1
|
Zhang C, Liu X, Gu C, Su Y, Lv J, Liu Y, Gao Y, Chen H, Xu N, Xiao J, Xu Z, Su W. Histone deacetylases facilitate Th17-cell differentiation and pathogenicity in autoimmune uveitis via CDK6/ID2 axis. J Adv Res 2025; 72:633-652. [PMID: 39107200 DOI: 10.1016/j.jare.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024] Open
Abstract
INTRODUCTION Autoimmune uveitis (AU) is a prevalent ocular autoimmune disease leading to significant visual impairment. However, underlying pathogenesis of AU required to develop more efficient therapy remain unclear. METHODS We isolated peripheral blood mononuclear cells (PBMCs) from AU patients and performed single-cell RNA sequencing (scRNA-seq). Besides, experimental autoimmune uveitis (EAU) model was established and treated with histone deacetylase inhibitor (HDACi) Belinostat or vehicle. We extracted immune cells from Blank, EAU, and HDACi-treated EAU mice and used scRNA-seq, flow cytometry, siRNA, specific inhibitors, and adoptive transfer experiments to explore the role of HDACs and its downstream potential molecular mechanisms in the immune response of EAU and AU. RESULTS We found highly expressed histone deacetylases (HDACs) family in AU patients and identified it as a key factor related to CD4+ effector T cell differentiation in the pathogenesis of AU. Our further studies showed that targeted inhibition of HDACs effectively alleviated EAU, restored its Th17/Treg balance, and reduced inflammatory gene expression, especially in CD4+ T cells. Post-HDACs inhibition, Treg proportions increased with enhanced immunomodulatory effects. Importantly, HDACs exhibited a positive promoting role on Th17 cells. Based on scRNA-seq screening and application of knock-down siRNAs and specific inhibitors in vitro and vivo, we identified CDK6 as a key downstream molecule regulated by HDAC1/3/6 through acetyl-histone H3/p53/p21 axis, which is involved in Th17 pathogenicity and EAU development. Additionally, HDACs-regulated CDK6 formed a positive loop with ID2, inducing PIM1 upregulation, promoting Th17 cell differentiation and pathogenicity, and correlates with AU progression. CONCLUSION Based on the screening of clinical samples and downstream molecular functional validation experiments, we revealed a driving role for HDACs and the HDACs-regulated CDK6/ID2 axis in Th17 cell differentiation and pathogenicity in AU, proposing a promising therapeutic strategy.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Chenyang Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuhan Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jianjie Lv
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yidan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Hui Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Nanwei Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Clinical Medicine (Eight-Year Program), West China School of Medicine, Sichuan University, Chengdu 610044, China
| | - Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Wenru Su
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
2
|
Kraus Z, Birla S, Powell T, Petrovskaya S, Mills F, Dement-Brown J, Culhane C, Dokhaee K, Tolnay M. Secretory IgA binding to FCRL3 triggers shared inflammatory cytokine secretion by human regulatory T cells and effector T cells. J Leukoc Biol 2025; 117:qiaf054. [PMID: 40313182 DOI: 10.1093/jleuko/qiaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/14/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025] Open
Abstract
Several human lymphocyte subsets express the novel secretory IgA receptor FCRL3 (Fc receptor-like 3). Secretory IgA binding to FCRL3 diminishes the inhibitory capacity of regulatory T cells and promotes a T helper 17-like phenotype. Here, we report that in CD4+ regulatory T cells and CD8+ terminal effector T cells secretory IgA induced a shared inflammatory gene signature that included PTGS2 encoding COX2, and the prototypic inflammatory cytokine genes IL1A, IL1B, and IL8. Secretory IgA in regulatory T cells also elevated gene transcripts required for lineage identity and function. Secretory IgA promoted interleukin (IL)-1β, IL-6, IL-8, IL-10, interferon γ, and tumor necrosis factor α protein secretion by both T cell types. Moreover, secretory IgA promoted NLRP3 inflammasome activation in regulatory T cells. Pharmacologic COX2 and NLRP3 inhibitors partially rescued the inhibitory competence of regulatory T cells, suggesting respective mechanistic roles. We propose that secretory IgA provokes a coordinated inflammatory response in regulatory and effector T cells to facilitate mucosal pathogen clearance.
Collapse
Affiliation(s)
- Zachary Kraus
- Office of Pharmaceutical Quality Assessment III, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Shama Birla
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Taylor Powell
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Svetlana Petrovskaya
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Frederick Mills
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Jessica Dement-Brown
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Casey Culhane
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Kimia Dokhaee
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Mate Tolnay
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| |
Collapse
|
3
|
Satooka H, Nakamura Y, Hirata T. ROS-dependent SOCS3 upregulation disrupts regulatory T cell stability during autoimmune disease development. Redox Biol 2025; 82:103590. [PMID: 40090133 PMCID: PMC11957609 DOI: 10.1016/j.redox.2025.103590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025] Open
Abstract
Autoimmune diseases including rheumatoid arthritis (RA) are often associated with high levels of reactive oxygen species (ROS); however, the ROS targets in autoimmunity are diverse and unclear. Using collagen-induced arthritis (CIA) mice as a model for RA, we report that antioxidants markedly suppress joint inflammation, antibody production, and effector T cell responses. We found that the frequency of CD4+ regulatory T cells (Tregs) was reduced in CIA mice, which was reversed by antioxidant treatment, and SOCS3, known to be associated with Treg instability, was upregulated in Tregs from both RA patients and CIA mice. Mechanistically, SOCS3 upregulation was induced by ROS-dependent PTEN oxidation and the resultant Akt/mTOR/STAT3 activation. We further showed that the source of ROS involved in this pathway is NADPH oxidase 2 (Nox2). Nox2 expression was upregulated in Tregs from CIA mice, and Nox2 transduction induced a decrease in Treg frequency that depended on SOCS3 upregulation. This study thus provides a mechanistic understanding of ROS-induced Treg instability and suggests that ROS-dependent disruption of Treg homeostasis underlies the development and progression of autoimmune diseases.
Collapse
Affiliation(s)
- Hiroki Satooka
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Yuzuki Nakamura
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Takako Hirata
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
4
|
Zhang P, Pei B, Yi C, Akanyibah FA, Mao F. The role of suppressor of cytokine signaling 3 in inflammatory bowel disease and its associated colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167578. [PMID: 39571630 DOI: 10.1016/j.bbadis.2024.167578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Inflammatory bowel disease (IBD) and colorectal cancer (CRC), as two of the major human intestinal diseases, provide challenges for the medical field. Suppressor of cytokine signaling 3 (SOCS3), a protein molecule that negatively regulates cytokine signaling through multiple pathways, is involved in the regulation of various inflammatory diseases and tumors. In IBD, SOCS3 acts on a variety of cells to repair mucosal damage and balance the immune response, including epithelial cells, macrophages, dendritic cells, neutrophils, and T cells. In CRC, SOCS3 is inextricably linked to tumor cell proliferation, invasion, metastasis, and drug resistance. Therefore, it is crucial to systematically investigate the pathogenic involvement of SOCS3 in IBD and CRC. This article reviews the mechanisms and pathways by which SOCS3 is involved in the inhibition of IBD and the mitigation of CRC, and details the therapeutic options for targeting SOCS3.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China; Institute of Hematology, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223800, Jiangsu, PR China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang 212028, PR China
| | - Francis Atim Akanyibah
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China
| | - Fei Mao
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, Jiangsu, PR China; Institute of Hematology, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
5
|
Poveda-Garavito N, Orozco Castaño CA, Torres-Llanos Y, Cruz-Rodriguez N, Parra-Medina R, Quijano S, Zabaleta J, Combita AL. ID1 and ID3 functions in the modulation of the tumour immune microenvironment in adult patients with B-cell acute lymphoblastic leukaemia. Front Immunol 2024; 15:1473909. [PMID: 39676870 PMCID: PMC11638060 DOI: 10.3389/fimmu.2024.1473909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/07/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction B-cell acute lymphoblastic leukemia (B-ALL) in adults often presents a poor prognosis. ID1 and ID3 genes have been identified as predictors of poor response in Colombian adult B-ALL patients, contributing to cancer development. In various cancer models, these genes have been associated with immune regulatory populations within the tumor immune microenvironment (TIME). B-ALL progression alters immune cell composition and the bone marrow (BM) microenvironment, impacting disease progression and therapy response. This study investigates the relationship between ID1 and ID3 expression, TIME dynamics, and immune evasion mechanisms in adult B-ALL patients. Methods This exploratory study analysed BM samples from 10 B-ALL adult patients diagnosed at the National Cancer Institute of Colombia. First, RT-qPCR was used to assess ID1 and ID3 expression in BM tumour cells. Flow cytometry characterised immune populations in the TIME. RNA-seq evaluated immune genes associatedwith B-ALL immune response, while xCell and CytoSig analysed TIME cell profiles and cytokines. Pathway analysis, gene ontology, and differential gene expression (DEGs) were examined, with functional enrichment analysis performed using KEGG ontology. Results Patients were divided into two groups based on ID1 and ID3 expression, namely basal and overexpression. A total of 94 differentially expressed genes were identified between these groups, with top overexpressed genes associated with neutrophil pathways. Gene set enrichment analysis revealed increased expression of genes associated with neutrophil degranulation, immune response-related neutrophil activation, and neutrophil-mediated immunity. These findings correlated with xCell data. Overexpression group showed significant differences in neutrophils, monocytes and CD4+ naive T cells compared to basal group patients. Microenvironment and immune scores were also significantly different, consistent with the flow cytometry results. Elevated cytokine levels associated with neutrophil activation supported these findings. Validation was performed using the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) TCGA B-ALL cohorts. Discussion These findings highlight significant differences in ID1 and ID3 expression levels and their impact on TIME populations, particularly neutrophil-related pathways. The results suggest a potential role for ID1 and ID3 in immune evasion in adult B-ALL, mediated through neutrophil activation and immune regulation.
Collapse
Affiliation(s)
- Nathaly Poveda-Garavito
- Grupo de Investigación en Biología del Cáncer - Instituto Nacional de Cancerología, Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología - Instituto Nacional de Cancerología, Bogotá, Colombia
- Maestría en Inmunología, Departamento de Microbiología - Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos A Orozco Castaño
- Grupo de Investigación en Biología del Cáncer - Instituto Nacional de Cancerología, Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología - Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Yulieth Torres-Llanos
- Grupo de Investigación en Biología del Cáncer - Instituto Nacional de Cancerología, Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología - Instituto Nacional de Cancerología, Bogotá, Colombia
- Laboratorio clínico, Hospital Universitario San Ignacio, Bogotá, Colombia
| | | | - Rafael Parra-Medina
- Departamento de Patología, Instituto Nacional de Cancerología, Bogotá, Colombia
- Research Institute, Fundación Universitaria de Ciencias de la Salud - FUCS, Bogotá, Colombia
| | - Sandra Quijano
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Alba Lucia Combita
- Grupo de Investigación en Biología del Cáncer - Instituto Nacional de Cancerología, Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología - Instituto Nacional de Cancerología, Bogotá, Colombia
- Maestría en Inmunología, Departamento de Microbiología - Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
6
|
Sumida TS, Lincoln MR, He L, Park Y, Ota M, Oguchi A, Son R, Yi A, Stillwell HA, Leissa GA, Fujio K, Murakawa Y, Kulminski AM, Epstein CB, Bernstein BE, Kellis M, Hafler DA. An autoimmune transcriptional circuit drives FOXP3 + regulatory T cell dysfunction. Sci Transl Med 2024; 16:eadp1720. [PMID: 39196959 PMCID: PMC12051482 DOI: 10.1126/scitranslmed.adp1720] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/02/2024] [Indexed: 08/30/2024]
Abstract
Autoimmune diseases, among the most common disorders of young adults, are mediated by genetic and environmental factors. Although CD4+FOXP3+ regulatory T cells (Tregs) play a central role in preventing autoimmunity, the molecular mechanism underlying their dysfunction is unknown. Here, we performed comprehensive transcriptomic and epigenomic profiling of Tregs in the autoimmune disease multiple sclerosis (MS) to identify critical transcriptional programs regulating human autoimmunity. We found that up-regulation of a primate-specific short isoform of PR domain zinc finger protein 1 (PRDM1-S) induces expression of serum and glucocorticoid-regulated kinase 1 (SGK1) independent from the evolutionarily conserved long PRDM1, which led to destabilization of forkhead box P3 (FOXP3) and Treg dysfunction. This aberrant PRDM1-S/SGK1 axis is shared among other autoimmune diseases. Furthermore, the chromatin landscape profiling in Tregs from individuals with MS revealed enriched activating protein-1 (AP-1)/interferon regulatory factor (IRF) transcription factor binding as candidate upstream regulators of PRDM1-S expression and Treg dysfunction. Our study uncovers a mechanistic model where the evolutionary emergence of PRDM1-S and epigenetic priming of AP-1/IRF may be key drivers of dysfunctional Tregs in autoimmune diseases.
Collapse
Affiliation(s)
- Tomokazu S. Sumida
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew R. Lincoln
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M6R 1B5, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON M6R 1B5, Canada
| | - Liang He
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Yongjin Park
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Akiko Oguchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8303, Japan
| | - Raku Son
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8303, Japan
| | - Alice Yi
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Helen A. Stillwell
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Greta A. Leissa
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8303, Japan
| | - Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | | | - Bradley E. Bernstein
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - David A. Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
7
|
Tremain AC, Wallace RP, Lorentz KM, Thornley TB, Antane JT, Raczy MR, Reda JW, Alpar AT, Slezak AJ, Watkins EA, Maulloo CD, Budina E, Solanki A, Nguyen M, Bischoff DJ, Harrington JL, Mishra R, Conley GP, Marlin R, Dereuddre-Bosquet N, Gallouët AS, LeGrand R, Wilson DS, Kontos S, Hubbell JA. Synthetically glycosylated antigens for the antigen-specific suppression of established immune responses. Nat Biomed Eng 2023; 7:1142-1155. [PMID: 37679570 DOI: 10.1038/s41551-023-01086-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/02/2023] [Indexed: 09/09/2023]
Abstract
Inducing antigen-specific tolerance during an established immune response typically requires non-specific immunosuppressive signalling molecules. Hence, standard treatments for autoimmunity trigger global immunosuppression. Here we show that established antigen-specific responses in effector T cells and memory T cells can be suppressed by a polymer glycosylated with N-acetylgalactosamine (pGal) and conjugated to the antigen via a self-immolative linker that allows for the dissociation of the antigen on endocytosis and its presentation in the immunoregulatory environment. We show that pGal-antigen therapy induces antigen-specific tolerance in a mouse model of experimental autoimmune encephalomyelitis (with programmed cell-death-1 and the co-inhibitory ligand CD276 driving the tolerogenic responses), as well as the suppression of antigen-specific responses to vaccination against a DNA-based simian immunodeficiency virus in non-human primates. Our findings show that pGal-antigen therapy invokes mechanisms of immune tolerance to resolve antigen-specific inflammatory T-cell responses and suggest that the therapy may be applicable across autoimmune diseases.
Collapse
Affiliation(s)
- Andrew C Tremain
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Rachel P Wallace
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | | | | | - Jennifer T Antane
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Michal R Raczy
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Joseph W Reda
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Aaron T Alpar
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Anna J Slezak
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Elyse A Watkins
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Chitavi D Maulloo
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Erica Budina
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Ani Solanki
- Animal Resources Center, University of Chicago, Chicago, IL, USA
| | - Mindy Nguyen
- Animal Resources Center, University of Chicago, Chicago, IL, USA
| | | | | | | | | | - Romain Marlin
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Anne-Sophie Gallouët
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Roger LeGrand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - D Scott Wilson
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA.
| | | | - Jeffrey A Hubbell
- Committee on Immunology, University of Chicago, Chicago, IL, USA.
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
8
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 315] [Impact Index Per Article: 157.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
9
|
Yoganathan K, Yan A, Rocha J, Trotman-Grant A, Mohtashami M, Wells L, Zúñiga-Pflücker JC, Anderson MK. Regulation of the Signal-Dependent E Protein HEBAlt Through a YYY Motif Is Required for Progression Through T Cell Development. Front Immunol 2022; 13:848577. [PMID: 35990644 PMCID: PMC9385190 DOI: 10.3389/fimmu.2022.848577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The E protein transcription factors E2A and HEB are critical for many developmental processes, including T cell development. We have shown that the Tcf12 locus gives rise to two distinct HEB proteins, with alternative (HEBAlt) and canonical (HEBCan) N-terminal domains, which are co-expressed during early T cell development. While the functional domains of HEBCan have been well studied, the nature of the HEBAlt-specific (Alt) domain has been obscure. Here we provide compelling evidence that the Alt domain provides a site for the molecular integration of cytokine signaling and E protein activity. Our results indicate that phosphorylation of a unique YYY motif in the Alt domain increases HEBAlt activity by 10-fold, and that this increase is dependent on Janus kinase activity. To enable in vivo studies of HEBAlt in the T cell context, we generated ALT-Tg mice, which can be induced to express a HA-tagged HEBAlt coding cassette in the presence of Cre recombinases. Analysis of ALT-Tg mice on the Vav-iCre background revealed a minor change in the ratio of ISP cells to CD8+ SP cells, and a mild shift in the ratio of T cells to B cells in the spleen, but otherwise the thymus, spleen, and bone marrow lymphocyte subsets were comparable at steady state. However, kinetic analysis of T cell development in OP9-DL4 co-cultures revealed a delay in early T cell development and a partial block at the DN to DP transition when HEBAlt levels or activity were increased. We also observed that HEBCan and HEBAlt displayed significant differences in protein stability that were resolved in the thymocyte context. Finally, a proteomic screen identified STAT1 and Xpo1 as potential members of HEBAlt-containing complexes in thymocytes, consistent with JAK-induced activation of HEBAlt accompanied by translocation to the nucleus. Thus, our results show that the Alt domain confers access to multiple layers of post-translational control to HEBAlt that are not available to HEBCan, and thus may serve as a rheostat to tune E protein activity levels as cells move through different thymic signaling environments during T cell development.
Collapse
Affiliation(s)
- Kogulan Yoganathan
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Anqi Yan
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Juliana Rocha
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ashton Trotman-Grant
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Lisa Wells
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Michele K. Anderson
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Michele K. Anderson,
| |
Collapse
|
10
|
Anderson MK. Shifting gears: Id3 enables recruitment of E proteins to new targets during T cell development and differentiation. Front Immunol 2022; 13:956156. [PMID: 35983064 PMCID: PMC9378783 DOI: 10.3389/fimmu.2022.956156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Shifting levels of E proteins and Id factors are pivotal in T cell commitment and differentiation, both in the thymus and in the periphery. Id2 and Id3 are two different factors that prevent E proteins from binding to their target gene cis-regulatory sequences and inducing gene expression. Although they use the same mechanism to suppress E protein activity, Id2 and Id3 play very different roles in T cell development and CD4 T cell differentiation. Id2 imposes an irreversible choice in early T cell precursors between innate and adaptive lineages, which can be thought of as a railway switch that directs T cells down one path or another. By contrast, Id3 acts in a transient fashion downstream of extracellular signals such as T cell receptor (TCR) signaling. TCR-dependent Id3 upregulation results in the dislodging of E proteins from their target sites while chromatin remodeling occurs. After the cessation of Id3 expression, E proteins can reassemble in the context of a new genomic landscape and molecular context that allows induction of different E protein target genes. To describe this mode of action, we have developed the “Clutch” model of differentiation. In this model, Id3 upregulation in response to TCR signaling acts as a clutch that stops E protein activity (“clutch in”) long enough to allow shifting of the genomic landscape into a different “gear”, resulting in accessibility to different E protein target genes once Id3 decreases (“clutch out”) and E proteins can form new complexes on the DNA. While TCR signal strength and cytokine signaling play a role in both peripheral and thymic lineage decisions, the remodeling of chromatin and E protein target genes appears to be more heavily influenced by the cytokine milieu in the periphery, whereas the outcome of Id3 activity during T cell development in the thymus appears to depend more on the TCR signal strength. Thus, while the Clutch model applies to both CD4 T cell differentiation and T cell developmental transitions within the thymus, changes in chromatin accessibility are modulated by biased inputs in these different environments. New emerging technologies should enable a better understanding of the molecular events that happen during these transitions, and how they fit into the gene regulatory networks that drive T cell development and differentiation.
Collapse
Affiliation(s)
- Michele K. Anderson
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Michele K. Anderson,
| |
Collapse
|
11
|
Hidaka R, Miyazaki K, Miyazaki M. The E-Id Axis Instructs Adaptive Versus Innate Lineage Cell Fate Choice and Instructs Regulatory T Cell Differentiation. Front Immunol 2022; 13:890056. [PMID: 35603170 PMCID: PMC9120639 DOI: 10.3389/fimmu.2022.890056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Immune responses are primarily mediated by adaptive and innate immune cells. Adaptive immune cells, such as T and B cells, evoke antigen-specific responses through the recognition of specific antigens. This antigen-specific recognition relies on the V(D)J recombination of immunoglobulin (Ig) and T cell receptor (TCR) genes mediated by recombination-activating gene (Rag)1 and Rag2 (Rag1/2). In addition, T and B cells employ cell type-specific developmental pathways during their activation processes, and the regulation of these processes is strictly regulated by the transcription factor network. Among these factors, members of the basic helix-loop-helix (bHLH) transcription factor mammalian E protein family, including E12, E47, E2-2, and HEB, orchestrate multiple adaptive immune cell development, while their antagonists, Id proteins (Id1-4), function as negative regulators. It is well established that a majority of T and B cell developmental trajectories are regulated by the transcriptional balance between E and Id proteins (the E-Id axis). E2A is critically required not only for B cell but also for T cell lineage commitment, whereas Id2 and Id3 enforce the maintenance of naïve T cells and naïve regulatory T (Treg) cells. Here, we review the current knowledge of E- and Id-protein function in T cell lineage commitment and Treg cell differentiation.
Collapse
|
12
|
Seitz C, Joly AL, Fang F, Frith K, Gray P, Andersson J. The FOXP3 full-length isoform controls the lineage-stability of CD4 +FOXP3 + regulatory T cells. Clin Immunol 2022; 237:108957. [PMID: 35247545 DOI: 10.1016/j.clim.2022.108957] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 02/01/2023]
Abstract
The transcription factor FOXP3 is essential for CD4 + FOXP3+ regulatory T (Treg) cell development and function. Human FOXP3 exists in distinct isoforms and alterations in isoform expression is associated with inflammatory disease progression, however, the exact functions of FOXP3 isoforms remain poorly understood. Herein we used flow cytometry and RNA-sequencing to analyze subsets of Treg cells from two IPEX patients, and a healthy carrier, of a recently described FOXP3 mutation (c.305delT). This mutation is located in exon 2 and results in the loss of the full-length FOXP3 isoform. Treg cells lacking full-length FOXP3 are found at lower-than-expected frequencies. This loss cannot be explained solely by altered thymic output, changes in proliferation, peripheral induction of Treg cells, or apoptosis. Instead, fulllength FOXP3 control a distinct genetic program, involving the previously identified FOXP3 regulators ID3, BCL6 and eIF4E, that upholds Treg cell lineage stability, while it appears nonessential for Treg cell activation.
Collapse
Affiliation(s)
- Christina Seitz
- Institute of Environmental Medicine, Karolinska Institutet, Sweden
| | - Anne-Laure Joly
- Department of Clinical Neuroscience, Karolinska Institutet, Sweden
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Sweden
| | - Katie Frith
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Australia; School of Women's and Children's Health, Faculty of Medicine, UNSW, Australia
| | - Paul Gray
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Australia; School of Women's and Children's Health, Faculty of Medicine, UNSW, Australia
| | - John Andersson
- Institute of Environmental Medicine, Karolinska Institutet, Sweden.
| |
Collapse
|
13
|
Lipp JJ, Wang L, Yang H, Yao F, Harrer N, Müller S, Berezowska S, Dorn P, Marti TM, Schmid RA, Hegedüs B, Souabni A, Carotta S, Pearson MA, Sommergruber W, Kocher GJ, Hall SR. Functional and molecular characterization of PD1+ tumor-infiltrating lymphocytes from lung cancer patients. Oncoimmunology 2022; 11:2019466. [PMID: 35154905 PMCID: PMC8837234 DOI: 10.1080/2162402x.2021.2019466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Antibody-mediated cancer immunotherapy targets inhibitory surface molecules, such as PD1, PD-L1, and CTLA-4, aiming to re-invigorate dysfunctional T cells. We purified and characterized tumor-infiltrating lymphocytes (TILs) and their patient-matched non-tumor counterparts from treatment-naïve NSCLC patient biopsies to evaluate the effect of PD1 expression on the functional and molecular profiles of tumor-resident T cells. We show that PD1+ CD8+ TILs have elevated expression of the transcriptional regulator ID3 and that the cytotoxic potential of CD8 T cells can be improved by knocking down ID3, defining it as a potential regulator of T cell effector function. PD1+ CD4+ memory TILs display transcriptional patterns consistent with both helper and regulator function, but can robustly facilitate B cell activation and expansion. Furthermore, we show that expanding ex vivo-prepared TILs in vitro broadly preserves their functionality with respect to tumor cell killing, B cell help, and TCR repertoire. Although purified PD1+ CD8+ TILs generally maintain an exhausted phenotype upon expansion in vitro, transcriptional analysis reveals a downregulation of markers of T-cell dysfunction, including the co-inhibitory molecules PD1 and CTLA-4 and transcription factors ID3, TOX and TOX2, while genes involved in cell cycle and DNA repair are upregulated. We find reduced expression of WNT signaling components to be a hallmark of PD1+ CD8+ exhausted T cells in vivo and in vitro and demonstrate that restoring WNT signaling, by pharmacological blockade of GSK3β, can improve effector function. These data unveil novel targets for tumor immunotherapy and have promising implications for the development of a personalized TIL-based cell therapy for lung cancer.
Collapse
Affiliation(s)
- Jesse J. Lipp
- Boehringer Ingelheim, Rcv GmbH & Co Kg, Vienna, Austria
| | - Limei Wang
- Division of General Thoracic Surgery, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | | | - Stefan Müller
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Patrick Dorn
- Division of General Thoracic Surgery, Bern University Hospital, Bern, Switzerland
| | - Thomas M. Marti
- Division of General Thoracic Surgery, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Ralph A. Schmid
- Division of General Thoracic Surgery, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Belazs Hegedüs
- Department of Thoracic Surgery, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | | | | | | | - Wolfgang Sommergruber
- Boehringer Ingelheim, Rcv GmbH & Co Kg, Vienna, Austria
- Department of Biotechnology, University of Applied Sciences, Vienna, Austria
| | - Greg J. Kocher
- Division of General Thoracic Surgery, Bern University Hospital, Bern, Switzerland
| | - Sean R.R. Hall
- Division of General Thoracic Surgery, Bern University Hospital, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Jegatheeswaran S, Mathews JA, Crome SQ. Searching for the Elusive Regulatory Innate Lymphoid Cell. THE JOURNAL OF IMMUNOLOGY 2021; 207:1949-1957. [PMID: 34607908 DOI: 10.4049/jimmunol.2100661] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022]
Abstract
The complex nature of the innate lymphoid cell (ILC) family and wide range of ILC effector functions has been the focus of intense research. In addition to important roles in host defense, ILCs have central roles in maintaining tissue homeostasis and can promote immune tolerance. Alterations within the microenvironment can impart new functions on ILCs, and can even induce conversion to a distinct ILC family member. Complicating current definitions of ILCs are recent findings of distinct regulatory ILC populations that limit inflammatory responses or recruit other immunosuppressive cells such as regulatory T cells. Whether these populations are distinct ILC family members or rather canonical ILCs that exhibit immunoregulatory functions due to microenvironment signals has been the subject of much debate. In this review, we highlight studies identifying regulatory populations of ILCs that span regulatory NK-like cells, regulatory ILCs, and IL-10-producing ILC2s.
Collapse
Affiliation(s)
- Sinthuja Jegatheeswaran
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and.,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Jessica A Mathews
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and .,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Li Z, Zhang W, Luo F, Li J, Yang W, Zhu B, Wu Q, Wang X, Sun C, Xie Y, Xu B, Wang Z, Qian F, Chen J, Wan Y, Hu W. Allergen-Specific Treg Cells Upregulated by Lung-Stage S. japonicum Infection Alleviates Allergic Airway Inflammation. Front Cell Dev Biol 2021; 9:678377. [PMID: 34169075 PMCID: PMC8217774 DOI: 10.3389/fcell.2021.678377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/22/2021] [Indexed: 11/24/2022] Open
Abstract
Schistosoma japonicum infection showed protective effects against allergic airway inflammation (AAI). However, controversial findings exist especially regarding the timing of the helminth infection and the underlying mechanisms. Most previous studies focused on understanding the preventive effect of S. japonicum infection on asthma (infection before allergen sensitization), whereas the protective effects of S. japonicum infection (allergen sensitization before infection) on asthma were rarely investigated. In this study, we investigated the protective effects of S. japonicum infection on AAI using a mouse model of OVA-induced asthma. To explore how the timing of S. japonicum infection influences its protective effect, the mice were percutaneously infected with cercaria of S. japonicum at either 1 day (infection at lung-stage during AAI) or 14 days before ovalbumin (OVA) challenge (infection at post–lung-stage during AAI). We found that lung-stage S. japonicum infection significantly ameliorated OVA-induced AAI, whereas post–lung-stage infection did not. Mechanistically, lung-stage S. japonicum infection significantly upregulated the frequency of regulatory T cells (Treg cells), especially OVA-specific Treg cells, in lung tissue, which negatively correlated with the level of OVA-specific immunoglobulin E (IgE). Depletion of Treg cells in vivo partially counteracted the protective effect of lung-stage S. japonicum infection on asthma. Furthermore, transcriptomic analysis of lung tissue showed that lung-stage S. japonicum infection during AAI shaped the microenvironment to favor Treg induction. In conclusion, our data showed that lung-stage S. japonicum infection could relieve OVA-induced asthma in a mouse model. The protective effect was mediated by the upregulated OVA-specific Treg cells, which suppressed IgE production. Our results may facilitate the discovery of a novel therapy for AAI.
Collapse
Affiliation(s)
- Zhidan Li
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Fang Luo
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jian Li
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenbin Yang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bingkuan Zhu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qunfeng Wu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoling Wang
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
| | - Chengsong Sun
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuxiang Xie
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Xu
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
| | - Zhaojun Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Qian
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiaxu Chen
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
| | - Yanmin Wan
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wei Hu
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China.,State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Mesenchymal stromal cell mitochondrial transfer to human induced T-regulatory cells mediates FOXP3 stability. Sci Rep 2021; 11:10676. [PMID: 34021231 PMCID: PMC8140113 DOI: 10.1038/s41598-021-90115-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/06/2021] [Indexed: 01/14/2023] Open
Abstract
The key obstacle to clinical application of human inducible regulatory T cells (iTreg) as an adoptive cell therapy in autoimmune disorders is loss of FOXP3 expression in an inflammatory milieu. Here we report human iTreg co-cultured with bone marrow-derived mesenchymal stromal cells (MSCs) during short-term ex vivo expansion enhances the stability of iTreg FOXP3 expression and suppressive function in vitro and in vivo, and further that a key mechanism of action is MSC mitochondrial (mt) transfer via tunneling nanotubules (TNT). MSC mt transfer is driven by mitochondrial metabolic function (CD39/CD73 signaling) in proliferating iTreg and promotes iTreg expression of FOXP3 stabilizing factors BACH2 and SENP3. These results elucidate cellular and molecular mechanisms underlying human MSC mt transfer to proliferating cells. MSC mt transfer stabilizes FOXP3 expression in iTregs, thereby enhancing and sustaining their suppressive function in inflammatory conditions in vitro and in vivo.
Collapse
|
17
|
Oh H, Zhao J, Grinberg-Bleyer Y, Postler TS, Wang P, Park SG, Rabadan R, Hayden MS, Ghosh S. PDK1 Is Required for Maintenance of CD4 + Foxp3 + Regulatory T Cell Function. THE JOURNAL OF IMMUNOLOGY 2021; 206:1776-1783. [PMID: 33789982 DOI: 10.4049/jimmunol.2000051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/10/2021] [Indexed: 01/22/2023]
Abstract
Regulatory T (Treg) cells have an essential role in maintaining immune homeostasis, in part by suppressing effector T cell functions. Phosphoinositide-dependent kinase 1 (PDK1) is a pleiotropic kinase that acts as a key effector downstream of PI3K in many cell types. In T cells, PDK1 has been shown to be critical for activation of NF-κB and AKT signaling upon TCR ligation and is therefore essential for effector T cell activation, proliferation, and cytokine production. Using Treg cell-specific conditional deletion, we now demonstrate that PDK1 is also essential for Treg cell suppressive activity in vivo. Ablation of Pdk1 specifically in Treg cells led to systemic, lethal, scurfy-like inflammation in mice. Genome-wide analysis confirmed that PDK1 is essential for the regulation of key Treg cell signature gene expression and, further, suggested that PDK1 acts primarily to control Treg cell gene expression through regulation of the canonical NF-κB pathway. Consistent with these results, the scurfy-like phenotype of mice lacking PDK1 in Treg cells was rescued by enforced activation of NF-κB downstream of PDK1. Therefore, PDK1-mediated activation of the NF-κB signaling pathway is essential for regulation of Treg cell signature gene expression and suppressor function.
Collapse
Affiliation(s)
- Hyunju Oh
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032
| | - Jingyao Zhao
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032
| | - Yenkel Grinberg-Bleyer
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032
| | - Thomas S Postler
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032
| | - Pingzhang Wang
- Department of Systems Biology and Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032; and
| | - Sung-Gyoo Park
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032
| | - Raul Rabadan
- Department of Systems Biology and Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032; and
| | - Matthew S Hayden
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032.,Section of Dermatology, Department of Surgery, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH 03756
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032;
| |
Collapse
|
18
|
Sun H, Wu Y, Zhang Y, Ni B. IL-10-Producing ILCs: Molecular Mechanisms and Disease Relevance. Front Immunol 2021; 12:650200. [PMID: 33859642 PMCID: PMC8042445 DOI: 10.3389/fimmu.2021.650200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
Innate lymphoid cells (ILCs) are mainly composed of natural killer (NK) cells and helper-like lymphoid cells, which play a vital role in maintaining tissue homeostasis, enhancing adaptive immunity and regulating tissue inflammation. Alteration of the distribution and function of ILCs subgroups are closely related to the pathogenesis of inflammatory diseases and cancers. Interleukin-10 (IL-10) is a highly pleiotropic cytokine, and can be secreted by several cell types, among of which ILCs are recently verified to be a key source of IL-10. So far, the stable production of IL-10 can only be observed in certain NK subsets and ILC2s. Though the regulatory mechanisms for ILCs to produce IL-10 are pivotal for understanding ILCs and potential intervenes of diseases, which however is largely unknown yet. The published studies show that ILCs do not share exactly the same mechanisms for IL-10 production with helper T cells. In this review, the molecular mechanisms regulating IL-10 production in NK cells and ILC2s are discussed in details for the first time, and the role of IL-10-producing ILCs in diseases such as infections, allergies, and cancers are summarized.
Collapse
Affiliation(s)
- Hui Sun
- Department of Pathophysiology, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Chongqing International Institute for Immunology, Chongqing, China
| | - Yi Zhang
- Chongqing International Institute for Immunology, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University, Chongqing, China
| |
Collapse
|
19
|
Wang K, Fu W. Transcriptional regulation of Treg homeostasis and functional specification. Cell Mol Life Sci 2020; 77:4269-4287. [PMID: 32350553 PMCID: PMC7606275 DOI: 10.1007/s00018-020-03534-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
CD4+Foxp3+ regulatory T (Treg) cells are key players in keeping excessive inflammation in check. Mounting evidence has shown that Treg cells exert much more diverse functions in both immunological and non-immunological processes. The development, maintenance and functional specification of Treg cells are regulated by multilayered factors, including antigens and TCR signaling, cytokines, epigenetic modifiers and transcription factors (TFs). In the review, we will focus on TFs by summarizing their unique and redundant roles in Treg cells under physiological and pathophysiological conditions. We will also discuss the recent advances of Treg trajectories between lymphoid organs and non-lymphoid tissues. This review will provide an updated view of the newly identified TFs and new functions of known TFs in Treg biology.
Collapse
Affiliation(s)
- Ke Wang
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Wenxian Fu
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
20
|
Anderson MK, Selvaratnam JS. Interaction between γδTCR signaling and the E protein-Id axis in γδ T cell development. Immunol Rev 2020; 298:181-197. [PMID: 33058287 DOI: 10.1111/imr.12924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
γδ T cells acquire their functional properties in the thymus, enabling them to exert rapid innate-like responses. To understand how distinct γδ T cell subsets are generated, we have developed a Two-Stage model for γδ T cell development. This model is predicated on the finding that γδTCR signal strength impacts E protein activity through graded upregulation of Id3. Our model proposes that cells enter Stage 1 in response to a γδTCR signaling event in the cortex that activates a γδ T cell-specific gene network. Part of this program includes the upregulation of chemokine receptors that guide them to the medulla. In the medulla, Stage 1 cells receive distinct combinations of γδTCR, cytokine, and/co-stimulatory signals that induce their transit into Stage 2, either toward the γδT1 or the γδT17 lineage. The intersection between γδTCR and cytokine signals can tune Id3 expression, leading to different outcomes even in the presence of strong γδTCR signals. The thymic signaling niches required for γδT17 development are segregated in time and space, providing transient windows of opportunity during ontogeny. Understanding the regulatory context in which E proteins operate at different stages will be key in defining how their activity levels impose functional outcomes.
Collapse
Affiliation(s)
- Michele K Anderson
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Johanna S Selvaratnam
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Qiu R, Zhou L, Ma Y, Zhou L, Liang T, Shi L, Long J, Yuan D. Regulatory T Cell Plasticity and Stability and Autoimmune Diseases. Clin Rev Allergy Immunol 2020; 58:52-70. [PMID: 30449014 DOI: 10.1007/s12016-018-8721-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD4+CD25+ regulatory T cells (Tregs) are a class of CD4+ T cells with immunosuppressive functions that play a critical role in maintaining immune homeostasis. However, in certain disease settings, Tregs demonstrate plastic differentiation, and the stability of these Tregs, which is characterized by the stable expression or protective epigenetic modifications of the transcription factor Foxp3, becomes abnormal. Plastic Tregs have some features of helper T (Th) cells, such as the secretion of Th-related cytokines and the expression of specific transcription factors in Th cells, but also still retain the expression of Foxp3, a feature of Tregs. Although such Th-like Tregs can secrete pro-inflammatory cytokines, they still possess a strong ability to inhibit specific Th cell responses. Therefore, the plastic differentiation of Tregs not only increases the complexity of the immune circumstances under pathological conditions, especially autoimmune diseases, but also shows an association with changes in the stability of Tregs. The plastic differentiation and stability change of Tregs play vital roles in the progression of diseases. This review focuses on the phenotypic characteristics, functions, and formation conditions of several plastic Tregs and also summarizes the changes of Treg stability and their effects on inhibitory function. Additionally, the effects of Treg plasticity and stability on disease prognosis for several autoimmune diseases were also investigated in order to better understand the relationship between Tregs and autoimmune diseases.
Collapse
Affiliation(s)
- Runze Qiu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Liyu Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Yuanjing Ma
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Lingling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Tao Liang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Le Shi
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
22
|
Motwani K, Peters LD, Vliegen WH, El-sayed AG, Seay HR, Lopez MC, Baker HV, Posgai AL, Brusko MA, Perry DJ, Bacher R, Larkin J, Haller MJ, Brusko TM. Human Regulatory T Cells From Umbilical Cord Blood Display Increased Repertoire Diversity and Lineage Stability Relative to Adult Peripheral Blood. Front Immunol 2020; 11:611. [PMID: 32351504 PMCID: PMC7174770 DOI: 10.3389/fimmu.2020.00611] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/17/2020] [Indexed: 12/22/2022] Open
Abstract
The human T lymphocyte compartment is highly dynamic over the course of a lifetime. Of the many changes, perhaps most notable is the transition from a predominantly naïve T cell state at birth to the acquisition of antigen-experienced memory and effector subsets following environmental exposures. These phenotypic changes, including the induction of T cell exhaustion and senescence, have the potential to negatively impact efficacy of adoptive T cell therapies (ACT). When considering ACT with CD4+CD25+CD127-/lo regulatory T cells (Tregs) for the induction of immune tolerance, we previously reported ex vivo expanded umbilical cord blood (CB) Tregs remained more naïve, suppressed responder T cells equivalently, and exhibited a more diverse T cell receptor (TCR) repertoire compared to expanded adult peripheral blood (APB) Tregs. Herein, we hypothesized that upon further characterization, we would observe increased lineage heterogeneity and phenotypic diversity in APB Tregs that might negatively impact lineage stability, engraftment capacity, and the potential for Tregs to home to sites of tissue inflammation following ACT. We compared the phenotypic profiles of human Tregs isolated from CB versus the more traditional source, APB. We conducted analysis of fresh and ex vivo expanded Treg subsets at both the single cell (scRNA-seq and flow cytometry) and bulk (microarray and cytokine profiling) levels. Single cell transcriptional profiles of pre-expansion APB Tregs highlighted a cluster of cells that showed increased expression of genes associated with effector and pro-inflammatory phenotypes (CCL5, GZMK, CXCR3, LYAR, and NKG7) with low expression of Treg markers (FOXP3 and IKZF2). CB Tregs were more diverse in TCR repertoire and homogenous in phenotype, and contained fewer effector-like cells in contrast with APB Tregs. Interestingly, expression of canonical Treg markers, such as FOXP3, TIGIT, and IKZF2, were increased in CB CD4+CD127+ conventional T cells (Tconv) compared to APB Tconv, post-expansion, implying perinatal T cells may adopt a default regulatory program. Collectively, these data identify surface markers (namely CXCR3) that could be depleted to improve purity and stability of APB Tregs, and support the use of expanded CB Tregs as a potentially optimal ACT modality for the treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Keshav Motwani
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Leeana D. Peters
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Willem H. Vliegen
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Ahmed Gomaa El-sayed
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Howard R. Seay
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - M. Cecilia Lopez
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Henry V. Baker
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Amanda L. Posgai
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Maigan A. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Daniel J. Perry
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Joseph Larkin
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Michael J. Haller
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
23
|
Luckey MA, Kim TH, Prakhar P, Keller HR, Crossman A, Choi S, Love PE, Walsh STR, Park JH. SOCS3 is a suppressor of γc cytokine signaling and constrains generation of murine Foxp3 + regulatory T cells. Eur J Immunol 2020; 50:986-999. [PMID: 32144749 DOI: 10.1002/eji.201948307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 01/16/2020] [Accepted: 03/05/2020] [Indexed: 12/18/2022]
Abstract
SOCS3 is a cytosolic inhibitor of cytokine signaling that suppresses the activation of cytokine receptor-associated JAK kinases. Mechanistically, SOCS3 is recruited to a site in the cytokine receptors known as the SOCS3-interaction motif, and then binds JAK molecules to inhibit their kinase activity. The SOCS3-interaction motif is found in receptors of the gp130 cytokine family but mostly absent from other cytokine receptors, including γc. Thus, SOCS3 has been considered a selective suppressor of gp130 family cytokines, but not γc cytokines. Considering that γc signaling induces SOCS3 expression in T cells, here we revisited the role of SOCS3 on γc signaling. Using SOCS3 transgenic mice, we found that increased abundance of SOCS3 not only suppressed signaling of the gp130 family cytokine IL-6, but also signaling of the γc family cytokine IL-7. Consequently, SOCS3 transgenic mice were impaired in IL-7-dependent T cell development in the thymus and the homeostasis of mature T cells in peripheral tissues. Moreover, enforced SOCS3 expression interfered with the generation of Foxp3+ regulatory T cells that requires signaling by the γc family cytokine IL-2. Collectively, we report an underappreciated role for SOCS3 in suppressing γc cytokine signaling, effectively expanding its scope of target cytokines in T cell immunity.
Collapse
Affiliation(s)
- Megan A Luckey
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD
| | - Tae-Hyoun Kim
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD
| | - Praveen Prakhar
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD
| | - Hilary R Keller
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD.,Department of Surgery, Guthrie Robert Packer Hospital, Sayre, PA
| | - Assiatu Crossman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD
| | - Seeyoung Choi
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Scott T R Walsh
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD
| |
Collapse
|
24
|
Malviya M, Saoudi A, Bauer J, Fillatreau S, Liblau R. Treatment of experimental autoimmune encephalomyelitis with engineered bi-specific Foxp3+ regulatory CD4+ T cells. J Autoimmun 2020; 108:102401. [PMID: 31948790 DOI: 10.1016/j.jaut.2020.102401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/01/2020] [Indexed: 12/22/2022]
Abstract
The use of autoantigen-specific regulatory T cells (Tregs) as a cellular therapy for autoimmune diseases is appealing. However, it is challenging to isolate and expand large quantity of Tregs expressing disease-relevant T-cell receptors (TCR). To overcome this problem, we used an approach aiming at redirecting the specificity of polyclonal Tregs through autoreactive TCR gene transfer technology. In this study, we examined whether Tregs engineered through retroviral transduction to express a TCR cross-reactive to two CNS autoantigens, myelin oligodendrocyte glycoprotein (MOG) and neurofilament-medium (NF-M), had a superior protective efficacy compared with Tregs expressing a MOG mono-specific TCR. We observed that engineered Tregs (engTregs) exhibited in vitro regulatory effects related to the antigenic specificity of the introduced TCR, and commensurate in potency with the avidity of the transduced TCR. In experimental autoimmune encephalomyelitis (EAE), adoptively transferred engTregs proliferated, and migrated to the CNS, while retaining FoxP3 expression. EngTregs expressing MOG/NF-M cross-reactive TCR had superior protective properties over engTregs expressing MOG-specific TCR in MOG-induced EAE. Remarkably, MOG/NF-M bi-specific TCR-engTregs also improved recovery from EAE induced by an unrelated CNS autoantigen, proteolipid protein (PLP). This study underlines the benefit of using TCRs cross-reacting towards multiple autoantigens, compared with mono-reactive TCR, for the generation of engTregs affording protection from autoimmune disease in adoptive cell therapy.
Collapse
Affiliation(s)
- Manish Malviya
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paul Sabatier (UPS), Toulouse, France
| | - Abdelhadi Saoudi
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paul Sabatier (UPS), Toulouse, France
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, A-1090, Austria
| | - Simon Fillatreau
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, 75993, Paris, France; AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Roland Liblau
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paul Sabatier (UPS), Toulouse, France.
| |
Collapse
|
25
|
Weathington N, O’Brien ME, Radder J, Whisenant TC, Bleecker ER, Busse WW, Erzurum SC, Gaston B, Hastie AT, Jarjour NN, Meyers DA, Milosevic J, Moore WC, Tedrow JR, Trudeau JB, Wong HP, Wu W, Kaminski N, Wenzel SE, Modena BD. BAL Cell Gene Expression in Severe Asthma Reveals Mechanisms of Severe Disease and Influences of Medications. Am J Respir Crit Care Med 2019; 200:837-856. [PMID: 31161938 PMCID: PMC6812436 DOI: 10.1164/rccm.201811-2221oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/03/2019] [Indexed: 01/16/2023] Open
Abstract
Rationale: Gene expression of BAL cells, which samples the cellular milieu within the lower respiratory tract, has not been well studied in severe asthma.Objectives: To identify new biomolecular mechanisms underlying severe asthma by an unbiased, detailed interrogation of global gene expression.Methods: BAL cell expression was profiled in 154 asthma and control subjects. Of these participants, 100 had accompanying airway epithelial cell gene expression. BAL cell expression profiles were related to participant (age, sex, race, and medication) and sample traits (cell proportions), and then severity-related gene expression determined by correlating transcripts and coexpression networks to lung function, emergency department visits or hospitalizations in the last year, medication use, and quality-of-life scores.Measurements and Main Results: Age, sex, race, cell proportions, and medications strongly influenced BAL cell gene expression, but leading severity-related genes could be determined by carefully identifying and accounting for these influences. A BAL cell expression network enriched for cAMP signaling components most differentiated subjects with severe asthma from other subjects. Subsequently, an in vitro cellular model showed this phenomenon was likely caused by a robust upregulation in cAMP-related expression in nonsevere and β-agonist-naive subjects given a β-agonist before cell collection. Interestingly, ELISAs performed on BAL lysates showed protein levels may partly disagree with expression changes.Conclusions: Gene expression in BAL cells is influenced by factors seldomly considered. Notably, β-agonist exposure likely had a strong and immediate impact on cellular gene expression, which may not translate to important disease mechanisms or necessarily match protein levels. Leading severity-related genes were discovered in an unbiased, system-wide analysis, revealing new targets that map to asthma susceptibility loci.
Collapse
Affiliation(s)
- Nathaniel Weathington
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Michael E. O’Brien
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Josiah Radder
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Thomas C. Whisenant
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Eugene R. Bleecker
- Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, Arizona
| | - William W. Busse
- Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin, Madison, Wisconsin
| | - Serpil C. Erzurum
- Lerner Research Institute, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Benjamin Gaston
- Division of Pediatric Pulmonary, Allergy and Immunology, Case Western Reserve University and Rainbow Babies Children’s Hospital, Cleveland, Ohio
| | - Annette T. Hastie
- Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Nizar N. Jarjour
- Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin, Madison, Wisconsin
| | - Deborah A. Meyers
- Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, Arizona
| | - Jadranka Milosevic
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wendy C. Moore
- Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - John R. Tedrow
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John B. Trudeau
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hesper P. Wong
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wei Wu
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Sally E. Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Brian D. Modena
- Division of Allergy, National Jewish Hospital, Denver, Colorado
| |
Collapse
|
26
|
Park JS, Kim SM, Choi J, Jung KA, Hwang SH, Yang S, Kwok SK, Cho ML, Park SH. Interleukin-21-mediated suppression of the Pax3-Id3 pathway exacerbates the development of Sjögren's syndrome via follicular helper T cells. Cytokine 2019; 125:154834. [PMID: 31491724 DOI: 10.1016/j.cyto.2019.154834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/26/2022]
Abstract
Sjögren's syndrome (SS) is a systemic autoimmune disease with severe dysfunction of glandular secretory function mediated by T and B lymphocyte infiltration into the exocrine glands, including the salivary and lacrimal glands. Follicular helper T (Tfh) cells exacerbate the disease by causing B cell hyperactivity. Inhibitor of DNA binding 3 (Id3) deficiency causes activation of Tfh cells and is known to be a clinical manifestation of human SS disease. In this study, we investigated the mechanism of action of Pax3, which is reduced in SS and can interact with Id3, in NOD/ShiLtJ mice as an animal model of SS. Treatment with interleukin (IL)-21, a major cytokine secreted from Tfh cells, suppressed Pax3 and Id3 expression via STAT3 in splenic T cells in vitro. Administration of pCMV14-3xFlag PAX3 vector improved the severity of SS by reducing the number of Tfh cells in NOD/ShiLtJ mice. Application of IL-21R-Fc increased the number of Pax3- and Id3-positive cells in the salivary glands, while reducing the proportion of Tfh cells and IL-17-producing T cells in NOD/ShiLtJ mice. The salivary glands from SS patients showed decreased levels of Pax3 or Id3 expression compared with healthy controls. Our findings regarding reinforcement of the Pax3-Id3 signal pathway may facilitate the development of novel therapeutic strategies for SS.
Collapse
Affiliation(s)
- Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung-Min Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kyung-Ah Jung
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sun-Hee Hwang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - SeungCheon Yang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seung-Ki Kwok
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| |
Collapse
|
27
|
Sullivan JM, Höllbacher B, Campbell DJ. Cutting Edge: Dynamic Expression of Id3 Defines the Stepwise Differentiation of Tissue-Resident Regulatory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:31-36. [PMID: 30518568 PMCID: PMC6311998 DOI: 10.4049/jimmunol.1800917] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/07/2018] [Indexed: 01/12/2023]
Abstract
Foxp3+ regulatory T (TR) cells are phenotypically and functionally diverse and broadly distributed in lymphoid and nonlymphoid tissues. However, the pathways guiding the differentiation of tissue-resident TR cell populations have not been well defined. By regulating E-protein function, Id3 controls the differentiation of CD8+ effector T cells and is essential for TR cell maintenance and function. We show that dynamic expression of Id3 helps define three distinct mouse TR cell populations: Id3+CD62LhiCD44lo central TR cells, Id3+CD62LloCD44hi effector TR (eTR) cells, and Id3- eTR cells. Adoptive transfer experiments and transcriptome analyses support a stepwise model of differentiation from Id3+ central TR to Id3+ eTR to Id3- eTR cells. Furthermore, Id3- eTR cells have high expression of functional inhibitory markers and a transcriptional signature of tissue-resident TR cells. Accordingly, Id3- eTR cells are highly enriched in nonlymphoid organs but virtually absent from blood and lymph. Thus, we propose that tissue-resident TR cells develop in a multistep process associated with Id3 downregulation.
Collapse
Affiliation(s)
- Jenna M Sullivan
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
| | | | - Daniel J Campbell
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|
28
|
Cretney E, Leung PS, Trezise S, Newman DM, Rankin LC, Teh CE, Putoczki TL, Gray DH, Belz GT, Mielke LA, Dias S, Nutt SL. Characterization of Blimp-1 function in effector regulatory T cells. J Autoimmun 2018; 91:73-82. [PMID: 29724515 DOI: 10.1016/j.jaut.2018.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 04/17/2018] [Accepted: 04/22/2018] [Indexed: 12/21/2022]
Abstract
Regulatory T (Treg) cells maintain immunological tolerance in steady-state and after immune challenge. Activated Treg cells can undergo further differentiation into an effector state that highly express genes critical for Treg cell function, including ICOS, TIGIT and IL-10, although how this process is controlled is poorly understood. Effector Treg cells also specifically express the transcriptional regulator Blimp-1 whose expression overlaps with many of the canonical markers associated with effector Treg cells, although not all ICOS+TIGIT+ Treg cells express Blimp-1 or IL-10. In this study, we addressed the role of Blimp-1 in effector Treg cell function. Mice lacking Blimp-1 specifically in Treg cells mature normally, but succumb to a multi-organ inflammatory disease later in life. Blimp-1 is not required for Treg cell differentiation, with mutant mice having increased numbers of effector Treg cells, but regulated a suite of genes involved in cell signaling, communication and survival, as well as being essential for the expression of the immune modulatory cytokine IL-10. Thus, Blimp-1 is a marker of effector Treg cells in all contexts examined and is required for the full functionality of these cells during aging.
Collapse
Affiliation(s)
- Erika Cretney
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Patrick Sk Leung
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephanie Trezise
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dane M Newman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lucille C Rankin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Charis E Teh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tracy L Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Hd Gray
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lisa A Mielke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sheila Dias
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
29
|
Regulatory T cells characterized by low Id3 expression are highly suppressive and accumulate during chronic infection. Oncotarget 2017; 8:102835-102851. [PMID: 29262527 PMCID: PMC5732693 DOI: 10.18632/oncotarget.22159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/10/2017] [Indexed: 11/25/2022] Open
Abstract
Foxp3+ regulatory T (Treg) cells are broadly divided into naive-like and activated Treg cells, however recent studies suggest further Treg cell heterogeneity. Treg cells contribute to impaired T cell responses in chronic infections, but the role of specific Treg cell subpopulations in viral infections is not well defined. Here, we report that activated Treg cells are separated into two transcriptionally distinct subpopulations characterized by low or high expression of the transcriptional regulator Id3. Id3lo Treg cells are a highly suppressive Treg cell subpopulation, expressing elevated levels of immunomodulatory molecules and are capable of broadly targeting T cell responses. Viral infection and interleukin-2 promote the differentiation of Id3hi into Id3lo Treg cells and during chronic infection Id3lo Treg cells are the predominant Treg cell population. Thus, our report provides a framework, in which different activated Treg cell subpopulations specifically affect immune responses, possibly contributing to T cell dysfunction in chronic infections.
Collapse
|