1
|
Abraham A, Samaniego-Castruita D, Han I, Ramesh P, Tran MT, Paladino J, Kligfeld H, Morgan RC, Schmitz RL, Southern RM, Shukla A, Shukla V. Arid1a-dependent canonical BAF complex suppresses inflammatory programs to drive efficient germinal center B cell responses. Nat Immunol 2024; 25:1704-1717. [PMID: 39143398 PMCID: PMC12039306 DOI: 10.1038/s41590-024-01920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
The mammalian Brg1/Brm-associated factor (BAF) complexes are major regulators of nucleosomal remodeling that are commonly mutated in several cancers, including germinal center (GC)-derived B cell lymphomas. However, the specific roles of different BAF complexes in GC B cell biology are not well understood. Here we show that the AT-rich interaction domain 1a (Arid1a) containing canonical BAF (cBAF) complex is required for maintenance of GCs and high-affinity antibody responses. While Arid1a-deficient B cells undergo initial activation, they fail to sustain the GC program. Arid1a establishes permissive chromatin landscapes for B cell activation and is concomitantly required to suppress inflammatory gene programs. The inflammatory signatures instigated by Arid1a deficiency promoted the recruitment of neutrophils and inflammatory monocytes. Dampening of inflammatory cues through interleukin-1β blockade or glucocorticoid receptor agonist partially rescued Arid1a-deficient GCs, highlighting a critical role for inflammation in impeding GCs. Our work reveals essential functions of Arid1a-dependent cBAF in promoting efficient GC responses.
Collapse
Affiliation(s)
- Ajay Abraham
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
- Center for Human Immunobiology, Northwestern University, Chicago, IL, USA
| | | | - Isabella Han
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Prathyaya Ramesh
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Mi Thao Tran
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Jillian Paladino
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Heather Kligfeld
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Roxroy C Morgan
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Rebecca L Schmitz
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Rebecca M Southern
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Ashima Shukla
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Vipul Shukla
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA.
- Center for Human Immunobiology, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Shen J, Lai W, Li Z, Zhu W, Bai X, Yang Z, Wang Q, Ji J. SDS3 regulates microglial inflammation by modulating the expression of the upstream kinase ASK1 in the p38 MAPK signaling pathway. Inflamm Res 2024; 73:1547-1564. [PMID: 39008037 PMCID: PMC11349808 DOI: 10.1007/s00011-024-01913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Microglia, the main innate immune cells in the central nervous system, are key drivers of neuroinflammation, which plays a crucial role in the pathogenesis of neurodegenerative diseases. The Sin3/histone deacetylase (HDAC) complex, a highly conserved multiprotein co-repressor complex, primarily performs transcriptional repression via deacetylase activity; however, the function of SDS3, which maintains the integrity of the complex, in microglia remains unclear. METHODS To uncover the regulatory role of the transcriptional co-repressor SDS3 in microglial inflammation, we used chromatin immunoprecipitation to identify SDS3 target genes and combined with transcriptomics and proteomics analysis to explore expression changes in cells following SDS3 knocking down. Subsequently, we validated our findings through experimental assays. RESULTS Our analysis revealed that SDS3 modulates the expression of the upstream kinase ASK1 of the p38 MAPK pathway, thus regulating the activation of signaling pathways and ultimately influencing inflammation. CONCLUSIONS Our findings provide important evidence of the contributions of SDS3 toward microglial inflammation and offer new insights into the regulatory mechanisms of microglial inflammatory responses.
Collapse
Affiliation(s)
- Jian Shen
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Wenjia Lai
- Division of Nanotechnology Development, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zeyang Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Wenyuan Zhu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xue Bai
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Zihao Yang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Geng T, Sun Q, He J, Chen Y, Cheng W, Shen J, Liu B, Zhang M, Wang S, Asan K, Song M, Gao Q, Song Y, Liu R, Liu X, Ding Y, Jing A, Ye X, Ren H, Zeng K, Zhou Y, Zhang B, Ma S, Liu W, Liu S, Ji J. CXXC5 drove inflammation and ovarian cancer proliferation via transcriptional activation of ZNF143 and EGR1. Cell Signal 2024; 119:111180. [PMID: 38642782 DOI: 10.1016/j.cellsig.2024.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/28/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
CXXC5, a zinc-finger protein, is known for its role in epigenetic regulation via binding to unmethylated CpG islands in gene promoters. As a transcription factor and epigenetic regulator, CXXC5 modulates various signaling processes and acts as a key coordinator. Altered expression or activity of CXXC5 has been linked to various pathological conditions, including tumorigenesis. Despite its known role in cancer, CXXC5's function and mechanism in ovarian cancer are unclear. We analyzed multiple public databases and found that CXXC5 is highly expressed in ovarian cancer, with high expression correlating with poor patient prognosis. We show that CXXC5 expression is regulated by oxygen concentration and is a direct target of HIF1A. CXXC5 is critical for maintaining the proliferative potential of ovarian cancer cells, with knockdown decreasing and overexpression increasing cell proliferation. Loss of CXXC5 led to inactivation of multiple inflammatory signaling pathways, while overexpression activated these pathways. Through in vitro and in vivo experiments, we confirmed ZNF143 and EGR1 as downstream transcription factors of CXXC5, mediating its proliferative potential in ovarian cancer. Our findings suggest that the CXXC5-ZNF143/EGR1 axis forms a network driving ovarian cell proliferation and tumorigenesis, and highlight CXXC5 as a potential therapeutic target for ovarian cancer treatment.
Collapse
Affiliation(s)
- Ting Geng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qigang Sun
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Affiliated Hainan Hospital of Hainan Medical College, Haikou 570311, China
| | - Jingliang He
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yulu Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wenhao Cheng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jing Shen
- Department of Obstetrics and Gynecology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Meiqi Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Sen Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Kadirya Asan
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mengwei Song
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qi Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yizhuo Song
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ruotong Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xing Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuanyuan Ding
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Aixin Jing
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoqing Ye
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hongyu Ren
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Kaile Zeng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ying Zhou
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Boyu Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shaojie Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Shunfang Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
4
|
Abraham A, Samaniego-Castruita D, Paladino J, Han I, Ramesh P, Tran MT, Southern RM, Shukla A, Shukla V. Arid1a-dependent canonical BAF complex suppresses inflammatory programs to drive efficient Germinal Center B cell responses. RESEARCH SQUARE 2024:rs.3.rs-3871185. [PMID: 38313292 PMCID: PMC10836118 DOI: 10.21203/rs.3.rs-3871185/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Differentiating B cells in germinal centers (GC) require tightly coordinated transcriptional and epigenetic transitions to generate efficient humoral immune responses. The mammalian Brg1/Brm-associated factor (BAF) complexes are major regulators of nucleosomal remodeling, crucial for cellular differentiation and development, and are commonly mutated in several cancers, including GC-derived B cell lymphomas. However, the specific roles of distinct BAF complexes in GC B cell biology and generation of functional humoral immune responses are not well understood. Here, we show that the A-T Rich Interaction Domain 1a (Arid1a) containing canonical BAF (cBAF) complex is required for maintenance of GCs and therefore high affinity antibody responses. While Arid1a-deficient B cells undergo activation to initiate GC responses, they fail to sustain the GC program resulting in premature GC collapse. We discovered that Arid1a-dependent cBAF activity establishes permissive chromatin landscapes during B cell activation and is concomitantly required to suppress inflammatory gene programs to maintain transcriptional fidelity in early GC B cells. Interestingly, the inflammatory signatures instigated by Arid1a deficiency in early GC B cells recruited neutrophils and inflammatory monocytes and eventually disrupted GC homeostasis. Dampening of inflammatory cues with anti-inflammatory glucocorticoid receptor signaling rescued GC B cell differentiation of Arid1a-deficient B cells, thus highlighting a critical role of inflammation in impeding GC responses. In sum, our work identifies essential functions of Arid1a-dependent BAF activity in promoting efficient GC responses. These findings further support an emerging paradigm in which unrestrained inflammation limits GC-derived humoral responses, as reported in the context of severe bacterial and viral infections.
Collapse
Affiliation(s)
- Ajay Abraham
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
- Center for Human Immunobiology, Northwestern University, Chicago, Illinois, USA, 60611
| | | | - Jillian Paladino
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
| | - Isabella Han
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
| | - Prathyaya Ramesh
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
| | - Mi Thao Tran
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
| | - Rebecca M Southern
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
| | - Ashima Shukla
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
| | - Vipul Shukla
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA, 60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA, 60611
- Center for Human Immunobiology, Northwestern University, Chicago, Illinois, USA, 60611
| |
Collapse
|
5
|
Xu C, Huang KK, Law JH, Chua JS, Sheng T, Flores NM, Pizzi MP, Okabe A, Tan ALK, Zhu F, Kumar V, Lu X, Benitez AM, Lian BSX, Ma H, Ho SWT, Ramnarayanan K, Anene-Nzelu CG, Razavi-Mohseni M, Abdul Ghani SAB, Tay ST, Ong X, Lee MH, Guo YA, Ashktorab H, Smoot D, Li S, Skanderup AJ, Beer MA, Foo RSY, Wong JSH, Sanghvi K, Yong WP, Sundar R, Kaneda A, Prabhakar S, Mazur PK, Ajani JA, Yeoh KG, So JBY, Tan P. Comprehensive molecular phenotyping of ARID1A-deficient gastric cancer reveals pervasive epigenomic reprogramming and therapeutic opportunities. Gut 2023; 72:1651-1663. [PMID: 36918265 DOI: 10.1136/gutjnl-2022-328332] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVE Gastric cancer (GC) is a leading cause of cancer mortality, with ARID1A being the second most frequently mutated driver gene in GC. We sought to decipher ARID1A-specific GC regulatory networks and examine therapeutic vulnerabilities arising from ARID1A loss. DESIGN Genomic profiling of GC patients including a Singapore cohort (>200 patients) was performed to derive mutational signatures of ARID1A inactivation across molecular subtypes. Single-cell transcriptomic profiles of ARID1A-mutated GCs were analysed to examine tumour microenvironmental changes arising from ARID1A loss. Genome-wide ARID1A binding and chromatin profiles (H3K27ac, H3K4me3, H3K4me1, ATAC-seq) were generated to identify gastric-specific epigenetic landscapes regulated by ARID1A. Distinct cancer hallmarks of ARID1A-mutated GCs were converged at the genomic, single-cell and epigenomic level, and targeted by pharmacological inhibition. RESULTS We observed prevalent ARID1A inactivation across GC molecular subtypes, with distinct mutational signatures and linked to a NFKB-driven proinflammatory tumour microenvironment. ARID1A-depletion caused loss of H3K27ac activation signals at ARID1A-occupied distal enhancers, but unexpectedly gain of H3K27ac at ARID1A-occupied promoters in genes such as NFKB1 and NFKB2. Promoter activation in ARID1A-mutated GCs was associated with enhanced gene expression, increased BRD4 binding, and reduced HDAC1 and CTCF occupancy. Combined targeting of promoter activation and tumour inflammation via bromodomain and NFKB inhibitors confirmed therapeutic synergy specific to ARID1A-genomic status. CONCLUSION Our results suggest a therapeutic strategy for ARID1A-mutated GCs targeting both tumour-intrinsic (BRD4-assocatiated promoter activation) and extrinsic (NFKB immunomodulation) cancer phenotypes.
Collapse
Affiliation(s)
- Chang Xu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Kie Kyon Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Jia Hao Law
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Joy Shijia Chua
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Taotao Sheng
- Epigenetic and Epigenomic Regulation, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Natasha M Flores
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Melissa Pool Pizzi
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Angie Lay Keng Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Feng Zhu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vikrant Kumar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Xiaoyin Lu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ana Morales Benitez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Haoran Ma
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Shamaine Wei Ting Ho
- Epigenetic and Epigenomic Regulation, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Chukwuemeka George Anene-Nzelu
- Cardiovascular Research Institute, National University Health System, Singapore
- Human Genetics, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
- Montreal Heart Institute, Quebec, Québec, Canada
- Department of Medicine, University of Montreal, Quebec, Québec, Canada
| | - Milad Razavi-Mohseni
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Baltimore, Maryland, USA
| | | | - Su Ting Tay
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Xuewen Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Ming Hui Lee
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Yu Amanda Guo
- Computational and Systems Biology, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Duane Smoot
- Department of Internal Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Shang Li
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anders Jacobsen Skanderup
- Computational and Systems Biology, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Michael A Beer
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Baltimore, Maryland, USA
| | - Roger Sik Yin Foo
- Cardiovascular Research Institute, National University Health System, Singapore
- Human Genetics, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Kaushal Sanghvi
- Department of General Surgery, Tan Tock Seng Hospital, Singapore
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Health System, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Raghav Sundar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shyam Prabhakar
- Computational and Systems Biology, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Pawel Karol Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jaffer A Ajani
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore
- Department of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Jimmy Bok-Yan So
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore
- Division of Surgical Oncology, National University Cancer Institute, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Epigenetic and Epigenomic Regulation, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore
- SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore
- Cellular and Molecular Research, National Cancer Centre, Singapore
| |
Collapse
|
6
|
Kang X, Wang Q, Wu S, Wang C, Annaji M, Huang CH, Shen J, Chen P, Babu RJ. Liposomal DQ in Combination with Copper Inhibits ARID1A Mutant Ovarian Cancer Growth. Biomolecules 2023; 13:biom13050744. [PMID: 37238613 DOI: 10.3390/biom13050744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/06/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Therapeutic strategies for ARID1A-mutant ovarian cancers are limited. Higher basal reactive oxygen species (ROS) and lower basal glutathione (GSH) empower the aggressive proliferation ability and strong metastatic property of OCCCs, indicated by the increased marker of epithelial-mesenchymal transition (EMT) and serving the immunosuppressive microenvironment. However, the aberrant redox homeostasis also empowers the sensitivity of DQ-Lipo/Cu in a mutant cell line. DQ, a carbamodithioic acid derivative, generates dithiocarbamate (DDC) in response to ROS, and the chelation of Cu and DDC further generates ROS and provides a ROS cascade. Besides, quinone methide (QM) released by DQ targets the vulnerability of GSH; this effect, plus the increase of ROS, destroys the redox homeostasis and causes cancer cell death. Also importantly, the formed Cu(DDC)2 is a potent cytotoxic anti-cancer drug that successfully induces immunogenic cell death (ICD). The synergistic effect of EMT regulation and ICD will contribute to managing cancer metastasis and possible drug resistance. In summary, our DQ-Lipo/Cu shows promising inhibitory effects in cancer proliferation, EMT markers, and "heat" the immune response.
Collapse
Affiliation(s)
- Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Qi Wang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Siqi Wu
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Chuanyu Wang
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Manjusha Annaji
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Chung-Hui Huang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
7
|
Zheng X, Zong W, Li Z, Ma Y, Sun Y, Xiong Z, Wu S, Yang F, Zhao W, Bu C, Du Z, Xiao J, Bao Y. CCAS: One-stop and comprehensive annotation system for individual cancer genome at multi-omics level. Front Genet 2022; 13:956781. [PMID: 36035123 PMCID: PMC9403316 DOI: 10.3389/fgene.2022.956781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Due to the explosion of cancer genome data and the urgent needs for cancer treatment, it is becoming increasingly important and necessary to easily and timely analyze and annotate cancer genomes. However, tumor heterogeneity is recognized as a serious barrier to annotate cancer genomes at the individual patient level. In addition, the interpretation and analysis of cancer multi-omics data rely heavily on existing database resources that are often located in different data centers or research institutions, which poses a huge challenge for data parsing. Here we present CCAS (Cancer genome Consensus Annotation System, https://ngdc.cncb.ac.cn/ccas/#/home), a one-stop and comprehensive annotation system for the individual patient at multi-omics level. CCAS integrates 20 widely recognized resources in the field to support data annotation of 10 categories of cancers covering 395 subtypes. Data from each resource are manually curated and standardized by using ontology frameworks. CCAS accepts data on single nucleotide variant/insertion or deletion, expression, copy number variation, and methylation level as input files to build a consensus annotation. Outputs are arranged in the forms of tables or figures and can be searched, sorted, and downloaded. Expanded panels with additional information are used for conciseness, and most figures are interactive to show additional information. Moreover, CCAS offers multidimensional annotation information, including mutation signature pattern, gene set enrichment analysis, pathways and clinical trial related information. These are helpful for intuitively understanding the molecular mechanisms of tumors and discovering key functional genes.
Collapse
Affiliation(s)
- Xinchang Zheng
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Wenting Zong
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaohua Li
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingke Ma
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Yanling Sun
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Zhuang Xiong
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Song Wu
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Yang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Congfan Bu
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Zhenglin Du
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Jingfa Xiao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Jingfa Xiao, ; Yiming Bao,
| | - Yiming Bao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Jingfa Xiao, ; Yiming Bao,
| |
Collapse
|
8
|
Jafari H, Hussain S, Campbell MJ. Nuclear Receptor Coregulators in Hormone-Dependent Cancers. Cancers (Basel) 2022; 14:2402. [PMID: 35626007 PMCID: PMC9139824 DOI: 10.3390/cancers14102402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/10/2022] Open
Abstract
Nuclear receptors (NRs) function collectively as a transcriptional signaling network that mediates gene regulatory actions to either maintain cellular homeostasis in response to hormonal, dietary and other environmental factors, or act as orphan receptors with no known ligand. NR complexes are large and interact with multiple protein partners, collectively termed coregulators. Coregulators are essential for regulating NR activity and can dictate whether a target gene is activated or repressed by a variety of mechanisms including the regulation of chromatin accessibility. Altered expression of coregulators contributes to a variety of hormone-dependent cancers including breast and prostate cancers. Therefore, understanding the mechanisms by which coregulators interact with and modulate the activity of NRs provides opportunities to develop better prognostic and diagnostic approaches, as well as novel therapeutic targets. This review aims to gather and summarize recent studies, techniques and bioinformatics methods used to identify distorted NR coregulator interactions that contribute as cancer drivers in hormone-dependent cancers.
Collapse
Affiliation(s)
- Hedieh Jafari
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA;
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Shahid Hussain
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Moray J. Campbell
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
9
|
Feoktistov AV, Georgieva SG, Soshnikova NV. Role of the SWI/SNF Chromatin Remodeling Complex in Regulation of Inflammation Gene Expression. Mol Biol 2022. [DOI: 10.1134/s0026893322020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Liang Q, Wu J, Zhao X, Shen S, Zhu C, Liu T, Cui X, Chen L, Wei C, Cheng P, Cheng W, Wu A. Establishment of tumor inflammasome clusters with distinct immunogenomic landscape aids immunotherapy. Am J Cancer Res 2021; 11:9884-9903. [PMID: 34815793 PMCID: PMC8581407 DOI: 10.7150/thno.63202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/06/2021] [Indexed: 12/22/2022] Open
Abstract
Inflammasome signaling is a reaction cascade that influences immune response and cell death. Although the inflammasomes participate in tumorigenesis, their role as an oncogenic booster or a tumor suppresser is still controversial. Therefore, it is important to comprehensively investigate the inflammasome signaling status across various cancers to clarify its clinical and therapeutic significance. Methods: A total of 9881 patients across 33 tumor types from The Cancer Genome Atlas database were included in this study. Five gene sets were identified to step-wisely profile inflammasome signaling. Unsupervised clustering was used for sample classification based on gene set enrichment. Machine learning and in vitro and in vivo experiments were used to confirm the implications of inflammasome classification. Results: A hundred and forty-one inflammasome-signaling-related genes were identified to construct five gene sets representing the sensing, activation, and termination steps of the inflammasome signaling. Six inflammasome clusters were robustly established with distinct molecular, biological, clinical, and therapeutic features. Importantly, clusters with inflammasome signaling activation were found to be immunosuppressive and resistant to ICB treatment. Inflammasome inhibition reverted the therapeutic failure of ICB in inflammasome-activated tumors. Moreover, based on the proposed classification and therapeutic implications, an open website was established to provide tumor patients with comprehensive information on inflammasome signaling. Conclusions: Our study conducted a systematical investigation on inflammasome signaling in various tumor types. These findings highlight the importance of inflammasome evaluation in tumor classification and provide a foundation for improving relevant therapeutic regimens.
Collapse
|
11
|
Sun D, Teng F, Xing P, Li J. ARID1A serves as a receivable biomarker for the resistance to EGFR-TKIs in non-small cell lung cancer. Mol Med 2021; 27:138. [PMID: 34715776 PMCID: PMC8555283 DOI: 10.1186/s10020-021-00400-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
ARID1A is a key component of the SWI/SNF chromatin remodeling complexes which is important for the maintaining of biological processes of cells. Recent studies had uncovered the potential role of ARID1A alterations or expression loss in the therapeutic sensitivity of cancers, but the studies in this field requires to be further summarized and discussed. Therefore, we proposed a series of mechanisms related to the resistance to EGFR-TKIs induced by ARID1A alterations or expression loss and the potential therapeutic strategies to overcome the resistance based on published studies. It suggested that ARID1A alterations or expression loss might be the regulators in PI3K/Akt, JAK/STAT and NF-κB signaling pathways which are strongly associated with the resistance to EGFR-TKIs in NSCLC patients harboring sensitive EGFR mutations. Besides, ARID1A alterations or expression loss could lead to the resistance to EGFR-TKIs via a variety of processes during the tumorigenesis and development of cancers, including epithelial to mesenchymal transition, angiogenesis and the inhibition of apoptosis. Based on the potential mechanisms related to ARID1A, we summarized that the small molecular inhibitors targeting ARID1A or PI3K/Akt pathway, the anti-angiogenic therapy and immune checkpoint inhibitors could be used for the supplementary treatment for EGFR-TKIs among NSCLC patients harboring the concomitant alterations of sensitive EGFR mutations and ARID1A.
Collapse
Affiliation(s)
- Dantong Sun
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fei Teng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Puyuan Xing
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Junling Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
12
|
Odnokoz O, Wavelet-Vermuse C, Hophan SL, Bulun S, Wan Y. ARID1 proteins: from transcriptional and post-translational regulation to carcinogenesis and potential therapeutics. Epigenomics 2021; 13:809-823. [PMID: 33890484 PMCID: PMC8738980 DOI: 10.2217/epi-2020-0414] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The ARID1 proteins are mutually exclusive subunits of the BRG1/BRM-associated factor (BAF) complexes that play an important role in chromatin remodeling and regulate many fundamental cell functions. The role of ARID1s is well defined as a tumor-suppressive. The cancer cells evolve different mechanisms to downregulate ARID1s and inactivate their functions. ARID1s are frequently mutated in human cancer. The recent findings of ARID1A/B downregulation at transcriptional and translational levels along with their low levels in human cancers indicate the significance of regulatory mechanisms of ARID1s in cancers. In this review, we present the current knowledge on the regulation and alterations of ARID1 protein expression in human cancers and indicate the importance of regulators of ARID1s as a prognostic marker and in potential therapeutic strategies.
Collapse
Affiliation(s)
- Olena Odnokoz
- Department of Obstetrics & Gynecology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Pharmacology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Cindy Wavelet-Vermuse
- Department of Obstetrics & Gynecology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Pharmacology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shelby L Hophan
- Department of Obstetrics & Gynecology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Pharmacology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Serdar Bulun
- Department of Obstetrics & Gynecology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yong Wan
- Department of Obstetrics & Gynecology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Pharmacology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Author for correspondence: Tel.: +1 312 503 2769;
| |
Collapse
|
13
|
Remodeling of the ARID1A tumor suppressor. Cancer Lett 2020; 491:1-10. [PMID: 32738271 DOI: 10.1016/j.canlet.2020.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
In recent years, AT-rich interactive domain-containing protein 1A (ARID1A) has been widely accepted as a bona fide tumor suppressor due to its essential role in preventing tumorigenesis and tumor progression in both mouse and human contexts. ARID1A shows high mutation frequencies in both cancers and preneoplastic lesions. The loss of ARID1A expression in cancer cells leads to increases in cell proliferation, invasion and migration and reductions in cell apoptosis and chemosensitivity. The tumor-suppressive role of ARID1A is mainly attributed to its regulation of gene transcription, which can be induced either directly by chromatin remodeling or indirectly by affecting histone modifications. ARID1A also acts independently of its cardinal transcription-regulating mechanisms, which include interfering with protein-protein interactions. Interestingly, nonmutational mechanisms, such as regulation by DNA hypermethylation, microRNAs, and ubiquitinases/deubiquitinases, have provided another perspective on ARID1A inactivation in cancer. Since the critical tumor-suppressive role of ARID1A has been revealed, several studies have attempted to identify synthetic lethal targets with ARID1A mutation/inactivation as an alternative strategy for cancer treatment.
Collapse
|
14
|
Bai S, Wei L, Bai X, Gong Z, Yang J, Wei S. FRBI suppresses carcinogenesis of uterine cancers by regulating expressions of FHIT, PTEN and ARID1A. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.102107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Chang S, Wang LHC, Chen BS. Investigating Core Signaling Pathways of Hepatitis B Virus Pathogenesis for Biomarkers Identification and Drug Discovery via Systems Biology and Deep Learning Method. Biomedicines 2020; 8:biomedicines8090320. [PMID: 32878239 PMCID: PMC7555687 DOI: 10.3390/biomedicines8090320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B Virus (HBV) infection is a major cause of morbidity and mortality worldwide. However, poor understanding of its pathogenesis often gives rise to intractable immune escape and prognosis recurrence. Thus, a valid systematic approach based on big data mining and genome-wide RNA-seq data is imperative to further investigate the pathogenetic mechanism and identify biomarkers for drug design. In this study, systems biology method was applied to trim false positives from the host/pathogen genetic and epigenetic interaction network (HPI-GEN) under HBV infection by two-side RNA-seq data. Then, via the principal network projection (PNP) approach and the annotation of KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, significant biomarkers related to cellular dysfunctions were identified from the core cross-talk signaling pathways as drug targets. Further, based on the pre-trained deep learning-based drug-target interaction (DTI) model and the validated pharmacological properties from databases, i.e., drug regulation ability, toxicity, and sensitivity, a combination of promising multi-target drugs was designed as a multiple-molecule drug to create more possibility for the treatment of HBV infection. Therefore, with the proposed systems medicine discovery and repositioning procedure, we not only shed light on the etiologic mechanism during HBV infection but also efficiently provided a potential drug combination for therapeutic treatment of Hepatitis B.
Collapse
Affiliation(s)
- Shen Chang
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Correspondence:
| |
Collapse
|
16
|
Luo Q, Wu X, Chang W, Zhao P, Zhu X, Chen H, Nan Y, Luo A, Zhou X, Su D, Jiao W, Liu Z. ARID1A Hypermethylation Disrupts Transcriptional Homeostasis to Promote Squamous Cell Carcinoma Progression. Cancer Res 2020; 80:406-417. [PMID: 32015157 DOI: 10.1158/0008-5472.can-18-2446] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 11/16/2022]
Abstract
Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complexes have a mutation rate of approximately 20% in human cancer, and ARID1A is the most frequently mutated component. However, some components of SWI/SNF complexes, including ARID1A, exhibit a very low mutation rate in squamous cell carcinoma (SCC), and their role in SCC remains unknown. Here, we demonstrate that the low expression of ARID1A in SCC is the result of promoter hypermethylation. Low levels of ARID1A were associated with a poor prognosis. ARID1A maintained transcriptional homeostasis through both direct and indirect chromatin-remodeling mechanisms. Depletion of ARID1A activated an oncogenic transcriptome that drove SCC progression. The anti-inflammatory natural product parthenolide was synthetically lethal to ARID1A-depleted SCC cells due to its inhibition of both HDAC1 and oncogenic signaling. These findings support the clinical application of parthenolide to treat patients with SCC with low ARID1A expression. SIGNIFICANCE: This study reveals novel inactivation mechanisms and tumor-suppressive roles of ARID1A in SCC and proposes parthenolide as an effective treatment for patients with SCC with low ARID1A expression.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Movement
- Cell Proliferation
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA Methylation
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Progression
- Gene Expression Regulation, Neoplastic
- Histone Deacetylase 1/genetics
- Histone Deacetylase 1/metabolism
- Homeostasis
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Nude
- Mice, SCID
- Prognosis
- Sesquiterpenes/pharmacology
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Qingyu Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaowei Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wan Chang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaolin Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yabing Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aiping Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuantong Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, Zhejiang, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Shandong, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
17
|
Yoshino J, Akiyama Y, Shimada S, Ogura T, Ogawa K, Ono H, Mitsunori Y, Ban D, Kudo A, Yamaoka S, Tanabe M, Tanaka S. Loss of ARID1A induces a stemness gene ALDH1A1 expression with histone acetylation in the malignant subtype of cholangiocarcinoma. Carcinogenesis 2020; 41:734-742. [PMID: 31665232 DOI: 10.1093/carcin/bgz179] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/21/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
Genomic analyses have recently discovered the malignant subtype of human intrahepatic cholangiocarcinoma (ICC) characterized by frequent mutations of chromatin remodeling gene ARID1A; however, the biological and molecular functions still remain obscure. We here examined the clinical and biological significances of ARID1A deficiency in human ICC. Immunohistochemical analysis demonstrated that the loss of ARID1A was an independent prognostic factor for overall survival of ICC patients (P = 0.023). We established ARID1A-knockout (KO) cells by using the CRISPR/Cas9 system from two human cholangiocarcinoma cell lines. ARID1A-KO cells exhibited significantly enhanced migration, invasion, and sphere formation activity. Microarray analysis revealed that ALDH1A1, a stemness gene, was the most significantly elevated genes in ARID1A-KO cells. In addition, ALDH enzymatic activity as a hallmark of cancer stem cells was markedly high in the KO cells. ARID1A and histone deacetylase 1 were directly recruited to the ALDH1A1 promoter region in cholangiocarcinoma cells with undetectable ALDH1A1 expression by chromatin immunoprecipitation assay. The histone H3K27 acetylation level at the ALDH1A1 promoter region was increased in cells when ARID1A was disrupted (P < 0.01). Clinically, inverse correlation between ARID1A and ALDH1A1 expression was also identified in primary ICC (P = 0.018), and ARID1A-negative and ALDH1A1-positve ICCs showed worse prognosis than only ARID1A-negative cases (P = 0.002). In conclusion, ARID1A may function as a tumor suppressor in ICC through transcriptional downregulation of ALDH1A1 expression with decreasing histone H3K27 acetylation. Our studies provide the basis for the development of new epigenetic approaches to ARID1A-negative ICC. Immunohistochemical loss of ARID1A is an independent prognostic factor in intrahepatic cholangiocarcinoma patients. ARID1A recruits HDAC1 to the promoter region of ALDH1A1, a stemness gene, and epigenetically suppresses ALDH1A1 expression with decreasing histone H3K27 acetylation in cholangiocarcinoma cells.
Collapse
Affiliation(s)
- Jun Yoshino
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Toshiro Ogura
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Kosuke Ogawa
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Hiroaki Ono
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Yusuke Mitsunori
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Daisuke Ban
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Atsushi Kudo
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Shoji Yamaoka
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo
| |
Collapse
|
18
|
Wang Y, Hoang L, Ji JX, Huntsman DG. SWI/SNF Complex Mutations in Gynecologic Cancers: Molecular Mechanisms and Models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:467-492. [PMID: 31977292 DOI: 10.1146/annurev-pathmechdis-012418-012917] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The SWI/SNF (mating type SWItch/Sucrose NonFermentable) chromatin remodeling complexes interact with histones and transcription factors to modulate chromatin structure and control gene expression. These evolutionarily conserved multisubunit protein complexes are involved in regulating many biological functions, such as differentiation and cell proliferation. Genomic studies have revealed frequent mutations of genes encoding multiple subunits of the SWI/SNF complexes in a wide spectrum of cancer types, including gynecologic cancers. These SWI/SNF mutations occur at different stages of tumor development and are restricted to unique histologic types of gynecologic cancers. Thus, SWI/SNF mutations have to function in the appropriate tissue and cell context to promote gynecologic cancer initiation and progression. In this review, we summarize the current knowledge of SWI/SNF mutations in the development of gynecologic cancers to provide insights into both molecular pathogenesis and possible treatment implications for these diseases.
Collapse
Affiliation(s)
- Yemin Wang
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada; , , .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada; .,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia V6Z 2K8, Canada
| | - Lien Hoang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada;
| | - Jennifer X Ji
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada; , , .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada;
| | - David G Huntsman
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada; , , .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada; .,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia V6Z 2K8, Canada
| |
Collapse
|
19
|
Qian S, Wang W, Li M. Transcriptional factor Yin Yang 1 facilitates the stemness of ovarian cancer via suppressing miR-99a activity through enhancing its deacetylation level. Biomed Pharmacother 2020; 126:110085. [PMID: 32199224 DOI: 10.1016/j.biopha.2020.110085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 02/08/2023] Open
Abstract
The promoting effects of transcriptional factor Yin Yang 1 (YY1) have been confirmed in various tumors, however, its roles in ovarian cancer (OC) progression are still unclear. Here, Kaplan-Meier Plotter analysis was used to determine the correlation between YY1 expression and the survival of OC patients. It was found that YY1 expression was negatively correlated with the overall survival, progression-free survival and post-progression survival of OC patients. Functional experiments indicated that overexpression of YY1 facilitated the stemness of OC cells, while YY1 knockdown reduced it. MiRNAs-based RNA-sequencing analysis showed that miR-99a was the mostly upregulated miRNA in RNA extracted from OC cells with YY1 knockdown. Mechanistic studies revealed that YY1 recruited (Histone deacetylase) HDAC5 to the promoter of miR-99a, and subsequently enhanced miR-99a deacetylation level and decreased miR-99a level. Additionally, overexpression of miR-99a or knockdown of HDAC5 attenuated the promoting effects of YY1 on the stemness of OC cells. This work firstly indicated a novel YY1/miR-99a axis, which promotes the stemness of OC cells.
Collapse
Affiliation(s)
- Sumin Qian
- The Second Department of Gynecology, Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, 061000, China.
| | - Wei Wang
- The Second Department of Gynecology, Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, 061000, China
| | - Meng Li
- The Fifth Department of Neurology, The Brain Hospital of Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, 061000, China
| |
Collapse
|
20
|
Gatchalian J, Liao J, Maxwell MB, Hargreaves DC. Control of Stimulus-Dependent Responses in Macrophages by SWI/SNF Chromatin Remodeling Complexes. Trends Immunol 2020; 41:126-140. [PMID: 31928914 PMCID: PMC6995420 DOI: 10.1016/j.it.2019.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022]
Abstract
Epigenetic regulation plays an important role in controlling the activation, timing, and resolution of innate immune responses in macrophages. Previously, SWI/SNF chromatin remodeling was found to define the kinetics and selectivity of gene activation in response to microbial ligands; however, these studies do not reflect a comprehensive understanding of SWI/SNF complex regulation. In 2018, a new variant of the SWI/SNF complex was identified with unknown function in inflammatory gene regulation. Here, we summarize the biochemical and genomic properties of SWI/SNF complex variants and the potential for increased regulatory control of innate immune transcriptional programs in light of such biochemical diversity. Finally, we review the development of SWI/SNF complex chemical inhibitors and degraders that could be used to modulate immune responses.
Collapse
Affiliation(s)
- Jovylyn Gatchalian
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jingwen Liao
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biological Sciences Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Matthew B Maxwell
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Biological Sciences Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Diana C Hargreaves
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
21
|
Trizzino M, Barbieri E, Petracovici A, Wu S, Welsh SA, Owens TA, Licciulli S, Zhang R, Gardini A. The Tumor Suppressor ARID1A Controls Global Transcription via Pausing of RNA Polymerase II. Cell Rep 2019; 23:3933-3945. [PMID: 29949775 DOI: 10.1016/j.celrep.2018.05.097] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/20/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022] Open
Abstract
AT-rich interactive domain-containing proteins 1A and 1B (ARID1A and ARID1B) are mutually exclusive subunits of the chromatin remodeler SWI/SNF. ARID1A is the most frequently mutated chromatin regulator across all cancers, and ovarian clear cell carcinoma (OCCC) carries the highest prevalence of ARID1A mutations (∼57%). Despite evidence implicating ARID1A in tumorigenesis, the mechanism remains elusive. Here, we demonstrate that ARID1A binds active regulatory elements in OCCC. Depletion of ARID1A represses RNA polymerase II (RNAPII) transcription but results in modest changes to accessibility. Specifically, pausing of RNAPII is severely impaired after loss of ARID1A. Compromised pausing results in transcriptional dysregulation of active genes, which is compensated by upregulation of ARID1B. However, a subset of ARID1A-dependent genes is not rescued by ARID1B, including many p53 and estrogen receptor (ESR1) targets. Our results provide insight into ARID1A-mediated tumorigenesis and unveil functions of SWI/SNF in modulating RNAPII dynamics.
Collapse
Affiliation(s)
- Marco Trizzino
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Elisa Barbieri
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Ana Petracovici
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Shuai Wu
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Sarah A Welsh
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Tori A Owens
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Silvia Licciulli
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Rugang Zhang
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Alessandro Gardini
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Bai Y, Ahmad D, Wang T, Cui G, Li W. Research Advances in the Use of Histone Deacetylase Inhibitors for Epigenetic Targeting of Cancer. Curr Top Med Chem 2019; 19:995-1004. [PMID: 30686256 DOI: 10.2174/1568026619666190125145110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022]
Abstract
The causes and progression of cancer are controlled by epigenetic processes. The mechanisms involved in epigenetic regulation of cancer development, gene expression, and signaling pathways have been studied. Histone deacetylases (HDACs) have a major impact on chromatin remodeling and epigenetics, making their inhibitors a very interesting area of cancer research. This review comprehensively summarizes the literature regarding HDAC inhibitors (HDACis) as an anticancer treatment published in the past few years. In addition, we explain the mechanisms of their therapeutic effects on cancer. An analysis of the beneficial characteristics and drawbacks of HDACis also is presented, which will assist preclinical and clinical researchers in the design of future experiments to improve the therapeutic efficacy of these drugs and circumvent the challenges in the path of successful epigenetic therapy. Future therapeutic strategies may include a combination of HDACis and chemotherapy or other inhibitors to target multiple oncogenic signaling pathways.
Collapse
Affiliation(s)
- Yu Bai
- School of Pharmacy, Jilin Medical University, Jilin, China.,Center for Biomaterials, Jilin Medical University, Jilin, China
| | - Daid Ahmad
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Ting Wang
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guihua Cui
- School of Pharmacy, Jilin Medical University, Jilin, China.,Center for Biomaterials, Jilin Medical University, Jilin, China
| | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin, China.,Center for Biomaterials, Jilin Medical University, Jilin, China.,Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
ARID1A and PI3-kinase pathway mutations in the endometrium drive epithelial transdifferentiation and collective invasion. Nat Commun 2019; 10:3554. [PMID: 31391455 PMCID: PMC6686004 DOI: 10.1038/s41467-019-11403-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/03/2019] [Indexed: 01/06/2023] Open
Abstract
ARID1A and PI3-Kinase (PI3K) pathway alterations are common in neoplasms originating from the uterine endometrium. Here we show that monoallelic loss of ARID1A in the mouse endometrial epithelium is sufficient for vaginal bleeding when combined with PI3K activation. Sorted mutant epithelial cells display gene expression and promoter chromatin signatures associated with epithelial-to-mesenchymal transition (EMT). We further show that ARID1A is bound to promoters with open chromatin, but ARID1A loss leads to increased promoter chromatin accessibility and the expression of EMT genes. PI3K activation partially rescues the mesenchymal phenotypes driven by ARID1A loss through antagonism of ARID1A target gene expression, resulting in partial EMT and invasion. We propose that ARID1A normally maintains endometrial epithelial cell identity by repressing mesenchymal cell fates, and that coexistent ARID1A and PI3K mutations promote epithelial transdifferentiation and collective invasion. Broadly, our findings support a role for collective epithelial invasion in the spread of abnormal endometrial tissue. PIK3CA mutations and ARID1A loss co-exist in endometrial neoplasms. Here, the authors show that these co-mutations drive gene expression profiles correlated with differential chromatin accessibility and ARID1A binding in the endometrial epithelium, resulting in partial EMT and myometrial invasion.
Collapse
|
24
|
Bui CB, Le HK, Vu DM, Truong KDD, Nguyen NM, Ho MAN, Truong DQ. ARID1A-SIN3A drives retinoic acid-induced neuroblastoma differentiation by transcriptional repression of TERT. Mol Carcinog 2019; 58:1998-2007. [PMID: 31365169 DOI: 10.1002/mc.23091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 12/29/2022]
Abstract
Aggressive, high-risk neuroblastoma (NB) exhibits an immature differentiation state, profound epigenetic dysregulation and high telomerase activity. It has been suggested that aggressive NB may be treatable by inducing differentiation whereas therapeutic targeting of telomerase is under investigation for multiple cancer types. While epigenetic regulation of the telomerase reverse transcriptase (TERT) promoter has been described in high-risk NB, the exact molecular mechanisms are still not completely understood. Here we used quantitative real-time polymerase chain reaction (PCR), chromatin immunoprecipitation qPCR, quantitative telomeric repeat amplification protocol, and immunoblot techniques to investigate epigenetic regulation of TERT in wild-type and genetically modified NB cell lines. We demonstrated that TERT expression is reduced during 13-cis retinoic acid-induced NB differentiation and that this inversely correlated with increased expression of AT-rich interaction domain 1A (ARID1A), a subunit of the SWItch/sucrose nonfermentable chromatin remodeling complex. We showed that ARID1A directly caused suppression of TERT and was reliant on DNA binding and co-occupancy of the TERT promoter by the SIN3 transcription regulator family member A (SIN3A) repressor complex allowing NB differentiation to proceed. Finally, using data from NB patient cohorts, we reported a significant correlation between low ARID1A expression, elevated expression of TERT, and poorly differentiated, high-risk NB. These results provide insights into a key epigenetic pathway responsible for modulating TERT-driven NB progression, which could represent a target for therapeutic intervention.
Collapse
Affiliation(s)
- Chi-Bao Bui
- Laboratory of Neuroscience and Immunotherapy, University of Medicine and Pharmacy at Hochiminh city, Ho Chi Minh City, Vietnam.,Department of Molecular Oncology, City Children's Hospital, Ho Chi Minh City, Vietnam
| | - Hoa Kim Le
- Laboratory of Neuroscience and Immunotherapy, University of Medicine and Pharmacy at Hochiminh city, Ho Chi Minh City, Vietnam
| | - Diem My Vu
- Laboratory of Neuroscience and Immunotherapy, University of Medicine and Pharmacy at Hochiminh city, Ho Chi Minh City, Vietnam.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Kieu-Diem Dinh Truong
- Laboratory of Neuroscience and Immunotherapy, University of Medicine and Pharmacy at Hochiminh city, Ho Chi Minh City, Vietnam
| | - Nhat Manh Nguyen
- Laboratory of Neuroscience and Immunotherapy, University of Medicine and Pharmacy at Hochiminh city, Ho Chi Minh City, Vietnam
| | - Minh Anh Nguyen Ho
- Department of Molecular and Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Korea
| | - Dinh Quang Truong
- Department of Molecular Oncology, City Children's Hospital, Ho Chi Minh City, Vietnam
| |
Collapse
|
25
|
Gong Z, Shen X, Yang J, Yang K, Bai S, Wei S. FSH receptor binding inhibitor up-regulates ARID1A and PTEN genes associated with ovarian cancers in mice. Braz J Med Biol Res 2019; 52:e8381. [PMID: 31241714 PMCID: PMC6596365 DOI: 10.1590/1414-431x20198381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/23/2019] [Indexed: 11/21/2022] Open
Abstract
Experiments were conducted to determine if the follicle-stimulating hormone (FSH) receptor binding inhibitor (FRBI) impacts the expression levels of AT-rich interactive domain-containing protein 1A (ARID1A) and phosphatase and tensin homolog (PTEN) in ovaries and blood, as well as expressions of follicle-stimulating hormone cognate receptor (FSHR) gene and proteins. Mice in FRBI-10, FRBI-20, FRBI-30, and FRBI-40 groups were intramuscularly injected with 10, 20, 30, and 40 mg FRBI/kg, respectively, for five consecutive days. Western blotting and qRT-PCR were utilized to determine expression levels of ARID1A and PTEN proteins and mRNAs. Serum ARID1A and PTEN concentrations of the FRBI-40 group were higher than the control group (CG) and FSH group (P<0.05). FSHR mRNA levels of FRBI-20, FRBI-30, and FRBI-40 groups were lower than that of CG and FSH groups on day 15 (P<0.05 or P<0.01). Expression levels of FSHR proteins of FRBI-30 and FRBI-40 groups were lower than those of CG and FSH groups (P<0.05). Levels of ARID1A and PTEN proteins of the FRBI-30 group were greater than CG on days 20 and 30 (P<0.05). FRBI doses had significant positive correlations to levels of ARID1A and PTEN proteins. Additionally, ARID1A and PTEN had negative correlations to FSHR mRNAs and proteins. A high dose of FRBI could promote the expression levels of ARID1A and PTEN proteins in ovarian tissues. FRBI increased serum concentrations of ARID1A and PTEN. However, FRBI depressed expression levels of FSHR mRNAs and proteins in mouse ovaries.
Collapse
Affiliation(s)
- Zhuandi Gong
- Medicine College Hospital, Northwest Minzu University, Lanzhou, China
| | - Xiaoyun Shen
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China.,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Juan Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Kun Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Shengju Bai
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Suocheng Wei
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
26
|
Yang R, Wei Z, Wu S. Lumiflavin increases the sensitivity of ovarian cancer stem-like cells to cisplatin by interfering with riboflavin. J Cell Mol Med 2019; 23:5329-5339. [PMID: 31187586 PMCID: PMC6652702 DOI: 10.1111/jcmm.14409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
Here, we used lumiflavin, an inhibitor of riboflavin, as a new potential therapeutic chemosensitizer to ovarian cancer stem‐like cells (CSCs). This study demonstrates that the enrichment of riboflavin in CSCs is an important cause of its resistance to chemotherapy. Lumiflavin can effectively reduce the riboflavin enrichment in CSCs and sensitize the effect of cisplatin Diamminedichloroplatinum (DDP) on CSCs. In this study, CSCs of human ovarian cancer cell lines HO8910 were separated using a magnetic bead (CD133+). We also show the overexpression of the mRNA and protein of riboflavin transporter 2 and the high content of riboflavin in CSCs compared to non‐CSCs (NON‐CSCs). Moreover, CSCs were less sensitive to DDP than NON‐CSCs, whereas, the synergistic effect of lumiflavin and DDP on CSCs was more sensitive than NON‐CSCs. Further research showed that lumiflavin had synergistic effects with DDP on CSCs in increasing mitochondrial function damage and apoptosis rates and decreasing clonic function. In addition, we found that the combination of DDP and lumiflavin therapy in vivo has a synergistic cytotoxic effect on an ovarian cancer nude mice model by enhancing the DNA‐damage response and increasing the apoptotic protein expression. Notably, the effect of lumiflavin is associated with reduced riboflavin concentration, and riboflavin could reverse the effect of DDP in vitro and in vivo. Accordingly, we conclude that lumiflavin interfered with the riboflavin metabolic pathways, resulting in a significant increase in tumour sensitivity to DDP therapy. Our study suggests that lumiflavin may be a novel treatment alternative for ovarian cancer and its recurrence.
Collapse
Affiliation(s)
- Ruhui Yang
- Department of Pharmacology, College of Medicine and Health, Lishui University, Lishui, China
| | - Zhe Wei
- Department of Rehabilitation Medicine, College of Medicine and Health, Lishui University, Lishui, China
| | - Songquan Wu
- Department of Immunology, College of Medicine and Health, Lishui University, Lishui, China
| |
Collapse
|
27
|
Orlando KA, Nguyen V, Raab JR, Walhart T, Weissman BE. Remodeling the cancer epigenome: mutations in the SWI/SNF complex offer new therapeutic opportunities. Expert Rev Anticancer Ther 2019; 19:375-391. [PMID: 30986130 DOI: 10.1080/14737140.2019.1605905] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Cancer genome sequencing studies have discovered mutations in members of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex in nearly 25% of human cancers. The SWI/SNF complex, first discovered in S. cerevisiae, shows strong conservation from yeast to Drosophila to mammals, contains approximately 10-12 subunits and regulates nucleosome positioning through the energy generated by its ATPase subunits. The unexpected finding of frequent mutations in the complex has fueled studies to identify the mechanisms that drive tumor development and the accompanying therapeutic vulnerabilities. Areas covered: In the review, we focus upon the potential roles different SWI/SNF subunit mutations play in human oncogenesis, their common and unique mechanisms of transformation and the potential for translating these mechanisms into targeted therapies for SWI/SNF-mutant tumors. Expert opinion: We currently have limited insights into how mutations in different SWI/SNF subunits drive the development of human tumors. Because the SWI/SNF complex participates in a broad range of normal cellular functions, defining specific oncogenic pathways has proved difficult. In addition, therapeutic options for SWI/SNF-mutant cancers have mainly evolved from high-throughput screens of cell lines with mutations in different subunits. Future studies should follow a more coherent plan to pinpoint common vulnerabilities among these tumors.
Collapse
Affiliation(s)
- Krystal A Orlando
- a Department of Pathology and Laboratory Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Vinh Nguyen
- b Curriculum in Toxicology and Environmental Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Jesse R Raab
- c Department of Genetics , University of North Carolina , Chapel Hill , NC , USA
| | - Tara Walhart
- d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA
| | - Bernard E Weissman
- a Department of Pathology and Laboratory Medicine , University of North Carolina , Chapel Hill , NC , USA.,b Curriculum in Toxicology and Environmental Medicine , University of North Carolina , Chapel Hill , NC , USA.,d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
28
|
Fukumoto T, Magno E, Zhang R. SWI/SNF Complexes in Ovarian Cancer: Mechanistic Insights and Therapeutic Implications. Mol Cancer Res 2018; 16:1819-1825. [PMID: 30037854 DOI: 10.1158/1541-7786.mcr-18-0368] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/05/2018] [Accepted: 07/06/2018] [Indexed: 12/24/2022]
Abstract
Ovarian cancer remains the most lethal gynecologic malignancy in the developed world. Despite the unprecedented progress in understanding the genetics of ovarian cancer, cures remain elusive due to a lack of insight into the mechanisms that can be targeted to develop new therapies. SWI/SNF chromatin remodeling complexes are genetically altered in approximately 20% of all human cancers. SWI/SNF alterations vary in different histologic subtypes of ovarian cancer, with ARID1A mutation occurring in approximately 50% of ovarian clear cell carcinomas. Given the complexity and prevalence of SWI/SNF alterations, ovarian cancer represents a paradigm for investigating the molecular basis and exploring therapeutic strategies for SWI/SNF alterations. This review discusses the recent progress in understanding SWI/SNF alterations in ovarian cancer and specifically focuses on: (i) ARID1A mutation in endometriosis-associated clear cell and endometrioid histologic subtypes of ovarian cancer; (ii) SMARCA4 mutation in small cell carcinoma of the ovary, hypercalcemic type; and (iii) amplification/upregulation of CARM1, a regulator of BAF155, in high-grade serous ovarian cancer. Understanding the molecular underpinning of SWI/SNF alterations in different histologic subtypes of ovarian cancer will provide mechanistic insight into how these alterations contribute to ovarian cancer. Finally, the review discusses how these newly gained insights can be leveraged to develop urgently needed therapeutic strategies in a personalized manner.
Collapse
Affiliation(s)
- Takeshi Fukumoto
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Elizabeth Magno
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
29
|
Caumanns JJ, Wisman GBA, Berns K, van der Zee AGJ, de Jong S. ARID1A mutant ovarian clear cell carcinoma: A clear target for synthetic lethal strategies. Biochim Biophys Acta Rev Cancer 2018; 1870:176-184. [PMID: 30025943 DOI: 10.1016/j.bbcan.2018.07.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022]
Abstract
SWI/SNF chromatin remodeling complexes play an important role in the epigenetic regulation of chromatin structure and gene transcription. Mutual exclusive subunits in the SWI/SNF complex include the DNA targeting members ARID1A and ARID1B as well as the ATPases SMARCA2 and SMARCA4. SWI/SNF complexes are mutated across many cancer types. The highest mutation incidence is found in ARID1A, primarily consisting of deleterious mutations. Current advances have reported synthetic lethal interactions with the loss of ARID1A in several cancer types. In this review, we discuss targets that are only important for tumor growth in an ARID1A mutant context. We focus on synthetic lethal strategies with ARID1A loss in ovarian clear cell carcinoma, a cancer with the highest ARID1A mutation incidence (46-57%). ARID1A directed lethal strategies that can be exploited clinically include targeting of the DNA repair proteins PARP and ATR, and the epigenetic factors EZH2, HDAC2, HDAC6 and BRD2.
Collapse
Affiliation(s)
- Joseph J Caumanns
- Department of Gynecologic Oncology, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - G Bea A Wisman
- Department of Gynecologic Oncology, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Katrien Berns
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Ate G J van der Zee
- Department of Gynecologic Oncology, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Steven de Jong
- Department of Medical Oncology, Cancer Research Centre Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
30
|
Meier-Soelch J, Jurida L, Weber A, Newel D, Kim J, Braun T, Schmitz ML, Kracht M. RNAi-Based Identification of Gene-Specific Nuclear Cofactor Networks Regulating Interleukin-1 Target Genes. Front Immunol 2018; 9:775. [PMID: 29755455 PMCID: PMC5934416 DOI: 10.3389/fimmu.2018.00775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/28/2018] [Indexed: 12/22/2022] Open
Abstract
The potent proinflammatory cytokine interleukin (IL)-1 triggers gene expression through the NF-κB signaling pathway. Here, we investigated the cofactor requirements of strongly regulated IL-1 target genes whose expression is impaired in p65 NF-κB-deficient murine embryonic fibroblasts. By two independent small-hairpin (sh)RNA screens, we examined 170 genes annotated to encode nuclear cofactors for their role in Cxcl2 mRNA expression and identified 22 factors that modulated basal or IL-1-inducible Cxcl2 levels. The functions of 16 of these factors were validated for Cxcl2 and further analyzed for their role in regulation of 10 additional IL-1 target genes by RT-qPCR. These data reveal that each inducible gene has its own (quantitative) requirement of cofactors to maintain basal levels and to respond to IL-1. Twelve factors (Epc1, H2afz, Kdm2b, Kdm6a, Mbd3, Mta2, Phf21a, Ruvbl1, Sin3b, Suv420h1, Taf1, and Ube3a) have not been previously implicated in inflammatory cytokine functions. Bioinformatics analysis indicates that they are components of complex nuclear protein networks that regulate chromatin functions and gene transcription. Collectively, these data suggest that downstream from the essential NF-κB signal each cytokine-inducible target gene has further subtle requirements for individual sets of nuclear cofactors that shape its transcriptional activation profile.
Collapse
Affiliation(s)
- Johanna Meier-Soelch
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| | - Liane Jurida
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| | - Axel Weber
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| | - Doris Newel
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| | - Johnny Kim
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
31
|
Luo Q, Wu X, Zhang Y, Shu T, Ding F, Chen H, Zhao P, Chang W, Zhu X, Liu Z. ARID1A ablation leads to multiple drug resistance in ovarian cancer via transcriptional activation of MRP2. Cancer Lett 2018; 427:9-17. [PMID: 29660381 DOI: 10.1016/j.canlet.2018.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023]
Abstract
Multiple Drug Resistance (MDR) of ovarian cancer is a severe trouble for clinical treatment and always contributes to a bad prognosis. AT-rich interaction domain 1 A (ARID1A) has been recognized as a bona fide tumor suppressor gene in recent years, with the highest mutation rate in ovarian cancer. Previous study illustrated that ARID1A expression is negatively correlated with chemoresistance of ovarian cancer cases. However, the specific role of ARID1A in chemoresistance of ovarian cancer remains elusive. In this study, we showed that ARID1A knockdown in ovarian cancer cells significantly reduced their apoptosis rate and led to MDR, while ectopic expression of ARID1A showed opposite effects. ARID1A depletion transcriptionally activates the expression of multidrug resistance-associated protein 2 (MRP2) following chromatin remodeling. Furthermore, IHC analysis of ovarian cancer samples confirmed that ARID1A expression was strong negatively correlated with MRP2 expression. Both ARID1A and MRP2 expression levels are correlated with sensitivity to platinum. Collectively, our results illustrated that ARID1A loss in ovarian cancer leads to MDR through upregulation of MRP2, providing an opportunity to overcome the ARID1A loss induced chemoresistance of ovarian cancer by targeting MRP2.
Collapse
Affiliation(s)
- Qingyu Luo
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaowei Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yiping Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tong Shu
- Department of Gynecological Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fang Ding
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Pengfei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wan Chang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaolin Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
32
|
Di Nisio V, Rossi G, Palmerini MG, Macchiarelli G, Tiboni GM, Cecconi S. Increased rounds of gonadotropin stimulation have side effects on mouse fallopian tubes and oocytes. Reproduction 2018; 155:245-250. [PMID: 29301979 DOI: 10.1530/rep-17-0687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/04/2018] [Indexed: 11/08/2022]
Abstract
In this study, it was evaluated if increased rounds of gonadotropin stimulation could affect in mice: (i) expression levels of proteins regulating cell cycle and DNA repair in fallopian tubes and (ii) meiotic spindle morphology of ovulated oocytes. To this end, adult female mice were subjected or not (Control) to 6 or 8 rounds of gonadotropin stimulation. Ovulated oocytes were incubated with anti A/B tubulin to evaluate spindle morphology. Fallopian tubes were analyzed to detect Cyclin D1, phospho-p53/p53, phospho-AKT/AKT, phospho-GSK3B/GSK3B, SOX2, OCT3/4, phospho-B-catenin/B-catenin, phospho-CHK1 and phospho-H2A.X protein levels. After 6 rounds, Cyclin D1, p53 and phospho-p53 contents were higher than Control. After 8 rounds, the contents of phosphorylated AKT, GSK3B and p53 as well as of total p53, Cyclin D1 and OCT3/4 significantly increased in comparison with Control. Conversely, SOX2 and B-catenin were similarly expressed among all experimental groups. The finding that phospho-CHK1 and phospho-H2A.X protein levels were undetectable supported the absence of extensive DNA damage. Oocytes number and percentage of normal meiotic spindles drastically decreased from 6 rounds onward. Altogether, our results demonstrated that 6 and 8 cycles of gonadotropin stimulation reduce mouse reproductive performances by inducing over-expression and over-activation of proteins controlling cell cycle progression in fallopian tubes and by impairing oocyte spindle.
Collapse
Affiliation(s)
- Valentina Di Nisio
- Department of LifeHealth and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gianna Rossi
- Department of LifeHealth and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maria Grazia Palmerini
- Department of LifeHealth and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Guido Macchiarelli
- Department of LifeHealth and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gian Mario Tiboni
- Department of Medicine and Aging ScienceUniversity 'G. D'Annunzio', Chieti-Pescara, Chieti, Italy
| | - Sandra Cecconi
- Department of LifeHealth and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
33
|
Kelso TWR, Porter DK, Amaral ML, Shokhirev MN, Benner C, Hargreaves DC. Chromatin accessibility underlies synthetic lethality of SWI/SNF subunits in ARID1A-mutant cancers. eLife 2017; 6:30506. [PMID: 28967863 PMCID: PMC5643100 DOI: 10.7554/elife.30506] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023] Open
Abstract
ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, is frequently mutated in cancer. Deficiency in its homolog ARID1B is synthetically lethal with ARID1A mutation. However, the functional relationship between these homologs has not been explored. Here, we use ATAC-seq, genome-wide histone modification mapping, and expression analysis to examine colorectal cancer cells lacking one or both ARID proteins. We find that ARID1A has a dominant role in maintaining chromatin accessibility at enhancers, while the contribution of ARID1B is evident only in the context of ARID1A mutation. Changes in accessibility are predictive of changes in expression and correlate with loss of H3K4me and H3K27ac marks, nucleosome spacing, and transcription factor binding, particularly at growth pathway genes including MET. We find that ARID1B knockdown in ARID1A mutant ovarian cancer cells causes similar loss of enhancer architecture, suggesting that this is a conserved function underlying the synthetic lethality between ARID1A and ARID1B.
Collapse
Affiliation(s)
- Timothy W R Kelso
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, California, United States
| | - Devin K Porter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, California, United States
| | - Maria Luisa Amaral
- The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, Salk Institute for Biological Studies, California, United States
| | - Maxim N Shokhirev
- The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, Salk Institute for Biological Studies, California, United States
| | - Christopher Benner
- Department of Medicine, University of California San Diego, California, United States
| | - Diana C Hargreaves
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, California, United States
| |
Collapse
|
34
|
Lessey BA, Kim JJ. Endometrial receptivity in the eutopic endometrium of women with endometriosis: it is affected, and let me show you why. Fertil Steril 2017; 108:19-27. [PMID: 28602477 PMCID: PMC5629018 DOI: 10.1016/j.fertnstert.2017.05.031] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/23/2017] [Indexed: 12/14/2022]
Abstract
The endometrium maintains complex controls on proliferation and apoptosis as part of repetitive menstrual cycles that prepare the endometrium for the window of implantation and pregnancy. The reliance on inflammatory mechanisms for both implantation and menstruation creates the opportunity in the setting of endometriosis for establishment of chronic inflammation that is disruptive to endometrial receptivity, causing both infertility and abnormal bleeding. Clinically, there can be little doubt that the endometrium of women with endometriosis is less receptive to embryo implantation, and strong evidence exists to suggest that endometrial changes are associated with decreased cycle fecundity as a result of this disease. Here we provide unifying concepts regarding those changes and how they are coordinated to promote progesterone resistance and estrogen dominance through aberrant cell signaling pathways and reduced expression of key homeostatic proteins in eutopic endometrium of women with endometriosis.
Collapse
Affiliation(s)
- Bruce A Lessey
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Greenville Health System, Greenville, South Carolina.
| | - J Julie Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| |
Collapse
|
35
|
Lakshminarasimhan R, Andreu-Vieyra C, Lawrenson K, Duymich CE, Gayther SA, Liang G, Jones PA. Down-regulation of ARID1A is sufficient to initiate neoplastic transformation along with epigenetic reprogramming in non-tumorigenic endometriotic cells. Cancer Lett 2017; 401:11-19. [PMID: 28483516 DOI: 10.1016/j.canlet.2017.04.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 12/28/2022]
Abstract
The chromatin remodeler AT-Rich Interactive Domain 1A (ARID1A) is frequently mutated in ovarian clear cell carcinoma (OCCC) and endometriosis precursor lesions. Here, we show that knocking down ARID1A in an immortalized endometriosis cell line is sufficient to induce phenotypic changes indicative of neoplastic transformation as evidenced by higher efficiency of anchorage-independent growth, increased propensity to adhere to collagen, and greater capacity to invade basement membrane extract in vitro. ARID1A knockdown is associated with expression dysregulation of 99 target genes, and many of these expression changes are also observed in primary OCCC tissues. Further, pathway analysis indicates these genes fall within networks highly relevant to tumorigenesis including integrin and paxillin pathways. We demonstrate that the down-regulation of ARID1A does not markedly alter global chromatin accessibility or DNA methylation but unexpectedly, we find strong increases in the active H3K27ac mark in promoter regions and decreases of H3K27ac at potential enhancers. Taken together, these data provide evidence that ARID1A mutation can be an early stage event in the oncogenic transformation of endometriosis cells giving rise to OCCC.
Collapse
Affiliation(s)
- Ranjani Lakshminarasimhan
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Claudia Andreu-Vieyra
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kate Lawrenson
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite 290W, Los Angeles, CA, USA
| | - Christopher E Duymich
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Simon A Gayther
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite 290W, Los Angeles, CA, USA; Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gangning Liang
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Peter A Jones
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|