1
|
Ma S, Wang Z, Xiong Z, Ge Y, Xu MY, Zhang J, Peng Y, Zhang Q, Sun J, Xi Z, Peng H, Xu W, Wang Y, Li L, Zhang C, Chao Z, Wang B, Gao X, Zhang X, Wei GH, Wang Z. Enhancer transcription profiling reveals an enhancer RNA-driven ferroptosis and new therapeutic opportunities in prostate cancer. Signal Transduct Target Ther 2025; 10:87. [PMID: 40082405 PMCID: PMC11906896 DOI: 10.1038/s41392-025-02170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Enhancer RNAs (eRNAs), a subclass of non-coding RNAs transcribed from enhancer regions, have emerged as critical regulators of gene expression; however, their functional roles in prostate cancer remain largely unexplored. In this study, we performed integrated chromatin accessibility and transcriptomic analyses using ATAC-seq and RNA-seq on twenty pairs of prostate cancer and matched benign tissues. By incorporating chromatin immunoprecipitation sequencing data, we identified a subset of differentially expressed eRNAs significantly associated with genes involved in prostate development and oncogenic signaling pathways. Among these, lactotransferrin-eRNA (LTFe) was markedly downregulated in prostate cancer tissues, with functional analyses revealing its tumor-suppressive role. Mechanistically, LTFe promotes the transcription of its target gene, lactotransferrin (LTF), by interacting with heterogeneous nuclear ribonucleoprotein F (HNRNPF) and facilitating enhancer-promoter chromatin interactions. Furthermore, we demonstrate that the LTFe-LTF axis facilitates ferroptosis by modulating iron transport. Notably, androgen receptor (AR) signaling disrupts LTFe-associated chromatin looping, leading to ferroptosis resistance. Therapeutically, co- administration of the AR inhibitor enzalutamide and the ferroptosis inducer RSL3 significantly suppressed tumor growth, offering a promising strategy for castration-resistant prostate cancer. Collectively, this study provides novel insights into the mechanistic role of eRNAs in prostate cancer, highlighting the LTFe-LTF axis as a critical epigenetic regulator and potential therapeutic target for improved treatment outcomes.
Collapse
Affiliation(s)
- Sheng Ma
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Zixian Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences & Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zezhong Xiong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Yue Ge
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Meng-Yao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Junbiao Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Yuzheng Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Qin Zhang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jiaxue Sun
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences & Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zirui Xi
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Hao Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Wenjie Xu
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences & Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yanan Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Le Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Chunyu Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Zheng Chao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Baojun Wang
- Department of Urology, Chinese PLA General Hospital, Beijing, China
| | - Xu Gao
- Department of Urology, Changhai Hospital, Shanghai, China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital, Beijing, China.
| | - Gong-Hong Wei
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences & Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 215123, Suzhou, Jiangsu, China.
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
- Taikang Tongji (Wuhan) Hospital, 420060, Wuhan, China.
| |
Collapse
|
2
|
Taylor SJ, Stauber J, Bohorquez O, Tatsumi G, Kumari R, Chakraborty J, Bartholdy BA, Schwenger E, Sundaravel S, Farahat AA, Wheat JC, Goldfinger M, Verma A, Kumar A, Boykin DW, Stengel KR, Poon GMK, Steidl U. Pharmacological restriction of genomic binding sites redirects PU.1 pioneer transcription factor activity. Nat Genet 2024; 56:2213-2227. [PMID: 39294495 PMCID: PMC11525197 DOI: 10.1038/s41588-024-01911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/14/2024] [Indexed: 09/20/2024]
Abstract
Transcription factor (TF) DNA-binding dynamics govern cell fate and identity. However, our ability to pharmacologically control TF localization is limited. Here we leverage chemically driven binding site restriction leading to robust and DNA-sequence-specific redistribution of PU.1, a pioneer TF pertinent to many hematopoietic malignancies. Through an innovative technique, 'CLICK-on-CUT&Tag', we characterize the hierarchy of de novo PU.1 motifs, predicting occupancy in the PU.1 cistrome under binding site restriction. Temporal and single-molecule studies of binding site restriction uncover the pioneering dynamics of native PU.1 and identify the paradoxical activation of an alternate target gene set driven by PU.1 localization to second-tier binding sites. These transcriptional changes were corroborated by genetic blockade and site-specific reporter assays. Binding site restriction and subsequent PU.1 network rewiring causes primary human leukemia cells to differentiate. In summary, pharmacologically induced TF redistribution can be harnessed to govern TF localization, actuate alternate gene networks and direct cell fate.
Collapse
Affiliation(s)
- Samuel J Taylor
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jacob Stauber
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Oliver Bohorquez
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Goichi Tatsumi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajni Kumari
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joyeeta Chakraborty
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Boris A Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Emily Schwenger
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sriram Sundaravel
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abdelbasset A Farahat
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Master of Pharmaceutical Sciences Program, California Northstate University, Elk Grove, CA, USA
| | - Justin C Wheat
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mendel Goldfinger
- Department of Oncology, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA
- Blood Cancer Institute, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA
| | - Amit Verma
- Department of Oncology, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA
- Blood Cancer Institute, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA
| | - Arvind Kumar
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Kristy R Stengel
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Blood Cancer Institute, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Oncology, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA.
- Blood Cancer Institute, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA.
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA.
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
3
|
Trzaskoma P, Jung S, Pękowska A, Bohrer CH, Wang X, Naz F, Dell’Orso S, Dubois WD, Olivera A, Vartak SV, Zhao Y, Nayak S, Overmiller A, Morasso MI, Sartorelli V, Larson DR, Chow CC, Casellas R, O’Shea JJ. 3D chromatin architecture, BRD4, and Mediator have distinct roles in regulating genome-wide transcriptional bursting and gene network. SCIENCE ADVANCES 2024; 10:eadl4893. [PMID: 39121214 PMCID: PMC11313860 DOI: 10.1126/sciadv.adl4893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
Discontinuous transcription is evolutionarily conserved and a fundamental feature of gene regulation; yet, the exact mechanisms underlying transcriptional bursting are unresolved. Analyses of bursting transcriptome-wide have focused on the role of cis-regulatory elements, but other factors that regulate this process remain elusive. We applied mathematical modeling to single-cell RNA sequencing data to infer bursting dynamics transcriptome-wide under multiple conditions to identify possible molecular mechanisms. We found that Mediator complex subunit 26 (MED26) primarily regulates frequency, MYC regulates burst size, while cohesin and Bromodomain-containing protein 4 (BRD4) can modulate both. Despite comparable effects on RNA levels among these perturbations, acute depletion of MED26 had the most profound impact on the entire gene regulatory network, acting downstream of chromatin spatial architecture and without affecting TATA box-binding protein (TBP) recruitment. These results indicate that later steps in the initiation of transcriptional bursts are primary nodes for integrating gene networks in single cells.
Collapse
Affiliation(s)
- Pawel Trzaskoma
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - SeolKyoung Jung
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aleksandra Pękowska
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | | | - Xiang Wang
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Faiza Naz
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stefania Dell’Orso
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wendy D. Dubois
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ana Olivera
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Supriya V. Vartak
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yongbing Zhao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Subhashree Nayak
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Overmiller
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maria I. Morasso
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Vittorio Sartorelli
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel R. Larson
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carson C. Chow
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rafael Casellas
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John J. O’Shea
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Hayatigolkhatmi K, Valzelli R, El Menna O, Minucci S. Epigenetic alterations in AML: Deregulated functions leading to new therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:27-75. [PMID: 39179348 DOI: 10.1016/bs.ircmb.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Acute myeloid leukemia (AML) results in disruption of the hematopoietic differentiation process. Crucial progress has been made, and new therapeutic strategies for AML have been developed. Induction chemotherapy, however, remains the main option for the majority of AML patients. Epigenetic dysregulation plays a central role in AML pathogenesis, supporting leukemogenesis and maintenance of leukemic stem cells. Here, we provide an overview of the intricate interplay of altered epigenetic mechanisms, including DNA methylation, histone modifications, and chromatin remodeling, in AML development. We explore the role of epigenetic regulators, such as DNMTs, HMTs, KDMs, and HDACs, in mediating gene expression patterns pushing towards leukemic cell transformation. Additionally, we discuss the impact of cytogenetic lesions on epigenomic remodeling and the potential of targeting epigenetic vulnerabilities as a therapeutic strategy. Understanding the epigenetic landscape of AML offers insights into novel therapeutic avenues, including epigenetic modifiers and particularly their use in combination therapies, to improve treatment outcomes and overcome drug resistance.
Collapse
Affiliation(s)
- Kourosh Hayatigolkhatmi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Riccardo Valzelli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Oualid El Menna
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy; Department of Hemato-Oncology, Università Statale di Milano, Milan, Italy.
| |
Collapse
|
5
|
Layden HM, Ellis JD, Bomber ML, Bartlett LN, Hiebert SW, Stengel KR. Mutant FOXO1 controls an oncogenic network via enhancer accessibility. CELL GENOMICS 2024; 4:100537. [PMID: 38604128 PMCID: PMC11019358 DOI: 10.1016/j.xgen.2024.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/21/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Transcriptional dysregulation is a hallmark of diffuse large B cell lymphoma (DLBCL), as transcriptional regulators are frequently mutated. However, our mechanistic understanding of how normal transcriptional programs are co-opted in DLBCL has been hindered by a lack of methodologies that provide the temporal resolution required to separate direct and indirect effects on transcriptional control. We applied a chemical-genetic approach to engineer the inducible degradation of the transcription factor FOXO1, which is recurrently mutated (mFOXO1) in DLBCL. The combination of rapid degradation of mFOXO1, nascent transcript detection, and assessment of chromatin accessibility allowed us to identify the direct targets of mFOXO1. mFOXO1 was required to maintain accessibility at specific enhancers associated with multiple oncogenes, and mFOXO1 degradation impaired RNA polymerase pause-release at some targets. Wild-type FOXO1 appeared to weakly regulate many of the same targets as mFOXO1 and was able to complement the degradation of mFOXO1 in the context of AKT inhibition.
Collapse
Affiliation(s)
- Hillary M Layden
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jacob D Ellis
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Monica L Bomber
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Luke N Bartlett
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA.
| | - Kristy R Stengel
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY, USA.
| |
Collapse
|
6
|
Kellaway SG, Potluri S, Keane P, Blair HJ, Ames L, Worker A, Chin PS, Ptasinska A, Derevyanko PK, Adamo A, Coleman DJL, Khan N, Assi SA, Krippner-Heidenreich A, Raghavan M, Cockerill PN, Heidenreich O, Bonifer C. Leukemic stem cells activate lineage inappropriate signalling pathways to promote their growth. Nat Commun 2024; 15:1359. [PMID: 38355578 PMCID: PMC10867020 DOI: 10.1038/s41467-024-45691-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is caused by multiple mutations which dysregulate growth and differentiation of myeloid cells. Cells adopt different gene regulatory networks specific to individual mutations, maintaining a rapidly proliferating blast cell population with fatal consequences for the patient if not treated. The most common treatment option is still chemotherapy which targets such cells. However, patients harbour a population of quiescent leukemic stem cells (LSCs) which can emerge from quiescence to trigger relapse after therapy. The processes that allow such cells to re-grow remain unknown. Here, we examine the well characterised t(8;21) AML sub-type as a model to address this question. Using four primary AML samples and a novel t(8;21) patient-derived xenograft model, we show that t(8;21) LSCs aberrantly activate the VEGF and IL-5 signalling pathways. Both pathways operate within a regulatory circuit consisting of the driver oncoprotein RUNX1::ETO and an AP-1/GATA2 axis allowing LSCs to re-enter the cell cycle while preserving self-renewal capacity.
Collapse
Affiliation(s)
- Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
- Blood Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, University of Nottingham, Nottingham, UK.
| | - Sandeep Potluri
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Helen J Blair
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Luke Ames
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Alice Worker
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Paulynn S Chin
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Anetta Ptasinska
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Assunta Adamo
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Daniel J L Coleman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Naeem Khan
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Manoj Raghavan
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Olaf Heidenreich
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Princess Maxima Center of Pediatric Oncology, Utrecht, Netherlands
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
7
|
Kelly RDW, Stengel KR, Chandru A, Johnson LC, Hiebert SW, Cowley SM. Histone deacetylases maintain expression of the pluripotent gene network via recruitment of RNA polymerase II to coding and noncoding loci. Genome Res 2024; 34:34-46. [PMID: 38290976 PMCID: PMC10903948 DOI: 10.1101/gr.278050.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Histone acetylation is a dynamic modification regulated by the opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Deacetylation of histone tails results in chromatin tightening, and therefore, HDACs are generally regarded as transcriptional repressors. Counterintuitively, simultaneous deletion of Hdac1 and Hdac2 in embryonic stem cells (ESCs) reduces expression of the pluripotency-associated transcription factors Pou5f1, Sox2, and Nanog (PSN). By shaping global histone acetylation patterns, HDACs indirectly regulate the activity of acetyl-lysine readers, such as the transcriptional activator BRD4. Here, we use inhibitors of HDACs and BRD4 (LBH589 and JQ1, respectively) in combination with precision nuclear run-on and sequencing (PRO-seq) to examine their roles in defining the ESC transcriptome. Both LBH589 and JQ1 cause a marked reduction in the pluripotent gene network. However, although JQ1 treatment induces widespread transcriptional pausing, HDAC inhibition causes a reduction in both paused and elongating polymerase, suggesting an overall reduction in polymerase recruitment. Using enhancer RNA (eRNA) expression to measure enhancer activity, we find that LBH589-sensitive eRNAs are preferentially associated with superenhancers and PSN binding sites. These findings suggest that HDAC activity is required to maintain pluripotency by regulating the PSN enhancer network via the recruitment of RNA polymerase II.
Collapse
Affiliation(s)
- Richard D W Kelly
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Kristy R Stengel
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Bronx, New York 10461, USA
| | - Aditya Chandru
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Lyndsey C Johnson
- Locate Bio Limited, MediCity, Beeston, Nottingham NG90 6BH, United Kingdom
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Shaun M Cowley
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom;
| |
Collapse
|
8
|
Tao Y, Wang QH, Li XT, Liu Y, Sun RH, Xu HJ, Zhang M, Li SY, Yang L, Wang HJ, Hao LY, Cao JL, Pan Z. Spinal-Specific Super Enhancer in Neuropathic Pain. J Neurosci 2023; 43:8547-8561. [PMID: 37802656 PMCID: PMC10711714 DOI: 10.1523/jneurosci.1006-23.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/31/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023] Open
Abstract
Dysfunctional gene expression in nociceptive pathways plays a critical role in the development and maintenance of neuropathic pain. Super enhancers (SEs), composed of a large cluster of transcriptional enhancers, are emerging as new players in the regulation of gene expression. However, whether SEs participate in nociceptive responses remains unknown. Here, we report a spinal-specific SE (SS-SE) that regulates chronic constriction injury (CCI)-induced neuropathic pain by driving Ntmt1 and Prrx2 transcription in dorsal horn neurons. Peripheral nerve injury significantly enhanced the activity of SS-SE and increased the expression of NTMT1 and PRRX2 in the dorsal horn of male mice in a bromodomain-containing protein 4 (BRD4)-dependent manner. Both intrathecal administration of a pharmacological BRD4 inhibitor JQ1 and CRISPR-Cas9-mediated SE deletion abolished the increased NTMT1 and PRRX2 in CCI mice and attenuated their nociceptive hypersensitivities. Furthermore, knocking down Ntmt1 or Prrx2 with siRNA suppressed the injury-induced elevation of phosphorylated extracellular-signal-regulated kinase (p-ERK) and glial fibrillary acidic protein (GFAP) expression in the dorsal horn and alleviated neuropathic pain behaviors. Mimicking the increase in spinal Ntmt1 or Prrx2 in naive mice increased p-ERK and GFAP expression and led to the genesis of neuropathic pain-like behavior. These results redefine our understanding of the regulation of pain-related genes and demonstrate that BRD4-driven increases in SS-SE activity is responsible for the genesis of neuropathic pain through the governance of NTMT1 and PRRX2 expression in dorsal horn neurons. Our findings highlight the therapeutic potential of BRD4 inhibitors for the treatment of neuropathic pain.SIGNIFICANCE STATEMENT SEs drive gene expression by recruiting master transcription factors, cofactors, and RNA polymerase, but their role in the development of neuropathic pain remains unknown. Here, we report that the activity of an SS-SE, located upstream of the genes Ntmt1 and Prrx2, was elevated in the dorsal horn of mice with neuropathic pain. SS-SE contributes to the genesis of neuropathic pain by driving expression of Ntmt1 and Prrx2 Both inhibition of SS-SE with a pharmacological BRD4 inhibitor and genetic deletion of SS-SE attenuated pain hypersensitivities. This study suggests an effective and novel therapeutic strategy for neuropathic pain.
Collapse
Affiliation(s)
- Yang Tao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Qi-Hui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiao-Tong Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ya Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Run-Hang Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Heng-Jun Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ming Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Si-Yuan Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Hong-Jun Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ling-Yun Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
9
|
Wahi A, Manchanda N, Jain P, Jadhav HR. Targeting the epigenetic reader "BET" as a therapeutic strategy for cancer. Bioorg Chem 2023; 140:106833. [PMID: 37683545 DOI: 10.1016/j.bioorg.2023.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Bromodomain and extraterminal (BET) proteins have the ability to bind to acetylated lysine residues present in both histones and non-histone proteins. This binding is facilitated by the presence of tandem bromodomains. The regulatory role of BET proteins extends to chromatin dynamics, cellular processes, and disease progression. The BET family comprises of BRD 2, 3, 4 and BRDT. The BET proteins are a class of epigenetic readers that regulate the transcriptional activity of a multitude of genes that are involved in the pathogenesis of cancer. Thus, targeting BET proteins has been identified as a potentially efficacious approach for the treatment of cancer. BET inhibitors (BETis) are known to interfere with the binding of BET proteins to acetylated lysine residues of chromatin, thereby leading to the suppression of transcription of several genes, including oncogenic transcription factors. Here in this review, we focus on role of Bromodomain and extra C-terminal (BET) proteins in cancer progression. Furthermore, numerous small-molecule inhibitors with pan-BET activity have been documented, with certain compounds currently undergoing clinical assessment. However, it is apparent that the clinical effectiveness of the present BET inhibitors is restricted, prompting the exploration of novel technologies to enhance their clinical outcomes and mitigate undesired adverse effects. Thus, strategies like development of selective BET-BD1, & BD2 inhibitors, dual and acting BET are also presented in this review and attempts to cover the chemistry needed for proper establishment of designed molecules into BRD have been made. Moreover, the review attempts to summarize the details of research till date and proposes a space for future development of BET inhibitor with diminished side effects. It can be concluded that discovery of isoform selective BET inhibitors can be a way forward in order to develop BET inhibitors with negligible side effects.
Collapse
Affiliation(s)
- Abhishek Wahi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Namish Manchanda
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India.
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-Pilani Campus, Vidya Vihar Pilani, Rajasthan 333031, India
| |
Collapse
|
10
|
Letson CT, Balasis ME, Newman H, Binder M, Vedder A, Kinose F, Ball M, Kruer T, Quintana A, Lasho TL, Finke CM, Almada LL, Grants JM, Zhang G, Fernandez-Zapico ME, Gaspar-Maia A, Lancet J, Komrokji R, Haura E, Sallman DA, Reuther GW, Karsan A, Rix U, Patnaik MM, Padron E. Targeting BET Proteins Downregulates miR-33a To Promote Synergy with PIM Inhibitors in CMML. Clin Cancer Res 2023; 29:2919-2932. [PMID: 37223910 PMCID: PMC10524644 DOI: 10.1158/1078-0432.ccr-22-3929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/19/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
PURPOSE Preclinical studies in myeloid neoplasms have demonstrated efficacy of bromodomain and extra-terminal protein inhibitors (BETi). However, BETi demonstrates poor single-agent activity in clinical trials. Several studies suggest that combination with other anticancer inhibitors may enhance the efficacy of BETi. EXPERIMENTAL DESIGN To nominate BETi combination therapies for myeloid neoplasms, we used a chemical screen with therapies currently in clinical cancer development and validated this screen using a panel of myeloid cell line, heterotopic cell line models, and patient-derived xenograft models of disease. We used standard protein and RNA assays to determine the mechanism responsible for synergy in our disease models. RESULTS We identified PIM inhibitors (PIMi) as therapeutically synergistic with BETi in myeloid leukemia models. Mechanistically, we show that PIM kinase is increased after BETi treatment, and that PIM kinase upregulation is sufficient to induce persistence to BETi and sensitize cells to PIMi. Furthermore, we demonstrate that miR-33a downregulation is the underlying mechanism driving PIM1 upregulation. We also show that GM-CSF hypersensitivity, a hallmark of chronic myelomonocytic leukemia (CMML), represents a molecular signature for sensitivity to combination therapy. CONCLUSIONS Inhibition of PIM kinases is a potential novel strategy for overcoming BETi persistence in myeloid neoplasms. Our data support further clinical investigation of this combination.
Collapse
Affiliation(s)
| | | | - Hannah Newman
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Moritz Binder
- Division of Hematology, Mayo Clinic, Rochester, MN
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexis Vedder
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Fumi Kinose
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Markus Ball
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Traci Kruer
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Ariel Quintana
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Terra L. Lasho
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Christy M. Finke
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Luciana L. Almada
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN
| | | | - Guolin Zhang
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | - Alexandre Gaspar-Maia
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey Lancet
- Malignant Hematology Department, Moffitt Cancer Center, Tampa, FL
| | - Rami Komrokji
- Malignant Hematology Department, Moffitt Cancer Center, Tampa, FL
| | - Eric Haura
- Department of Drug Discovery, H Lee Moffitt Cancer Center, Tampa, FL
| | - David A. Sallman
- Malignant Hematology Department, Moffitt Cancer Center, Tampa, FL
| | - Gary W. Reuther
- Department of Molecular Oncology, H Lee Moffitt Cancer Center, Tampa, FL
| | - Aly Karsan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC
| | - Uwe Rix
- Department of Drug Discovery, H Lee Moffitt Cancer Center, Tampa, FL
| | - Mrinal M. Patnaik
- Division of Hematology, Mayo Clinic, Rochester, MN
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eric Padron
- Malignant Hematology Department, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
11
|
Yashar WM, Curtiss BM, Coleman DJ, VanCampen J, Kong G, Macaraeg J, Estabrook J, Demir E, Long N, Bottomly D, McWeeney SK, Tyner JW, Druker BJ, Maxson JE, Braun TP. Disruption of the MYC Superenhancer Complex by Dual Targeting of FLT3 and LSD1 in Acute Myeloid Leukemia. Mol Cancer Res 2023; 21:631-647. [PMID: 36976323 PMCID: PMC10330306 DOI: 10.1158/1541-7786.mcr-22-0745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Mutations in Fms-like tyrosine kinase 3 (FLT3) are common drivers in acute myeloid leukemia (AML) yet FLT3 inhibitors only provide modest clinical benefit. Prior work has shown that inhibitors of lysine-specific demethylase 1 (LSD1) enhance kinase inhibitor activity in AML. Here we show that combined LSD1 and FLT3 inhibition induces synergistic cell death in FLT3-mutant AML. Multi-omic profiling revealed that the drug combination disrupts STAT5, LSD1, and GFI1 binding at the MYC blood superenhancer, suppressing superenhancer accessibility as well as MYC expression and activity. The drug combination simultaneously results in the accumulation of repressive H3K9me1 methylation, an LSD1 substrate, at MYC target genes. We validated these findings in 72 primary AML samples with the nearly every sample demonstrating synergistic responses to the drug combination. Collectively, these studies reveal how epigenetic therapies augment the activity of kinase inhibitors in FLT3-ITD (internal tandem duplication) AML. IMPLICATIONS This work establishes the synergistic efficacy of combined FLT3 and LSD1 inhibition in FLT3-ITD AML by disrupting STAT5 and GFI1 binding at the MYC blood-specific superenhancer complex.
Collapse
Affiliation(s)
- William M. Yashar
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University; Portland, OR, 97239, USA
- These authors contributed equally to this work
| | - Brittany M. Curtiss
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
- These authors contributed equally to this work
| | - Daniel J. Coleman
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Jake VanCampen
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Garth Kong
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Jommel Macaraeg
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Joseph Estabrook
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Emek Demir
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd; Portland, OR 97239, USA
- Pacific Northwest National Laboratories; Richland, WA 99354, USA
| | - Nicola Long
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Daniel Bottomly
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Shannon K. McWeeney
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Jeffrey W. Tyner
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Brian J. Druker
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Julia E. Maxson
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
| | - Theodore P. Braun
- Knight Cancer Institute, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University; Portland, OR, 97239, USA
| |
Collapse
|
12
|
Jeong S, Kim HR, Shin JH, Son MH, Lee IH, Roe JS. Streamlined DNA-encoded small molecule library screening and validation for the discovery of novel chemotypes targeting BET proteins. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:637-649. [PMID: 37207130 PMCID: PMC10189352 DOI: 10.1016/j.omtn.2023.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/20/2023] [Indexed: 05/21/2023]
Abstract
Targeting aberrant epigenetic programs that drive tumorigenesis is a promising approach to cancer therapy. DNA-encoded library (DEL) screening is a core platform technology increasingly used to identify drugs that bind to protein targets. Here, we use DEL screening against bromodomain and extra-terminal motif (BET) proteins to identify inhibitors with new chemotypes, and successfully identified BBC1115 as a selective BET inhibitor. While BBC1115 does not structurally resemble OTX-015, a clinically active pan-BET inhibitor, our intensive biological characterization revealed that BBC1115 binds to BET proteins, including BRD4, and suppresses aberrant cell fate programs. Phenotypically, BBC1115-mediated BET inhibition impaired proliferation in acute myeloid leukemia, pancreatic, colorectal, and ovarian cancer cells in vitro. Moreover, intravenous administration of BBC1115 inhibited subcutaneous tumor xenograft growth with minimal toxicity and favorable pharmacokinetic properties in vivo. Since epigenetic regulations are ubiquitously distributed across normal and malignant cells, it will be critical to evaluate if BBC1115 affects normal cell function. Nonetheless, our study shows integrating DEL-based small-molecule compound screening and multi-step biological validation represents a reliable strategy to discover new chemotypes with selectivity, efficacy, and safety profiles for targeting proteins involved in epigenetic regulation in human malignancies.
Collapse
Affiliation(s)
- Seoyeon Jeong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - June-Ha Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | | | | | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Corresponding author: Jae-Seok Roe, PhD, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea.
| |
Collapse
|
13
|
Guo R, Li J, Hu J, Fu Q, Yan Y, Xu S, Wang X, Jiao F. Combination of epidrugs with immune checkpoint inhibitors in cancer immunotherapy: From theory to therapy. Int Immunopharmacol 2023; 120:110417. [PMID: 37276826 DOI: 10.1016/j.intimp.2023.110417] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Immunotherapy based on immune checkpoint inhibitors (ICIs) has revolutionized treatment strategies in multiple types of cancer. However, the resistance and relapse as associated with the extreme complexity of cancer-immunity interactions remain a major challenge to be resolved. Owing to the epigenome plasticity of cancer and immune cells, a growing body of evidence has been presented indicating that epigenetic treatments have the potential to overcome current limitations of immunotherapy, thus providing a rationalefor the combination of ICIs with epigenetic agents (epidrugs). In this review, we first make an overview about the epigenetic regulations in tumor biology and immunodevelopment. Subsequently, a diverse array of inhibitory agents under investigations targeted epigenetic modulators (Azacitidine, Decitabine, Vorinostat, Romidepsin, Belinostat, Panobinostat, Tazemetostat, Enasidenib and Ivosidenib, etc.) and immune checkpoints (Atezolizmab, Avelumab, Cemiplimab, Durvalumb, Ipilimumab, Nivolumab and Pembrolizmab, etc.) to increase anticancer responses were described and the potential mechanisms were further discussed. Finally, we summarize the findings of clinical trials and provide a perspective for future clinical studies directed at investigating the combination of epidrugs with ICIs as a treatment for cancer.
Collapse
Affiliation(s)
- Ruoyu Guo
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Jixia Li
- Department of Clinical Laboratory Medicine, Yantaishan Hospital, Yantai 264003, PR China
| | - Jinxia Hu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Qiang Fu
- School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Yunfei Yan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Sen Xu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Xin Wang
- Department of Clinical Laboratory & Health Service Training, 970 Hospital of the PLA Joint Logistic Support Force, Yantai 264002, PR China.
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China.
| |
Collapse
|
14
|
RDW K, KR S, A C, LC4 J, SW H, SM C. Histone Deacetylases (HDACs) maintain expression of the pluripotent gene network via recruitment of RNA polymerase II to coding and non-coding loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535398. [PMID: 37066171 PMCID: PMC10104071 DOI: 10.1101/2023.04.06.535398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Histone acetylation is a dynamic modification regulated by the opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Deacetylation of histone tails results in chromatin tightening and therefore HDACs are generally regarded as transcriptional repressors. Counterintuitively, simultaneous deletion of Hdac1 and Hdac2 in embryonic stem cells (ESC) reduced expression of pluripotent transcription factors, Oct4, Sox2 and Nanog (OSN). By shaping global histone acetylation patterns, HDACs indirectly regulate the activity of acetyl-lysine readers, such as the transcriptional activator, BRD4. We used inhibitors of HDACs and BRD4 (LBH589 and JQ1 respectively) in combination with precision nuclear run-on and sequencing (PRO-seq) to examine their roles in defining the ESC transcriptome. Both LBH589 and JQ1 caused a marked reduction in the pluripotent network. However, while JQ1 treatment induced widespread transcriptional pausing, HDAC inhibition caused a reduction in both paused and elongating polymerase, suggesting an overall reduction in polymerase recruitment. Using enhancer RNA (eRNA) expression to measure enhancer activity we found that LBH589-sensitive eRNAs were preferentially associated with super-enhancers and OSN binding sites. These findings suggest that HDAC activity is required to maintain pluripotency by regulating the OSN enhancer network via the recruitment of RNA polymerase II.
Collapse
Affiliation(s)
- Kelly RDW
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 9HN, UK
| | - Stengel KR
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue Chanin Building, Bronx, NY 10461
| | - Chandru A
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Johnson LC4
- Locate Bio Limited, MediCity, Thane Road, Beeston, Nottingham, NG90 6BH
| | - Hiebert SW
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cowley SM
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 9HN, UK
| |
Collapse
|
15
|
Guo J, Zheng Q, Peng Y. BET proteins: Biological functions and therapeutic interventions. Pharmacol Ther 2023; 243:108354. [PMID: 36739915 DOI: 10.1016/j.pharmthera.2023.108354] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Bromodomain and extra-terminal (BET) family member proteins (BRD2, BRD3, BRD4 and BRDT) play a pivotal role in interpreting the epigenetic information of histone Kac modification, thus controlling gene expression, remodeling chromatin structures and avoid replicative stress-induced DNA damages. Abnormal activation of BET proteins is tightly correlated to various human diseases, including cancer. Therefore, BET bromodomain inhibitors (BBIs) were considered as promising therapeutics to treat BET-related diseases, raising >70 clinical trials in the past decades. Despite preliminary effects achieved, drug resistance and adverse events represent two major challenges for current BBIs development. In this review, we will introduce the biological functions of BET proteins in both physiological and pathological conditions; and summarize the progress in current BBI drug development. Moreover, we will also discuss the major challenges in the front of BET inhibitor development and provide rational strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Jiawei Guo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingquan Zheng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
16
|
Uckelmann HJ, Haarer EL, Takeda R, Wong EM, Hatton C, Marinaccio C, Perner F, Rajput M, Antonissen NJC, Wen Y, Yang L, Brunetti L, Chen CW, Armstrong SA. Mutant NPM1 Directly Regulates Oncogenic Transcription in Acute Myeloid Leukemia. Cancer Discov 2023; 13:746-765. [PMID: 36455613 PMCID: PMC10084473 DOI: 10.1158/2159-8290.cd-22-0366] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/27/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023]
Abstract
The dysregulation of developmental and stem cell-associated genes is a common phenomenon during cancer development. Around half of patients with acute myeloid leukemia (AML) express high levels of HOXA cluster genes and MEIS1. Most of these AML cases harbor an NPM1 mutation (NPM1c), which encodes for an oncoprotein mislocalized from the nucleolus to the cytoplasm. How NPM1c expression in hematopoietic cells leads to its characteristic gene-expression pattern remains unclear. Here, we show that NPM1c directly binds to specific chromatin targets, which are co-occupied by the histone methyltransferase KMT2A (MLL1). Targeted degradation of NPM1c leads to a rapid decrease in gene expression and loss of RNA polymerase II, as well as activating histone modifications at its targets. We demonstrate that NPM1c directly regulates oncogenic gene expression in collaboration with the MLL1 complex and define the mechanism by which MLL1-Menin small-molecule inhibitors produce clinical responses in patients with NPM1-mutated AML. SIGNIFICANCE We uncovered an important functional role of mutant NPM1 as a crucial direct driver of oncogenic gene expression in AML. NPM1c can bind to chromatin and cooperate with the MLL complex, providing the first functional insight into the mechanism of Menin-MLL inhibition in NPM1c leukemias. See related article by Wang et al., p. 724. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Hannah J. Uckelmann
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Elena L. Haarer
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Reina Takeda
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Eric M. Wong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Charlie Hatton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Christian Marinaccio
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Florian Perner
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Masooma Rajput
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
- German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Noa J. C. Antonissen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Yanhe Wen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Lorenzo Brunetti
- Department of Medicine and Surgery, University of Perugia, Perugia Italy
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Scott A. Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Bomber ML, Wang J, Liu Q, Barnett KR, Layden HM, Hodges E, Stengel KR, Hiebert SW. Human SMARCA5 is continuously required to maintain nucleosome spacing. Mol Cell 2023; 83:507-522.e6. [PMID: 36630954 PMCID: PMC9974918 DOI: 10.1016/j.molcel.2022.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023]
Abstract
Genetic models suggested that SMARCA5 was required for DNA-templated events including transcription, DNA replication, and DNA repair. We engineered a degron tag into the endogenous alleles of SMARCA5, a catalytic component of the imitation switch complexes in three different human cell lines to define the effects of rapid degradation of this key regulator. Degradation of SMARCA5 was associated with a rapid increase in global nucleosome repeat length, which may allow greater chromatin compaction. However, there were few changes in nascent transcription within the first 6 h of degradation. Nevertheless, we demonstrated a requirement for SMARCA5 to control nucleosome repeat length at G1/S and during the S phase. SMARCA5 co-localized with CTCF and H2A.Z, and we found a rapid loss of CTCF DNA binding and disruption of nucleosomal phasing around CTCF binding sites. This spatiotemporal analysis indicates that SMARCA5 is continuously required for maintaining nucleosomal spacing.
Collapse
Affiliation(s)
- Monica L Bomber
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kelly R Barnett
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Hillary M Layden
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristy R Stengel
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
18
|
Gołos A, Góra-Tybor J, Robak T. Experimental drugs in clinical trials for acute myeloid leukemia: innovations, trends, and opportunities. Expert Opin Investig Drugs 2023; 32:53-67. [PMID: 36669827 DOI: 10.1080/13543784.2023.2171860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a heterogeneous disease characterized by many cytogenetic and molecular alterations. Due to better knowledge of the molecular basis of AML, many targeted therapies have been introduced and registered, e.g. FMS-like tyrosine kinase 3 inhibitors, isocitrate dehydrogenase 1/2 mutation inhibitors, and Bcl-2 inhibitor. Despite that, the cure for AML remains an unmet clinical need in most patients. AREAS COVERED The review aims to present new, not yet registered drugs for AML. We searched the English literature for articles concerning AML, targeted drugs, menin inhibitors, DOT1L, BET, IDH inhibitors, FLT3, hedgehog inhibitors, Polo-like kinase inhibitors, RNA splicing, and immune therapies via PubMed. Publications from January 2000 to August 2022 were scrutinized. Additional relevant publications were obtained by reviewing the references from the chosen articles and Google search. Conference proceedings from the previous 5 years of The American Society of Hematology, the European Hematology Association, and the American Society of Clinical Oncology were searched manually. Additional relevant publications were obtained by reviewing the references. EXPERT OPINION For several years, the therapeutic approach in AML has become more individualized. Novel groups of drugs give hope for greater curability. High response rates have agents that restore the activity of the p53 protein. In addition, agents that work independently of a particular mutation seem promising for AML without any known mutation.
Collapse
Affiliation(s)
- Aleksandra Gołos
- Department of Hematooncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Joanna Góra-Tybor
- Department of Hematooncology, Copernicus Memorial Hospital, Lodz, Poland.,Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland.,Department of General Hematology, Copernicus Memorial Hospital, Lodz, Poland
| |
Collapse
|
19
|
Zhang S, Wang J, Liu Q, McDonald WH, Bomber ML, Layden HM, Ellis J, Borinstein SC, Hiebert SW, Stengel KR. PAX3-FOXO1 coordinates enhancer architecture, eRNA transcription, and RNA polymerase pause release at select gene targets. Mol Cell 2022; 82:4428-4442.e7. [PMID: 36395771 PMCID: PMC9731406 DOI: 10.1016/j.molcel.2022.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 08/24/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022]
Abstract
Transcriptional control is a highly dynamic process that changes rapidly in response to various cellular and extracellular cues, making it difficult to define the mechanism of transcription factor function using slow genetic methods. We used a chemical-genetic approach to rapidly degrade a canonical transcriptional activator, PAX3-FOXO1, to define the mechanism by which it regulates gene expression programs. By coupling rapid protein degradation with the analysis of nascent transcription over short time courses and integrating CUT&RUN, ATAC-seq, and eRNA analysis with deep proteomic analysis, we defined PAX3-FOXO1 function at a small network of direct transcriptional targets. PAX3-FOXO1 degradation impaired RNA polymerase pause release and transcription elongation at most regulated gene targets. Moreover, the activity of PAX3-FOXO1 at enhancers controlling this core network was surprisingly selective, affecting single elements in super-enhancers. This combinatorial analysis indicated that PAX3-FOXO1 was continuously required to maintain chromatin accessibility and enhancer architecture at regulated enhancers.
Collapse
Affiliation(s)
- Susu Zhang
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - W Hayes McDonald
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Monica L Bomber
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Hillary M Layden
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jacob Ellis
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Scott C Borinstein
- Department of Pediatrics, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37027, USA
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37027, USA.
| | - Kristy R Stengel
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
20
|
Zheng M, Lin Y, Wang W, Zhao Y, Bao X. Application of nucleoside or nucleotide analogues in RNA dynamics and RNA-binding protein analysis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1722. [PMID: 35218164 DOI: 10.1002/wrna.1722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Cellular RNAs undergo dynamic changes during RNA biological processes, which are tightly orchestrated by RNA-binding proteins (RBPs). Yet, the investigation of RNA dynamics is hurdled by highly abundant steady-state RNAs, which make the signals of dynamic RNAs less detectable. Notably, the exert of nucleoside or nucleotide analogue-based RNA technologies has provided a remarkable platform for RNA dynamics research, revealing diverse unnoticed features in RNA metabolism. In this review, we focus on the application of two types of analogue-based RNA sequencing, antigen-/antibody- and click chemistry-based methodologies, and summarize the RNA dynamics features revealed. Moreover, we discuss emerging single-cell newly transcribed RNA sequencing methodologies based on nucleoside analogue labeling, which provides novel insights into RNA dynamics regulation at single-cell resolution. On the other hand, we also emphasize the identification of RBPs that interact with polyA, non-polyA RNAs, or newly transcribed RNAs and also their associated RNA-binding domains at genomewide level through ultraviolet crosslinking and mass spectrometry in different contexts. We anticipated that further modification and development of these analogue-based RNA and RBP capture technologies will aid in obtaining an unprecedented understanding of RNA biology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Meifeng Zheng
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Lin
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Guangming Science City, Shenzhen, China
| | - Wei Wang
- Center for Biosafety, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Xichen Bao
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
21
|
Bromodomain-containing protein 4 (BRD4) as an epigenetic regulator of fatty acid metabolism genes and ferroptosis. Cell Death Dis 2022; 13:912. [PMID: 36309482 PMCID: PMC9617950 DOI: 10.1038/s41419-022-05344-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Reprogramming lipid metabolism is considered a fundamental step in tumourigenesis that influences ferroptosis. However, molecular mechanisms between lipid metabolism and ferroptosis remain largely unknown. Results from the drug screening of 464 inhibitors (for 164 targets) applied to ferroptosis cells indicated that 4 inhibitors targeted bromodomain-containing protein 4 (BRD4) significantly inhibiting erastin-induced ferroptosis. Functional studies proved that the loss of BRD4 weakened oxidative catabolism in mitochondria, protecting cells from the excessive accumulation of lipid peroxides. Mechanism research revealed that the transcriptional levels of fatty acid metabolism-related genes (HADH, ACSL1 and ACAA2) participating in the β-oxidation of fatty acids (FAO) and polyunsaturated fatty acids (PUFAs) synthesis depended on the activity of super-enhancers (SEs) formed by BRD4 and HMGB2 in their promoter regions. Conclusively, this study demonstrated that BRD4 was indispensable for fatty acid metabolism based on its epigenetic regulatory mechanisms and affecting erastin-induced ferroptosis, providing a new theoretical reference for understanding the relationship between lipid metabolism and ferroptosis deeply.
Collapse
|
22
|
Xiao Q, Xiao Y, Li LY, Chen MK, Wu M. Multifaceted regulation of enhancers in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194839. [PMID: 35750313 DOI: 10.1016/j.bbagrm.2022.194839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022]
Abstract
Enhancer is one kind of cis-elements regulating gene transcription, whose activity is tightly controlled by epigenetic enzymes and histone modifications. Active enhancers are classified into typical enhancers, super-enhancers and over-active enhancers, according to the enrichment and location of histone modifications. Epigenetic factors control the level of histone modifications on enhancers to determine their activity, such as histone methyltransferases and acetylases. Transcription factors, cofactors and mediators co-operate together and are required for enhancer functions. In turn, abnormalities in these trans-acting factors affect enhancer activity. Recent studies have revealed enhancer dysregulation as one of the important features for cancer. Variations in enhancer regions and mutations of enhancer regulatory genes are frequently observed in cancer cells, and altering the activity of onco-enhancers is able to repress oncogene expression, and suppress tumorigenesis and metastasis. Here we summarize the recent discoveries about enhancer regulation in cancer and discuss their potential application in diagnosis and treatment.
Collapse
Affiliation(s)
- Qiong Xiao
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| | - Yong Xiao
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China
| | - Ming-Kai Chen
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China.
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
23
|
Mulero Hernández J, Fernández-Breis JT. Analysis of the landscape of human enhancer sequences in biological databases. Comput Struct Biotechnol J 2022; 20:2728-2744. [PMID: 35685360 PMCID: PMC9168495 DOI: 10.1016/j.csbj.2022.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/01/2022] Open
Abstract
The process of gene regulation extends as a network in which both genetic sequences and proteins are involved. The levels of regulation and the mechanisms involved are multiple. Transcription is the main control mechanism for most genes, being the downstream steps responsible for refining the transcription patterns. In turn, gene transcription is mainly controlled by regulatory events that occur at promoters and enhancers. Several studies are focused on analyzing the contribution of enhancers in the development of diseases and their possible use as therapeutic targets. The study of regulatory elements has advanced rapidly in recent years with the development and use of next generation sequencing techniques. All this information has generated a large volume of information that has been transferred to a growing number of public repositories that store this information. In this article, we analyze the content of those public repositories that contain information about human enhancers with the aim of detecting whether the knowledge generated by scientific research is contained in those databases in a way that could be computationally exploited. The analysis will be based on three main aspects identified in the literature: types of enhancers, type of evidence about the enhancers, and methods for detecting enhancer-promoter interactions. Our results show that no single database facilitates the optimal exploitation of enhancer data, most types of enhancers are not represented in the databases and there is need for a standardized model for enhancers. We have identified major gaps and challenges for the computational exploitation of enhancer data.
Collapse
Affiliation(s)
- Juan Mulero Hernández
- Dept. Informática y Sistemas, Universidad de Murcia, CEIR Campus Mare Nostrum, IMIB-Arrixaca, Spain
| | | |
Collapse
|
24
|
Jiang Z, Long J, Deng K, Zheng Y, Chen M. eRNAs Identify Immune Microenvironment Patterns and Provide a Novel Prognostic Tool in Acute Myeloid Leukemia. Front Mol Biosci 2022; 9:877117. [PMID: 35586193 PMCID: PMC9108177 DOI: 10.3389/fmolb.2022.877117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/28/2022] [Indexed: 12/19/2022] Open
Abstract
Background: Enhancer RNAs (eRNAs) play an essential role in tumorigenesis as non-coding RNAs transcribed from enhancer regions. However, the landscape of eRNAs in acute myeloid leukemia (AML) and the potential roles of eRNAs in the tumor microenvironment (TME) remain unclear. Method: Gene expression data collected from The Cancer Genome Atlas (TCGA) project were combined with Histone ChIP-seq so as to reveal the comprehensive landscape of eRNAs. Single-sample gene set enrichment analysis algorithm (ssGSEA) and ESTIMATE were employed to enumerate immune cell infiltration and tumor purity. Results: Most prognostic eRNAs were enriched in immune-related pathways. Two distinct immune microenvironment patterns, the immune-active subtype and the immune-resistant subtype, were identified in AML. We further developed an eRNA-derived score (E-score) that could quantify immune microenvironment patterns and predict the response to immune checkpoint inhibitor (ICI) treatment. Finally, we established a prognostic nomogram combining E-score and other clinical features, which showed great discriminative power in both the training set [Harrell’s concordance index (C index): 0.714 (0.651–0.777), p < 0.0001] and validation set [C index: 0.684 (0.614–0.755), p < 0.0001]. Calibration of the nomogram was also validated independently. Conclusion: In this study, we systematically understood the roles of eRNAs in regulating TME diversity and complexity. Moreover, our E-score model provided the first predictive model for ICI treatment in AML.
Collapse
Affiliation(s)
- Ziming Jiang
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Eight-Year MD Program, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Junyu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaige Deng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Miao Chen, ; Yongchang Zheng,
| | - Miao Chen
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Miao Chen, ; Yongchang Zheng,
| |
Collapse
|
25
|
Olsen SN, Godfrey L, Healy JP, Choi YA, Kai Y, Hatton C, Perner F, Haarer EL, Nabet B, Yuan GC, Armstrong SA. MLL::AF9 degradation induces rapid changes in transcriptional elongation and subsequent loss of an active chromatin landscape. Mol Cell 2022; 82:1140-1155.e11. [PMID: 35245435 PMCID: PMC9044330 DOI: 10.1016/j.molcel.2022.02.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/17/2021] [Accepted: 02/06/2022] [Indexed: 12/15/2022]
Abstract
MLL rearrangements produce fusion oncoproteins that drive leukemia development, but the direct effects of MLL-fusion inactivation remain poorly defined. We designed models with degradable MLL::AF9 where treatment with small molecules induces rapid degradation. We leveraged the kinetics of this system to identify a core subset of MLL::AF9 target genes where MLL::AF9 degradation induces changes in transcriptional elongation within 15 minutes. MLL::AF9 degradation subsequently causes loss of a transcriptionally active chromatin landscape. We used this insight to assess the effectiveness of small molecules that target members of the MLL::AF9 multiprotein complex, specifically DOT1L and MENIN. Combined DOT1L/MENIN inhibition resembles MLL::AF9 degradation, whereas single-agent treatment has more modest effects on MLL::AF9 occupancy and gene expression. Our data show that MLL::AF9 degradation leads to decreases in transcriptional elongation prior to changes in chromatin landscape at select loci and that combined inhibition of chromatin complexes releases the MLL::AF9 oncoprotein from chromatin globally.
Collapse
Affiliation(s)
- Sarah Naomi Olsen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Laura Godfrey
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - James P Healy
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Yoolim A Choi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Yan Kai
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Charles Hatton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Florian Perner
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA; Internal Medicine C, University Medical Center Greifswald, 17475 Greifswald, Germany
| | - Elena L Haarer
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences and Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
26
|
BET Proteins as Attractive Targets for Cancer Therapeutics. Int J Mol Sci 2021; 22:ijms222011102. [PMID: 34681760 PMCID: PMC8538173 DOI: 10.3390/ijms222011102] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Transcriptional dysregulation is a hallmark of cancer and can be an essential driver of cancer initiation and progression. Loss of transcriptional control can cause cancer cells to become dependent on certain regulators of gene expression. Bromodomain and extraterminal domain (BET) proteins are epigenetic readers that regulate the expression of multiple genes involved in carcinogenesis. BET inhibitors (BETis) disrupt BET protein binding to acetylated lysine residues of chromatin and suppress the transcription of various genes, including oncogenic transcription factors. Phase I and II clinical trials demonstrated BETis’ potential as anticancer drugs against solid tumours and haematological malignancies; however, their clinical success was limited as monotherapies. Emerging treatment-associated toxicities, drug resistance and a lack of predictive biomarkers limited BETis’ clinical progress. The preclinical evaluation demonstrated that BETis synergised with different classes of compounds, including DNA repair inhibitors, thus supporting further clinical development of BETis. The combination of BET and PARP inhibitors triggered synthetic lethality in cells with proficient homologous recombination. Mechanistic studies revealed that BETis targeted multiple essential homologous recombination pathway proteins, including RAD51, BRCA1 and CtIP. The exact mechanism of BETis’ anticancer action remains poorly understood; nevertheless, these agents provide a novel approach to epigenome and transcriptome anticancer therapy.
Collapse
|
27
|
van der Kouwe E, Heller G, Czibere A, Pulikkan JA, Agreiter C, Castilla LH, Delwel R, Di Ruscio A, Ebralidze AK, Forte M, Grebien F, Heyes E, Kazianka L, Klinger J, Kornauth C, Le T, Lind K, Barbosa IAM, Pemovska T, Pichler A, Schmolke AS, Schweicker CM, Sill H, Sperr WR, Spittler A, Surapally S, Trinh BQ, Valent P, Vanura K, Welner RS, Zuber J, Tenen DG, Staber PB. Core-binding factor leukemia hijacks the T-cell-prone PU.1 antisense promoter. Blood 2021; 138:1345-1358. [PMID: 34010414 PMCID: PMC8525333 DOI: 10.1182/blood.2020008971] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/09/2021] [Indexed: 11/20/2022] Open
Abstract
The blood system serves as a key model for cell differentiation and cancer. It is orchestrated by precise spatiotemporal expression of crucial transcription factors. One of the key master regulators in the hematopoietic systems is PU.1. Reduced levels of PU.1 are characteristic for human acute myeloid leukemia (AML) and are known to induce AML in mouse models. Here, we show that transcriptional downregulation of PU.1 is an active process involving an alternative promoter in intron 3 that is induced by RUNX transcription factors driving noncoding antisense transcription. Core-binding factor (CBF) fusions RUNX1-ETO and CBFβ-MYH11 in t(8;21) and inv(16) AML, respectively, activate the PU.1 antisense promoter that results in a shift from sense toward antisense transcription and myeloid differentiation blockade. In patients with CBF-AML, we found that an elevated antisense/sense transcript and promoter accessibility ratio represents a hallmark compared with normal karyotype AML or healthy CD34+ cells. Competitive interaction of an enhancer with the proximal or the antisense promoter forms a binary on/off switch for either myeloid or T-cell development. Leukemic CBF fusions thus use a physiological mechanism used by T cells to decrease sense transcription. Our study is the first example of a sense/antisense promoter competition as a crucial functional switch for gene expression perturbation by oncogenes. Hence, this disease mechanism reveals a previously unknown Achilles heel for future precise therapeutic targeting of oncogene-induced chromatin remodeling.
Collapse
Affiliation(s)
- E van der Kouwe
- Department of Medicine I, Division of Hematology and Hemostaseology, and
| | - G Heller
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | | | | | - C Agreiter
- Department of Medicine I, Division of Hematology and Hemostaseology, and
| | - L H Castilla
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - R Delwel
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A Di Ruscio
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - A K Ebralidze
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - M Forte
- Department of Medicine I, Division of Hematology and Hemostaseology, and
| | - F Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - E Heyes
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - L Kazianka
- Department of Medicine I, Division of Hematology and Hemostaseology, and
| | - J Klinger
- Department of Medicine I, Division of Hematology and Hemostaseology, and
| | - C Kornauth
- Department of Medicine I, Division of Hematology and Hemostaseology, and
| | - T Le
- Department of Medicine I, Division of Hematology and Hemostaseology, and
| | - K Lind
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - I A M Barbosa
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - T Pemovska
- Department of Medicine I, Division of Hematology and Hemostaseology, and
| | - A Pichler
- Department of Medicine I, Division of Hematology and Hemostaseology, and
| | - A-S Schmolke
- Department of Medicine I, Division of Hematology and Hemostaseology, and
| | - C M Schweicker
- Department of Medicine I, Division of Hematology and Hemostaseology, and
| | - H Sill
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - W R Sperr
- Department of Medicine I, Division of Hematology and Hemostaseology, and
| | - A Spittler
- Core Facility Flow Cytometry and Surgical Research Laboratories, and
| | - S Surapally
- Versiti Blood Research Institute, Milwaukee, WI
| | - B Q Trinh
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - P Valent
- Department of Medicine I, Division of Hematology and Hemostaseology, and
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - K Vanura
- Department of Medicine I, Division of Hematology and Hemostaseology, and
| | - R S Welner
- Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL; and
| | - J Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - D G Tenen
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
- Cancer Science Institute, National University of Singapore, Singapore
| | - P B Staber
- Department of Medicine I, Division of Hematology and Hemostaseology, and
| |
Collapse
|
28
|
Yun H, Narayan N, Vohra S, Giotopoulos G, Mupo A, Madrigal P, Sasca D, Lara-Astiaso D, Horton SJ, Agrawal-Singh S, Meduri E, Basheer F, Marando L, Gozdecka M, Dovey OM, Castillo-Venzor A, Wang X, Gallipoli P, Müller-Tidow C, Osborne CS, Vassiliou GS, Huntly BJP. Mutational synergy during leukemia induction remodels chromatin accessibility, histone modifications and three-dimensional DNA topology to alter gene expression. Nat Genet 2021; 53:1443-1455. [PMID: 34556857 PMCID: PMC7611829 DOI: 10.1038/s41588-021-00925-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
Altered transcription is a cardinal feature of acute myeloid leukemia (AML); however, exactly how mutations synergize to remodel the epigenetic landscape and rewire three-dimensional DNA topology is unknown. Here, we apply an integrated genomic approach to a murine allelic series that models the two most common mutations in AML: Flt3-ITD and Npm1c. We then deconvolute the contribution of each mutation to alterations of the epigenetic landscape and genome organization, and infer how mutations synergize in the induction of AML. Our studies demonstrate that Flt3-ITD signals to chromatin to alter the epigenetic environment and synergizes with mutations in Npm1c to alter gene expression and drive leukemia induction. These analyses also allow the identification of long-range cis-regulatory circuits, including a previously unknown superenhancer of Hoxa locus, as well as larger and more detailed gene-regulatory networks, driven by transcription factors including PU.1 and IRF8, whose importance we demonstrate through perturbation of network members.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chromatin Assembly and Disassembly/genetics
- DNA, Neoplasm/chemistry
- Disease Models, Animal
- Enhancer Elements, Genetic/genetics
- Gene Expression Regulation, Leukemic
- Gene Regulatory Networks
- Genetic Loci
- Histones/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Mice, Inbred C57BL
- Mutation/genetics
- Nuclear Proteins/metabolism
- Nucleophosmin
- Principal Component Analysis
- Protein Processing, Post-Translational
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcription, Genetic
- fms-Like Tyrosine Kinase 3/metabolism
- Mice
Collapse
Affiliation(s)
- Haiyang Yun
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nisha Narayan
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Shabana Vohra
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - George Giotopoulos
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Annalisa Mupo
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Haematological Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Pedro Madrigal
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Daniel Sasca
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Hematology, Oncology and Pneumology, University Medical Center Mainz, Mainz, Germany
| | - David Lara-Astiaso
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Sarah J Horton
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Shuchi Agrawal-Singh
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Eshwar Meduri
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Faisal Basheer
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Ludovica Marando
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Malgorzata Gozdecka
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Haematological Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Oliver M Dovey
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Haematological Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
| | | | - Xiaonan Wang
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Paolo Gallipoli
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Cameron S Osborne
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - George S Vassiliou
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Haematological Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Brian J P Huntly
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
29
|
Halder TG, Soldi R, Sharma S. Bromodomain and extraterminal domain protein bromodomain inhibitor based cancer therapeutics. Curr Opin Oncol 2021; 33:526-531. [PMID: 34280171 DOI: 10.1097/cco.0000000000000763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Bromodomain and extraterminal domain (BET) proteins are evolutionarily conserved, multifunctional super-regulators that specifically recognize acetyl-lysine on histones and other proteins controlling gene transcription. Several studies show that small molecules targeting these regulators preferentially suppress the transcription of cancer-promoting genes. Consequently, several BET inhibitors reached clinical trials and are in various stages for different kind of malignancies. In this review, we provide a concise summary of the molecular basis and preliminary clinical outcomes of BET inhibitors as anticancer therapeutics. RECENT FINDINGS Results from early clinical trials with BET inhibitors confirmed their antitumor potential in both hematologic and solid tumours, but the evidence does not support the application of BET inhibitors as a monotherapy for cancer treatment. Treatment-emergent toxicities such as thrombocytopenia and gastrointestinal disorders are also reported. Preclinical data suggest that BET inhibitors may have a promising future in combination with other anticancer agents. SUMMARY Despite of various challenges, BET inhibitors have high potential in combinatorial therapy and the future development of next-generation inhibitors could be promising. Further studies are needed to determine the predictive biomarkers for therapeutic response, which would translate into the long-term success of BET inhibitors as personalized medicines in cancer treatment.
Collapse
Affiliation(s)
- Tithi Ghosh Halder
- Applied Cancer Research and Drug Discovery, Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | | | | |
Collapse
|
30
|
The Novel Oral BET-CBP/p300 Dual Inhibitor NEO2734 Is Highly Effective in Eradicating Acute Myeloid Leukemia Blasts and Stem/Progenitor Cells. Hemasphere 2021; 5:e610. [PMID: 34258514 PMCID: PMC8265862 DOI: 10.1097/hs9.0000000000000610] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukemia (AML) is a disease characterized by transcriptional dysregulation that results in a block in differentiation and aberrant self-renewal. Inhibitors directed to epigenetic modifiers, aiming at transcriptional reprogramming of AML cells, are currently in clinical trials for AML patients. Several of these inhibitors target bromodomain and extraterminal domain (BET) proteins, cyclic AMP response binding protein-binding protein (CBP), and the E1A-interacting protein of 300 kDa (p300), affecting histone acetylation. Unfortunately, single epigenetic inhibitors showed limited efficacy due to appearance of resistance and lack of effective eradication of leukemic stem cells. Here, we describe the efficacy of 2 novel, orally available inhibitors targeting both the BET and CBP/p300 proteins, NEO1132 and NEO2734, in primary AML. NEO2734 and NEO1132 efficiently reduced the viability of AML cell lines and primary AML cells by inducing apoptosis. Importantly, both NEO drugs eliminated leukemic stem/progenitor cells from AML patient samples, and NEO2734 increased the effectiveness of combination chemotherapy treatment in an in vivo AML patient-derived mouse model. Thus, dual inhibition of BET and CBP/p300 using NEO2734 is a promising therapeutic strategy for AML patients, making it a focus for clinical translation.
Collapse
|
31
|
Kim K, Christov PP, Romaine I, Tian J, Jana S, Lamers AP, Dutter BF, Scaggs T, Jeon K, Guttentag B, Weaver CD, Lindsley CW, Waterson AG, Sulikowski GA. Ten-Year Retrospective of the Vanderbilt Institute of Chemical Biology Chemical Synthesis Core. ACS Chem Biol 2021; 16:787-793. [PMID: 33877812 DOI: 10.1021/acschembio.0c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chemical synthesis has been described as a central science. Its practice provides access to the chemical structures of known and/or designed function. In particular, human health is greatly impacted by synthesis that enables advancements in both basic science discoveries in chemical biology as well as translational research that can lead to new therapeutics. To support the chemical synthesis needs of investigators across campus, the Vanderbilt Institute of Chemical Biology established a chemical synthesis core as part of its foundation in 2008. Provided in this Review are examples of synthetic products, known and designed, produced in the core over the past 10 years.
Collapse
Affiliation(s)
- Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Plamen P. Christov
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Ian Romaine
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jianhua Tian
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Somnath Jana
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Alexander P. Lamers
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Brendan F. Dutter
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Toya Scaggs
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kyouk Jeon
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Benjamin Guttentag
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - C. David Weaver
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Alex G. Waterson
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Gary A. Sulikowski
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
32
|
Grieselhuber NR, Mims AS. Novel Targeted Therapeutics in Acute Myeloid Leukemia: an Embarrassment of Riches. Curr Hematol Malig Rep 2021; 16:192-206. [PMID: 33738705 DOI: 10.1007/s11899-021-00621-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Acute myeloid leukemia (AML) is an aggressive malignancy of the bone marrow that has a poor prognosis with traditional cytotoxic chemotherapy, especially in elderly patients. In recent years, small molecule inhibitors targeting AML-associated IDH1, IDH2, and FLT3 mutations have been FDA approved. However, the majority of AML cases do not have a targetable mutation. A variety of novel agents targeting both previously untargetable mutations and general pathways in AML are currently being investigated. Herein, we review selected new targeted therapies currently in early-phase clinical investigation in AML. RECENT FINDINGS The DOT1L inhibitor pinometostat in KMT2A-rearranged AML, the menin inhibitors KO-539 and SYNDX-5613 in KMT2Ar and NPM1-mutated AML, and the mutant TP53 inhibitor APR-246 are examples of novel agents targeting specific mutations in AML. In addition, BET inhibitors, polo-like kinase inhibitors, and MDM2 inhibitors are promising new drug classes for AML which do not depend on the presence of a particular mutation. AML remains in incurable disease for many patients but advances in genomics, epigenetics, and drug discovery have led to the development of many potential novel therapeutic agents, many of which are being investigated in ongoing clinical trials. Additional studies will be necessary to determine how best to incorporate these novel agents into routine clinical treatment of AML.
Collapse
Affiliation(s)
- Nicole R Grieselhuber
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Alice S Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
33
|
Stengel KR, Ellis JD, Spielman CL, Bomber ML, Hiebert SW. Definition of a small core transcriptional circuit regulated by AML1-ETO. Mol Cell 2020; 81:530-545.e5. [PMID: 33382982 DOI: 10.1016/j.molcel.2020.12.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/19/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
Transcription factors regulate gene networks controlling normal hematopoiesis and are frequently deregulated in acute myeloid leukemia (AML). Critical to our understanding of the mechanism of cellular transformation by oncogenic transcription factors is the ability to define their direct gene targets. However, gene network cascades can change within minutes to hours, making it difficult to distinguish direct from secondary or compensatory transcriptional changes by traditional methodologies. To overcome this limitation, we devised cell models in which the AML1-ETO protein could be quickly degraded upon addition of a small molecule. The rapid kinetics of AML1-ETO removal, when combined with analysis of transcriptional output by nascent transcript analysis and genome-wide AML1-ETO binding by CUT&RUN, enabled the identification of direct gene targets that constitute a core AML1-ETO regulatory network. Moreover, derepression of this gene network was associated with RUNX1 DNA binding and triggered a transcription cascade ultimately resulting in myeloid differentiation.
Collapse
Affiliation(s)
- Kristy R Stengel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Jacob D Ellis
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Clare L Spielman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Monica L Bomber
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
34
|
Shapiro GI, LoRusso P, Dowlati A, T Do K, Jacobson CA, Vaishampayan U, Weise A, Caimi PF, Eder JP, French CA, Labriola-Tompkins E, Boisserie F, Pierceall WE, Zhi J, Passe S, DeMario M, Kornacker M, Armand P. A Phase 1 study of RO6870810, a novel bromodomain and extra-terminal protein inhibitor, in patients with NUT carcinoma, other solid tumours, or diffuse large B-cell lymphoma. Br J Cancer 2020; 124:744-753. [PMID: 33311588 PMCID: PMC7884382 DOI: 10.1038/s41416-020-01180-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/19/2020] [Accepted: 11/05/2020] [Indexed: 01/09/2023] Open
Abstract
Background Bromodomain and extra-terminal (BET) proteins are epigenetic readers that can drive carcinogenesis and therapy resistance. RO6870810 is a novel, small-molecule BET inhibitor. Methods We conducted a Phase 1 study of RO6870810 administered subcutaneously for 21 or 14 days of 28- or 21-day cycles, respectively, in patients with the nuclear protein of the testis carcinoma (NC), other solid tumours, or diffuse large B-cell lymphoma (DLBCL) with MYC deregulation. Results Fatigue (42%), decreased appetite (35%) and injection-site erythema (35%) were the most common treatment-related adverse events. Pharmacokinetic parameters demonstrated linearity over the dose range tested and support once-daily dosing. Pharmacodynamic assessments demonstrated sustained decreases in CD11b levels in peripheral blood mononuclear cells. Objective response rates were 25% (2/8), 2% (1/47) and 11% (2/19) for patients with NC, other solid tumours and DLBCL, respectively. Responding tumours had evidence of deregulated MYC expression. Conclusions This trial establishes the safety, favourable pharmacokinetics, evidence of target engagement and preliminary single-agent activity of RO6870810. Responses in patients with NC, other solid tumours and DLBCL provide proof-of-principle for BET inhibition in MYC-driven cancers. The results support further exploration of RO6870810 as monotherapy and in combinations. Clinical trials registration NCT01987362.
Collapse
Affiliation(s)
- Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Patricia LoRusso
- Early Phase Clinical Trials Program, Yale University Medical Center, New Haven, CT, USA
| | - Afshin Dowlati
- Department of Medicine-Hematology and Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Khanh T Do
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Caron A Jacobson
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Amy Weise
- Medical Oncology, Karmanos Cancer Institute, Detroit, MI, USA
| | - Paolo F Caimi
- Department of Medicine-Hematology and Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Joseph Paul Eder
- Early Phase Clinical Trials Program, Yale University Medical Center, New Haven, CT, USA
| | - Christopher A French
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Emily Labriola-Tompkins
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - Frédéric Boisserie
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - William E Pierceall
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - Jianguo Zhi
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - Sharon Passe
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - Mark DeMario
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - Martin Kornacker
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Philippe Armand
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Proteolysis-targeting chimeras mediate the degradation of bromodomain and extra-terminal domain proteins. Future Med Chem 2020; 12:1669-1683. [PMID: 32893690 DOI: 10.4155/fmc-2017-0264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bromodomain and extra-terminal domain (BET) protein family plays an important role in regulating gene transcription preferentially at super-enhancer regions and has been involved with several types of cancers as a candidate. Up to now, there are 16 pan-BET inhibitors in clinical trials, however, most of them have undesirable off-target and side-effects. The proteolysis-targeting chimeras technology through a heterobifunctional molecule to link the target protein and E3 ubiquitin ligase, causes the target's ubiquitination and subsequent degradation. By using this technology, the heterobifunctional small-molecule BET degraders can induce BET protein degradation. In this review, we discuss the advances in the drug discovery and development of BET-targeting proteolysis-targeting chimeras.
Collapse
|
36
|
Spriano F, Stathis A, Bertoni F. Targeting BET bromodomain proteins in cancer: The example of lymphomas. Pharmacol Ther 2020; 215:107631. [PMID: 32693114 DOI: 10.1016/j.pharmthera.2020.107631] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
The Bromo- and Extra-Terminal domain (BET) family proteins act as "readers" of acetylated histones and they are important transcription regulators. BRD2, BRD3, BRD4 and BRDT, part of the BET family, are important in different tumors, where upregulation or translocation often occurs. The potential of targeting BET proteins as anti-cancer treatment originated with data obtained with a first series of compounds, and there are now several data supporting BET inhibition in both solid tumors and hematological malignancies. Despite very positive preclinical data in different tumor types, the clinical results have been so far moderate. Using lymphoma as an example to review the data produced in the laboratory and in the context of the early clinical trials, we discuss the modalities to make BET targeting more efficient both generating novel generation of compounds and by exploring the combination with small molecules affecting various signaling pathways, BCL2, or DNA damage response signaling, but also with additional epigenetic agents and with immunotherapy. We also discuss the mechanisms of resistance and the toxicity profiles so far reported.
Collapse
Affiliation(s)
- Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland; Faculty of Biomedical Sciences, USI, Lugano, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
| |
Collapse
|
37
|
Xu Y, Wang Q, Xiao K, Liu Z, Zhao L, Song X, Hu X, Feng Z, Gao T, Zuo W, Zeng J, Wang N, Yu L. Novel Dual BET and PLK1 Inhibitor WNY0824 Exerts Potent Antitumor Effects in CRPC by Inhibiting Transcription Factor Function and Inducing Mitotic Abnormality. Mol Cancer Ther 2020; 19:1221-1231. [PMID: 32220972 DOI: 10.1158/1535-7163.mct-19-0578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/31/2019] [Accepted: 03/19/2020] [Indexed: 02/05/2023]
Abstract
Castration-resistant prostate cancer (CRPC) is a lethal disease with few treatment alternatives once patients become resistant to second-generation antiandrogens. In CRPC, BET proteins are key regulators of AR- and MYC-mediated transcription, while the PLK1 inhibitor potentially downregulates AR and MYC besides influencing the cell cycle. Therefore, synchronous inhibition of BET and PLK1 would be a promising approach for CRPC therapy. This study developed a dual BET and PLK1 inhibitor WNY0824 with nanomolar and equipotent inhibition of BRD4 and PLK1. In vitro, WNY0824 exhibited excellent antiproliferation activity on AR-positive CRPC cells and induced apoptosis. These activities are attributable to its disruption of the AR-transcriptional program and the inhibition of the ETS pathway. Furthermore, WNY0824 downregulated MYC and induced mitotic abnormality. In vivo, oral WNY0824 administration suppressed tumor growth in the CRPC xenograft model of enzalutamide resistance. These findings suggest that WNY0824 is a selective dual BET and PLK1 inhibitor with potent anti-CRPC oncogenic activity and provides insights into the development of other novel dual BET- and PLK1-inhibiting drugs.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis
- Benzamides
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Cycle
- Cell Cycle Proteins/antagonists & inhibitors
- Drug Resistance, Neoplasm/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mitosis
- Nitriles
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/pharmacology
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Proto-Oncogene Proteins/antagonists & inhibitors
- Receptors, Androgen/chemistry
- Transcription Factors/antagonists & inhibitors
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qianqian Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Kunjie Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhihao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lifeng Zhao
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Xuejiao Song
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhanzhan Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tiantao Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Weiqiong Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jun Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ningyu Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
38
|
Lu Y, Chan YT, Tan HY, Li S, Wang N, Feng Y. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol Cancer 2020; 19:79. [PMID: 32340605 PMCID: PMC7184703 DOI: 10.1186/s12943-020-01197-3] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Epigenetics is dynamic and heritable modifications to the genome that occur independently of DNA sequence. It requires interactions cohesively with various enzymes and other molecular components. Aberrant epigenetic alterations can lead to inappropriate onset of genetic expressions and promote tumorigenesis. As the epigenetic modifiers are susceptible to extrinsic factors and reversible, they are becoming promising targets in multiple cancer therapies. Recently, various epi-drugs have been developed and implicated in clinical use. The use of epi-drugs alone, or in combination with chemotherapy or immunotherapy, has shown compelling outcomes, including augmentation of anti-tumoral effects, overcoming drug resistance, and activation of host immune response.
Collapse
Affiliation(s)
- Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China
| | - Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China.
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China.
| |
Collapse
|
39
|
Han Y, Zhu L, Wu W, Zhang H, Hu W, Dai L, Yang Y. Small Molecular Immune Modulators as Anticancer Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:547-618. [PMID: 32185725 DOI: 10.1007/978-981-15-3266-5_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
After decades of intense effort, immune checkpoint inhibitors have been conclusively demonstrated to be effective in cancer treatments and thus are revolutionizing the concepts in the treatment of cancers. Immuno-oncology has arrived and will play a key role in cancer treatment in the foreseeable future. However, efforts to find novel methods to improve the immune response to cancer have not ceased. Small-molecule approaches offer inherent advantages over biologic immunotherapies since they can cross cell membranes, penetrate into tumor tissue and tumor microenvironment more easily, and are amenable to be finely controlled than biological agents, which may help reduce immune-related adverse events seen with biologic therapies and provide more flexibility for the combination use with other therapies and superior clinical benefit. On the one hand, small-molecule therapies can modulate the immune response to cancer by restoring the antitumor immunity, promoting more effective cytotoxic lymphocyte responses, and regulating tumor microenvironment, either directly or epigenetically. On the other hand, the combination of different mechanisms of small molecules with antibodies and other biologics demonstrated admirable synergistic effect in clinical settings for cancer treatment and may expand antibodies' usefulness for broader clinical applications. This chapter provides an overview of small-molecule immunotherapeutic approaches either as monotherapy or in combination for the treatment of cancer.
Collapse
Affiliation(s)
- Yongxin Han
- Lapam Capital LLC., 17C1, Tower 2, Xizhimenwai Street, Xicheng District, Beijing, 100044, China.
| | - Li Zhu
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Wei Wu
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Hui Zhang
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Wei Hu
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Liguang Dai
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Yanqing Yang
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| |
Collapse
|
40
|
Tan Y, Li Y, Tang F. Oncogenic seRNA functional activation: a novel mechanism of tumorigenesis. Mol Cancer 2020; 19:74. [PMID: 32278350 PMCID: PMC7149907 DOI: 10.1186/s12943-020-01195-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
seRNA is a noncoding RNA (ncRNA) transcribed from active super-enhancer (SE), through which SE exerts biological functions and participates in various physiological and pathological processes. seRNA recruits cofactor, RNA polymerase II and mediator to constitute and stabilize chromatin loop SE and promoter region, which regulates target genes transcription. In tumorigenesis, DNA insertion, deletion, translocation, focal amplification and carcinogen factor mediate oncogenic SE generation, meanwhile, oncogenic SE transcribes into tumor-related seRNA, termed as oncogenic seRNA. Oncogenic seRNA participates in tumorigenesis through activating various signal-pathways. The recent reports showed that oncogenic seRNA implicates in a widespread range of cytopathological processes in cancer progression including cell proliferation, apoptosis, autophagy, epithelial-mesenchymal transition, extracellular matrix stiffness and angiogenesis. In this article, we comprehensively summarized seRNA’s characteristics and functions, and emphatically introduced inducible formation of oncogenic seRNA and its functional mechanisms. Lastly, some research strategies on oncogenic seRNA were introduced, and the perspectives on cancer therapy that targets oncogenic seRNA were also discussed.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Clinical Laboratory and Hunan Key Laboratory of Oncotarget gene, Hunan Cancer Hospital & The affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yuejin Li
- Department of Clinical Laboratory and Hunan Key Laboratory of Oncotarget gene, Hunan Cancer Hospital & The affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Faqing Tang
- Department of Clinical Laboratory and Hunan Key Laboratory of Oncotarget gene, Hunan Cancer Hospital & The affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
41
|
Call SG, Duren RP, Panigrahi AK, Nguyen L, Freire PR, Grimm SL, Coarfa C, Conneely OM. Targeting Oncogenic Super Enhancers in MYC-Dependent AML Using a Small Molecule Activator of NR4A Nuclear Receptors. Sci Rep 2020; 10:2851. [PMID: 32071334 PMCID: PMC7029036 DOI: 10.1038/s41598-020-59469-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Epigenetic reprogramming in Acute Myeloid Leukemia (AML) leads to the aberrant activation of super enhancer (SE) landscapes that drive the expression of key oncogenes, including the oncogenic MYC pathway. These SEs have been identified as promising therapeutic targets, and have given rise to a new class of drugs, including BET protein inhibitors, which center on targeting SE activity. NR4A nuclear receptors are tumor suppressors of AML that function in part through transcriptional repression of the MYC-driven oncogenic program via mechanisms that remain unclear. Here we show that NR4A1, and the NR4A inducing drug dihydroergotamine (DHE), regulate overlapping gene expression programs in AML and repress transcription of a subset of SE-associated leukemic oncogenes, including MYC. NR4As interact with an AML-selective SE cluster that governs MYC transcription and decommissions its activation status by dismissing essential SE-bound coactivators including BRD4, Mediator and p300, leading to loss of p300-dependent H3K27 acetylation and Pol 2-dependent eRNA transcription. DHE shows similar efficacy to the BET inhibitor JQ1 at repressing SE-dependent MYC expression and AML growth in mouse xenografts. Thus, DHE induction of NR4As provides an alternative strategy to BET inhibitors to target MYC dependencies via suppression of the AML-selective SE governing MYC expression.
Collapse
Affiliation(s)
- S Greg Call
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Molecular and Cellular Biology PhD Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ryan P Duren
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Integrative Molecular and Biomedical Sciences PhD Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anil K Panigrahi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Loc Nguyen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pablo R Freire
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Molecular and Cellular Biology PhD Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sandra L Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Orla M Conneely
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
42
|
Zhao Y, Zhou J, He L, Li Y, Yuan J, Sun K, Chen X, Bao X, Esteban MA, Sun H, Wang H. MyoD induced enhancer RNA interacts with hnRNPL to activate target gene transcription during myogenic differentiation. Nat Commun 2019; 10:5787. [PMID: 31857580 PMCID: PMC6923398 DOI: 10.1038/s41467-019-13598-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence supports roles of enhancer RNAs (eRNAs) in regulating target gene. Here, we study eRNA regulation and function during skeletal myoblast differentiation. We provide a panoramic view of enhancer transcription and categorization of eRNAs. Master transcription factor MyoD is crucial in activating eRNA production. Super enhancer (se) generated seRNA-1 and -2 promote myogenic differentiation in vitro and in vivo. seRNA-1 regulates expression levels of two nearby genes, myoglobin (Mb) and apolipoprotein L6 (Apol6), by binding to heterogeneous nuclear ribonucleoprotein L (hnRNPL). A CAAA tract on seRNA-1 is essential in mediating seRNA-1/hnRNPL binding and function. Disruption of seRNA-1-hnRNPL interaction attenuates Pol II and H3K36me3 deposition at the Mb locus, in coincidence with the reduction of its transcription. Furthermore, analyses of hnRNPL binding transcriptome-wide reveal its association with eRNAs is a general phenomenon in multiple cells. Collectively, we propose that eRNA-hnRNPL interaction represents a mechanism contributing to target mRNA activation.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiajian Zhou
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Liangqiang He
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuying Li
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Yuan
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kun Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Xiaona Chen
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xichen Bao
- Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Miguel A Esteban
- Laboratory of Chromatin and Human Disease, Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
43
|
Sampathi S, Acharya P, Zhao Y, Wang J, Stengel KR, Liu Q, Savona MR, Hiebert SW. The CDK7 inhibitor THZ1 alters RNA polymerase dynamics at the 5' and 3' ends of genes. Nucleic Acids Res 2019; 47:3921-3936. [PMID: 30805632 PMCID: PMC6486546 DOI: 10.1093/nar/gkz127] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/22/2019] [Indexed: 01/01/2023] Open
Abstract
The t(8;21) is one of the most frequent chromosomal translocations associated with acute myeloid leukemia (AML). We found that t(8;21) AML were extremely sensitive to THZ1, which triggered apoptosis after only 4 h. We used precision nuclear run-on transcription sequencing (PROseq) to define the global effects of THZ1 and other CDK inhibitors on RNA polymerase II dynamics. Inhibition of CDK7 using THZ1 caused wide-spread loss of promoter-proximal paused RNA polymerase. This loss of 5′ pausing was associated with accumulation of polymerases in the body of a large number of genes. However, there were modest effects on genes regulated by ‘super-enhancers’. At the 3′ ends of genes, treatment with THZ1 suppressed RNA polymerase ‘read through’ at the end of the last exon, which resembled a phenotype associated with a mutant RNA polymerase with slower elongation rates. Consistent with this hypothesis, polyA site-sequencing (PolyA-seq) did not detect differences in poly A sites after THZ1 treatment. PROseq analysis after short treatments with THZ1 suggested that these 3′ effects were due to altered CDK7 activity at the 5′ end of long genes, and were likely to be due to slower rates of elongation.
Collapse
Affiliation(s)
- Shilpa Sampathi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pankaj Acharya
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yue Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristy R Stengel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Michael R Savona
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37027.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37027
| |
Collapse
|
44
|
Letson C, Padron E. Non-canonical transcriptional consequences of BET inhibition in cancer. Pharmacol Res 2019; 150:104508. [PMID: 31698067 DOI: 10.1016/j.phrs.2019.104508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/12/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
Abstract
Inhibition of the bromo and extra-terminal domain (BET) protein family in preclinical studies has demonstrated that BET proteins are critical for cancer progression and important therapeutic targets. Downregulation of the MYC oncogene, CDK6, BCL2 and FOSL1 are just a few examples of the effects of BET inhibitors that can lead to cell cycle arrest and apoptosis in cancer cells. However, BET inhibitors have had little success in the clinic as a single agent, and there are an increasing number of reports of resistance to BET inhibition emerging after sustained treatment of cancer cells in vitro. Here we summarize the non-canonical consequences of BET inhibition in cancer, and discuss how these may both lead to resistance and inform rational combinations that could greatly enhance the clinical application of these inhibitors.
Collapse
Affiliation(s)
- Christopher Letson
- Moffitt Cancer Center: 12902 USF Magnolia Drive, Tampa, FL 33612, United States.
| | - Eric Padron
- Moffitt Cancer Center: 12902 USF Magnolia Drive, Tampa, FL 33612, United States.
| |
Collapse
|
45
|
Gobbi G, Donati B, Do Valle IF, Reggiani F, Torricelli F, Remondini D, Castellani G, Ambrosetti DC, Ciarrocchi A, Sancisi V. The Hippo pathway modulates resistance to BET proteins inhibitors in lung cancer cells. Oncogene 2019; 38:6801-6817. [PMID: 31406246 DOI: 10.1038/s41388-019-0924-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/19/2019] [Accepted: 05/13/2019] [Indexed: 11/09/2022]
Abstract
Inhibitors of BET proteins (BETi) are anti-cancer drugs that have shown efficacy in pre-clinical settings and are currently in clinical trials for different types of cancer, including non-small cell lung cancer (NSCLC). Currently, no predictive biomarker is available to identify patients that may benefit from this treatment. To uncover the mechanisms of resistance to BETi, we performed a genome-scale CRISPR/Cas9 screening in lung cancer cells. We identified three Hippo pathway genes, LATS2, TAOK1, and NF2, as key determinants for sensitivity to BETi. The knockout of these genes induces resistance to BETi, by promoting TAZ nuclear localization and transcriptional activity. Conversely, TAZ expression promotes resistance to these drugs. We also showed that TAZ, YAP, and their partner TEAD are direct targets of BRD4 and that treatment with BETi downregulates their expression. Noticeably, molecular alterations in one or more of these genes are present in a large fraction of NSCLC patients and TAZ amplification or overexpression correlates with a worse outcome in lung adenocarcinoma. Our data define the central role of Hippo pathway in mediating resistance to BETi and provide a rationale for using BETi to counter-act YAP/TAZ-mediated pro-oncogenic activity.
Collapse
Affiliation(s)
- Giulia Gobbi
- Laboratory of Translational Research, Azienda USL di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda USL di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Italo Faria Do Valle
- Department of Physics, Center for Complex Network Research, Northeastern University, Boston, MA, USA
| | - Francesca Reggiani
- Laboratory of Translational Research, Azienda USL di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Gastone Castellani
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | | | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda USL di Reggio Emilia - IRCCS, Reggio Emilia, Italy.
| |
Collapse
|
46
|
Abstract
Less than a decade ago, it was shown that bromodomains, acetyl lysine 'reader' modules found in proteins with varied functions, were highly tractable small-molecule targets. This is an unusual property for protein-protein or protein-peptide interaction domains, and it prompted a wave of chemical probe discovery to understand the biological potential of new agents that targeted bromodomains. The original examples, inhibitors of the bromodomain and extra-terminal (BET) class of bromodomains, showed enticing anti-inflammatory and anticancer activities, and several compounds have since advanced to human clinical trials. Here, we review the current state of BET inhibitor biology in relation to clinical development, and we discuss the next wave of bromodomain inhibitors with clinical potential in oncology and non-oncology indications. The lessons learned from BET inhibitor programmes should affect efforts to develop drugs that target non-BET bromodomains and other epigenetic readers.
Collapse
|
47
|
Khoueiry P, Ward Gahlawat A, Petretich M, Michon AM, Simola D, Lam E, Furlong EE, Benes V, Dawson MA, Prinjha RK, Drewes G, Grandi P. BRD4 bimodal binding at promoters and drug-induced displacement at Pol II pause sites associates with I-BET sensitivity. Epigenetics Chromatin 2019; 12:39. [PMID: 31266503 PMCID: PMC6604197 DOI: 10.1186/s13072-019-0286-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background Deregulated transcription is a major driver of diseases such as cancer. Bromodomain and extra-terminal (BET) proteins (BRD2, BRD3, BRD4 and BRDT) are chromatin readers essential for maintaining proper gene transcription by specifically binding acetylated lysine residues. Targeted displacement of BET proteins from chromatin, using BET inhibitors (I-BETs), is a promising therapy, especially for acute myeloid leukemia (AML), and evaluation of resistance mechanisms is necessary to optimize the clinical efficacy of these drugs. Results To uncover mechanisms of intrinsic I-BET resistance, we quantified chromatin binding and displacement for BRD2, BRD3 and BRD4 after dose response treatment with I-BET151, in sensitive and resistant in vitro models of leukemia, and mapped BET proteins/I-BET interactions genome wide using antibody- and compound-affinity capture methods followed by deep sequencing. The genome-wide map of BET proteins sensitivity to I-BET revealed a bimodal pattern of binding flanking transcription start sites (TSSs), in which drug-mediated displacement from chromatin primarily affects BRD4 downstream of the TSS and prolongs the pausing of RNA Pol II. Correlation of BRD4 binding and drug-mediated displacement at RNA Pol II pause sites with gene expression revealed a differential behavior of sensitive and resistant tumor cells to I-BET and identified a BRD4 signature at promoters of sensitive coding and non-coding genes. Conclusions We provide evidence that I-BET-induced shift of Pol II pausing at promoters via displacement of BRD4 is a determinant of intrinsic I-BET sensitivity. This finding may guide pharmacological treatment to enhance the clinical utility of such targeted therapies in AML and potentially other BET proteins-driven diseases. Electronic supplementary material The online version of this article (10.1186/s13072-019-0286-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Khoueiry
- Cellzome GmbH, a GSK Company, Heidelberg, Germany. .,Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | | | - M Petretich
- Cellzome GmbH, a GSK Company, Heidelberg, Germany
| | - A M Michon
- Cellzome GmbH, a GSK Company, Heidelberg, Germany
| | - D Simola
- Target Science Computational Biology, GSK Medicines Research Centre, Upper Providence, USA
| | - E Lam
- Peter MacCallum Cancer Center, Melbourne, Australia
| | - E E Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - V Benes
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany
| | - M A Dawson
- Peter MacCallum Cancer Center, Melbourne, Australia
| | - R K Prinjha
- Epigenetics DPU, GSK Medicines Research Centre, Stevenage, UK
| | - G Drewes
- Cellzome GmbH, a GSK Company, Heidelberg, Germany
| | - P Grandi
- Cellzome GmbH, a GSK Company, Heidelberg, Germany.
| |
Collapse
|
48
|
Tomino L, Bopp E, Felgenhauer J, Selich‐Anderson J, Shah N. Combinatorial BRD4 and AURKA inhibition is synergistic against preclinical models of Ewing sarcoma. Cancer Rep (Hoboken) 2019. [DOI: 10.1002/cnr2.1163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Laura Tomino
- Center for Childhood Cancer and Blood DisordersNationwide Children's Hospital Columbus Ohio USA
| | - Emily Bopp
- College of Arts and SciencesThe Ohio State University Columbus Ohio USA
| | - Joshua Felgenhauer
- Center for Childhood Cancer and Blood DisordersNationwide Children's Hospital Columbus Ohio USA
| | - Julia Selich‐Anderson
- Center for Childhood Cancer and Blood DisordersNationwide Children's Hospital Columbus Ohio USA
| | - Nilay Shah
- Center for Childhood Cancer and Blood DisordersNationwide Children's Hospital Columbus Ohio USA
- College of Medicine, Department of PediatricsThe Ohio State University Columbus Ohio USA
| |
Collapse
|
49
|
Zhang S, Zhao Y, Heaster TM, Fischer MA, Stengel KR, Zhou X, Ramsey H, Zhou MM, Savona MR, Skala MC, Hiebert SW. BET inhibitors reduce cell size and induce reversible cell cycle arrest in AML. J Cell Biochem 2019; 120:7309-7322. [PMID: 30417424 PMCID: PMC6513713 DOI: 10.1002/jcb.28005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023]
Abstract
Inhibitors of the bromodomain and extraterminal domain family (BETi) offer a new approach to treat hematological malignancies, with leukemias containing mixed lineage leukemia rearrangements being especially sensitive due to a reliance on the regulation of transcription elongation. We explored the mechanism of action of BETi in cells expressing the t(8;21), and show that these compounds reduced the size of acute myeloid leukemia cells, triggered a rapid but reversible G0 /G1 arrest, and with time, cause cell death. Meta-analysis of PRO-seq data identified ribosomal genes, which are regulated by MYC, were downregulated within 3 hours of addition of the BETi. This reduction of MYC regulated metabolic genes coincided with the loss of mitochondrial respiration and large reductions in the glycolytic rate. In addition, gene expression analysis showed that transcription of BCL2 was rapidly affected by BETi but this did not cause dramatic increases in cell death. Cell cycle arrest, lowered metabolic activity, and reduced BCL2 levels suggested that a second compound was needed to push these cells over the apoptotic threshold. Indeed, low doses of the BCL2 inhibitor, venetoclax, in combination with the BETi was a potent combination in t(8;21) containing cells. Thus, BET inhibitors that affect MYC and BCL2 expression should be considered for combination therapy with venetoclax.
Collapse
Affiliation(s)
- Susu Zhang
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Yue Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Tiffany M. Heaster
- Morgridge Institute for Research and the Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
| | - Melissa A. Fischer
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Kristy R. Stengel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Haley Ramsey
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Michael R. Savona
- Morgridge Institute for Research and the Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706;,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37027
| | - Melissa C. Skala
- Morgridge Institute for Research and the Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
| | - Scott W. Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232;,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37027,To whom correspondence should be sent: Department of Biochemistry, 512 Preston Research Building, Vanderbilt University School of Medicine, 2220 Pierce Ave., Nashville Tennessee, 37232, Phone: (615) 936-3582; Fax: (615) 936-1790;
| |
Collapse
|
50
|
Weissmiller AM, Wang J, Lorey SL, Howard GC, Martinez E, Liu Q, Tansey WP. Inhibition of MYC by the SMARCB1 tumor suppressor. Nat Commun 2019; 10:2014. [PMID: 31043611 PMCID: PMC6494882 DOI: 10.1038/s41467-019-10022-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/12/2019] [Indexed: 01/22/2023] Open
Abstract
SMARCB1 encodes the SNF5 subunit of the SWI/SNF chromatin remodeler. SNF5 also interacts with the oncoprotein transcription factor MYC and is proposed to stimulate MYC activity. The concept that SNF5 is a coactivator for MYC, however, is at odds with its role as a tumor-suppressor, and with observations that loss of SNF5 leads to activation of MYC target genes. Here, we reexamine the relationship between MYC and SNF5 using biochemical and genome-wide approaches. We show that SNF5 inhibits the DNA-binding ability of MYC and impedes target gene recognition by MYC in cells. We further show that MYC regulation by SNF5 is separable from its role in chromatin remodeling, and that reintroduction of SNF5 into SMARCB1-null cells mimics the primary transcriptional effects of MYC inhibition. These observations reveal that SNF5 antagonizes MYC and provide a mechanism to explain how loss of SNF5 can drive malignancy.
Collapse
Affiliation(s)
- April M Weissmiller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Gregory C Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Ernest Martinez
- Department of Biochemistry, University of California at Riverside, Riverside, CA, 92521, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|