1
|
Deja S, Fletcher JA, Kim CW, Kucejova B, Fu X, Mizerska M, Villegas M, Pudelko-Malik N, Browder N, Inigo-Vollmer M, Menezes CJ, Mishra P, Berglund ED, Browning JD, Thyfault JP, Young JD, Horton JD, Burgess SC. Hepatic malonyl-CoA synthesis restrains gluconeogenesis by suppressing fat oxidation, pyruvate carboxylation, and amino acid availability. Cell Metab 2024; 36:1088-1104.e12. [PMID: 38447582 PMCID: PMC11081827 DOI: 10.1016/j.cmet.2024.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 12/10/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024]
Abstract
Acetyl-CoA carboxylase (ACC) promotes prandial liver metabolism by producing malonyl-CoA, a substrate for de novo lipogenesis and an inhibitor of CPT-1-mediated fat oxidation. We report that inhibition of ACC also produces unexpected secondary effects on metabolism. Liver-specific double ACC1/2 knockout (LDKO) or pharmacologic inhibition of ACC increased anaplerosis, tricarboxylic acid (TCA) cycle intermediates, and gluconeogenesis by activating hepatic CPT-1 and pyruvate carboxylase flux in the fed state. Fasting should have marginalized the role of ACC, but LDKO mice maintained elevated TCA cycle intermediates and preserved glycemia during fasting. These effects were accompanied by a compensatory induction of proteolysis and increased amino acid supply for gluconeogenesis, which was offset by increased protein synthesis during feeding. Such adaptations may be related to Nrf2 activity, which was induced by ACC inhibition and correlated with fasting amino acids. The findings reveal unexpected roles for malonyl-CoA synthesis in liver and provide insight into the broader effects of pharmacologic ACC inhibition.
Collapse
Affiliation(s)
- Stanislaw Deja
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Justin A Fletcher
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Chai-Wan Kim
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Blanka Kucejova
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Xiaorong Fu
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Monika Mizerska
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Morgan Villegas
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Natalia Pudelko-Malik
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Nicholas Browder
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Melissa Inigo-Vollmer
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Cameron J Menezes
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Prashant Mishra
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Eric D Berglund
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Jeffrey D Browning
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - John P Thyfault
- Departments of Cell Biology and Physiology, Internal Medicine and KU Diabetes Institute, Kansas Medical Center, Kansas City, KS, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA
| | - Jay D Horton
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| |
Collapse
|
2
|
Uehara K, Lee WD, Stefkovich M, Biswas D, Santoleri D, Garcia Whitlock A, Quinn W, Coopersmith T, Creasy KT, Rader DJ, Sakamoto K, Rabinowitz JD, Titchenell PM. mTORC1 controls murine postprandial hepatic glycogen synthesis via Ppp1r3b. J Clin Invest 2024; 134:e173782. [PMID: 38290087 PMCID: PMC10977990 DOI: 10.1172/jci173782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/26/2024] [Indexed: 02/01/2024] Open
Abstract
In response to a meal, insulin drives hepatic glycogen synthesis to help regulate systemic glucose homeostasis. The mechanistic target of rapamycin complex 1 (mTORC1) is a well-established insulin target and contributes to the postprandial control of liver lipid metabolism, autophagy, and protein synthesis. However, its role in hepatic glucose metabolism is less understood. Here, we used metabolomics, isotope tracing, and mouse genetics to define a role for liver mTORC1 signaling in the control of postprandial glycolytic intermediates and glycogen deposition. We show that mTORC1 is required for glycogen synthase activity and glycogenesis. Mechanistically, hepatic mTORC1 activity promotes the feeding-dependent induction of Ppp1r3b, a gene encoding a phosphatase important for glycogen synthase activity whose polymorphisms are linked to human diabetes. Reexpression of Ppp1r3b in livers lacking mTORC1 signaling enhances glycogen synthase activity and restores postprandial glycogen content. mTORC1-dependent transcriptional control of Ppp1r3b is facilitated by FOXO1, a well characterized transcriptional regulator involved in the hepatic response to nutrient intake. Collectively, we identify a role for mTORC1 signaling in the transcriptional regulation of Ppp1r3b and the subsequent induction of postprandial hepatic glycogen synthesis.
Collapse
Affiliation(s)
- Kahealani Uehara
- Institute for Diabetes, Obesity, and Metabolism
- Biochemistry and Molecular Biophysics Graduate Group, and
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Won Dong Lee
- Lewis Sigler Institute for Integrative Genomics
- Department of Chemistry, and
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, New Jersey, USA
| | | | - Dipsikha Biswas
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Dominic Santoleri
- Institute for Diabetes, Obesity, and Metabolism
- Biochemistry and Molecular Biophysics Graduate Group, and
| | | | | | | | - Kate Townsend Creasy
- Institute for Diabetes, Obesity, and Metabolism
- Department of Medicine, Division of Translational Medicine and Human Genetics, and
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel J. Rader
- Institute for Diabetes, Obesity, and Metabolism
- Department of Medicine, Division of Translational Medicine and Human Genetics, and
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Joshua D. Rabinowitz
- Lewis Sigler Institute for Integrative Genomics
- Department of Chemistry, and
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, New Jersey, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Paul M. Titchenell
- Institute for Diabetes, Obesity, and Metabolism
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Ursino G, Lucibello G, Teixeira PDS, Höfler A, Veyrat-Durebex C, Odouard S, Visentin F, Galgano L, Somm E, Vianna CR, Widmer A, Jornayvaz FR, Boland A, Ramadori G, Coppari R. S100A9 exerts insulin-independent antidiabetic and anti-inflammatory effects. SCIENCE ADVANCES 2024; 10:eadj4686. [PMID: 38170783 PMCID: PMC10796079 DOI: 10.1126/sciadv.adj4686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by insulin deficiency leading to hyperglycemia and several metabolic defects. Insulin therapy remains the cornerstone of T1DM management, yet it increases the risk of life-threatening hypoglycemia and the development of major comorbidities. Here, we report an insulin signaling-independent pathway able to improve glycemic control in T1DM rodents. Co-treatment with recombinant S100 calcium-binding protein A9 (S100A9) enabled increased adherence to glycemic targets with half as much insulin and without causing hypoglycemia. Mechanistically, we demonstrate that the hyperglycemia-suppressing action of S100A9 is due to a Toll-like receptor 4-dependent increase in glucose uptake in specific skeletal muscles (i.e., soleus and diaphragm). In addition, we found that T1DM mice have abnormal systemic inflammation, which is resolved by S100A9 therapy alone (or in combination with low insulin), hence uncovering a potent anti-inflammatory action of S100A9 in T1DM. In summary, our findings reveal the S100A9-TLR4 skeletal muscle axis as a promising therapeutic target for improving T1DM treatment.
Collapse
Affiliation(s)
- Gloria Ursino
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Giulia Lucibello
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Pryscila D. S. Teixeira
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Anna Höfler
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Christelle Veyrat-Durebex
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Soline Odouard
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Florian Visentin
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Luca Galgano
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Emmanuel Somm
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic patient education, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Claudia R. Vianna
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Ariane Widmer
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - François R. Jornayvaz
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic patient education, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Andreas Boland
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Giorgio Ramadori
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Roberto Coppari
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
4
|
de Deus IJ, Martins-Silva AF, Fagundes MMDA, Paula-Gomes S, Silva FGDE, da Cruz LL, de Abreu ARR, de Queiroz KB. Role of NLRP3 inflammasome and oxidative stress in hepatic insulin resistance and the ameliorative effect of phytochemical intervention. Front Pharmacol 2023; 14:1188829. [PMID: 37456758 PMCID: PMC10347376 DOI: 10.3389/fphar.2023.1188829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
NLRP3 inflammasome has a key role in chronic low-grade metabolic inflammation, and its excessive activation may contribute to the beginning and progression of several diseases, including hepatic insulin resistance (hIR). Thus, this review aims to highlight the role of NLRP3 inflammasome and oxidative stress in the development of hIR and evidence related to phytochemical intervention in this context. In this review, we will address the hIR pathogenesis related to reactive oxygen species (ROS) production mechanisms, involving oxidized mitochondrial DNA (ox-mtDNA) and thioredoxin interacting protein (TXNIP) induction in the NLRP3 inflammasome activation. Moreover, we discuss the inhibitory effect of bioactive compounds on the insulin signaling pathway, and the role of microRNAs (miRNAs) in the phytochemical target mechanism in ameliorating hIR. Although most of the research in the field has been focused on evaluating the inhibitory effect of phytochemicals on the NLRP3 inflammasome pathway, further investigation and clinical studies are required to provide insights into the mechanisms of action, and, thus, encourage the use of these bioactive compounds as an additional therapeutic strategy to improve hIR and correlated conditions.
Collapse
Affiliation(s)
- Isabela Jesus de Deus
- Laboratório de Nutrição Experimental, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Ana Flávia Martins-Silva
- Laboratório de Nutrição Experimental, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Miliane Martins de Andrade Fagundes
- Laboratório de Nutrição Experimental, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Departamento de Alimentos, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Sílvia Paula-Gomes
- Laboratório de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Fernanda Guimarães Drummond e Silva
- Departamento de Alimentos, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Aline Rezende Ribeiro de Abreu
- Laboratório de Nutrição Experimental, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Karina Barbosa de Queiroz
- Laboratório de Nutrição Experimental, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
- Departamento de Alimentos, Programa de Pós-Graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
5
|
Fujinuma S, Nakatsumi H, Shimizu H, Sugiyama S, Harada A, Goya T, Tanaka M, Kohjima M, Takahashi M, Izumi Y, Yagi M, Kang D, Kaneko M, Shigeta M, Bamba T, Ohkawa Y, Nakayama KI. FOXK1 promotes nonalcoholic fatty liver disease by mediating mTORC1-dependent inhibition of hepatic fatty acid oxidation. Cell Rep 2023; 42:112530. [PMID: 37209098 DOI: 10.1016/j.celrep.2023.112530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/14/2023] [Accepted: 05/02/2023] [Indexed: 05/22/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic disorder caused by overnutrition and can lead to nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). The transcription factor Forkhead box K1 (FOXK1) is implicated in regulation of lipid metabolism downstream of mechanistic target of rapamycin complex 1 (mTORC1), but its role in NAFLD-NASH pathogenesis is understudied. Here, we show that FOXK1 mediates nutrient-dependent suppression of lipid catabolism in the liver. Hepatocyte-specific deletion of Foxk1 in mice fed a NASH-inducing diet ameliorates not only hepatic steatosis but also associated inflammation, fibrosis, and tumorigenesis, resulting in improved survival. Genome-wide transcriptomic and chromatin immunoprecipitation analyses identify several lipid metabolism-related genes, including Ppara, as direct targets of FOXK1 in the liver. Our results suggest that FOXK1 plays a key role in the regulation of hepatic lipid metabolism and that its inhibition is a promising therapeutic strategy for NAFLD-NASH, as well as for HCC.
Collapse
Affiliation(s)
- Shun Fujinuma
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hirokazu Nakatsumi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hideyuki Shimizu
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shigeaki Sugiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akihito Harada
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takeshi Goya
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatake Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motoyuki Kohjima
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan; Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mayo Shigeta
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
6
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
7
|
Lekka E, Kokanovic A, Mosole S, Civenni G, Schmidli S, Laski A, Ghidini A, Iyer P, Berk C, Behera A, Catapano CV, Hall J. Pharmacological inhibition of Lin28 promotes ketogenesis and restores lipid homeostasis in models of non-alcoholic fatty liver disease. Nat Commun 2022; 13:7940. [PMID: 36572670 PMCID: PMC9792516 DOI: 10.1038/s41467-022-35481-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/06/2022] [Indexed: 12/27/2022] Open
Abstract
Lin28 RNA-binding proteins are stem-cell factors that play key roles in development. Lin28 suppresses the biogenesis of let-7 microRNAs and regulates mRNA translation. Notably, let-7 inhibits Lin28, establishing a double-negative feedback loop. The Lin28/let-7 axis resides at the interface of metabolic reprogramming and oncogenesis and is therefore a potential target for several diseases. In this study, we use compound-C1632, a drug-like Lin28 inhibitor, and show that the Lin28/let-7 axis regulates the balance between ketogenesis and lipogenesis in liver cells. Hence, Lin28 inhibition activates synthesis and secretion of ketone bodies whilst suppressing lipogenesis. This occurs at least partly via let-7-mediated inhibition of nuclear receptor co-repressor 1, which releases ketogenesis gene expression mediated by peroxisome proliferator-activated receptor-alpha. In this way, small-molecule Lin28 inhibition protects against lipid accumulation in multiple cellular and male mouse models of hepatic steatosis. Overall, this study highlights Lin28 inhibitors as candidates for the treatment of hepatic disorders of abnormal lipid deposition.
Collapse
Affiliation(s)
- Evangelia Lekka
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Aleksandra Kokanovic
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Simone Mosole
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Gianluca Civenni
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Sandro Schmidli
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Artur Laski
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Alice Ghidini
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Pavithra Iyer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Christian Berk
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Alok Behera
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Carlo V Catapano
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland.
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Ursino G, Ramadori G, Höfler A, Odouard S, Teixeira PDS, Visentin F, Veyrat-Durebex C, Lucibello G, Firnkes R, Ricci S, Vianna CR, Jia L, Dirlewanger M, Klee P, Elmquist JK, Roth J, Vogl T, Schwitzgebel VM, Jornayvaz FR, Boland A, Coppari R. Hepatic non-parenchymal S100A9-TLR4-mTORC1 axis normalizes diabetic ketogenesis. Nat Commun 2022; 13:4107. [PMID: 35840613 PMCID: PMC9287425 DOI: 10.1038/s41467-022-31803-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Unrestrained ketogenesis leads to life-threatening ketoacidosis whose incidence is high in patients with diabetes. While insulin therapy reduces ketogenesis this approach is sub-optimal. Here, we report an insulin-independent pathway able to normalize diabetic ketogenesis. By generating insulin deficient male mice lacking or re-expressing Toll-Like Receptor 4 (TLR4) only in liver or hepatocytes, we demonstrate that hepatic TLR4 in non-parenchymal cells mediates the ketogenesis-suppressing action of S100A9. Mechanistically, S100A9 acts extracellularly to activate the mechanistic target of rapamycin complex 1 (mTORC1) in a TLR4-dependent manner. Accordingly, hepatic-restricted but not hepatocyte-restricted loss of Tuberous Sclerosis Complex 1 (TSC1, an mTORC1 inhibitor) corrects insulin-deficiency-induced hyperketonemia. Therapeutically, recombinant S100A9 administration restrains ketogenesis and improves hyperglycemia without causing hypoglycemia in diabetic mice. Also, circulating S100A9 in patients with ketoacidosis is only marginally increased hence unveiling a window of opportunity to pharmacologically augment S100A9 for preventing unrestrained ketogenesis. In summary, our findings reveal the hepatic S100A9-TLR4-mTORC1 axis in non-parenchymal cells as a promising therapeutic target for restraining diabetic ketogenesis. Excess ketogenesis can lead to ketoacidosis, a serious complication in patients with diabetes. Here the authors report an insulin independent pathway, the hepatic nonparenchymal S100A9-TLR4-mTORC1 axis, that is able to normalize diabetic ketogenesis and pre-clinical data to suggest potential for development of S100A9 based adjunctive therapy to insulin.
Collapse
Affiliation(s)
- Gloria Ursino
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Giorgio Ramadori
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland. .,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.
| | - Anna Höfler
- Department of Molecular Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Soline Odouard
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Pryscila D S Teixeira
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Florian Visentin
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Christelle Veyrat-Durebex
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Giulia Lucibello
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Raquel Firnkes
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Serena Ricci
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Claudia R Vianna
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Lin Jia
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Mirjam Dirlewanger
- Pediatric Endocrine and Diabetes Unit, Department of Pediatrics, Obstetrics and Gynecology, University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Klee
- Pediatric Endocrine and Diabetes Unit, Department of Pediatrics, Obstetrics and Gynecology, University Hospitals of Geneva, Geneva, Switzerland
| | - Joel K Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Johannes Roth
- Institute of Immunology, University of Munster, 48149, Munster, Germany.,Interdisciplinary Centre for Clinical Research, University of Munster, 48149, Munster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Munster, 48149, Munster, Germany.,Interdisciplinary Centre for Clinical Research, University of Munster, 48149, Munster, Germany
| | - Valérie M Schwitzgebel
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland.,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Pediatric Endocrine and Diabetes Unit, Department of Pediatrics, Obstetrics and Gynecology, University Hospitals of Geneva, Geneva, Switzerland
| | - François R Jornayvaz
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Service of Endocrinology, Diabetes, Nutrition and Therapeutic patient education, Geneva University Hospitals, 1205, Geneva, Switzerland
| | - Andreas Boland
- Department of Molecular Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Roberto Coppari
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva, Switzerland. .,Diabetes Center of the Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
9
|
Mooli RGR, Ramakrishnan SK. Emerging Role of Hepatic Ketogenesis in Fatty Liver Disease. Front Physiol 2022; 13:946474. [PMID: 35860662 PMCID: PMC9289363 DOI: 10.3389/fphys.2022.946474] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), the most common chronic liver diseases, arise from non-alcoholic fatty liver (NAFL) characterized by excessive fat accumulation as triglycerides. Although NAFL is benign, it could progress to non-alcoholic steatohepatitis (NASH) manifested with inflammation, hepatocyte damage and fibrosis. A subset of NASH patients develops end-stage liver diseases such as cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD is highly complex and strongly associated with perturbations in lipid and glucose metabolism. Lipid disposal pathways, in particular, impairment in condensation of acetyl-CoA derived from β-oxidation into ketogenic pathway strongly influence the hepatic lipid loads and glucose metabolism. Current evidence suggests that ketogenesis dispose up to two-thirds of the lipids entering the liver, and its dysregulation significantly contribute to the NAFLD pathogenesis. Moreover, ketone body administration in mice and humans shows a significant improvement in NAFLD. This review focuses on hepatic ketogenesis and its role in NAFLD pathogenesis. We review the possible mechanisms through which impaired hepatic ketogenesis may promote NAFLD progression. Finally, the review sheds light on the therapeutic implications of a ketogenic diet in NAFLD.
Collapse
|
10
|
Du C, Yang W, Yu Z, Yuan Q, Pang D, Tang P, Jiang W, Chen M, Xiao B. Rheb Promotes Triglyceride Secretion and Ameliorates Diet-Induced Steatosis in the Liver. Front Cell Dev Biol 2022; 10:808140. [PMID: 35372326 PMCID: PMC8965806 DOI: 10.3389/fcell.2022.808140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatosteatosis, characterized by excessive accumulation of lipids in the liver, is a major health issue in modern society. Understanding how altered hepatic lipid metabolism/homeostasis causes hepatosteatosis helps to develop therapeutic interventions. Previous studies identify mitochondrial dysfunction as a contributor to hepatosteatosis. But, the molecular mechanisms of mitochondrial dysfunction leading to altered lipid metabolism remain incompletely understood. Our previous work shows that Rheb, a Ras-like small GTPase, not only activates mTORC1 but also promotes mitochondrial ATP production through pyruvate dehydrogenase (PDH). In this study, we further demonstrate that Rheb controls hepatic triglyceride secretion and reduces diet-induced lipid accumulation in a mouse liver. Genetic deletion of Rheb causes rapid and spontaneous steatosis in the liver, which is unexpected from the role of mTORC1 that enhances lipid synthesis, whereas Rheb transgene remarkably reduces diet-induced hepatosteatosis. Results suggest that the hepatosteatosis in Rheb KO is an outcome of impaired lipid secretion, which is linked to mitochondrial ATP production of hepatocytes. Our findings highlight an under-appreciated role of Rheb in the regulation of hepatic lipid secretion through mitochondrial energy production, with therapeutic implication.
Collapse
Affiliation(s)
- Chongyangzi Du
- Neuroscience and Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wanchun Yang
- Neuroscience and Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zongyan Yu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen, China
| | - Qiuyun Yuan
- Neuroscience and Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dejiang Pang
- Neuroscience and Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Tang
- Neuroscience and Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wanxiang Jiang
- Neuroscience and Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mina Chen
- Neuroscience and Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Correspondence: Bo Xiao, ; Mina Chen, .
| | - Bo Xiao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen, China
- Correspondence: Bo Xiao, ; Mina Chen, .
| |
Collapse
|
11
|
Abstract
The reactions of the tricarboxylic acid (TCA) cycle allow the controlled combustion of fat and carbohydrate. In principle, TCA cycle intermediates are regenerated on every turn and can facilitate the oxidation of an infinite number of nutrient molecules. However, TCA cycle intermediates can be lost to cataplerotic pathways that provide precursors for biosynthesis, and they must be replaced by anaplerotic pathways that regenerate these intermediates. Together, anaplerosis and cataplerosis help regulate rates of biosynthesis by dictating precursor supply, and they play underappreciated roles in catabolism and cellular energy status. They facilitate recycling pathways and nitrogen trafficking necessary for catabolism, and they influence redox state and oxidative capacity by altering TCA cycle intermediate concentrations. These functions vary widely by tissue and play emerging roles in disease. This article reviews the roles of anaplerosis and cataplerosis in various tissues and discusses how they alter carbon transitions, and highlights their contribution to mechanisms of disease. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Melissa Inigo
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Stanisław Deja
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; .,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
12
|
Ashraf S, Ashraf N, Yilmaz G, Harmancey R. Crosstalk between beta-adrenergic and insulin signaling mediates mechanistic target of rapamycin hyperactivation in liver of high-fat diet-fed male mice. Physiol Rep 2021; 9:e14958. [PMID: 34231324 PMCID: PMC8261682 DOI: 10.14814/phy2.14958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. While increased nutrient intake and sympathetic activity have been associated with the disease, the pathogenesis of NAFLD remains incompletely understood. We investigated the impact of the interaction of high dietary fat and sugar intake with increased beta-adrenergic receptor (β-AR) signaling on the activity of nutrient-sensing pathways and fuel storage in the liver. C57BL/6J mice were fed a standard rodent diet (STD), a high-fat diet (HFD), a high-fat/high-sugar Western diet (WD), a high-sugar diet with mixed carbohydrates (HCD), or a high-sucrose diet (HSD). After 6 week on diets, mice were treated with isoproterenol (ISO) and the activity of liver mTOR complex 1 (mTORC1)-related signaling analyzed by immunoblotting and correlated with tissue triglyceride and glycogen contents. ISO-stimulated AKT- and ERK-mediated activation of mTORC1 in STD-fed mice. Consumption of all four high-calorie diets exacerbated downstream activation of ribosomal protein S6 kinase beta-1 (S6K1) in response to ISO. S6K1 activity was greater with the fat-enriched HFD and WD and correlated with the presence of metabolic syndrome and a stronger activation of AKT and ERK1/2 pathways. Fat-enriched diets also increased triglyceride accumulation and inhibited glycogen mobilization under β-AR stimulation. In conclusion, crosstalk between β-AR and insulin signaling may contribute to HFD-induced hepatic steatosis through ERK1/2- and AKT-mediated hyperactivation of the mTORC1/S6K1 axis. The findings provide further rationale for the development of therapies aimed at targeting augmented β-AR signaling in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Sadia Ashraf
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
- Mississippi Center for Obesity ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| | | | - Gizem Yilmaz
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
- Mississippi Center for Obesity ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Romain Harmancey
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
- Mississippi Center for Obesity ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| |
Collapse
|
13
|
Selen ES, Wolfgang MJ. mTORC1 activation is not sufficient to suppress hepatic PPARα signaling or ketogenesis. J Biol Chem 2021; 297:100884. [PMID: 34146544 PMCID: PMC8294577 DOI: 10.1016/j.jbc.2021.100884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is often referred to as a master regulator of the cellular metabolism that can integrate the growth factor and nutrient signaling. Fasting suppresses hepatic mTORC1 activity via the activity of the tuberous sclerosis complex (TSC), a negative regulator of mTORC1, to suppress anabolic metabolism. The loss of TSC1 in the liver locks the liver in a constitutively anabolic state even during fasting, which was suggested to regulate peroxisome proliferator-activated receptor alpha (PPARα) signaling and ketogenesis, but the molecular determinants of this regulation are unknown. Here, we examined if the activation of the mTORC1 complex in mice by the liver-specific deletion of TSC1 (TSC1L−/−) is sufficient to suppress PPARα signaling and therefore ketogenesis in the fasted state. We found that the activation of mTORC1 in the fasted state is not sufficient to repress PPARα-responsive genes or ketogenesis. Furthermore, we examined whether the activation of the anabolic program mediated by mTORC1 complex activation in the fasted state could suppress the robust catabolic programming and enhanced PPARα transcriptional response of mice with a liver-specific defect in mitochondrial long-chain fatty acid oxidation using carnitine palmitoyltransferase 2 (Cpt2L−/−) mice. We generated Cpt2L−/−; Tsc1L−/− double-KO mice and showed that the activation of mTORC1 by deletion of TSC1 could not suppress the catabolic PPARα-mediated phenotype of Cpt2L−/− mice. These data demonstrate that the activation of mTORC1 by the deletion of TSC1 is not sufficient to suppress a PPARα transcriptional program or ketogenesis after fasting.
Collapse
Affiliation(s)
- Ebru S Selen
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
14
|
In Vivo Estimation of Ketogenesis Using Metabolic Flux Analysis-Technical Aspects and Model Interpretation. Metabolites 2021; 11:metabo11050279. [PMID: 33924948 PMCID: PMC8146959 DOI: 10.3390/metabo11050279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 01/26/2023] Open
Abstract
Ketogenesis occurs in liver mitochondria where acetyl-CoA molecules, derived from lipid oxidation, are condensed into acetoacetate (AcAc) and reduced to β-hydroxybutyrate (BHB). During carbohydrate scarcity, these two ketones are released into circulation at high rates and used as oxidative fuels in peripheral tissues. Despite their physiological relevance and emerging roles in a variety of diseases, endogenous ketone production is rarely measured in vivo using tracer approaches. Accurate determination of this flux requires a two-pool model, simultaneous BHB and AcAc tracers, and special consideration for the stability of the AcAc tracer and analyte. We describe the implementation of a two-pool model using a metabolic flux analysis (MFA) approach that simultaneously regresses liquid chromatography-tandem mass spectrometry (LC-MS/MS) ketone isotopologues and tracer infusion rates. Additionally, 1H NMR real-time reaction monitoring was used to evaluate AcAc tracer and analyte stability during infusion and sample analysis, which were critical for accurate flux calculations. The approach quantifies AcAc and BHB pool sizes and their rates of appearance, disposal, and exchange. Regression analysis provides confidence intervals and detects potential errors in experimental data. Complications for the physiological interpretation of individual ketone fluxes are discussed.
Collapse
|
15
|
mTOR regulates PRMT1 expression and mitochondrial mass through STAT1 phosphorylation in hepatic cell. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119017. [PMID: 33741434 DOI: 10.1016/j.bbamcr.2021.119017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Fasting changes mitochondrial function, and mTOR acts as a major regulator of mitochondrial energy production ensuring the survival under reduced supply of nutrition. This study assessed the role of protein arginine methyltransferase 1 (PRMT1), which regulates mitochondrial function, in the context of fasting. METHODS The effect of fasting on mTOR signaling and mTOR-regulated mitochondrial mass was assessed in LO2 cells (in vitro) and C57BL/6J mice (in vivo). Biochemical parameters of fasting were determined in blood samples of mice. PRMT1 expression was investigated by transfecting LO2 cells with an expression vector. Gene expression was determined by real-time quantitative PCR, protein interaction by chromatin immunoprecipitation, protein expression by Western blotting and immunofluorescence microscopy, and the mitochondrial mass by MitoTracker staining. RESULTS After 48 h of fasting, mTOR and PRMT1 expression, as well as mitochondrial mass, were significantly reduced in LO2 cells, and in liver tissue sections. Fasting downregulated the expression of miR-21 and upregulated the expression of its target phosphatase and tensin homolog (PTEN), which was responsible for reduced mTOR expression. Inhibition of mTOR reduced phosphorylation of STAT1, and thereby PRMT1 expression in LO2 cells. Low PRMT1 down-regulated the expression of peroxisome proliferator-activated receptor (PPAR)-γ and thereby decreased mitochondrial mass. Supplementation of insulin contracted the effect of fasting on all mentioned parameters. CONCLUSIONS Fasting downregulates miR-21 and increases its target PTEN, thereby inhibiting mTOR signaling, p-STAT1, PRMT1, and mitochondrial mass. These findings highlight the role of mTOR and PRMT1 in the regulation of cellular energy availability.
Collapse
|
16
|
Liu R, Chen L, Wang Z, Zheng X, Hou Z, Zhao D, Long J, Liu J. Omega-3 polyunsaturated fatty acids prevent obesity by improving tricarboxylic acid cycle homeostasis. J Nutr Biochem 2020; 88:108503. [PMID: 32956825 DOI: 10.1016/j.jnutbio.2020.108503] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
The beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs) on preventing obesity are well known; however, the underlying mechanism by which n-3 PUFAs influence tricarboxylic acid (TCA) cycle under obesity remains unclear. We randomly divided male C57BL/6 mice into 5 groups (n=10) and fed for 12 weeks as follows: mice fed a normal diet (Con, 10% kcal); mice fed a high-fat diet (HFD, lard, 60% kcal); and mice fed a high-fat diet (60% kcal) substituting half the lard with safflower oil (SO), safflower oil and fish oil (SF) and fish oil (FO), respectively. Then we treated HepG2 cells with palmitic acid and DHA for 24 h. We found that body weight in FO group was significantly lower than it in HFD and SO groups. N-3 PUFAs reduced the transcription and translation of TCA cycle enzymes, including IDH1, IDH2, SDHA, FH and MDH2, to enhance mitochondrial function in vivo and vitro. DHA significantly inhibited protein expression of the mTORC1 signaling pathway, increased p-AKT protein expression to alleviate insulin resistance and improved mitochondrial oxygen consumption rate and glycolysis ability in HepG2 cells. In addition, the expressions of IDH2 and SDHB were reduced by rapamycin. N-3 PUFAs could prevent obesity by improving TCA cycle homeostasis and mTORC1 signaling pathway may be upstream.
Collapse
Affiliation(s)
- Run Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Chen
- Institute of Nutrition & Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuewei Zheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhanwu Hou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Daina Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
17
|
Tu G, Dai C, Qu H, Wang Y, Liao B. Role of exercise and rapamycin on the expression of energy metabolism genes in liver tissues of rats fed a high‑fat diet. Mol Med Rep 2020; 22:2932-2940. [PMID: 32945385 PMCID: PMC7453655 DOI: 10.3892/mmr.2020.11362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/26/2020] [Indexed: 12/19/2022] Open
Abstract
The mTOR pathway serves an important role in the development of insulin resistance induced by obesity. Exercise improves obesity-associated insulin resistance and hepatic energy metabolism; however, the precise mechanism of this process remains unknown. Therefore, the present study investigated the role of rapamycin, an inhibitor of mTOR, on exercise-induced expression of hepatic energy metabolism genes in rats fed a high-fat diet (HFD). A total of 30 male rats were divided into the following groups: Normal group (n=6) fed chow diets and HFD group (n=24) fed an HFD for 6 weeks. The HFD rats performed exercise adaptation for 1 week and were randomly divided into the four following groups (each containing six rats): i) Group of HFD rats with sedentary (H group); ii) group of HFD rats with exercise (HE group); iii) group of HFD rats with rapamycin (HR group); and iv) group of HFD rats with exercise and rapamycin (HER group). Both HE and HER rats were placed on incremental treadmill training for 4 weeks (from week 8–11). Both HR and HER rats were injected with rapamycin intraperitoneally at the dose of 2 mg/kg once a day for 2 weeks (from week 10–11). All rats were sacrificed following a 12–16 h fasting period at the end of week 11. The levels of mitochondrial and oxidative enzyme activities, as well as of the expression of genes involved in energy metabolism were assessed in liver tissues. Biochemical assays and oil red staining were used to assess the content of hepatic triglycerides (TGs). The results indicated that exercise, but not rapamycin, reduced TG content in the liver of HFD rats. Further analysis indicated that rapamycin reduced the activity of cytochrome c oxidase, but not the activities of succinate dehydrogenase and β-hydroxyacyl-CoA dehydrogenase in the liver of HFD rats. Exercise significantly upregulated the mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1 β, while rapamycin exhibited no effect on the mRNA expression levels of hepatic transcription factors associated with energy metabolism enzymes in the liver of HFD rats. Collectively, the results indicated that exercise reduced TG content and upregulated mitochondrial metabolic gene expression in the liver of HFD rats. Moreover, this mechanism may not involve the mTOR pathway.
Collapse
Affiliation(s)
- Genghong Tu
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong 510150, P.R. China
| | - Chunyan Dai
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong 510150, P.R. China
| | - Haofei Qu
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong 510150, P.R. China
| | - Yunzhen Wang
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong 510150, P.R. China
| | - Bagen Liao
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong 510150, P.R. China
| |
Collapse
|
18
|
Merry TL, Hedges CP, Masson SW, Laube B, Pöhlmann D, Wueest S, Walsh ME, Arnold M, Langhans W, Konrad D, Zarse K, Ristow M. Partial impairment of insulin receptor expression mimics fasting to prevent diet-induced fatty liver disease. Nat Commun 2020; 11:2080. [PMID: 32350271 PMCID: PMC7190665 DOI: 10.1038/s41467-020-15623-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 03/19/2020] [Indexed: 12/28/2022] Open
Abstract
Excessive insulin signaling through the insulin receptor (IR) may play a role in the pathogenesis of diet-induced metabolic disease, including obesity and type 2 diabetes. Here we investigate whether heterozygous impairment of insulin receptor (IR) expression limited to peripheral, i.e. non-CNS, tissues of adult mice impacts the development of high-fat diet-induced metabolic deterioration. While exhibiting some features of insulin resistance, PerIRKO+/− mice display a hepatic energy deficit accompanied by induction of energy-sensing AMPK, mitochondrial biogenesis, PPARα, unexpectedly leading to protection from, and reversal of hepatic lipid accumulation (steatosis hepatis, NAFLD). Consistently, and unlike in control mice, the PPARα activator fenofibrate fails to further affect hepatic lipid accumulation in PerIRKO+/− mice. Taken together, and opposing previously established diabetogenic features of insulin resistance, incomplete impairment of insulin signaling may mimic central aspects of calorie restriction to limit hepatic lipid accumulation during conditions of metabolic stress. Hyper-insulinemia associated with excess calorie intake may cause metabolic dysfunction. Here the authors report that mice with partially reduced insulin receptor expression in peripheral tissues are protected from and experience reversal of fatty liver disease.
Collapse
Affiliation(s)
- Troy L Merry
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland. .,Discipline of Nutrition, School of Medical Sciences, The University of Auckland, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.
| | - Chris P Hedges
- Discipline of Nutrition, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Stewart W Masson
- Discipline of Nutrition, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Beate Laube
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Doris Pöhlmann
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology and Children's Research Centre, University Children's Hospital, Zurich, Switzerland
| | - Michael E Walsh
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Myrtha Arnold
- Physiology and Behavior Laboratory, Institute of Food and Nutrition, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Institute of Food and Nutrition, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology and Children's Research Centre, University Children's Hospital, Zurich, Switzerland
| | - Kim Zarse
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland.
| |
Collapse
|
19
|
Fernández-García J, Altea-Manzano P, Pranzini E, Fendt SM. Stable Isotopes for Tracing Mammalian-Cell Metabolism In Vivo. Trends Biochem Sci 2020; 45:185-201. [PMID: 31955965 DOI: 10.1016/j.tibs.2019.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
Metabolism is at the cornerstone of all cellular functions and mounting evidence of its deregulation in different diseases emphasizes the importance of a comprehensive understanding of metabolic regulation at the whole-organism level. Stable-isotope measurements are a powerful tool for probing cellular metabolism and, as a result, are increasingly used to study metabolism in in vivo settings. The additional complexity of in vivo metabolic measurements requires paying special attention to experimental design and data interpretation. Here, we review recent work where in vivo stable-isotope measurements have been used to address relevant biological questions within an in vivo context, summarize different experimental and data interpretation approaches and their limitations, and discuss future opportunities in the field.
Collapse
Affiliation(s)
- Juan Fernández-García
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium.
| | - Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Erica Pranzini
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium; Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
20
|
Liu R, Chen L, Wang Y, Zhang G, Cheng Y, Feng Z, Bai X, Liu J. High ratio of ω-3/ω-6 polyunsaturated fatty acids targets mTORC1 to prevent high-fat diet-induced metabolic syndrome and mitochondrial dysfunction in mice. J Nutr Biochem 2020; 79:108330. [PMID: 32179408 DOI: 10.1016/j.jnutbio.2019.108330] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/29/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
Adjusting ω-3/ω-6 polyunsaturated fatty acids (PUFAs) ratio in high-fat diet is one potential mean to improve metabolic syndrome; however, underlying mechanisms remain unclear. Four groups of mice were fed 60% kcal diets with saturated fatty acids, three different ω-3/ω-6 PUFAs ratios (low, middle and high) for 12 weeks, respectively. Body weight, atherosclerosis marker, insulin signal index and level of lipid accumulation in liver were significantly lowered in High group compared with saturated fatty acids group and Low group at week 12. Expressions of p-mTOR and raptor were inhibited by high ω-3 PUFAs. Importantly, ω-3 PUFAs intake up-regulated mitochondrial electron transport chain and tricarboxylic acid cycle pathway through metabolomics analysis in liver. Mitochondrial complexes activities were raised, fumaric acid was reduced and oxidative stress was alleviated in High group. We conclude that consuming long-term high-fat diet with same calories but high ω-3/ω-6 PUFAs ratio relieves metabolic syndrome by regulating mTORC1 pathway to enhance mitochondrial function.
Collapse
Affiliation(s)
- Run Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China
| | - Lei Chen
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China
| | - Yan Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China
| | - Guanfei Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China
| | - Ying Cheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049, China.
| |
Collapse
|
21
|
Altea-Manzano P, Broekaert D, Duarte JAG, Fernández-García J, Planque M, Fendt SM. Analyzing the Metabolism of Metastases in Mice. Methods Mol Biol 2020; 2088:93-118. [PMID: 31893372 DOI: 10.1007/978-1-0716-0159-4_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metastasis formation is the leading cause of death in cancer patients. It has recently emerged that cancer cells adapt their metabolism to successfully transition through the metastatic cascade. Consequently, measuring and analyzing the in vivo metabolism of metastases has the potential to reveal novel treatment strategies to prevent metastasis formation. Here, we describe two different metastasis mouse models and how their metabolism can be analyzed with metabolomics and 13C tracer analysis.
Collapse
Affiliation(s)
- Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Dorien Broekaert
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - João A G Duarte
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Juan Fernández-García
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
22
|
Concurrent activation of growth factor and nutrient arms of mTORC1 induces oxidative liver injury. Cell Discov 2019; 5:60. [PMID: 31754457 PMCID: PMC6868011 DOI: 10.1038/s41421-019-0131-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/07/2019] [Indexed: 01/21/2023] Open
Abstract
mTORC1 is a protein kinase important for metabolism and is regulated by growth factor and nutrient signaling pathways, mediated by the Rheb and Rag GTPases, respectively. Here we provide the first animal model in which both pathways were upregulated through concurrent mutations in their GTPase-activating proteins, Tsc1 and Depdc5. Unlike former models that induced limited mTORC1 upregulation, hepatic deletion of both Tsc1 and Depdc5 (DKO) produced strong, synergistic activation of the mTORC1 pathway and provoked pronounced and widespread hepatocyte damage, leading to externally visible liver failure phenotypes, such as jaundice and systemic growth defects. The transcriptome profile of DKO was different from single knockout mutants but similar to those of diseased human livers with severe hepatitis and mouse livers challenged with oxidative stress-inducing chemicals. In addition, DKO liver cells exhibited prominent molecular pathologies associated with excessive endoplasmic reticulum (ER) stress, oxidative stress, DNA damage and inflammation. Although DKO liver pathologies were ameliorated by mTORC1 inhibition, ER stress suppression unexpectedly aggravated them, suggesting that ER stress signaling is not the major conduit of how hyperactive mTORC1 produces liver damage. Interestingly, superoxide scavengers N-acetylcysteine (NAC) and Tempol, chemicals that reduce oxidative stress, were able to recover liver phenotypes, indicating that mTORC1 hyperactivation induced liver damage mainly through oxidative stress pathways. Our study provides a new model of unregulated mTORC1 activation through concomitant upregulation of growth factor and nutrient signaling axes and shows that mTORC1 hyperactivation alone can provoke oxidative tissue injury.
Collapse
|
23
|
Gali CC, Fanaee-Danesh E, Zandl-Lang M, Albrecher NM, Tam-Amersdorfer C, Stracke A, Sachdev V, Reichmann F, Sun Y, Avdili A, Reiter M, Kratky D, Holzer P, Lass A, Kandimalla KK, Panzenboeck U. Amyloid-beta impairs insulin signaling by accelerating autophagy-lysosomal degradation of LRP-1 and IR-β in blood-brain barrier endothelial cells in vitro and in 3XTg-AD mice. Mol Cell Neurosci 2019; 99:103390. [PMID: 31276749 PMCID: PMC6897558 DOI: 10.1016/j.mcn.2019.103390] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/30/2019] [Indexed: 02/06/2023] Open
Abstract
Aberrant insulin signaling constitutes an early change in Alzheimer's disease (AD). Insulin receptors (IR) and low-density lipoprotein receptor-related protein-1 (LRP-1) are expressed in brain capillary endothelial cells (BCEC) forming the blood-brain barrier (BBB). There, insulin may regulate the function of LRP-1 in Aβ clearance from the brain. Changes in IR-β and LRP-1 and insulin signaling at the BBB in AD are not well understood. Herein, we identified a reduction in cerebral and cerebrovascular IR-β levels in 9-month-old male and female 3XTg-AD (PS1M146V, APPSwe, and tauP301L) as compared to NTg mice, which is important in insulin mediated signaling responses. Reduced cerebral IR-β levels corresponded to impaired insulin signaling and LRP-1 levels in brain. Reduced cerebral and cerebrovascular IR-β and LRP-1 levels in 3XTg-AD mice correlated with elevated levels of autophagy marker LC3B. In both genotypes, high-fat diet (HFD) feeding decreased cerebral and hepatic LRP-1 expression and elevated cerebral Aβ burden without affecting cerebrovascular LRP-1 and IR-β levels. In vitro studies using primary porcine (p)BCEC revealed that Aβ peptides 1–40 or 1–42 (240 nM) reduced cellular levels and interaction of LRP-1 and IR-β thereby perturbing insulin-mediated signaling. Further mechanistic investigation revealed that Aβ treatment accelerated the autophagy-lysosomal degradation of IR-β and LRP-1 in pBCEC. LRP-1 silencing in pBCEC decreased IR-β levels through post-translational pathways further deteriorating insulin-mediated responses at the BBB. Our findings indicate that LRP-1 proves important for insulin signaling at the BBB. Cerebral Aβ burden in AD may accelerate LRP-1 and IR-β degradation in BCEC thereby contributing to impaired cerebral and cerebromicrovascular insulin effects.
Collapse
Affiliation(s)
- Chaitanya Chakravarthi Gali
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Elham Fanaee-Danesh
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Martina Zandl-Lang
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Nicole Maria Albrecher
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Carmen Tam-Amersdorfer
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Anika Stracke
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Vinay Sachdev
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Yidan Sun
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Afrim Avdili
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Marielies Reiter
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Peter Holzer
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Karunya K Kandimalla
- College of Pharmacy, Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Ute Panzenboeck
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
24
|
Fletcher JA, Deja S, Satapati S, Fu X, Burgess SC, Browning JD. Impaired ketogenesis and increased acetyl-CoA oxidation promote hyperglycemia in human fatty liver. JCI Insight 2019; 5:127737. [PMID: 31012869 DOI: 10.1172/jci.insight.127737] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent, and potentially morbid, disease that affects one-third of the U.S. population. Normal liver safely accommodates lipid excess during fasting or carbohydrate restriction by increasing their oxidation to acetyl-CoA and ketones, yet lipid excess during NAFLD leads to hyperglycemia and, in some, steatohepatitis. To examine potential mechanisms, flux through pathways of hepatic oxidative metabolism and gluconeogenesis were studied using five simultaneous stable isotope tracers in ketotic (24-hour fast) individuals with a wide range of hepatic triglyceride contents (0-52%). Ketogenesis was progressively impaired as hepatic steatosis and glycemia worsened. Conversely, the alternative pathway for acetyl-CoA metabolism, oxidation in the tricarboxylic (TCA) cycle, was upregulated in NAFLD as ketone production diminished and positively correlated with rates of gluconeogenesis and plasma glucose concentrations. Increased respiration and energy generation that occurred in liver when β-oxidation and TCA cycle activity were coupled may explain these findings, inasmuch as oxygen consumption was higher during fatty liver and highly correlated with gluconeogenesis. These findings demonstrate that increased glucose production and hyperglycemia in NAFLD is not a consequence of acetyl-CoA production per se, but how acetyl-CoA is further metabolized in liver.
Collapse
Affiliation(s)
| | | | | | | | | | - Jeffrey D Browning
- Advanced Imaging Research Center.,Department of Internal Medicine, and.,Department of Clinical Nutrition, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
25
|
Liang H, Nie J, Van Skike CE, Valentine JM, Orr ME. Mammalian Target of Rapamycin at the Crossroad Between Alzheimer's Disease and Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:185-225. [PMID: 31062331 DOI: 10.1007/978-981-13-3540-2_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that Alzheimer's disease may manifest as a metabolic disorder with pathology and/or dysfunction in numerous tissues. Adults with Alzheimer's disease suffer with significantly more comorbidities than demographically matched Medicare beneficiaries (Zhao et al, BMC Health Serv Res 8:108, 2008b). Reciprocally, comorbid health conditions increase the risk of developing Alzheimer's disease (Haaksma et al, PLoS One 12(5):e0177044, 2017). Type 2 diabetes mellitus is especially notable as the disease shares many overlapping pathologies observed in patients with Alzheimer's disease, including hyperglycemia, hyperinsulinemia, insulin resistance, glucose intolerance, dyslipidemia, inflammation, and cognitive dysfunction, as described in Chap. 8 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al, Neurology 53(9):1937-1942, 1999; Voisin et al, Rev Med Interne 24(Suppl 3):288s-291s, 2003; Janson et al. Diabetes 53(2):474-481, 2004; Ristow M, J Mol Med (Berl) 82(8):510-529, 2004; Whitmer et al, BMJ 330(7504):1360, 2005, Curr Alzheimer Res 4(2):103-109, 2007; Ohara et al, Neurology 77(12):1126-1134, 2011). Although nondiabetic older adults also experience age-related cognitive decline, diabetes is uniquely associated with a twofold increased risk of Alzheimer's disease, as described in Chap. 2 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al. Neurology 53(9):1937-1942, 1999; Ohara et al, Neurology 77(12):1126-1134, 2011). Good glycemic control has been shown to improve cognitive status (Cukierman-et al, Diabetes Care 32(2):221-226, 2009), and the use of insulin sensitizers is correlated with a lower rate of cognitive decline in older adults (Morris JK, Burns JM, Curr Neurol Neurosci Rep 12(5):520-527, 2012). At the molecular level, the mechanistic/mammalian target of rapamycin (mTOR) plays a key role in maintaining energy homeostasis. Nutrient availability and cellular stress information, both extracellular and intracellular, are integrated and transduced through mTOR signaling pathways. Aberrant regulation of mTOR occurs in the brains of patients with Alzheimer's disease and in numerous tissues of individuals with type 2 diabetes (Mannaa et al, J Mol Med (Berl) 91(10):1167-1175, 2013). Moreover, modulating mTOR activity with a pharmacological inhibitor, rapamycin, provides wide-ranging health benefits, including healthy life span extension in numerous model organisms (Vellai et al, Nature 426(6967):620, 2003; Jia et al, Development 131(16):3897-3906, 2004; Kapahi et al, Curr Biol 14(10):885-890, 2004; Kaeberlein et al, Science 310(5751):1193-1196, 2005; Powers et al, Genes Dev 20(2):174-184, 2006; Harrison et al, Nature 460(7253):392-395, 2009; Selman et al, Science 326(5949):140-144, 2009; Sharp ZD, Strong R, J Gerontol A Biol Sci Med Sci 65(6):580-589, 2010), which underscores its importance to overall organismal health and longevity. In this chapter, we discuss the physiological role of mTOR signaling and the consequences of mTOR dysregulation in the brain and peripheral tissues, with emphasis on its relevance to the development of Alzheimer's disease and link to type 2 diabetes.
Collapse
Affiliation(s)
- Hanyu Liang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Candice E Van Skike
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Joseph M Valentine
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Miranda E Orr
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- San Antonio Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, San Antonio, TX, USA.
| |
Collapse
|
26
|
Caron A, Briscoe DM, Richard D, Laplante M. DEPTOR at the Nexus of Cancer, Metabolism, and Immunity. Physiol Rev 2018; 98:1765-1803. [PMID: 29897294 DOI: 10.1152/physrev.00064.2017] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DEP domain-containing mechanistic target of rapamycin (mTOR)-interacting protein (DEPTOR) is an important modulator of mTOR, a kinase at the center of two important protein complexes named mTORC1 and mTORC2. These highly studied complexes play essential roles in regulating growth, metabolism, and immunity in response to mitogens, nutrients, and cytokines. Defects in mTOR signaling have been associated with the development of many diseases, including cancer and diabetes, and approaches aiming at modulating mTOR activity are envisioned as an attractive strategy to improve human health. DEPTOR interaction with mTOR represses its kinase activity and rewires the mTOR signaling pathway. Over the last years, several studies have revealed key roles for DEPTOR in numerous biological and pathological processes. Here, we provide the current state of the knowledge regarding the cellular and physiological functions of DEPTOR by focusing on its impact on the mTOR pathway and its role in promoting health and disease.
Collapse
Affiliation(s)
- Alexandre Caron
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - David M Briscoe
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Denis Richard
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Mathieu Laplante
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| |
Collapse
|
27
|
Cairns R, Fischer AW, Blanco-Munoz P, Alvarez-Guaita A, Meneses-Salas E, Egert A, Buechler C, Hoy AJ, Heeren J, Enrich C, Rentero C, Grewal T. Altered hepatic glucose homeostasis in AnxA6-KO mice fed a high-fat diet. PLoS One 2018; 13:e0201310. [PMID: 30110341 PMCID: PMC6093612 DOI: 10.1371/journal.pone.0201310] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/12/2018] [Indexed: 12/12/2022] Open
Abstract
Annexin A6 (AnxA6) controls cholesterol and membrane transport in endo- and exocytosis, and modulates triglyceride accumulation and storage. In addition, AnxA6 acts as a scaffolding protein for negative regulators of growth factor receptors and their effector pathways in many different cell types. Here we investigated the role of AnxA6 in the regulation of whole body lipid metabolism and insulin-regulated glucose homeostasis. Therefore, wildtype (WT) and AnxA6-knockout (KO) mice were fed a high-fat diet (HFD) for 17 weeks. During the course of HFD feeding, AnxA6-KO mice gained less weight compared to controls, which correlated with reduced adiposity. Systemic triglyceride and cholesterol levels of HFD-fed control and AnxA6-KO mice were comparable, with slightly elevated high density lipoprotein (HDL) and reduced triglyceride-rich lipoprotein (TRL) levels in AnxA6-KO mice. AnxA6-KO mice displayed a trend towards improved insulin sensitivity in oral glucose and insulin tolerance tests (OGTT, ITT), which correlated with increased insulin-inducible phosphorylation of protein kinase B (Akt) and ribosomal protein S6 kinase (S6) in liver extracts. However, HFD-fed AnxA6-KO mice failed to downregulate hepatic gluconeogenesis, despite similar insulin levels and insulin signaling activity, as well as expression profiles of insulin-sensitive transcription factors to controls. In addition, increased glycogen storage in livers of HFD- and chow-fed AnxA6-KO animals was observed. Together with an inability to reduce glucose production upon insulin exposure in AnxA6-depleted HuH7 hepatocytes, this implicates AnxA6 contributing to the fine-tuning of hepatic glucose metabolism with potential consequences for the systemic control of glucose in health and disease.
Collapse
Affiliation(s)
- Rose Cairns
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Alexander W. Fischer
- Department of Biochemistry and Molecular Biology II: Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patricia Blanco-Munoz
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Anna Alvarez-Guaita
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Antonia Egert
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Andrew J. Hoy
- Discipline of Physiology, School of Medical Science, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Joerg Heeren
- Department of Biochemistry and Molecular Biology II: Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- * E-mail: (TG); (CR)
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- * E-mail: (TG); (CR)
| |
Collapse
|
28
|
Tao R, Wang C, Stöhr O, Qiu W, Hu Y, Miao J, Dong XC, Leng S, Stefater M, Stylopoulos N, Lin L, Copps KD, White MF. Inactivating hepatic follistatin alleviates hyperglycemia. Nat Med 2018; 24:1058-1069. [PMID: 29867232 PMCID: PMC6039237 DOI: 10.1038/s41591-018-0048-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/10/2018] [Indexed: 12/16/2022]
Abstract
Unsuppressed hepatic glucose production (HGP) contributes substantially to glucose intolerance and diabetes, which can be modeled by the genetic inactivation of hepatic insulin receptor substrate 1 (Irs1) and Irs2 (LDKO mice). We previously showed that glucose intolerance in LDKO mice is resolved by hepatic inactivation of the transcription factor FoxO1 (that is, LTKO mice)-even though the liver remains insensitive to insulin. Here, we report that insulin sensitivity in the white adipose tissue of LDKO mice is also impaired but is restored in LTKO mice in conjunction with normal suppression of HGP by insulin. To establish the mechanism by which white adipose tissue insulin signaling and HGP was regulated by hepatic FoxO1, we identified putative hepatokines-including excess follistatin (Fst)-that were dysregulated in LDKO mice but normalized in LTKO mice. Knockdown of hepatic Fst in the LDKO mouse liver restored glucose tolerance, white adipose tissue insulin signaling and the suppression of HGP by insulin; however, the expression of Fst in the liver of healthy LTKO mice had the opposite effect. Of potential clinical significance, knockdown of Fst also improved glucose tolerance in high-fat-fed obese mice, and the level of serum Fst was reduced in parallel with glycated hemoglobin in obese individuals with diabetes who underwent therapeutic gastric bypass surgery. We conclude that Fst is a pathological hepatokine that might be targeted for diabetes therapy during hepatic insulin resistance.
Collapse
Affiliation(s)
- Rongya Tao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caixia Wang
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oliver Stöhr
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Qiu
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yue Hu
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - X Charlie Dong
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sining Leng
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaret Stefater
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicholas Stylopoulos
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lin Lin
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kyle D Copps
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Morris F White
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Ardestani A, Lupse B, Kido Y, Leibowitz G, Maedler K. mTORC1 Signaling: A Double-Edged Sword in Diabetic β Cells. Cell Metab 2018; 27:314-331. [PMID: 29275961 DOI: 10.1016/j.cmet.2017.11.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/11/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of metabolic and nutrient cues that integrates environmental inputs into downstream signaling pathways to control cellular metabolism, growth, and survival. While numerous in vitro and in vivo studies reported the positive functions of mTORC1 in the regulation of β cell survival and proliferation under physiological conditions, more recent work demonstrates the opposite in the long term; this is exemplified by the constitutive inappropriate hyper-activation of mTORC1 in diabetic islets or β cells under conditions of increased β cell stress and metabolic demands. These recent findings uncover mTORC1's importance as an emerging significant player in the development and progression of β cell failure in type 2 diabetes and suggest that mTORC1 may act as a "double edge sword" in the regulation of β cell mass and function in response to metabolic stress such as nutrient overload and insulin resistance.
Collapse
Affiliation(s)
- Amin Ardestani
- University of Bremen, Centre for Biomolecular Interactions Bremen, Bremen 28359, Germany.
| | - Blaz Lupse
- University of Bremen, Centre for Biomolecular Interactions Bremen, Bremen 28359, Germany
| | - Yoshiaki Kido
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
| | - Gil Leibowitz
- Endocrinology and Metabolism Service and the Hadassah Diabetes Unit, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Kathrin Maedler
- University of Bremen, Centre for Biomolecular Interactions Bremen, Bremen 28359, Germany.
| |
Collapse
|
30
|
Loss of hepatic DEPTOR alters the metabolic transition to fasting. Mol Metab 2017; 6:447-458. [PMID: 28462079 PMCID: PMC5404102 DOI: 10.1016/j.molmet.2017.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/30/2017] [Accepted: 02/13/2017] [Indexed: 01/08/2023] Open
Abstract
Objective The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that functions into distinct protein complexes (mTORC1 and mTORC2) that regulates growth and metabolism. DEP-domain containing mTOR-interacting protein (DEPTOR) is part of these complexes and is known to reduce their activity. Whether DEPTOR loss affects metabolism and organismal growth in vivo has never been tested. Methods We have generated a conditional transgenic mouse allowing the tissue-specific deletion of DEPTOR. This model was crossed with CMV-cre mice or Albumin-cre mice to generate either whole-body or liver-specific DEPTOR knockout (KO) mice. Results Whole-body DEPTOR KO mice are viable, fertile, normal in size, and do not display any gross physical and metabolic abnormalities. To circumvent possible compensatory mechanisms linked to the early and systemic loss of DEPTOR, we have deleted DEPTOR specifically in the liver, a tissue in which DEPTOR protein is expressed and affected in response to mTOR activation. Liver-specific DEPTOR null mice showed a reduction in circulating glucose upon fasting versus control mice. This effect was not associated with change in hepatic gluconeogenesis potential but was linked to a sustained reduction in circulating glucose during insulin tolerance tests. In addition to the reduction in glycemia, liver-specific DEPTOR KO mice had reduced hepatic glycogen content when fasted. We showed that loss of DEPTOR cell-autonomously increased oxidative metabolism in hepatocytes, an effect associated with increased cytochrome c expression but independent of changes in mitochondrial content or in the expression of genes controlling oxidative metabolism. We found that liver-specific DEPTOR KO mice showed sustained mTORC1 activation upon fasting, and that acute treatment with rapamycin was sufficient to normalize glycemia in these mice. Conclusion We propose a model in which hepatic DEPTOR accelerates the inhibition of mTORC1 during the transition to fasting to adjust metabolism to the nutritional status. Whole-body DEPTOR KO mice are viable and do not display abnormalities. Liver-specific DEPTOR KO mice are hypoglycemic when fasted. Loss of DEPTOR promotes mTORC1 and increases oxidative metabolism. Rapamycin corrects hypoglycemia in liver-specific DEPTOR KO mice.
Collapse
|
31
|
Abstract
Ketone body metabolism is a central node in physiological homeostasis. In this review, we discuss how ketones serve discrete fine-tuning metabolic roles that optimize organ and organism performance in varying nutrient states and protect from inflammation and injury in multiple organ systems. Traditionally viewed as metabolic substrates enlisted only in carbohydrate restriction, observations underscore the importance of ketone bodies as vital metabolic and signaling mediators when carbohydrates are abundant. Complementing a repertoire of known therapeutic options for diseases of the nervous system, prospective roles for ketone bodies in cancer have arisen, as have intriguing protective roles in heart and liver, opening therapeutic options in obesity-related and cardiovascular disease. Controversies in ketone metabolism and signaling are discussed to reconcile classical dogma with contemporary observations.
Collapse
Affiliation(s)
- Patrycja Puchalska
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Peter A Crawford
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA.
| |
Collapse
|
32
|
Liver AMP-Activated Protein Kinase Is Unnecessary for Gluconeogenesis but Protects Energy State during Nutrient Deprivation. PLoS One 2017; 12:e0170382. [PMID: 28107516 PMCID: PMC5249187 DOI: 10.1371/journal.pone.0170382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 01/04/2017] [Indexed: 11/28/2022] Open
Abstract
AMPK is an energy sensor that protects cellular energy state by attenuating anabolic and promoting catabolic processes. AMPK signaling is purported to regulate hepatic gluconeogenesis and substrate oxidation; coordination of these processes is vital during nutrient deprivation or pathogenic during overnutrition. Here we directly test hepatic AMPK function in regulating metabolic fluxes that converge to produce glucose and energy in vivo. Flux analysis was applied in mice with a liver-specific deletion of AMPK (L-KO) or floxed control littermates to assess rates of hepatic glucose producing and citric acid cycle (CAC) fluxes. Fluxes were assessed in short and long term fasted mice; the latter condition is a nutrient stressor that increases liver AMP/ATP. The flux circuit connecting anaplerosis with gluconeogenesis from the CAC was unaffected by hepatic AMPK deletion in short and long term fasting. Nevertheless, depletion of hepatic ATP was exacerbated in L-KO mice, corresponding to a relative elevation in citrate synthase flux and accumulation of branched-chain amino acid-related metabolites. L-KO mice also had a physiological reduction in flux from glycogen to G6P. These results demonstrate AMPK is unnecessary for maintaining gluconeogenic flux from the CAC yet is critical for stabilizing liver energy state during nutrient deprivation.
Collapse
|