08916, Spain.
| |
Collapse
|
21
|
Nag S, Goswami B, Das Mandal S, Ray PS. Cooperation and competition by RNA-binding proteins in cancer. Semin Cancer Biol 2022; 86:286-297. [PMID: 35248729 DOI: 10.1016/j.semcancer.2022.02.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
Post-transcriptional regulation of gene expression plays a major role in determining the cellular proteome in health and disease. Post-transcriptional control mechanisms are disrupted in many cancers, contributing to multiple processes of tumorigenesis. RNA-binding proteins (RBPs), the main post-transcriptional regulators, often show altered expression and activity in cancer cells. Dysregulation of RBPs contributes to many cancer phenotypes, functioning in complex regulatory networks with other cellular players such as non-coding RNAs, signaling mediators and transcription factors to alter the expression of oncogenes and tumor suppressor genes. RBPs often function combinatorially, based on their binding to target sequences/structures on shared mRNA targets, to regulate the expression of cancer-related genes. This gives rise to cooperativity and competition between RBPs in mRNA binding and resultant functional outcomes in post-transcriptional processes such as mRNA splicing, stability, export and translation. Cooperation and competition is also observed in the case of interaction of RBPs and microRNAs with mRNA targets. RNA structural change is a common mechanism mediating the cooperative/competitive interplay between RBPs and between RBPs and microRNAs. RNA modifications, leading to changes in RNA structure, add a new dimension to cooperative/competitive binding of RBPs to mRNAs, further expanding the RBP regulatory landscape. Therefore, cooperative/competitive interplay between RBPs is a major determinant of the RBP interactome and post-transcriptional regulation of gene expression in cancer cells.
Collapse
Affiliation(s)
- Sharanya Nag
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Binita Goswami
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sukhen Das Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| |
Collapse
|
22
|
Tran TM, Rao DS. RNA binding proteins in MLL-rearranged leukemia. Exp Hematol Oncol 2022; 11:80. [PMID: 36307883 PMCID: PMC9615162 DOI: 10.1186/s40164-022-00343-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
RNA binding proteins (RBPs) have recently emerged as important post-transcriptional gene expression regulators in both normal development and disease. RBPs influence the fate of mRNAs through multiple mechanisms of action such as RNA modifications, alternative splicing, and miR-mediated regulation. This complex and, often, combinatorial regulation by RBPs critically impacts the expression of oncogenic transcripts and, thus, the activation of pathways that drive oncogenesis. Here, we focus on the major features of RBPs, their mechanisms of action, and discuss the current progress in investigating the function of important RBPs in MLL-rearranged leukemia.
Collapse
Affiliation(s)
- Tiffany M Tran
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental Ph.D. Program, UCLA, Los Angeles, CA, 90095, USA
| | - Dinesh S Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center (JCCC), UCLA, Los Angeles, CA, 90095, USA.
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
23
|
Chen S, Ren H, Zhang X, Chang L, Wang Z, Wu H, Zhang J, Ren J, Zhou L. Research advances of N6-methyladenosine in diagnosis and therapy of pancreatic cancer. J Clin Lab Anal 2022; 36:e24611. [PMID: 35837987 PMCID: PMC9459282 DOI: 10.1002/jcla.24611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is the addition of a methyl group on the N6 position of adenosine and is the most prevalent and abundant epigenetic modification in eukaryote mRNA. m6A marks are added to mRNA by the m6A methyltransferase complex ("writers"), removed by m6A demethylases ("erasers"), and recognized by m6A-binding proteins ("readers"). Recent evidence has shown that the m6A modification plays a crucial role in the pathogenic mechanism and malignant progression of pancreatic cancer, with roles in cell survival, proliferation, migration, invasion, tumor metastasis, and drug resistance. METHODS Literature was searched in Pubmed and Web of Science for the following keywords: "N6-methyladenosine", "pancreatic cancer", "epigenetic modification", "immunotherapy". RESULTS Among classical m6A regulators, while METTL3, METTL14, WTAP, FTO, YTHDF2, IGF2BP1-3, hnRNPC, and NKAP are upregulated in pancreatic cancer, METTL16 and ALKBH5 are downregulated in pancreatic cancer. m6A modification has been investigated in pancreatic cancer therapy. CONCLUSION Dysregulated m6A and its related factors in pancreatic cancer cells and patients indicate their potential values as novel biomarkers in pancreatic cancer diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Sai Chen
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Hefei Ren
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Xiaomin Zhang
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Liu Chang
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Zhenhua Wang
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Hongkun Wu
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Jiafeng Zhang
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Jigang Ren
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Lin Zhou
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| |
Collapse
|
24
|
Hu X, Lei X, Guo J, Fu W, Sun W, Lu Q, Su W, Xu Q, Tu K. The Emerging Role of RNA N6-Methyladenosine Modification in Pancreatic Cancer. Front Oncol 2022; 12:927640. [PMID: 35936737 PMCID: PMC9354683 DOI: 10.3389/fonc.2022.927640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/15/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignant cancers, ranking the seventh highest causes of cancer-related deaths globally. Recently, RNA N6-methyladenosine (m6A) is emerging as one of the most abundant RNA modifications in eukaryote cells, involved in multiple RNA processes including RNA translocation, alternative splicing, maturation, stability, and degradation. As reported, m6A was dynamically and reversibly regulated by its “writers”, “erasers”, and “readers”, Increasing evidence has revealed the vital role of m6A modification in the development of multiple types of cancers including PC. Currently, aberrant m6A modification level has been found in both PC tissues and cell lines. Moreover, abnormal expressions of m6A regulators and m6A-modified genes have been reported to contribute to the malignant development of PC. Here in this review, we will focus on the function and molecular mechanism of m6A-modulated RNAs including coding RNAs as well as non-coding RNAs. Then the m6A regulators will be summarized to reveal their potential applications in the clinical diagnosis, prognosis, and therapeutics of PC.
Collapse
Affiliation(s)
- Xiaoge Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiangxiang Lei
- Institute of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jinhui Guo
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wen Fu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wen Sun
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wei Su
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Key Laboratory of Pancreatic Disease; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
- *Correspondence: Wei Su, ; Qiuran Xu, ; Kangsheng Tu,
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Wei Su, ; Qiuran Xu, ; Kangsheng Tu,
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wei Su, ; Qiuran Xu, ; Kangsheng Tu,
| |
Collapse
|
25
|
AGO-RBP crosstalk on target mRNAs: Implications in miRNA-guided gene silencing and cancer. Transl Oncol 2022; 21:101434. [PMID: 35477066 PMCID: PMC9136600 DOI: 10.1016/j.tranon.2022.101434] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) and RNA-binding proteins (RBPs) are important regulators of mRNA translation and stability in eukaryotes. While miRNAs can only bind their target mRNAs in association with Argonaute proteins (AGOs), RBPs directly bind their targets either as single entities or in complex with other RBPs to control mRNA metabolism. miRNA binding in 3' untranslated regions (3' UTRs) of mRNAs facilitates an intricate network of interactions between miRNA-AGO and RBPs, thus determining the fate of overlapping targets. Here, we review the current knowledge on the interplay between miRNA-AGO and multiple RBPs in different cellular contexts, the rules underlying their synergism and antagonism on target mRNAs, as well as highlight the implications of these regulatory modules in cancer initiation and progression.
Collapse
|
26
|
Zhu RH, Dai FF, Yang DY, Liu SY, Zheng YJ, Wu ML, Deng ZM, Wang ZT, Zhang YW, Tan W, Li ZD, He J, Yang X, Hu M, Cheng YX. The Mechanism of Insulin-Like Growth Factor II mRNA-Binging Protein 3 Induce Decidualization and Maternal-Fetal Interface Cross Talk by TGF-β1 in Recurrent Spontaneous Abortion. Front Cell Dev Biol 2022; 10:862180. [PMID: 35465321 PMCID: PMC9023862 DOI: 10.3389/fcell.2022.862180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is defined as the loss of two or more consecutive intrauterine pregnancies that are clinically established early in pregnancy. To date, the etiology and underlying mechanisms of RSA remain unclear. It is widely thought that the impairment of decidualization is inclined to induce subsequent pregnancy failure and leads to the dysregulation of extra-villous trophoblast invasion and proliferation through maternal–fetal cross talk. However, the mechanism of decidualization in RSA has yet to be understood. In our study, we demonstrate that decidual samples from RSA patients have significantly higher insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) and lower TGF-β1 levels compared to healthy controls. In addition, the overexpression of IGF2BP3 in human endometrial stromal cells (hESCs) can lead to the impairment of decidualization in vitro-induced model and the abnormal cell cycle regulation. Furthermore, TGF-β1 and MMP9 levels were greatly increased after decidualization, whereas IGF2BP3 overexpression inhibited endometrial mesenchymal decidualization by downregulating TGF-β1, impeding maternal–fetal interface cytokine cross talk, and limiting the ability of trophoblast invasion. In conclusion, our investigation first demonstrates that abnormal elevation of IGF2BP3 in the pregnant endometrium leads to the impairment of decidualization and abnormal trophoblast invasion, thereby predisposing individuals to RSA.
Collapse
Affiliation(s)
- Rong-hui Zhu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang-fang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dong-yong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shi-yi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ya-jing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ma-li Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-min Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zi-tao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu-wei Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-dian Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juan He
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
- *Correspondence: Xiao Yang, ; Min Hu, ; Yan-xiang Cheng,
| | - Min Hu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Xiao Yang, ; Min Hu, ; Yan-xiang Cheng,
| | - Yan-xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Xiao Yang, ; Min Hu, ; Yan-xiang Cheng,
| |
Collapse
|
27
|
Yang N, Liu L, Liu X, Chen Y, Lu J, Wang Z. hnRNPC Promotes Malignancy in Pancreatic Cancer through Stabilization of IQGAP3. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6319685. [PMID: 35355828 PMCID: PMC8958073 DOI: 10.1155/2022/6319685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022]
Abstract
Due to challenges in early-stage detection, aggressive behavior, and poor response to systemic therapy, pancreatic cancer is one of the most fatal cancer types globally. The role of RNA-binding protein (RBP) transcription and translation of cancer cells has been well demonstrated, although their roles in pancreatic cancer is less well understood. In this study, we found that heterogeneous nuclear ribonucleoprotein C (hnRNPC), a RBP, is highly expressed in pancreatic ductal adenocarcinoma (PDAC) tissues and cells. In addition, we discovered that overexpression of hnRNPC in PDAC cells in vitro increased cell proliferation, migration, invasion, and metastasis. The presence of hnRNPC promoted tumorigenesis of pancreatic cells in metastatic in vivo models, which was also validated. In silico analyses revealed that hnRNPC is a strong positive regulator of IQ Motif Containing GTPase Activating Protein 3 (IQGAP3) activity. The experimental confirmation of this association revealed a direct interaction of IQGAP3 and hnRNPC to induce cell growth and invasion in PDAC cells by activating the epithelial-mesenchymal transition. In light of the findings that hnRNPC accelerates PDAC progression by interfering with IQGAP3, it appears that this technique for diagnosis and treatment of PDAC may have promise.
Collapse
Affiliation(s)
- Nannan Yang
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Lin Liu
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Xiaoyu Liu
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingjie Chen
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Lu
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Zhongmin Wang
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
28
|
Zhang W, Wang B, Lin Y, Yang Y, Zhang Z, Wang Q, Zhang H, Jiang K, Ye Y, Wang S, Shen Z. hsa_circ_0000231 Promotes colorectal cancer cell growth through upregulation of CCND2 by IGF2BP3/miR-375 dual pathway. Cancer Cell Int 2022; 22:27. [PMID: 35033075 PMCID: PMC8760675 DOI: 10.1186/s12935-022-02455-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Background Circular RNAs (circRNAs) have emerged as vital regulators of the initiation and progression of diverse kinds of human cancers. In this study, we explored the role of hsa_circ_0000231 and its downstream pathway in CRC. Methods The expression profile of circRNAs in 5 pairs of CRC tissues and adjacent normal tissues were analyzed by Microarray. Quantitative real-time PCR and in situ hybridization and Base Scope Assay were used to determine the level and prognostic values of hsa_circ_0000231. Then, functional experiments in vitro and in vivo were performed to investigate the effects of hsa_circ_0000231 on cell proliferation. Mechanistically, fluorescent in situ hybridization, dual luciferase reporter assay, RNA pull-down and RNA immunoprecipitation experiments were performed to confirm the interaction between hsa_circ_0000231 and IGF2BP3 or has_miR-375. Results We acquired data through circRNA microarray profiles, showing that the expression of hsa_circ_0000231 was upregulated in CRC primary tissues compared to adjacent normal tissues, which was indicated poor prognosis of patients with CRC. Functional analysis indicated that inhibition of hsa_circ_0000231 in CRC cell lines could suppress CRC cell proliferation as well as tumorigenesis in vitro and in vivo. The mechanistic analysis showed that hsa_circ_0000231 might, on the one hand, act as a competing endogenous RNA of miR-375 to promote cyclin D2 (CCND2) and, on the other hand, bind to the IGF2BP3 protein to prevent CCND2 degradation. Conclusions The findings suggested that hsa_circ_0000231 facilitated CRC progression by sponging miR-375 or binding to IGF2BP3 to modulate CCND2, implying that hsa_circ_0000231 might be a potential new diagnostic and therapeutic biomarker of CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02455-8.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Bo Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Yilin Lin
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Yang Yang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Zhen Zhang
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Quan Wang
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Haoran Zhang
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Shan Wang
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China. .,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China. .,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China.
| |
Collapse
|
29
|
Albericio G, Aguilar S, Torán JL, Yañez R, López JA, Vázquez J, Mora C, Bernad A. Comparative proteomic analysis of nuclear and cytoplasmic compartments in human cardiac progenitor cells. Sci Rep 2022; 12:146. [PMID: 34997006 PMCID: PMC8742012 DOI: 10.1038/s41598-021-03956-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Clinical trials evaluating cardiac progenitor cells (CPC) demonstrated feasibility and safety, but no clear functional benefits. Therefore a deeper understanding of CPC biology is warranted to inform strategies capable to enhance their therapeutic potential. Here we have defined, using a label-free proteomic approach, the differential cytoplasmic and nuclear compartments of human CPC (hCPC). Global analysis of cytoplasmic repertoire in hCPC suggested an important hypoxia response capacity and active collagen metabolism. In addition, comparative analysis of the nuclear protein compartment identified a significant regulation of a small number of proteins in hCPC versus human mesenchymal stem cells (hMSC). Two proteins significantly upregulated in the hCPC nuclear compartment, IL1A and IMP3, showed also a parallel increase in mRNA expression in hCPC versus hMSC, and were studied further. IL1A, subjected to an important post-transcriptional regulation, was demonstrated to act as a dual-function cytokine with a plausible role in apoptosis regulation. The knockdown of the mRNA binding protein (IMP3) did not negatively impact hCPC viability, but reduced their proliferation and migration capacity. Analysis of a panel of putative candidate genes identified HMGA2 and PTPRF as IMP3 targets in hCPC. Therefore, they are potentially involved in hCPC proliferation/migration regulation.
Collapse
Affiliation(s)
- Guillermo Albericio
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), C/ Darwin 3, Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Susana Aguilar
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), C/ Darwin 3, Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Jose Luis Torán
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), C/ Darwin 3, Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Veterinary Faculty, Universidad Complutense de Madrid, Avda. Puerta de Hierro, s/n. Ciudad Universitaria, 28040, Madrid, Spain
| | - Rosa Yañez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Av Complutense, 40, 28040, Madrid, Spain.,Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz, Madrid, Spain
| | - Juan Antonio López
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carmen Mora
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), C/ Darwin 3, Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Antonio Bernad
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), C/ Darwin 3, Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
30
|
Yao Y, Luo L, Xiang G, Xiong J, Ke N, Tan C, Chen Y, Liu X. The expression of m 6A regulators correlated with the immune microenvironment plays an important role in the prognosis of pancreatic ductal adenocarcinoma. Gland Surg 2022; 11:147-165. [PMID: 35242677 PMCID: PMC8825516 DOI: 10.21037/gs-21-859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND The relationship between N6-methyladenosine (m6A) RNA methylation regulators and the tumor immune microenvironment has been extensively studied. Nevertheless, the potential function of m6A regulators in the tumor immune landscape of pancreatic ductal adenocarcinoma (PDAC) remains to be fully elucidated. METHODS Here, we systematically evaluated the expression of 19 m6A regulators in PDAC patients from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Utilizing consensus clustering, the PDAC patients were segmented into two subgroups according to the expression of 19 m6A regulators. A prognostic risk signature of 5 m6A methylation regulators (ALKBH5, IGF2BP2, IGF2BP3, LRPPRC, and KIAA1429) was then built, and the PDAC patients were divided into high-risk and low-risk groups. Subsequently, differences in independent prognostic parameters, risk score distribution, survival, and cluster analysis between high-risk and low-risk groups were analyzed. RESULTS We found two subgroups with dramatically different immune landscapes and prognoses. Subsequently, differences in independent prognostic parameters, risk score distribution, survival, and cluster analysis between the high-risk and low-risk groups were found. Moreover, these gene signatures displayed good discriminative performances in the GEO datasets. We also found that the risk score was positively correlated with the tumor mutation burden (TMB), and the TMB value was higher in the high-risk scoring group. The low-risk scoring group was linked by a stronger response to anti-programmed cell death ligand 1 (anti-PD-L1) immunotherapy and clinical advantages in the immunotherapeutic advanced urothelial cancer (IMvigor210) cohort. Ultimately, we found that these 5 m6A regulators had a fatal regulatory role on the tumor immune microenvironment in PDAC patients. CONCLUSIONS The construction signature based on the m6A regulators may be crucial regulators of the tumor immune microenvironment in PDAC, providing a new approach to improving the immunotherapy strategy for PDAC patients.
Collapse
Affiliation(s)
- Yutong Yao
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Le Luo
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Guangming Xiang
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjie Xiong
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Nengwen Ke
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chunlu Tan
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghua Chen
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xubao Liu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
R-2HG downregulates ERα to inhibit cholangiocarcinoma via the FTO/m6A-methylated ERα/miR16-5p/YAP1 signal pathway. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:65-81. [PMID: 34632051 PMCID: PMC8479483 DOI: 10.1016/j.omto.2021.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/30/2021] [Indexed: 12/21/2022]
Abstract
Isocitrate dehydrogenase (IDH) mutations increase (R)-2-hydroxyglutarate (R-2HG) production; however, functional mechanisms of R-2HG in regulating cholangiocarcinoma (CCA) development remain to be further investigated. We first applied the CRISPR-Cas9 gene-editing system to create IDH1R132H-mutated CCA cells. Interestingly, our data showed that R-2HG could function through downregulating estrogen receptor alpha (ERα) and Yes-associated protein 1 (YAP1) pathways to decrease CCA growth. Detailed mechanistic studies revealed that R-2HG could target and degrade the fat mass and obesity-associated protein (FTO), the first identified mRNA demethylase. This reduced FTO can increase the N6-methyladenosine (m6A) to methylate the mRNA of ERα, and consequently decrease protein translation of the ERα. Further mechanistic studies revealed that ERα could transcriptionally suppress miR-16-5p expression, which could then increase YAP1 expression due to the reduced miR-16-5p binding to the 3′ UTR of YAP1. Furthermore, data from the pre-clinical animal model with implantation of IDH1R132H QBC939 cells demonstrated that R-2HG generated by the IDH1 mutation could downregulate ERα and YAP1 to suppress CCA tumor growth. Taken together, our new findings suggested that IDH1 mutation-induced R-2HG could suppress CCA growth via regulating the FTO/m6A-methylated ERα/miR16-5p/YAP1 signaling pathway. Upregulating R-2HG or downregulating the ERα signal by short hairpin RNA ERα (shERα) or antiestrogen could be effective strategies to inhibit CCA.
Collapse
|
32
|
Circular RNA circ-TNPO3 suppresses metastasis of GC by acting as a protein decoy for IGF2BP3 to regulate the expression of MYC and SNAIL. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:649-664. [PMID: 34703650 PMCID: PMC8516998 DOI: 10.1016/j.omtn.2021.08.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) continues to be the most common gastrointestinal malignancy in China, and tumor metastases are a major reason for poor prognosis. Circular RNAs (circRNAs) are an intriguing type of noncoding RNAs with important regulatory roles. However, the roles of circRNAs in GC metastasis have not been fully elucidated. Here, we reported that circ-transportin 3 (TNPO3) was significantly downregulated in 103 pairs of GC tissues compared with matched noncancerous tissues. The level of circ-TNPO3 expression correlated with differentiation of GC, and plasma circ-TNPO3 could serve as a potential diagnostic biomarker. Functionally, circ-TNPO3 inhibited proliferation and migration of GC in vitro and in vivo. We further verified that circ-TNPO3 competitively interacted with insulin-like growth factor 2 binding protein 3 (IGF2BP3) protein; thus, the role of IGF2BP3 in stabilizing MYC mRNA was weakened, which inhibited the expression of MYC and its target SNAIL. Taken together, circ-TNPO3 acts as a protein decoy for IGF2BP3 to regulate the MYC-SNAIL axis, thereby suppressing the proliferation and metastasis of GC. Therefore, circ-TNPO3 has the potential to serve as a therapeutic target for GC.
Collapse
|
33
|
Liu T, Hu J, Han B, Tan S, Jia W, Xin Y. A positive feedback loop of lncRNA-RMRP/ZNRF3 axis and Wnt/β-catenin signaling regulates the progression and temozolomide resistance in glioma. Cell Death Dis 2021; 12:952. [PMID: 34657141 PMCID: PMC8520527 DOI: 10.1038/s41419-021-04245-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/31/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022]
Abstract
Drug resistance strikingly limits the therapeutic effect of temozolomide (TMZ) (a common drug for glioma). Long non-coding RNA (lncRNA) RMRP has been found to be implicated in glioma progression. However, the effect of RMRP on TMZ resistance along with related molecular mechanisms is poorly defined in glioma. In the present study, RMRP, ZNRF3, and IGF2BP3 were screened out by bioinformatics analysis. The expression levels of lncRNAs and mRNAs were measured by RT-qPCR assay. Protein levels of genes were detected by western blot and immunofluorescence assays. ZNRF3 mRNA stability was analyzed using Actinomycin D assay. Cell proliferative ability and survival rate were determined by CCK-8 assay. Cell apoptotic pattern was estimated by flow cytometry. The effect of RMRP knockdown on the growth of TMZ-treated glioma xenograft tumors was explored in vivo. The relationships of IGF2BP3, RMRP, and ZNRF3 were explored by bioinformatics prediction analysis, RNA immunoprecipitation, luciferase, and RNA pull-down, and chromatin immunoprecipitation assays. The results showed that RMRP was highly expressed in glioma. RMRP knockdown curbed cell proliferation, facilitated cell apoptosis and reduced TMZ resistance in glioma cells, and hindered the growth of TMZ-treated glioma xenograft tumors. RMRP exerted its functions by down-regulating ZNRF3 in glioma cells. IGF2BP3 interacted with RMRP and ZNRF3 mRNA. IGF2BP3 knockdown weakened the interaction of Argonaute 2 (Ago2) and ZNRF3. RMRP reduced ZNRF3 expression and mRNA stability by IGF2BP3. RMRP knockdown inhibited β-catenin expression by up-regulating ZNRF3. The inhibition of Wnt/β-catenin signaling pathway by XAV-939 weakened RMRP-mediated TMZ resistance in glioma cells. β-catenin promoted RMRP expression by TCF4 in glioma cells. In conclusion, RMRP/ZNRF3 axis and Wnt/β-catenin signaling formed a positive feedback loop to regulate TMZ resistance in glioma. The sustained activation of Wnt/β-catenin signaling by RMRP might contribute to the better management of cancers.
Collapse
Affiliation(s)
- Tie Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jie Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Bo Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shishan Tan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Wenqing Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yu Xin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
34
|
CircURI1 interacts with hnRNPM to inhibit metastasis by modulating alternative splicing in gastric cancer. Proc Natl Acad Sci U S A 2021; 118:2012881118. [PMID: 34385309 DOI: 10.1073/pnas.2012881118] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Circular RNAs (circRNAs) have emerged as key regulators of human cancers, yet their modes of action in gastric cancer (GC) remain largely unknown. Here, we identified circURI1 back-spliced from exons 3 and 4 of unconventional prefoldin RPB5 interactor 1 (URI1) from circRNA profiling of five-paired human gastric and the corresponding nontumor adjacent specimens (paraGC). CircURI1 exhibits the significantly higher expression in GC compared with paraGC and inhibitory effects on cell migration and invasion in vitro and GC metastasis in vivo. Mechanistically, circURI1 directly interacts with heterogeneous nuclear ribonucleoprotein M (hnRNPM) to modulate alternative splicing of genes, involved in the process of cell migration, thus suppressing GC metastasis. Collectively, our study expands the current knowledge regarding the molecular mechanism of circRNA-mediated cancer metastasis via modulating alternative splicing.
Collapse
|
35
|
m6A modification promotes miR-133a repression during cardiac development and hypertrophy via IGF2BP2. Cell Death Discov 2021; 7:157. [PMID: 34226535 PMCID: PMC8257704 DOI: 10.1038/s41420-021-00552-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/09/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022] Open
Abstract
Both N6-methyladenosine (m6A) RNA modification and microRNAs (miRNAs) are common regulatory mechanisms for gene post-transcription by modulating mRNA stability and translation. They also share the same 3′-untranslated regions (UTRs) regions for their target gene. However, little is known about their potential interaction in cell development and biology. Here, we aimed to investigate how m6A regulates the specific miRNA repression during cardiac development and hypertrophy. Our multiple lines of bioinformatic and molecular biological evidence have shown that m6A modification on cardiac miR-133a target sequence promotes miR-133a repressive effect via AGO2-IGF2BP2 (Argonaute 2—Insulin-like growth factor 2 mRNA binding protein 2) complex. Among 139 cardiac miRNAs, only the seed sequence of miR-133a was inversely complement to m6A consensus motif “GGACH” by sequence alignment analysis. Immunofluorescence staining, luciferase reporter, and m6A-RIP (RNA immunoprecipitation) assays revealed that m6A modification facilitated miR-133a binding to and repressing their targets. The inhibition of the miR-133a on cardiac proliferation and hypertrophy could be prevented by silencing of Fto (FTO alpha-ketoglutarate dependent dioxygenase) which induced m6A modification. IGF2BP2, an m6A binding protein, physically interacted with AGO2 and increased more miR-133a accumulation on its target site, which was modified by m6A. In conclusion, our study revealed a novel and precise regulatory mechanism that the m6A modification promoted the repression of specific miRNA during heart development and hypertrophy. Targeting m6A modification might provide a strategy to repair hypertrophic gene expression induced by miR-133a.
Collapse
|
36
|
Furtado GV, Yang J, Wu D, Papagiannopoulos CI, Terpstra HM, Kuiper EFE, Krauss S, Zhu WG, Kampinga HH, Bergink S. FOXO1 controls protein synthesis and transcript abundance of mutant polyglutamine proteins, preventing protein aggregation. Hum Mol Genet 2021; 30:996-1005. [PMID: 33822053 PMCID: PMC8170844 DOI: 10.1093/hmg/ddab095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 11/14/2022] Open
Abstract
FOXO1, a transcription factor downstream of the insulin/insulin like growth factor axis, has been linked to protein degradation. Elevated expression of FOXO orthologs can also prevent the aggregation of cytosine adenine guanine (CAG)-repeat disease causing polyglutamine (polyQ) proteins but whether FOXO1 targets mutant proteins for degradation is unclear. Here, we show that increased expression of FOXO1 prevents toxic polyQ aggregation in human cells while reducing FOXO1 levels has the opposite effect and accelerates it. Although FOXO1 indeed stimulates autophagy, its effect on polyQ aggregation is independent of autophagy, ubiquitin-proteasome system (UPS) mediated protein degradation and is not due to a change in mutant polyQ protein turnover. Instead, FOXO1 specifically downregulates protein synthesis rates from expanded pathogenic CAG repeat transcripts. FOXO1 orchestrates a change in the composition of proteins that occupy mutant expanded CAG transcripts, including the recruitment of IGF2BP3. This mRNA binding protein enables a FOXO1 driven decrease in pathogenic expanded CAG transcript- and protein levels, thereby reducing the initiation of amyloidogenesis. Our data thus demonstrate that FOXO1 not only preserves protein homeostasis at multiple levels, but also reduces the accumulation of aberrant RNA species that may co-contribute to the toxicity in CAG-repeat diseases.
Collapse
Affiliation(s)
- Gabriel Vasata Furtado
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Jing Yang
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Di Wu
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Christos I Papagiannopoulos
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Hanna M Terpstra
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - E F Elsiena Kuiper
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Sybille Krauss
- Faculty IV: School of Science and Technology, Institute of Biology, Human Biology / Neurobiology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Nanshan District, 1066 Xueyuan Avenue, Shenzhen 508055, China
| | - Harm H Kampinga
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Steven Bergink
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| |
Collapse
|
37
|
Korn SM, Ulshöfer CJ, Schneider T, Schlundt A. Structures and target RNA preferences of the RNA-binding protein family of IGF2BPs: An overview. Structure 2021; 29:787-803. [PMID: 34022128 DOI: 10.1016/j.str.2021.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 02/08/2023]
Abstract
Insulin-like growth factor 2 mRNA-binding proteins (IMPs, IGF2BPs) act in mRNA transport and translational control but are oncofetal tumor marker proteins. The IMP protein family represents a number of bona fide multi-domain RNA-binding proteins with up to six RNA-binding domains, resulting in a high complexity of possible modes of interactions with target mRNAs. Their exact mechanism in stability control of oncogenic mRNAs is only partially understood. Our and other laboratories' recent work has significantly pushed the understanding of IMP protein specificities both toward RNA engagement and between each other from NMR and crystal structures serving the basis for systematic biochemical and functional investigations. We here summarize the known structural and biochemical information about IMP RNA-binding domains and their RNA preferences. The article also touches on the respective roles of RNA secondary and protein tertiary structures for specific RNA-protein complexes, including the limited knowledge about IMPs' protein-protein interactions, which are often RNA mediated.
Collapse
Affiliation(s)
- Sophie Marianne Korn
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Corinna Jessica Ulshöfer
- Institute of Biochemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Tim Schneider
- Institute of Biochemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
38
|
Liang X, Peng J, Chen D, Tang L, Liu A, Fu Z, Shi L, Wang K, Shao C. Identification of novel hub genes and lncRNAs related to the prognosis and progression of pancreatic cancer by microarray and integrated bioinformatics analysis. Gland Surg 2021; 10:1104-1117. [PMID: 33842254 PMCID: PMC8033078 DOI: 10.21037/gs-21-151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/22/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most invasive and metastatic neoplasms among the fatal malignancies of the digestive system. Abnormal expression of genes and long non-coding RNAs (lncRNAs) are reportedly linked to multiple cancers. However, the lncRNA-mRNA expression profiles and their molecular mechanisms in PC progression are poorly known. This study aimed to map the hub genes and lncRNAs which might play core roles in the development of PC. METHODS This study used microarray expression analysis to screen for both differentially expressed genes (DEGs) and differentially expressed lncRNAs (DElncRNAs) between PC and matched adjacent non-tumor (AN) tissues. In order to clarify the functional classification of DEGs, we conducted GO and KEGG pathway enrichment analyses via the Enrichr database. LncRNA-mRNA co-expressed networks were also constructed to explore the probable core regulating DEGs and DElncRNAs. Subsequently, the hub genes and lncRNAs were validated via the ONCOMINE and GEPIA databases and the co-expressed networks. RESULTS By analyzing an mRNA-lncRNA microarray, we identified 943 mRNAs and 1,138 lncRNAs differentially expressed in PC tumors compared with the matched AN tissues. GO analysis confirmed that both up-regulated and down-regulated DEGs were enriched in multiple terms. The KEGG pathways enrichment analyses revealed that DEGs were mostly enriched in the focal adhesion and glutathione metabolism pathways, amongst others. Co-expressed networks were established to reveal the differential interactions between DEGs and DElncRNAs, and to indicate the core regulatory factors located at the core nodes of the co-expressed networks. The expression levels of potential core-regulating DEGs were validated by the GEPIA and ONCOMINE databases, and the relationship between overall survival and tumor stage and the potential core-regulating DEGs was analyzed using the GEPIA database. As a result, five genes and sixteen lncRNAs were finally considered as the hub transcripts in PC. CONCLUSIONS This study identified DEGs and DElncRNAs between PC tumors and matched AN tissues, and these transcripts were connected with malignant phenotypes in PC through different BPs and signaling pathways. Furthermore, five hub genes and sixteen lncRNAs were identified, which are expected to represent candidate diagnostic biomarkers or potential therapeutic targets for PC.
Collapse
Affiliation(s)
- Xing Liang
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Junfeng Peng
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Danlei Chen
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Liang Tang
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Anan Liu
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhiping Fu
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ligang Shi
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Keqi Wang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chenghao Shao
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
39
|
Gu Y, Niu S, Wang Y, Duan L, Pan Y, Tong Z, Zhang X, Yang Z, Peng B, Wang X, Han X, Li Y, Cheng T, Liu Y, Shang L, Liu T, Yang X, Sun M, Jiang S, Zhang C, Zhang N, Ye Q, Gao S. DMDRMR-Mediated Regulation of m 6A-Modified CDK4 by m 6A Reader IGF2BP3 Drives ccRCC Progression. Cancer Res 2020; 81:923-934. [PMID: 33293428 DOI: 10.1158/0008-5472.can-20-1619] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/09/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
Aberrant N 6-methyladenosine (m6A) modification has emerged as a driver of tumor initiation and progression, yet how long noncoding RNAs (lncRNA) are involved in the regulation of m6A remains unknown. Here we utilize data from 12 cancer types from The Cancer Genome Atlas to comprehensively map lncRNAs that are potentially deregulated by DNA methylation. A novel DNA methylation-deregulated and RNA m6A reader-cooperating lncRNA (DMDRMR) facilitated tumor growth and metastasis in clear cell renal cell carcinoma (ccRCC). Mechanistically, DMDRMR bound insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) to stabilize target genes, including the cell-cycle kinase CDK4 and three extracellular matrix components (COL6A1, LAMA5, and FN1), by specifically enhancing IGF2BP3 activity on them in an m6A-dependent manner. Consequently, DMDRMR and IGF2BP3 enhanced the G1-S transition, thus promoting cell proliferation in ccRCC. In patients with ccRCC, high coexpression of DMDRMR and IGF2BP3 was associated with poor outcomes. Our findings reveal that DMDRMR cooperates with IGF2BP3 to regulate target genes in an m6A-dependent manner and may represent a potential diagnostic, prognostic, and therapeutic target in ccRCC. SIGNIFICANCE: This study demonstrates that the lncRNA DMDRMR acts as a cofactor for IGF2BP3 to stabilize target genes in an m6A-dependent manner, thus exerting essential oncogenic roles in ccRCC.
Collapse
Affiliation(s)
- Yinmin Gu
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shaoxi Niu
- Department of Urology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Wang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Liqiang Duan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Yongbo Pan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Zhou Tong
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Xu Zhang
- Department of Urology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhenyu Yang
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bo Peng
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaodong Wang
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoqi Han
- Medical College, Guizhou University, Guiyang, China
| | - Yuxin Li
- Pharmaceutical Analysis, College of Pharmacy, Beihua University, Jilin, China
| | - Tianyou Cheng
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Yajuan Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Lina Shang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Tongfeng Liu
- Medical College, Guizhou University, Guiyang, China
| | - Xiwang Yang
- Medical College, Guizhou University, Guiyang, China
| | - Minxuan Sun
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Siyuan Jiang
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Chang Zhang
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Ning Zhang
- College of Life Science, Northwest A&F University, Yangling, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Shan Gao
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China. .,Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| |
Collapse
|
40
|
Glaß M, Michl P, Hüttelmaier S. RNA Binding Proteins as Drivers and Therapeutic Target Candidates in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:ijms21114190. [PMID: 32545414 PMCID: PMC7312628 DOI: 10.3390/ijms21114190] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinomas (PDAC) belong to the most frequent and most deadly malignancies in the western world. Mutations in KRAS and TP53 along with some other frequent polymorphisms occur almost universally and are likely to be responsible for tumor initiation. However, these mutations cannot explain the heterogeneity in therapeutic responses observed in PDAC patients, which limits efficiency of current therapeutic strategies. Instead, recent classifications of PDAC tumor samples are based on transcriptomics data and thus include information about epigenetic, transcriptomic, and post-transcriptomic deregulations. RNA binding proteins (RBPs) are important post-transcriptional regulators involved in every aspect of the RNA life cycle and thus considerably influence the transcriptome. In this study, we systematically investigated deregulated expression, prognostic value, and essentiality reported for RBPs in PDAC or PDAC cancer models using publicly available data. We identified 44 RBPs with suggested oncogenic potential. These include various proteins, e.g., IGF2 mRNA binding proteins (IGF2BPs), with reported tumor-promoting roles. We further characterized these RBPs and found common patterns regarding their expression, interaction, and regulation by microRNAs. These analyses suggest four prime candidate oncogenic RBPs with partially validated target potential: APOBEC1, IGF2BP1 and 3, and OASL.
Collapse
Affiliation(s)
- Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120 Halle, Germany;
- Correspondence:
| | - Patrick Michl
- Universitätsklinik und Poliklinik für Innere Medizin I, Universitätsklinikum Halle (Saale), Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany;
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120 Halle, Germany;
| |
Collapse
|
41
|
Gao Y, Luo T, Ouyang X, Zhu C, Zhu J, Qin X. IGF2BP3 and miR191-5p synergistically increase HCC cell invasiveness by altering ZO-1 expression. Oncol Lett 2020; 20:1423-1431. [PMID: 32724385 PMCID: PMC7377053 DOI: 10.3892/ol.2020.11693] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Early studies have indicated that insulin-like growth factor II mRNA binding protein 3 (IGF2BP3/IMP3) may affect the progression of hepatocellular carcinoma (HCC); however, the detailed underlying mechanisms, particularly its linkage to tight junction protein-mediated cell invasion, remain unclear. The present study revealed that IGF2BP3 increased HCC cell invasiveness by suppressing zonula occludens-1 (ZO-1) expression, via direct binding to the 3′ untranslated region (3′-UTR). Analysis of the molecular mechanisms demonstrated that IGF2BP3 binds to the overlapping targets of IGF2BP3-RNA cross-linkage and microRNA (miR)191-5p targeting sites, and promotes the formation of an miR191-5p-induced RNA-induced silencing complex. The knockdown of IGF2BP3 or the addition of a miR-191-5p inhibitor decreased cellular invasiveness and increased ZO-1 expression. Analysis of the human HCC database also confirmed the association between IGF2BP3 and HCC progression. Collectively, these preclinical findings suggest that IGF2BP3 increases HCC cell invasiveness by promoting the miR191-5p-induced suppression of ZO-1 signaling. This newly identified signaling effect on small molecule targeting may aid in the development of novel strategies with which to inhibit HCC progression more effectively.
Collapse
Affiliation(s)
- Yuan Gao
- Department of General Surgery, No. 2 People's Hospital of Changzhou, Nanjing Medical University, Changzhou, Jiangsu 213100, P.R. China
| | - Tianping Luo
- Department of General Surgery, No. 2 People's Hospital of Changzhou, Nanjing Medical University, Changzhou, Jiangsu 213100, P.R. China
| | - Xiwu Ouyang
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chunfu Zhu
- Department of General Surgery, No. 2 People's Hospital of Changzhou, Nanjing Medical University, Changzhou, Jiangsu 213100, P.R. China
| | - Junqiang Zhu
- Department of General Surgery, No. 2 People's Hospital of Changzhou, Nanjing Medical University, Changzhou, Jiangsu 213100, P.R. China
| | - Xihu Qin
- Department of General Surgery, No. 2 People's Hospital of Changzhou, Nanjing Medical University, Changzhou, Jiangsu 213100, P.R. China
| |
Collapse
|
42
|
miR-9-5p Inhibits Skeletal Muscle Satellite Cell Proliferation and Differentiation by Targeting IGF2BP3 through the IGF2-PI3K/Akt Signaling Pathway. Int J Mol Sci 2020; 21:ijms21051655. [PMID: 32121275 PMCID: PMC7084337 DOI: 10.3390/ijms21051655] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs are evolutionarily conserved, small non-coding RNAs that play critical post-transcriptional regulatory roles in skeletal muscle development. We previously found that miR-9-5p is abundantly expressed in chicken skeletal muscle. Here, we demonstrate a new role for miR-9-5p as a myogenic microRNA that regulates skeletal muscle development. The overexpression of miR-9-5p significantly inhibited the proliferation and differentiation of skeletal muscle satellite cells (SMSCs), whereas miR-9-5p inhibition had the opposite effect. We show that insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) is a target gene of miR-9-5p, using dual-luciferase assays, RT-qPCR, and Western Blotting, and that it promotes proliferation and differentiation of SMSCs. In addition, we found that IGF2BP3 regulates IGF-2 expression, using overexpression and knockdown studies. We show that Akt is activated by IGF2BP3 and is essential for IGF2BP3-induced cell development. Together, our results indicate that miR-9-5p could regulate the proliferation and differentiation of myoblasts by targeting IGF2BP3 through IGF-2 and that this activity results in the activation of the PI3K/Akt signaling pathway in skeletal muscle cells.
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Although extensively studied for over a decade, gene expression programs established at the epigenetic and/or transcriptional levels do not fully characterize cancer stem cells (CSC). This review will highlight the latest advances regarding the functional relevance of different key post-transcriptional regulations and how they are coordinated to control CSC homeostasis. RECENT FINDINGS In the past 2 years, several groups have identified master post-transcriptional regulators of CSC genetic programs, including RNA modifications, RNA-binding proteins, microRNAs and long noncoding RNAs. Of particular interest, these studies reveal that different post-transcriptional mechanisms are coordinated to control key signalling pathways and transcription factors to either support or suppress CSC homeostasis. SUMMARY Deciphering molecular mechanisms coordinating plasticity, survival and tumourigenic capacities of CSCs in adult and paediatric cancers is essential to design new antitumour therapies. An entire field of research focusing on post-transcriptional gene expression regulation is currently emerging and will significantly improve our understanding of the complexity of the molecular circuitries driving CSC behaviours and of druggable CSC weaknesses.
Collapse
|
44
|
Mancarella C, Scotlandi K. IGF2BP3 From Physiology to Cancer: Novel Discoveries, Unsolved Issues, and Future Perspectives. Front Cell Dev Biol 2020; 7:363. [PMID: 32010687 PMCID: PMC6974587 DOI: 10.3389/fcell.2019.00363] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022] Open
Abstract
RNA network control is a key aspect of proper cellular homeostasis. In this context, RNA-binding proteins (RBPs) play a major role as regulators of the RNA life cycle due to their capability to bind to RNA sequences and precisely direct nuclear export, translation/degradation rates, and the intracellular localization of their target transcripts. Alterations in RBP expression or functions result in aberrant RNA translation and may drive the emergence and progression of several pathological conditions, including cancer. Among the RBPs, insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) is of particular interest in tumorigenesis and tumor progression. This review highlights the molecular mechanisms underlying the oncogenic functions of IGF2BP3, summarizes the therapeutic potential related to its inhibition and notes the fundamental issues that remain unanswered. To fully exploit IGF2BP3 for tumor diagnosis and therapy, it is crucial to dissect the mechanisms governing IGF2BP3 re-expression and to elucidate the complex interactions between IGF2BP3 and its target mRNAs as normal cells become tumor cells.
Collapse
Affiliation(s)
- Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
45
|
Hanniford D, Ulloa-Morales A, Karz A, Berzoti-Coelho MG, Moubarak RS, Sánchez-Sendra B, Kloetgen A, Davalos V, Imig J, Wu P, Vasudevaraja V, Argibay D, Lilja K, Tabaglio T, Monteagudo C, Guccione E, Tsirigos A, Osman I, Aifantis I, Hernando E. Epigenetic Silencing of CDR1as Drives IGF2BP3-Mediated Melanoma Invasion and Metastasis. Cancer Cell 2020; 37:55-70.e15. [PMID: 31935372 PMCID: PMC7184928 DOI: 10.1016/j.ccell.2019.12.007] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/17/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022]
Abstract
Metastasis is the primary cause of death of cancer patients. Dissecting mechanisms governing metastatic spread may uncover important tumor biology and/or yield promising therapeutic insights. Here, we investigated the role of circular RNAs (circRNA) in metastasis, using melanoma as a model aggressive tumor. We identified silencing of cerebellar degeneration-related 1 antisense (CDR1as), a regulator of miR-7, as a hallmark of melanoma progression. CDR1as depletion results from epigenetic silencing of LINC00632, its originating long non-coding RNA (lncRNA) and promotes invasion in vitro and metastasis in vivo through a miR-7-independent, IGF2BP3-mediated mechanism. Moreover, CDR1as levels reflect cellular states associated with distinct therapeutic responses. Our study reveals functional, prognostic, and predictive roles for CDR1as and expose circRNAs as key players in metastasis.
Collapse
Affiliation(s)
- Douglas Hanniford
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA.
| | - Alejandro Ulloa-Morales
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Alcida Karz
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Maria Gabriela Berzoti-Coelho
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Rana S Moubarak
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | | | - Andreas Kloetgen
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Veronica Davalos
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Jochen Imig
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Pamela Wu
- Institute for Systems Genetics, New York University Langone Medical Center, New York, NY, USA
| | - Varshini Vasudevaraja
- Applied Bioinformatics Laboratories, New York University Langone Medical Center, New York, NY, USA
| | - Diana Argibay
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Karin Lilja
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA
| | - Tommaso Tabaglio
- Institute of Molecular and Cell Biology, A(∗)STAR, Singapore, Singapore
| | | | - Ernesto Guccione
- Institute of Molecular and Cell Biology, A(∗)STAR, Singapore, Singapore; Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Applied Bioinformatics Laboratories, New York University Langone Medical Center, New York, NY, USA
| | - Iman Osman
- Departments of Urology and Medicine, New York University Langone Medical Center, New York, NY, USA; Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Iannis Aifantis
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Eva Hernando
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA; Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
46
|
Ghias K, Rehmani SS, Razzak SA, Madhani S, Azim MK, Ahmed R, Khan MJ. Mutational landscape of head and neck squamous cell carcinomas in a South Asian population. Genet Mol Biol 2019; 4242:526-542. [PMID: 31188922 PMCID: PMC6905448 DOI: 10.1590/1678-4685-gmb-2018-0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 11/28/2018] [Indexed: 01/21/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer
type globally and contributes significantly to burden of disease in South Asia.
In Pakistan, HNSCC is among the most commonly diagnosed cancer in males and
females. The increasing regional burden of HNSCC along with a unique set of risk
factors merited a deeper investigation of the disease at the genomic level.
Whole exome sequencing of HNSCC samples and matched normal genomic DNA analysis
(n=7) was performed. Significant somatic single nucleotide variants (SNVs) were
identified and pathway analysis performed to determine frequently affected
signaling pathways. We identified significant, novel recurrent mutations in
ASNS (asparagine synthetase) that may affect substrate
binding, and variants in driver genes including TP53, PIK3CA, FGFR2,
ARID2, MLL3, MYC and ALK. Using the IntOGen
platform, we identified MAP kinase, cell cycle, actin cytoskeleton regulation,
PI3K-Akt signaling and other pathways in cancer as affected in the samples. This
data is the first of its kind from the Pakistani population. The results of this
study can guide a better mechanistic understanding of HNSCC in the population,
ultimately contributing new, rational therapeutic targets for the treatment of
the disease.
Collapse
Affiliation(s)
- Kulsoom Ghias
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Sadiq S Rehmani
- Department of Thoracic Surgery, Mount Sinai St. Luke's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Safina A Razzak
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | | | - M Kamran Azim
- Department of Biosciences, Mohammad Ali Jinnah University, Karachi, Pakistan
| | - Rashida Ahmed
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Mumtaz J Khan
- Surgical Specialty Institute, Cleveland Clinic, Abu Dhabi, United Arab Emirates
| |
Collapse
|
47
|
Samanta S, Guru S, Elaimy AL, Amante JJ, Ou J, Yu J, Zhu LJ, Mercurio AM. IMP3 Stabilization of WNT5B mRNA Facilitates TAZ Activation in Breast Cancer. Cell Rep 2019; 23:2559-2567. [PMID: 29847788 PMCID: PMC6007887 DOI: 10.1016/j.celrep.2018.04.113] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/16/2018] [Accepted: 04/26/2018] [Indexed: 12/23/2022] Open
Abstract
Insulin-like growth factor-2 mRNA-binding protein 3 (IMP3) is an oncofetal protein associated with many aggressive cancers and implicated in the function of breast cancer stem cells (CSCs). The mechanisms involved, however, are poorly understood. We observed that IMP3 facilitates the activation of TAZ, a transcriptional co-activator of Hippo signaling that is necessary for the function of breast CSCs. The mechanism by which IMP3 activates TAZ involves both mRNA stability and transcriptional regulation. IMP3 stabilizes the mRNA of an alternative WNT ligand (WNT5B) indirectly by repressing miR145-5p, which targets WNT5B, resulting in TAZ activation by alternative WNT signaling. IMP3 also facilitates the transcription of SLUG, which is necessary for TAZ nuclear localization and activation, by a mechanism that is also mediated by WNT5B. These results demonstrate that TAZ can be regulated by an mRNA-binding protein and that this regulation involves the integration of Hippo and alternative WNT-signaling pathways.
Collapse
Affiliation(s)
- Sanjoy Samanta
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Santosh Guru
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Ameer L Elaimy
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - John J Amante
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jun Yu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Lihua J Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA; Department of Molecular Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA; Department of Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
48
|
Müller S, Bley N, Glaß M, Busch B, Rousseau V, Misiak D, Fuchs T, Lederer M, Hüttelmaier S. IGF2BP1 enhances an aggressive tumor cell phenotype by impairing miRNA-directed downregulation of oncogenic factors. Nucleic Acids Res 2019; 46:6285-6303. [PMID: 29660014 PMCID: PMC6158595 DOI: 10.1093/nar/gky229] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
The oncofetal IGF2 mRNA binding proteins (IGF2BPs) are upregulated in most cancers but their paralogue-specific roles in tumor cells remain poorly understood. In a panel of five cancer-derived cell lines, IGF2BP1 shows highly conserved oncogenic potential. Consistently, the deletion of IGF2BP1 impairs the growth and metastasis of ovarian cancer-derived cells in nude mice. Gene expression analyses in ovarian cancer-derived cells reveal that the knockdown of IGF2BPs is associated with the downregulation of mRNAs that are prone to miRNA regulation. All three IGF2BPs preferentially associate upstream of miRNA binding sites (MBSs) in the 3′UTR of mRNAs. The downregulation of mRNAs co-regulated by miRNAs and IGF2BP1 is abrogated at low miRNA abundance or when miRNAs are depleted. IGF2BP1 associates with these target mRNAs in RISC-free complexes and its deletion enhances their association with AGO2. The knockdown of most miRNA-regulated target mRNAs of IGF2BP1 impairs tumor cell properties. In four primary cancers, elevated synthesis of these target mRNAs is largely associated with upregulated IGF2BP1 mRNA levels. In ovarian cancer, the enhanced expression of IGF2BP1 and most of its miRNA-controlled target mRNAs is associated with poor prognosis. In conclusion, these findings indicate that IGF2BP1 enhances an aggressive tumor cell phenotype by antagonizing miRNA-impaired gene expression.
Collapse
Affiliation(s)
- Simon Müller
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Nadine Bley
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Bianca Busch
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Vanessa Rousseau
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Danny Misiak
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Tommy Fuchs
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Marcell Lederer
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| |
Collapse
|
49
|
Velasco MX, Kosti A, Guardia GDA, Santos MC, Tegge A, Qiao M, Correa BRS, Hernández G, Kokovay E, Galante PAF, Penalva LOF. Antagonism between the RNA-binding protein Musashi1 and miR-137 and its potential impact on neurogenesis and glioblastoma development. RNA (NEW YORK, N.Y.) 2019; 25:768-782. [PMID: 31004009 PMCID: PMC6573790 DOI: 10.1261/rna.069211.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
RNA-binding proteins (RBPs) and miRNAs are critical gene expression regulators that interact with one another in cooperative and antagonistic fashions. We identified Musashi1 (Msi1) and miR-137 as regulators of a molecular switch between self-renewal and differentiation. Msi1 and miR-137 have opposite expression patterns and functions, and Msi1 is repressed by miR-137. Msi1 is a stem-cell protein implicated in self-renewal while miR-137 functions as a proneuronal differentiation miRNA. In gliomas, miR-137 functions as a tumor suppressor while Msi1 is a prooncogenic factor. We suggest that the balance between Msi1 and miR-137 is a key determinant in cell fate decisions and disruption of this balance could contribute to neurodegenerative diseases and glioma development. Genomic analyses revealed that Msi1 and miR-137 share 141 target genes associated with differentiation, development, and morphogenesis. Initial results pointed out that these two regulators have an opposite impact on the expression of their target genes. Therefore, we propose an antagonistic model in which this network of shared targets could be either repressed by miR-137 or activated by Msi1, leading to different outcomes (self-renewal, proliferation, tumorigenesis).
Collapse
Affiliation(s)
- Mitzli X Velasco
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Adam Kosti
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Gabriela D A Guardia
- Centro de Oncologia Molecular-Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Marcia C Santos
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Allison Tegge
- Department of Statistics, Virginia Tech, Blacksburg, Virginia 14080, USA
| | - Mei Qiao
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Bruna R S Correa
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Centro de Oncologia Molecular-Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Greco Hernández
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico
| | - Erzsebet Kokovay
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Pedro A F Galante
- Centro de Oncologia Molecular-Hospital Sírio-Libanês, São Paulo 01308-050, Brazil
| | - Luiz O F Penalva
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| |
Collapse
|
50
|
Combinatorial recognition of clustered RNA elements by the multidomain RNA-binding protein IMP3. Nat Commun 2019; 10:2266. [PMID: 31118463 PMCID: PMC6531468 DOI: 10.1038/s41467-019-09769-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
How multidomain RNA-binding proteins recognize their specific target sequences, based on a combinatorial code, represents a fundamental unsolved question and has not been studied systematically so far. Here we focus on a prototypical multidomain RNA-binding protein, IMP3 (also called IGF2BP3), which contains six RNA-binding domains (RBDs): four KH and two RRM domains. We establish an integrative systematic strategy, combining single-domain-resolved SELEX-seq, motif-spacing analyses, in vivo iCLIP, functional validation assays, and structural biology. This approach identifies the RNA-binding specificity and RNP topology of IMP3, involving all six RBDs and a cluster of up to five distinct and appropriately spaced CA-rich and GGC-core RNA elements, covering a >100 nucleotide-long target RNA region. Our generally applicable approach explains both specificity and flexibility of IMP3-RNA recognition, allows the prediction of IMP3 targets, and provides a paradigm for the function of multivalent interactions with multidomain RNA-binding proteins in gene regulation.
Collapse
|