1
|
Huang F, Bello ST. Neuropeptide cholecystokinin: a key neuromodulator for hippocampal functions. Neural Regen Res 2025; 20:1991-1992. [PMID: 39254553 PMCID: PMC11691480 DOI: 10.4103/nrr.nrr-d-24-00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Fengwen Huang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
- Center for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region, China
| | - Stephen Temitayo Bello
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, China
- Center for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region, China
| |
Collapse
|
2
|
Lopes-Dos-Santos V, Brizee D, Dupret D. Spatio-temporal organization of network activity patterns in the hippocampus. Cell Rep 2025; 44:115808. [PMID: 40478735 PMCID: PMC7617751 DOI: 10.1016/j.celrep.2025.115808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/04/2025] [Accepted: 05/19/2025] [Indexed: 06/11/2025] Open
Abstract
Understanding how coordinated neural networks support brain functions remains a central goal in neuroscience. The hippocampus, with its layered architecture and structured inputs to diverse cell populations, is a tractable model for dissecting operating microcircuits through the analysis of electrophysiological signatures. We investigated hippocampal network patterns in behaving mice by developing a low-dimensional embedding of local field potentials recorded along the CA1-to-dentate gyrus axis. This embedding revealed layer-specific gamma profiles reflecting spatially organized rhythms and their associated principal cell-interneuron firing motifs. Moreover, firing behaviors along the CA1 radial axis distinguished between deep and superficial principal cells, as well as between interneurons from the pyramidal, radiatum, and lacunosum-moleculare layers. These findings provide a comprehensive map of spatiotemporal activity patterns underlying hippocampal network functions.
Collapse
Affiliation(s)
- Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| | - Demi Brizee
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| |
Collapse
|
3
|
Esparza J, Quintanilla JP, Cid E, Medeiros AC, Gallego JA, de la Prida LM. Cell-type-specific manifold analysis discloses independent geometric transformations in the hippocampal spatial code. Neuron 2025; 113:1098-1109.e6. [PMID: 40015277 DOI: 10.1016/j.neuron.2025.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/26/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Integrating analyses of genetically defined cell types with population-level approaches remains poorly explored. We investigated this question by focusing on hippocampal spatial maps and the contribution of two genetically defined pyramidal cell types in the deep and superficial CA1 sublayers. Using single- and dual-color miniscope imaging in mice running along a linear track, we found that population activity from these cells exhibited three-dimensional ring manifolds that encoded the animal position and running direction. Despite shared topology, sublayer-specific manifolds displayed distinct geometric features. Manipulating track orientation revealed rotational and translational changes in manifolds from deep cells, contrasting with more stable representations by superficial cells. These transformations were not observed in manifolds derived from the entire CA1 population. Instead, cell-type-specific chemogenetic silencing of either sublayer revealed independent geometric codes. Our results show how genetically specified subpopulations may underpin parallel spatial maps that can be manipulated independently.
Collapse
Affiliation(s)
| | | | - Elena Cid
- Instituto Cajal CSIC, Madrid 28002, Spain
| | - Ana C Medeiros
- Instituto Cajal CSIC, Madrid 28002, Spain; Faculdade de Medicina de Riberâo Preto, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Juan A Gallego
- Department of Bioengineering, Imperial College London, London, UK
| | | |
Collapse
|
4
|
Angotzi GN, Vöröslakos M, Perentos N, Ribeiro JF, Vincenzi M, Boi F, Lecomte A, Orban G, Genewsky A, Schwesig G, Aykan D, Buzsáki G, Sirota A, Berdondini L. Multi-Shank 1024 Channels Active SiNAPS Probe for Large Multi-Regional Topographical Electrophysiological Mapping of Neural Dynamics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416239. [PMID: 40013985 PMCID: PMC12021112 DOI: 10.1002/advs.202416239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Implantable active dense CMOS neural probes unlock the possibility of spatiotemporally resolving the activity of hundreds of single neurons in multiple brain circuits to investigate brain dynamics. Mapping neural dynamics in brain circuits with anatomical structures spanning several millimeters, however, remains challenging. Here, a CMOS neural probe advancing lateral sampling for mapping intracortical neural dynamics (both LFPs and spikes) in awake, behaving mice from an area >4 mm2 is demonstrated. By taking advantage of SiNAPS technology modularity, an 8-shank probe with 1024 recording channels arranged in regular arrays of 128 electrodes/shank with an electrode pitch <30 µm is realized. Continuous low-noise recordings (spikes with 6.67 ± 1.02 µVRMS) from all 1024 electrodes at 20 kHz/channel demonstrate the monitoring at high spatial and temporal resolution of a field of view spanning the 2D lattice of the entire mice hippocampal circuit, together with cortical and thalamic regions. This arrangement allows combining large population unit monitoring across distributed networks with precise intra- and interlaminar/nuclear mapping of the oscillatory dynamics.
Collapse
Affiliation(s)
- Gian Nicola Angotzi
- Fondazione Istituto Italiano di TecnologiaMicrotechnology for Neuroelectronics Unit (NetS3 lab)via Morego 30Genova16163Italy
- Corticale Srlvia Pietro Chiesa 9Genova16149Italy
| | - Mihály Vöröslakos
- Neuroscience InstituteGrossman School of MedicineNew York University550 First AvenueNew YorkNY10016USA
| | - Nikolas Perentos
- Faculty of BiologyLudwig‐Maximilians‐UniversitätGroßhaderner Straße 282152MunchenGermany
- University of Nicosia School of Veterinary Medicine21 Ilia Papakyriakou2414NicosiaCyprus
| | - Joao Filipe Ribeiro
- Fondazione Istituto Italiano di TecnologiaMicrotechnology for Neuroelectronics Unit (NetS3 lab)via Morego 30Genova16163Italy
| | - Matteo Vincenzi
- Fondazione Istituto Italiano di TecnologiaMicrotechnology for Neuroelectronics Unit (NetS3 lab)via Morego 30Genova16163Italy
| | - Fabio Boi
- Fondazione Istituto Italiano di TecnologiaMicrotechnology for Neuroelectronics Unit (NetS3 lab)via Morego 30Genova16163Italy
- Corticale Srlvia Pietro Chiesa 9Genova16149Italy
| | - Aziliz Lecomte
- Fondazione Istituto Italiano di TecnologiaMicrotechnology for Neuroelectronics Unit (NetS3 lab)via Morego 30Genova16163Italy
| | - Gabor Orban
- Fondazione Istituto Italiano di TecnologiaMicrotechnology for Neuroelectronics Unit (NetS3 lab)via Morego 30Genova16163Italy
| | - Andreas Genewsky
- Faculty of BiologyLudwig‐Maximilians‐UniversitätGroßhaderner Straße 282152MunchenGermany
| | - Gerrit Schwesig
- Faculty of BiologyLudwig‐Maximilians‐UniversitätGroßhaderner Straße 282152MunchenGermany
| | - Deren Aykan
- Neuroscience InstituteGrossman School of MedicineNew York University550 First AvenueNew YorkNY10016USA
| | - György Buzsáki
- Neuroscience InstituteGrossman School of MedicineNew York University550 First AvenueNew YorkNY10016USA
- Department of NeurologyGrossman School of MedicineNew York University435 East 30th StreetNew YorkNY10016USA
| | - Anton Sirota
- Faculty of BiologyLudwig‐Maximilians‐UniversitätGroßhaderner Straße 282152MunchenGermany
| | - Luca Berdondini
- Fondazione Istituto Italiano di TecnologiaMicrotechnology for Neuroelectronics Unit (NetS3 lab)via Morego 30Genova16163Italy
| |
Collapse
|
5
|
Dovek L, Nguyen AT, Green E, Santhakumar V. Differential Glutamatergic Inputs to Semilunar Granule Cells and Granule Cells Underscore Dentate Gyrus Projection Neuron Diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643192. [PMID: 40161709 PMCID: PMC11952520 DOI: 10.1101/2025.03.14.643192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Semilunar Granule Cells (SGCs) are sparse dentate gyrus projection neurons whose role in the dentate circuit, including pathway specific inputs, remains unknown. We report that SGCs receive more frequent spontaneous excitatory synaptic inputs than granule cells (GCs). Dual GC-SGC recordings identified that SGCs receive stronger medial entorhinal cortex and associational synaptic drive but lack short-term facilitation of lateral entorhinal cortex inputs observed in GCs. SGCs dendritic spine density in proximal and middle dendrites was greater than in GCs. However, the strength of commissural inputs and dendritic input integration, examined in passive morphometric simulations, were not different between cell types. Activity dependent labeling identified an overrepresentation of SGCs among neuronal ensembles in both mice trained in a spatial memory task and task naïve controls. The divergence of modality specific inputs to SGCs and GCs can enable parallel processing of information streams and expand the computational capacity of the dentate gyrus.
Collapse
Affiliation(s)
- Laura Dovek
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92521
| | - Anh-Tho Nguyen
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92521
| | - Emmanuel Green
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92521
| | - Vijayalakshmi Santhakumar
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92521
| |
Collapse
|
6
|
Cao Y, Lin X, Gao D, Yang J, Miao H, Li T. Inhibition of STAT3 phosphorylation attenuates perioperative neurocognitive disorders in mice with D-galactose-induced aging by regulating pro-inflammatory reactive astrocytes. Int Immunopharmacol 2025; 148:114095. [PMID: 39827670 DOI: 10.1016/j.intimp.2025.114095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Perioperative Neurocognitive Disorders (PND) are associated withanesthesia and surgery, especially in the elderly. Astrocyte activation in old mice correlates with PND development. These cells can switch to a pro-inflammatory or an anti-inflammatory phenotype, regulated by the STAT3 pathway. It remains unclear whether STAT3 can alleviate PND symptoms in elderly mice by modulating the transitions between these astrocyte phenotypes. METHODS Senescence was induced in eight-week-old male C57BL/6J mice with D-galactose, followed by tibial fracture surgery under anesthesia to model PND. On the third postoperative day, cognitive function was assessed using fear conditioning, synaptic plasticity using Golgi/ electrophysiology, and astrocyte phenotype /STAT3/pSTAT3(phosphorylated STAT3) using Western blot/immunofluorescence. The content of neurotrophic factors, including brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF), was also measured. Primary astrocytes were stimulated with the conditioned medium referred to as ACM to induce pro-inflammatory reactive astrocytes. Stattic, an inhibitor of STAT3 phosphorylation, was used to investigate its effects on astrocyte phenotypic transformation and hippocampus-dependent learning and memory in aging mice, both in vitro and in vivo. RESULTS On the third postoperative day, pSTAT3 levels and pro-inflammatory astrocytes increased in the hippocampal CA1 region, with no change in total STAT3 or anti-inflammatory astrocytes, accompanied by a decrease in GDNF and BDNF.ACM treatment of primary astrocytes promoted pro-inflammatory phenotype conversion, which was inhibited by stattic without affecting anti-inflammatory phenotype. Intraperitoneal injection of stattic in mice reduced the accumulation of pro-inflammatory astrocytes, increased the levels of BDNF and GDNF, enhanced synaptic plasticity, and improved hippocampus-dependent learning and memory functions in anesthesia-induced senescent mice, without altering anti-inflammatory astrocytes. CONCLUSIONS Inhibiting STAT3 phosphorylation may improve synaptic plasticity in the CA1 region of the hippocampus by modulating pro-inflammatory astrocytes, thereby alleviating perioperative neurocognitive dysfunction in D-galactose-induced aging mice.
Collapse
Affiliation(s)
- Ying Cao
- Department of Anesthesiology Beijing Shijitan Hospital Capital Medical University Beijing China
| | - Xiaowan Lin
- Department of Anesthesiology Beijing Tiantan Hospital Capital Medical University Beijing China
| | - Danyang Gao
- Department of Anesthesiology Beijing Shijitan Hospital Capital Medical University Beijing China
| | - Jiaojiao Yang
- Department of Anesthesiology Beijing Shijitan Hospital Capital Medical University Beijing China
| | - Huihui Miao
- Department of Anesthesiology Beijing Shijitan Hospital Capital Medical University Beijing China.
| | - Tianzuo Li
- Department of Anesthesiology Beijing Shijitan Hospital Capital Medical University Beijing China.
| |
Collapse
|
7
|
Hanson MA, Bibi N, Safa A, Nagarajan D, Marshall AH, Johantges AC, Wester JC. Development of Differential Sublaminar Feedforward Inhibitory Circuits in CA1 Hippocampus Requires Satb2. J Neurosci 2025; 45:e0737242024. [PMID: 39753301 PMCID: PMC11841754 DOI: 10.1523/jneurosci.0737-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/30/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying CA1 PC differentiation and the development of this inhibitory circuit motif. We found that the transcriptional regulator SATB2, which is necessary for pyramidal cell differentiation in the neocortex, is selectively expressed in superficial PCs during early postnatal development. To investigate its role in CA1, we conditionally knocked out Satb2 from pyramidal cells during embryonic development using both male and female Emx1IRES-Cre; Satb2flox/flox mice. Loss of Satb2 resulted in increased feedforward inhibition of CA3 Schaffer collateral input to superficial PCs, which matched that observed to deep PCs in control mice. Using paired whole-cell recordings between PCs and PV+ interneurons, we found this was due to an increase in the strength of unitary inhibitory synaptic connections from PV+ interneurons to mutant superficial PCs. Regulation of synapse strength was restricted to inhibitory synapses; excitatory synaptic connections from CA3 to CA1 PCs and CA1 PCs to PV+ interneurons were not affected by loss of Satb2 Finally, we show that SATB2 expression in superficial PCs is necessary to suppress the formation of synapses from PV+ interneurons during synaptogenesis. Thus, early postnatal expression of SATB2 in superficial PCs is necessary for the development of biased feedforward inhibition in CA1.
Collapse
Affiliation(s)
- Meretta A Hanson
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Noor Bibi
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Alireza Safa
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Devipriyanka Nagarajan
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Alec H Marshall
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Aidan C Johantges
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Jason C Wester
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| |
Collapse
|
8
|
Counts SE, Beck JS, Maloney B, Malek‐Ahmadi M, Ginsberg SD, Mufson EJ, Lahiri DK. Posterior cingulate cortex microRNA dysregulation differentiates cognitive resilience, mild cognitive impairment, and Alzheimer's disease. Alzheimers Dement 2025; 21:e70019. [PMID: 40008917 PMCID: PMC11863362 DOI: 10.1002/alz.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 02/27/2025]
Abstract
INTRODUCTION MicroRNA (miRNA) activity is increasingly appreciated as a key regulator of pathophysiologic pathways in Alzheimer's disease (AD). However, the role of miRNAs during the progression of AD, including resilience and prodromal syndromes such as mild cognitive impairment (MCI), remains underexplored. METHODS We performed miRNA-sequencing on samples of posterior cingulate cortex (PCC) obtained post mortem from Rush Religious Orders Study participants diagnosed ante mortem with no cognitive impairment (NCI), MCI, or AD. NCI subjects were subdivided as low pathology (Braak stage I/II) or high pathology (Braak stage III/IV), suggestive of resilience. Bioinformatics approaches included differential expression, messenger RNA (mRNA) target prediction, interactome modeling, functional enrichment, and AD risk modeling. RESULTS We identified specific miRNA groups, mRNA targets, and signaling pathways distinguishing AD, MCI, resilience, ante mortem neuropsychological test performance, post mortem neuropathological burden, and AD risk. DISCUSSION These findings highlight the potential of harnessing miRNA activity to manipulate disease-modifying pathways in AD, with implications for precision medicine. HIGHLIGHTS MicroRNA (MiRNA) dysregulation is a well-established feature of Alzheimer's disease (AD). Novel miRNAs also distinguish subjects with mild cognitive impairment and putative resilience. MiRNAs correlate with cognitive performance and neuropathological burden. Select miRNAs are associated with AD risk with age as a significant covariate. MiRNA pathways include insulin, prolactin, kinases, and neurite plasticity.
Collapse
Affiliation(s)
- Scott E. Counts
- Department of Translational NeuroscienceMichigan State University College of Human MedicineGrand RapidsMichiganUSA
- Department of Family MedicineMichigan State University College of Human MedicineGrand RapidsMichiganUSA
| | - John S. Beck
- Department of Translational NeuroscienceMichigan State University College of Human MedicineGrand RapidsMichiganUSA
| | - Bryan Maloney
- Departments of Psychiatry and Medical and Molecular GeneticsIndiana Alzheimer’s Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Michael Malek‐Ahmadi
- Banner Alzheimer's InstitutePhoenixArizonaUSA
- Department of Biomedical InformaticsUniversity of Arizona College of Medicine‐PhoenixPhoenixArizonaUSA
| | - Stephen D. Ginsberg
- Center for Dementia ResearchNathan Kline InstituteOrangeburgNew YorkUSA
- Departments of PsychiatryNeuroscience & Physiology, and the NYU Neuroscience Institute, New York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Elliott J. Mufson
- Departments of Translational Neuroscience and NeurologyBarrow Neurological InstituteSt. Joseph's Hospital and Medical CenterPhoenixArizonaUSA
| | - Debomoy K. Lahiri
- Departments of Psychiatry and Medical and Molecular GeneticsIndiana Alzheimer’s Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
9
|
Arai S, Sypniewski KA, Pavlides C. Differential roles of medial/lateral entorhinal cortex in spatial/object memory and contribution to hippocampal functional neuronal organization. Neurobiol Learn Mem 2025; 217:108015. [PMID: 39689754 DOI: 10.1016/j.nlm.2024.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
Episodic memory is subserved by interactions between entorhinal cortex (EC) and hippocampus. Within EC, a functional dissociation has been proposed for medial (MEC) and lateral (LEC) subregions, whereby, MEC processes spatial information while LEC processes information about objects and their location in space. Most of these studies, however, used classical methods which lack both spatial and temporal specificity, thus, the precise role of MEC/LEC in memory could use further clarification. First, we show a possible functional dissociation of MEC/LEC for place/object fear memory, by optogenetic suppression of these areas during memory acquisition. The main output of EC is to the hippocampus. MEC projects mainly towards proximal/superficial CA1 and deep CA3 while LEC towards distal/deep CA1 and superficial CA3. Dentate gyrus (DG), terminations of MEC/LEC are dissociated septotemporally. A functional dissociation has also been proposed for subregions of the hippocampus. Previous studies reported that proximal/distal CA1 process spatial/nonspatial information, respectively. For the second part of the study, we used the immediate-early gene Zif-268 to map neuronal activity in CA1. We first show enhanced Zif-268 expression and cluster-type organization in the proximal CA1 by place exposure and enhanced Zif-268 expression/cluster organization in distal CA1 following object exposure. Second, direct optogenetic stimulation of MEC/LEC, produced a similar enhancement/cluster-type organization in the same areas. Enhanced Zif-268 expression was also observed in CA3 and DG. These results substantiate previous findings and are proof positive that the hippocampus is organized in clusters to encode information generally ascribed to this structure.
Collapse
Affiliation(s)
- Shoko Arai
- Department of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Krzysztof A Sypniewski
- Department of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Constantine Pavlides
- Department of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
10
|
Bishnoi A, Deshmukh SS. Comparable Theta Phase Coding Dynamics Along the Transverse Axis of CA1. Hippocampus 2024; 34:674-687. [PMID: 39368076 DOI: 10.1002/hipo.23641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024]
Abstract
Topographical projection patterns from the entorhinal cortex to area CA1 of the hippocampus have led to a hypothesis that proximal CA1 (pCA1, closer to CA2) is spatially more selective than distal CA1 (dCA1, closer to the subiculum). While earlier studies have shown evidence supporting this hypothesis, we recently showed that this difference does not hold true under all experimental conditions. In a complex environment with distinct local texture cues on a circular track and global visual cues, pCA1 and dCA1 display comparable spatial selectivity. Correlated with the spatial selectivity differences, the earlier studies also showed differences in theta phase coding dynamics between pCA1 and dCA1 neurons. Here we show that there are no differences in theta phase coding dynamics between neurons in these two regions under the experimental conditions where pCA1 and dCA1 neurons are equally spatially selective. These findings challenge the established notion of dCA1 being inherently less spatially selective and theta modulated than pCA1 and suggest further experiments to understand theta-mediated activation of the CA1 sub-networks to represent space.
Collapse
Affiliation(s)
- Aditi Bishnoi
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Sachin S Deshmukh
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, India
| |
Collapse
|
11
|
Hernández-Frausto M, Vivar C. Entorhinal cortex-hippocampal circuit connectivity in health and disease. Front Hum Neurosci 2024; 18:1448791. [PMID: 39372192 PMCID: PMC11449717 DOI: 10.3389/fnhum.2024.1448791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
The entorhinal cortex (EC) and hippocampal (HC) connectivity is the main source of episodic memory formation and consolidation. The entorhinal-hippocampal (EC-HC) connection is classified as canonically glutamatergic and, more recently, has been characterized as a non-canonical GABAergic connection. Recent evidence shows that both EC and HC receive inputs from dopaminergic, cholinergic, and noradrenergic projections that modulate the mnemonic processes linked to the encoding and consolidation of memories. In the present review, we address the latest findings on the EC-HC connectivity and the role of neuromodulations during the mnemonic mechanisms of encoding and consolidation of memories and highlight the value of the cross-species approach to unravel the underlying cellular mechanisms known. Furthermore, we discuss how EC-HC connectivity early neurodegeneration may contribute to the dysfunction of episodic memories observed in aging and Alzheimer's disease (AD). Finally, we described how exercise may be a fundamental tool to prevent or decrease neurodegeneration.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Carmen Vivar
- Laboratory of Neurogenesis and Neuroplasticity, Department of Physiology, Biophysics and Neuroscience, Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
12
|
Gava GP, Lefèvre L, Broadbelt T, McHugh SB, Lopes-Dos-Santos V, Brizee D, Hartwich K, Sjoberg H, Perestenko PV, Toth R, Sharott A, Dupret D. Organizing the coactivity structure of the hippocampus from robust to flexible memory. Science 2024; 385:1120-1127. [PMID: 39236189 PMCID: PMC7616439 DOI: 10.1126/science.adk9611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024]
Abstract
New memories are integrated into prior knowledge of the world. But what if consecutive memories exert opposing demands on the host brain network? We report that acquiring a robust (food-context) memory constrains the mouse hippocampus within a population activity space of highly correlated spike trains that prevents subsequent computation of a flexible (object-location) memory. This densely correlated firing structure developed over repeated mnemonic experience, gradually coupling neurons in the superficial sublayer of the CA1 stratum pyramidale to whole-population activity. Applying hippocampal theta-driven closed-loop optogenetic suppression to mitigate this neuronal recruitment during (food-context) memory formation relaxed the topological constraint on hippocampal coactivity and restored subsequent flexible (object-location) memory. These findings uncover an organizational principle for the peer-to-peer coactivity structure of the hippocampal cell population to meet memory demands.
Collapse
Affiliation(s)
- Giuseppe P Gava
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laura Lefèvre
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Tabitha Broadbelt
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stephen B McHugh
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Demi Brizee
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Katja Hartwich
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Hanna Sjoberg
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Pavel V Perestenko
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Robert Toth
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Santoro B, Srinivas KV, Reyes I, Tian C, Masurkar AV. Cell type-specific impact of aging and Alzheimer disease on hippocampal CA1 perforant path input. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609952. [PMID: 39253428 PMCID: PMC11383042 DOI: 10.1101/2024.08.27.609952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The perforant path (PP) carries direct inputs from entorhinal cortex to CA1 pyramidal neurons (PNs), with an impact dependent on PN position across transverse (CA1a-CA1c) and radial (superficial/deep) axes. It remains unclear how aging and Alzheimer disease (AD) affect PP input, despite its critical role in memory and early AD. Applying ex vivo recordings and two-photon microscopy in slices from mice up to 30 months old, we interrogated PP responses across PN subpopulations and compared them to Schaffer collateral and intrinsic excitability changes. We found that aging uniquely impacts PP excitatory responses, abolishing transverse and radial differences via a mechanism independent of presynaptic and membrane excitability change. This is amplified in aged 3xTg-AD mice, with further weakening of PP inputs to CA1a superficial PNs associated with distal dendritic spine loss. This demonstrates a unique feature of aging-related circuit dysfunction, with mechanistic implications related to memory impairment and synaptic vulnerability.
Collapse
|
14
|
Abbaspoor S, Hoffman KL. Circuit dynamics of superficial and deep CA1 pyramidal cells and inhibitory cells in freely moving macaques. Cell Rep 2024; 43:114519. [PMID: 39018243 PMCID: PMC11445748 DOI: 10.1016/j.celrep.2024.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Diverse neuron classes in hippocampal CA1 have been identified through the heterogeneity of their cellular/molecular composition. How these classes relate to hippocampal function and the network dynamics that support cognition in primates remains unclear. Here, we report inhibitory functional cell groups in CA1 of freely moving macaques whose diverse response profiles to network states and each other suggest distinct and specific roles in the functional microcircuit of CA1. In addition, pyramidal cells that were grouped by their superficial or deep layer position differed in firing rate, burstiness, and sharp-wave ripple-associated firing. They also showed strata-specific spike-timing interactions with inhibitory cell groups, suggestive of segregated neural populations. Furthermore, ensemble recordings revealed that cell assemblies were preferentially organized according to these strata. These results suggest that hippocampal CA1 in freely moving macaques bears a sublayer-specific circuit organization that may shape its role in cognition.
Collapse
Affiliation(s)
- Saman Abbaspoor
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| | - Kari L Hoffman
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
15
|
Brito DVC, Kupke J, Sokolov R, Cambridge S, Both M, Bengtson CP, Rozov A, Oliveira AMM. Biphasic Npas4 expression promotes inhibitory plasticity and suppression of fear memory consolidation in mice. Mol Psychiatry 2024; 29:1929-1940. [PMID: 38347124 PMCID: PMC11408256 DOI: 10.1038/s41380-024-02454-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/19/2024]
Abstract
Long-term memories are believed to be encoded by unique transcriptional signatures in the brain. The expression of immediate early genes (IEG) promotes structural and molecular changes required for memory consolidation. Recent evidence has shown that the brain is equipped with mechanisms that not only promote, but actively constrict memory formation. However, it remains unknown whether IEG expression may play a role in memory suppression. Here we uncovered a novel function of the IEG neuronal PAS domain protein 4 (Npas4), as an inducible memory suppressor gene of highly salient aversive experiences. Using a contextual fear conditioning paradigm, we found that low stimulus salience leads to monophasic Npas4 expression, while highly salient learning induces a biphasic expression of Npas4 in the hippocampus. The later phase requires N-methyl-D-aspartate (NMDA) receptor activity and is independent of dopaminergic neurotransmission. Our in vivo pharmacological and genetic manipulation experiments suggested that the later phase of Npas4 expression restricts the consolidation of a fear memory and promote behavioral flexibility, by facilitating fear extinction and the contextual specificity of fear responses. Moreover, immunofluorescence and electrophysiological analysis revealed a concomitant increase in synaptic input from cholecystokinin (CCK)-expressing interneurons. Our results demonstrate how salient experiences evoke unique temporal patterns of IEG expression that fine-tune memory consolidation. Moreover, our study provides evidence for inducible gene expression associated with memory suppression as a possible mechanism to balance the consolidation of highly salient memories, and thereby to evade the formation of maladaptive behavior.
Collapse
Affiliation(s)
- David V C Brito
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139, Faro, Portugal
| | - Janina Kupke
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, the Netherlands
| | - Rostilav Sokolov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
- Federal Center of Brain Research and Neurotechnology, 117513, Moscow, Russia
- Institute of Neuroscience, Lobachevsky State University of Nizhniy Novgorod, Nizhny, Novgorod, Russia
| | - Sidney Cambridge
- Anatomy II, Dr. Senckenberg Anatomy, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Martin Both
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - C Peter Bengtson
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
| | - Andrei Rozov
- Federal Center of Brain Research and Neurotechnology, 117513, Moscow, Russia
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
- OpenLab of Neurobiology, Kazan Federal University, 420008, Kazan, Russia
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany.
- Department of Molecular and Cellular Cognition Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
16
|
Reyes I, Faustin A, Tian C, Masurkar AV. Frontal-Variant Alzheimer's Disease: Subregional Distribution of Entorhinal-CA1 Pathology and Pathophysiological Implications. J Neuropsychiatry Clin Neurosci 2024; 36:360-363. [PMID: 38835223 DOI: 10.1176/appi.neuropsych.20230113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Affiliation(s)
- Isabel Reyes
- Center for Cognitive Neurology, Department of Neurology (Reyes, Tian, Masurkar), Alzheimer's Disease Research Center (Faustin, Masurkar), Department of Pathology (Faustin), and Neuroscience Institute (Masurkar), New York University Grossman School of Medicine, New York
| | - Arline Faustin
- Center for Cognitive Neurology, Department of Neurology (Reyes, Tian, Masurkar), Alzheimer's Disease Research Center (Faustin, Masurkar), Department of Pathology (Faustin), and Neuroscience Institute (Masurkar), New York University Grossman School of Medicine, New York
| | - Chengju Tian
- Center for Cognitive Neurology, Department of Neurology (Reyes, Tian, Masurkar), Alzheimer's Disease Research Center (Faustin, Masurkar), Department of Pathology (Faustin), and Neuroscience Institute (Masurkar), New York University Grossman School of Medicine, New York
| | - Arjun V Masurkar
- Center for Cognitive Neurology, Department of Neurology (Reyes, Tian, Masurkar), Alzheimer's Disease Research Center (Faustin, Masurkar), Department of Pathology (Faustin), and Neuroscience Institute (Masurkar), New York University Grossman School of Medicine, New York
| |
Collapse
|
17
|
Abbaspoor S, Hoffman KL. Circuit dynamics of superficial and deep CA1 pyramidal cells and inhibitory cells in freely-moving macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570369. [PMID: 38106053 PMCID: PMC10723348 DOI: 10.1101/2023.12.06.570369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Diverse neuron classes in hippocampal CA1 have been identified through the heterogeneity of their cellular/molecular composition. How these classes relate to hippocampal function and the network dynamics that support cognition in primates remains unclear. Here we report inhibitory functional cell groups in CA1 of freely-moving macaques whose diverse response profiles to network states and each other suggest distinct and specific roles in the functional microcircuit of CA1. In addition, pyramidal cells that were segregated into superficial and deep layers differed in firing rate, burstiness, and sharp-wave ripple-associated firing. They also showed strata-specific spike-timing interactions with inhibitory cell groups, suggestive of segregated neural populations. Furthermore, ensemble recordings revealed that cell assemblies were preferentially organized according to these strata. These results suggest sublayer-specific circuit organization in hippocampal CA1 of the freely-moving macaques that may underlie its role in cognition.
Collapse
Affiliation(s)
- S Abbaspoor
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
| | - K L Hoffman
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
18
|
Lopez MR, Wasberg SMH, Gagliardi CM, Normandin ME, Muzzio IA. Mystery of the memory engram: History, current knowledge, and unanswered questions. Neurosci Biobehav Rev 2024; 159:105574. [PMID: 38331127 DOI: 10.1016/j.neubiorev.2024.105574] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
The quest to understand the memory engram has intrigued humans for centuries. Recent technological advances, including genetic labelling, imaging, optogenetic and chemogenetic techniques, have propelled the field of memory research forward. These tools have enabled researchers to create and erase memory components. While these innovative techniques have yielded invaluable insights, they often focus on specific elements of the memory trace. Genetic labelling may rely on a particular immediate early gene as a marker of activity, optogenetics may activate or inhibit one specific type of neuron, and imaging may capture activity snapshots in a given brain region at specific times. Yet, memories are multifaceted, involving diverse arrays of neuronal subpopulations, circuits, and regions that work in concert to create, store, and retrieve information. Consideration of contributions of both excitatory and inhibitory neurons, micro and macro circuits across brain regions, the dynamic nature of active ensembles, and representational drift is crucial for a comprehensive understanding of the complex nature of memory.
Collapse
Affiliation(s)
- M R Lopez
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - S M H Wasberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - C M Gagliardi
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - M E Normandin
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - I A Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
19
|
Hanson MA, Bibi N, Safa A, Nagarajan D, Marshall AH, Johantges AC, Wester JC. Development of differential sublaminar feedforward inhibitory circuits in CA1 hippocampus requires Satb2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576902. [PMID: 38328190 PMCID: PMC10849736 DOI: 10.1101/2024.01.23.576902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying PC differentiation and the development of this inhibitory circuit motif. We found that expression of the transcriptional regulator SATB2 is biased towards superficial PCs during early postnatal development and necessary to suppress PV+ interneuron synapse formation. In the absence of SATB2, the number of PV+ interneuron synaptic puncta surrounding superficial PCs increases during development to match deep PCs. This results in equivalent inhibitory current strength observed in paired whole-cell recordings, and equivalent feedforward inhibition of Schaffer collateral input. Thus, SATB2 is necessary for superficial PC differentiation and biased feedforward inhibition in CA1.
Collapse
|
20
|
Issa JB, Radvansky BA, Xuan F, Dombeck DA. Lateral entorhinal cortex subpopulations represent experiential epochs surrounding reward. Nat Neurosci 2024; 27:536-546. [PMID: 38272968 PMCID: PMC11097142 DOI: 10.1038/s41593-023-01557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024]
Abstract
During goal-directed navigation, 'what' information, describing the experiences occurring in periods surrounding a reward, can be combined with spatial 'where' information to guide behavior and form episodic memories. This integrative process likely occurs in the hippocampus, which receives spatial information from the medial entorhinal cortex; however, the source of the 'what' information is largely unknown. Here, we show that mouse lateral entorhinal cortex (LEC) represents key experiential epochs during reward-based navigation tasks. We discover separate populations of neurons that signal goal approach and goal departure and a third population signaling reward consumption. When reward location is moved, these populations immediately shift their respective representations of each experiential epoch relative to reward, while optogenetic inhibition of LEC disrupts learning the new reward location. Therefore, the LEC contains a stable code of experiential epochs surrounding and including reward consumption, providing reward-centric information to contextualize the spatial information carried by the medial entorhinal cortex.
Collapse
Affiliation(s)
- John B Issa
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Brad A Radvansky
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Feng Xuan
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Daniel A Dombeck
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
21
|
Tian C, Reyes I, Masurkar AV. Impact of dendritic spine loss on excitability of hippocampal CA1 pyramidal neurons: a computational study of early Alzheimer disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576500. [PMID: 38328155 PMCID: PMC10849489 DOI: 10.1101/2024.01.20.576500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Synaptic spine loss is an early pathophysiologic hallmark of Alzheimer disease (AD) that precedes overt loss of dendritic architecture and frank neurodegeneration. While spine loss signifies a decreased engagement of postsynaptic neurons by presynaptic targets, the degree to which loss of spines and their passive components impacts the excitability of postsynaptic neurons and responses to surviving synaptic inputs is unclear. Using passive multicompartmental models of CA1 pyramidal neurons (PNs), implicated in early AD, we find that spine loss alone drives a boosting of remaining inputs to their proximal and distal dendrites, targeted by CA3 and entorhinal cortex (EC), respectively. This boosting effect is higher in distal versus proximal dendrites and can be mediated by spine loss restricted to the distal compartment, enough to impact synaptic input integration and somatodendritic backpropagation. This has particular relevance to very early stages of AD in which pathophysiology extends from EC to CA1.
Collapse
|
22
|
Alldred MJ, Pidikiti H, Ibrahim KW, Lee SH, Heguy A, Hoffman GE, Mufson EJ, Stutzmann GE, Ginsberg SD. Hippocampal CA1 Pyramidal Neurons Display Sublayer and Circuitry Dependent Degenerative Expression Profiles in Aged Female Down Syndrome Mice. J Alzheimers Dis 2024; 100:S341-S362. [PMID: 39031371 PMCID: PMC11497160 DOI: 10.3233/jad-240622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Background Individuals with Down syndrome (DS) have intellectual disability and develop Alzheimer's disease (AD) pathology during midlife, particularly in the hippocampal component of the medial temporal lobe memory circuit. However, molecular and cellular mechanisms underlying selective vulnerability of hippocampal CA1 neurons remains a major knowledge gap during DS/AD onset. This is compounded by evidence showing spatial (e.g., deep versus superficial) localization of pyramidal neurons (PNs) has profound effects on activity and innervation within the CA1 region. Objective We investigated whether there is a spatial profiling difference in CA1 PNs in an aged female DS/AD mouse model. We posit dysfunction may be dependent on spatial localization and innervation patterns within discrete CA1 subfields. Methods Laser capture microdissection was performed on trisomic CA1 PNs in an established mouse model of DS/AD compared to disomic controls, isolating the entire CA1 pyramidal neuron layer and sublayer microisolations of deep and superficial PNs from the distal CA1 (CA1a) region. Results RNA sequencing and bioinformatic inquiry revealed dysregulation of CA1 PNs based on spatial location and innervation patterns. The entire CA1 region displayed the most differentially expressed genes (DEGs) in trisomic mice reflecting innate DS vulnerability, while trisomic CA1a deep PNs exhibited fewer but more physiologically relevant DEGs, as evidenced by bioinformatic inquiry. Conclusions CA1a deep neurons displayed numerous DEGs linked to cognitive functions whereas CA1a superficial neurons, with approximately equal numbers of DEGs, were not linked to pathways of dysregulation, suggesting the spatial location of vulnerable CA1 PNs plays an important role in circuit dissolution.
Collapse
Affiliation(s)
- Melissa J. Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, School of Medicine, New York, NY, USA
| | - Harshitha Pidikiti
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | | | - Sang Han Lee
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, School of Medicine, New York, NY, USA
| | - Adriana Heguy
- Genome Technology Center, School of Medicine, New York, NY, USA
| | - Gabriel E. Hoffman
- Department of Genetics and Genomic Sciences and Psychiatry and the Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elliott J. Mufson
- Department of Translational Neuroscience and Neurology and Barrow Neurological Institute, Phoenix, AZ, USA
| | - Grace E. Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, School of Medicine, New York, NY, USA
- Neuroscience & Physiology, School of Medicine, New York, NY, USA
- NYU Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
23
|
Zhong P, Cao Q, Yan Z. Distinct and Convergent Alterations of Entorhinal Cortical Circuits in Two Mouse Models for Alzheimer's Disease and Related Disorders. J Alzheimers Dis 2024; 98:1121-1131. [PMID: 38489190 PMCID: PMC11432142 DOI: 10.3233/jad-231413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Background The impairment of neural circuits controlling cognitive processes has been implicated in the pathophysiology of Alzheimer's disease and related disorders (ADRD). However, it is largely unclear what circuits are specifically changed in ADRD, particularly at the early stage. Objective Our goal of this study is to reveal the functional changes in the circuit of entorhinal cortex (EC), an interface between neocortex and hippocampus, in AD. Methods Electrophysiological, optogenetic and chemogenetic approaches were used to examine and manipulate entorhinal cortical circuits in amyloid-β familial AD model (5×FAD) and tauopathy model (P301S Tau). Results We found that, compared to wild-type mice, electrical stimulation of EC induced markedly smaller responses in subiculum (hippocampal output) of 5×FAD mice (6-month-old), suggesting that synaptic communication in the EC to subiculum circuit is specifically blocked in this AD model. In addition, optogenetic stimulation of glutamatergic terminals from prefrontal cortex (PFC) induced smaller responses in EC of 5×FAD and P301S Tau mice (6-month-old), suggesting that synaptic communication in the PFC to EC pathway is compromised in both ADRD models. Chemogenetic activation of PFC to EC pathway did not affect the bursting activity of EC neurons in 5×FAD mice, but partially restored the diminished EC neuronal activity in P301S Tau mice. Conclusions These data suggest that 5×FAD mice has a specific impairment of short-range hippocampal gateway (EC to subiculum), which may be caused by amyloid-β deposits; while two ADRD models have a common impairment of long-range cortical to hippocampal circuit (PFC to EC), which may be caused by microtubule/tau-based transport deficits. These circuit deficits provide a pathophysiological basis for unique and common impairments of various cognitive processes in ADRD conditions.
Collapse
Affiliation(s)
- Ping Zhong
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Qing Cao
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
24
|
Zhang B, Li L, Tang X, Zeng J, Song Y, Hou Z, Ma T, Afewerky HK, Li H, Lu Y, He A, Li X. Distribution Patterns of Subgroups of Inhibitory Neurons Divided by Calbindin 1. Mol Neurobiol 2023; 60:7285-7296. [PMID: 37548854 DOI: 10.1007/s12035-023-03542-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
The inhibitory neurons in the brain play an essential role in neural network firing patterns by releasing γ-aminobutyric acid (GABA) as the neurotransmitter. In the mouse brain, based on the protein molecular markers, inhibitory neurons are usually to be divided into three non-overlapping groups: parvalbumin (PV), neuropeptide somatostatin (SST), and vasoactive intestinal peptide (VIP)-expressing neurons. Each neuronal group exhibited unique properties in molecule, electrophysiology, circuitry, and function. Calbindin 1 (Calb1), a ubiquitous calcium-binding protein, often acts as a "divider" in excitatory neuronal classification. Based on Calb1 expression, the excitatory neurons from the same brain region can be classified into two subgroups with distinct properties. Besides excitatory neurons, Calb1 also expresses in part of inhibitory neurons. But, to date, little research focused on the intersectional relationship between inhibitory neuronal subtypes and Calb1. In this study, we genetically targeted Calb1-expression (Calb1+) and Calb1-lacking (Calb1-) subgroups of PV and SST neurons throughout the mouse brain by flexibly crossing transgenic mice relying on multi-recombinant systems, and the distribution patterns and electrophysiological properties of each subgroup were further demonstrated. Thus, this study provided novel insights and strategies into inhibitory neuronal classification.
Collapse
Affiliation(s)
- Bing Zhang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lanfang Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaomei Tang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinyu Zeng
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yige Song
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhenye Hou
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tian Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Henok Kessete Afewerky
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youming Lu
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Aodi He
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Anatomy, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xinyan Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Anatomy, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
25
|
Ledderose JMT, Zolnik TA, Toumazou M, Trimbuch T, Rosenmund C, Eickholt BJ, Jaeger D, Larkum ME, Sachdev RNS. Layer 1 of somatosensory cortex: an important site for input to a tiny cortical compartment. Cereb Cortex 2023; 33:11354-11372. [PMID: 37851709 PMCID: PMC10690867 DOI: 10.1093/cercor/bhad371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/17/2023] [Indexed: 10/20/2023] Open
Abstract
Neocortical layer 1 has been proposed to be at the center for top-down and bottom-up integration. It is a locus for interactions between long-range inputs, layer 1 interneurons, and apical tuft dendrites of pyramidal neurons. While input to layer 1 has been studied intensively, the level and effect of input to this layer has still not been completely characterized. Here we examined the input to layer 1 of mouse somatosensory cortex with retrograde tracing and optogenetics. Our assays reveal that local input to layer 1 is predominantly from layers 2/3 and 5 pyramidal neurons and interneurons, and that subtypes of local layers 5 and 6b neurons project to layer 1 with different probabilities. Long-range input from sensory-motor cortices to layer 1 of somatosensory cortex arose predominantly from layers 2/3 neurons. Our optogenetic experiments showed that intra-telencephalic layer 5 pyramidal neurons drive layer 1 interneurons but have no effect locally on layer 5 apical tuft dendrites. Dual retrograde tracing revealed that a fraction of local and long-range neurons was both presynaptic to layer 5 neurons and projected to layer 1. Our work highlights the prominent role of local inputs to layer 1 and shows the potential for complex interactions between long-range and local inputs, which are both in position to modify the output of somatosensory cortex.
Collapse
Affiliation(s)
- Julia M T Ledderose
- Institute of Biology, Humboldt Universität zu Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
- Institute of Molecular Biology and Biochemistry, Charité—Universitätsmedizin Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | - Timothy A Zolnik
- Institute of Biology, Humboldt Universität zu Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
- Institute of Molecular Biology and Biochemistry, Charité—Universitätsmedizin Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | - Maria Toumazou
- Institute of Biology, Humboldt Universität zu Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | - Thorsten Trimbuch
- Institute of Neurophysiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
- Neurocure Centre for Excellence Charité—Universitätsmedizin Berlin Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | | | - Dieter Jaeger
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Matthew E Larkum
- Institute of Biology, Humboldt Universität zu Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
- Neurocure Centre for Excellence Charité—Universitätsmedizin Berlin Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| | - Robert N S Sachdev
- Institute of Biology, Humboldt Universität zu Berlin, Charitéplatz 1, Virchowweg 6, 10117 Berlin, Germany
| |
Collapse
|
26
|
Liu P, Gao C, Wu J, Wu T, Zhang Y, Liu C, Sun C, Li A. Negative valence encoding in the lateral entorhinal cortex during aversive olfactory learning. Cell Rep 2023; 42:113204. [PMID: 37804511 DOI: 10.1016/j.celrep.2023.113204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023] Open
Abstract
Olfactory learning is widely regarded as a substrate for animal survival. The exact brain areas involved in olfactory learning and how they function at various stages during learning remain elusive. Here, we investigate the role of the lateral entorhinal cortex (LEC) and the posterior piriform cortex (PPC), two important olfactory areas, in aversive olfactory learning. We find that the LEC is involved in the acquisition of negative odor value during olfactory fear conditioning, whereas the PPC is involved in the memory-retrieval phase. Furthermore, inhibition of LEC CaMKIIα+ neurons affects fear encoding, fear memory recall, and PPC responses to a conditioned odor. These findings provide direct evidence for the involvement of LEC CaMKIIα+ neurons in negative valence encoding.
Collapse
Affiliation(s)
- Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Cheng Gao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Jing Wu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Tingting Wu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Ying Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Changyu Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Changcheng Sun
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China.
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
27
|
Issa JB, Radvansky BA, Xuan F, Dombeck DA. Lateral entorhinal cortex subpopulations represent experiential epochs surrounding reward. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561557. [PMID: 37873482 PMCID: PMC10592707 DOI: 10.1101/2023.10.09.561557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
During goal-directed navigation, "what" information, which describes the experiences occurring in periods surrounding a reward, can be combined with spatial "where" information to guide behavior and form episodic memories1,2. This integrative process is thought to occur in the hippocampus3, which receives spatial information from the medial entorhinal cortex (MEC)4; however, the source of the "what" information and how it is represented is largely unknown. Here, by establishing a novel imaging method, we show that the lateral entorhinal cortex (LEC) of mice represents key experiential epochs during a reward-based navigation task. We discover a population of neurons that signals goal approach and a separate population of neurons that signals goal departure. A third population of neurons signals reward consumption. When reward location is moved, these populations immediately shift their respective representations of each experiential epoch relative to reward, while optogenetic inhibition of LEC disrupts learning of the new reward location. Together, these results indicate the LEC provides a stable code of experiential epochs surrounding and including reward consumption, providing reward-centric information to contextualize the spatial information carried by the MEC. Such parallel representations are well-suited for generating episodic memories of rewarding experiences and guiding flexible and efficient goal-directed navigation5-7.
Collapse
Affiliation(s)
- John B. Issa
- Department of Neurobiology, Northwestern University, Evanston, IL 60608, USA
| | - Brad A. Radvansky
- Department of Neurobiology, Northwestern University, Evanston, IL 60608, USA
| | - Feng Xuan
- Department of Neurobiology, Northwestern University, Evanston, IL 60608, USA
| | - Daniel A. Dombeck
- Department of Neurobiology, Northwestern University, Evanston, IL 60608, USA
| |
Collapse
|
28
|
Berndt M, Trusel M, Roberts TF, Pfeiffer BE, Volk LJ. Bidirectional synaptic changes in deep and superficial hippocampal neurons following in vivo activity. Neuron 2023; 111:2984-2994.e4. [PMID: 37689058 PMCID: PMC10958998 DOI: 10.1016/j.neuron.2023.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 07/06/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023]
Abstract
Neuronal activity during experience is thought to induce plastic changes within the hippocampal network that underlie memory formation, although the extent and details of such changes in vivo remain unclear. Here, we employed a temporally precise marker of neuronal activity, CaMPARI2, to label active CA1 hippocampal neurons in vivo, followed by immediate acute slice preparation and electrophysiological quantification of synaptic properties. Recently active neurons in the superficial sublayer of stratum pyramidale displayed larger post-synaptic responses at excitatory synapses from area CA3, with no change in pre-synaptic release probability. In contrast, in vivo activity correlated with weaker pre- and post-synaptic excitatory weights onto pyramidal cells in the deep sublayer. In vivo activity of deep and superficial neurons within sharp-wave/ripples was bidirectionally changed across experience, consistent with the observed changes in synaptic weights. These findings reveal novel, fundamental mechanisms through which the hippocampal network is modified by experience to store information.
Collapse
Affiliation(s)
- Marcus Berndt
- UT Southwestern Medical Center Neuroscience Graduate Program, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA
| | - Massimo Trusel
- UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA
| | - Todd F Roberts
- UT Southwestern Medical Center Neuroscience Graduate Program, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA; Peter O'Donnell Brain Institute, Dallas, TX 75390, USA
| | - Brad E Pfeiffer
- UT Southwestern Medical Center Neuroscience Graduate Program, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA; Peter O'Donnell Brain Institute, Dallas, TX 75390, USA.
| | - Lenora J Volk
- UT Southwestern Medical Center Neuroscience Graduate Program, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Neuroscience, Dallas, TX 75390, USA; UT Southwestern Medical Center Department of Psychiatry, Dallas, TX 75390, USA; Peter O'Donnell Brain Institute, Dallas, TX 75390, USA.
| |
Collapse
|
29
|
Etter G, Carmichael JE, Williams S. Linking temporal coordination of hippocampal activity to memory function. Front Cell Neurosci 2023; 17:1233849. [PMID: 37720546 PMCID: PMC10501408 DOI: 10.3389/fncel.2023.1233849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023] Open
Abstract
Oscillations in neural activity are widespread throughout the brain and can be observed at the population level through the local field potential. These rhythmic patterns are associated with cycles of excitability and are thought to coordinate networks of neurons, in turn facilitating effective communication both within local circuits and across brain regions. In the hippocampus, theta rhythms (4-12 Hz) could contribute to several key physiological mechanisms including long-range synchrony, plasticity, and at the behavioral scale, support memory encoding and retrieval. While neurons in the hippocampus appear to be temporally coordinated by theta oscillations, they also tend to fire in sequences that are developmentally preconfigured. Although loss of theta rhythmicity impairs memory, these sequences of spatiotemporal representations persist in conditions of altered hippocampal oscillations. The focus of this review is to disentangle the relative contribution of hippocampal oscillations from single-neuron activity in learning and memory. We first review cellular, anatomical, and physiological mechanisms underlying the generation and maintenance of hippocampal rhythms and how they contribute to memory function. We propose candidate hypotheses for how septohippocampal oscillations could support memory function while not contributing directly to hippocampal sequences. In particular, we explore how theta rhythms could coordinate the integration of upstream signals in the hippocampus to form future decisions, the relevance of such integration to downstream regions, as well as setting the stage for behavioral timescale synaptic plasticity. Finally, we leverage stimulation-based treatment in Alzheimer's disease conditions as an opportunity to assess the sufficiency of hippocampal oscillations for memory function.
Collapse
Affiliation(s)
| | | | - Sylvain Williams
- Department of Psychiatry, Douglas Mental Health Research Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
30
|
Beesley S, Kumar SS. The t-N-methyl-d-aspartate receptor: Making the case for d-Serine to be considered its inverse co-agonist. Neuropharmacology 2023:109654. [PMID: 37437688 DOI: 10.1016/j.neuropharm.2023.109654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
The N-methyl-d-aspartate receptor (NMDAR) is an enigmatic macromolecule that has garnered a good deal of attention on account of its involvement in the cellular processes that underlie learning and memory, following its discovery in the mid twentieth century (Baudry and Davis, 1991). Yet, despite advances in knowledge about its function, there remains much more to be uncovered regarding the receptor's biophysical properties, subunit composition, and role in CNS physiology and pathophysiology. The motivation for this review stems from the need for synthesizing new information gathered about these receptors that sheds light on their role in synaptic plasticity and their dichotomous relationship with the amino acid d-serine through which they influence the pathogenesis of neurodegenerative diseases like temporal lobe epilepsy (TLE), the most common type of adult epilepsies (Beesley et al., 2020a). This review will outline pertinent ideas relating structure and function of t-NMDARs (GluN3 subunit-containing triheteromeric NMDARs) for which d-serine might serve as an inverse co-agonist. We will explore how tracing d-serine's origins blends glutamate-receptor biology with glial biology to help provide fresh perspectives on how neurodegeneration might interlink with neuroinflammation to initiate and perpetuate the disease state. Taken together, we envisage the review to deepen our understanding of endogenous d-serine's new role in the brain while also recognizing its therapeutic potential in the treatment of TLE that is oftentimes refractory to medications.
Collapse
Affiliation(s)
- Stephen Beesley
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience Florida State University, 1115 W. Call Street, Tallahassee, FL, 32306-4300, USA
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience Florida State University, 1115 W. Call Street, Tallahassee, FL, 32306-4300, USA.
| |
Collapse
|
31
|
Harvey RE, Robinson HL, Liu C, Oliva A, Fernandez-Ruiz A. Hippocampo-cortical circuits for selective memory encoding, routing, and replay. Neuron 2023; 111:2076-2090.e9. [PMID: 37196658 PMCID: PMC11146684 DOI: 10.1016/j.neuron.2023.04.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/15/2023] [Accepted: 04/12/2023] [Indexed: 05/19/2023]
Abstract
Traditionally considered a homogeneous cell type, hippocampal pyramidal cells have been recently shown to be highly diverse. However, how this cellular diversity relates to the different hippocampal network computations that support memory-guided behavior is not yet known. We show that the anatomical identity of pyramidal cells is a major organizing principle of CA1 assembly dynamics, the emergence of memory replay, and cortical projection patterns in rats. Segregated pyramidal cell subpopulations encoded trajectory and choice-specific information or tracked changes in reward configuration respectively, and their activity was selectively read out by different cortical targets. Furthermore, distinct hippocampo-cortical assemblies coordinated the reactivation of complementary memory representations. These findings reveal the existence of specialized hippocampo-cortical subcircuits and provide a cellular mechanism that supports the computational flexibility and memory capacities of these structures.
Collapse
Affiliation(s)
- Ryan E Harvey
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA
| | - Heath L Robinson
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA
| | - Can Liu
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA
| | - Azahara Oliva
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|
32
|
Leprince E, Dard RF, Mortet S, Filippi C, Giorgi-Kurz M, Bourboulou R, Lenck-Santini PP, Picardo MA, Bocchio M, Baude A, Cossart R. Extrinsic control of the early postnatal CA1 hippocampal circuits. Neuron 2023; 111:888-902.e8. [PMID: 36608692 DOI: 10.1016/j.neuron.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/18/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023]
Abstract
The adult CA1 region of the hippocampus produces coordinated neuronal dynamics with minimal reliance on its extrinsic inputs. By contrast, neonatal CA1 is tightly linked to externally generated sensorimotor activity, but the circuit mechanisms underlying early synchronous activity in CA1 remain unclear. Here, using a combination of in vivo and ex vivo circuit mapping, calcium imaging, and electrophysiological recordings in mouse pups, we show that early dynamics in the ventro-intermediate CA1 are under the mixed influence of entorhinal (EC) and thalamic (VMT) inputs. Both VMT and EC can drive internally generated synchronous events ex vivo. However, movement-related population bursts detected in vivo are exclusively driven by the EC. These differential effects on synchrony reflect the different intrahippocampal targets of these inputs. Hence, cortical and subcortical pathways act differently on the neonatal CA1, implying distinct contributions to the development of the hippocampal microcircuit and related cognitive maps.
Collapse
Affiliation(s)
- Erwan Leprince
- Aix Marseille University, INSERM, INMED (UMR1249), Turing Centre for Living systems, Marseille, France
| | - Robin F Dard
- Aix Marseille University, INSERM, INMED (UMR1249), Turing Centre for Living systems, Marseille, France
| | - Salomé Mortet
- Aix Marseille University, INSERM, INMED (UMR1249), Turing Centre for Living systems, Marseille, France
| | - Caroline Filippi
- Aix Marseille University, INSERM, INMED (UMR1249), Turing Centre for Living systems, Marseille, France
| | - Marie Giorgi-Kurz
- Aix Marseille University, INSERM, INMED (UMR1249), Turing Centre for Living systems, Marseille, France
| | - Romain Bourboulou
- Department of Cell and Developmental Biology, University College London, London, UK
| | | | - Michel A Picardo
- Aix Marseille University, INSERM, INMED (UMR1249), Turing Centre for Living systems, Marseille, France
| | - Marco Bocchio
- Aix Marseille University, INSERM, INMED (UMR1249), Turing Centre for Living systems, Marseille, France; Department of Psychology, Durham University, Durham, UK
| | - Agnès Baude
- Aix Marseille University, INSERM, INMED (UMR1249), Turing Centre for Living systems, Marseille, France
| | - Rosa Cossart
- Aix Marseille University, INSERM, INMED (UMR1249), Turing Centre for Living systems, Marseille, France.
| |
Collapse
|
33
|
Gu L, Ren M, Lin L, Xu J. Calbindin-Expressing CA1 Pyramidal Neurons Encode Spatial Information More Efficiently. eNeuro 2023; 10:ENEURO.0411-22.2023. [PMID: 36810150 PMCID: PMC10016193 DOI: 10.1523/eneuro.0411-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Hippocampal pyramidal neurons (PNs) are traditionally conceptualized as homogeneous population. For the past few years, cumulating evidence has revealed the structural and functional heterogeneity of hippocampal pyramidal neurons. But the in vivo neuronal firing pattern of molecularly identified pyramidal neuron subclasses is still absent. In this study, we investigated the firing patterns of hippocampal PNs based on different expression profile of Calbindin (CB) during a spatial shuttle task in free moving male mice. We found that CB+ place cells can represent spatial information more efficiently than CB- place cells, albeit lower firing rates during running epochs. Furthermore, a subset of CB+ PNs shifted their theta firing phase during rapid-eye movement (REM) sleep states compared with running states. Although CB- PNs are more actively engaged in ripple oscillations, CB+ PNs showed stronger ripple modulation during slow-wave sleep (SWS). Our results pointed out the heterogeneity in neuronal representation between hippocampal CB+ and CB- PNs. Particularly, CB+ PNs encode spatial information more efficiently, which might be contributed by stronger afferents from the lateral entorhinal cortex to CB+ PNs.
Collapse
Affiliation(s)
- Liqin Gu
- Institute of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Minglong Ren
- Institute of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Longnian Lin
- Institute of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
- New York University - East China Normal University Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
- Tongji University Brain and Spinal Cord Clinical Center, Shanghai 200062, China
| | - Jiamin Xu
- Institute of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
- New York University - East China Normal University Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
34
|
Shinohara Y, Kohara K. Projections of hippocampal CA2 pyramidal neurons: Distinct innervation patterns of CA2 compared to CA3 in rodents. Hippocampus 2023; 33:691-699. [PMID: 36855258 DOI: 10.1002/hipo.23519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
The hippocampus is a center for spatial and episodic memory formation in rodents. Understanding the composition of subregions and circuitry maps of the hippocampus is essential for elucidating the mechanism of memory formation and recall. For decades, the trisynaptic circuit (entorhinal cortex layer II-dentate gyrus - CA3-CA1) has been considered the neural network substrate responsible for learning and memory. Recently, CA2 has emerged as an important area in the hippocampal circuitry, with distinct functions from those of CA3. In this article, we review the historical definition of the hippocampal area CA2 and the differential projection patterns between CA2 and CA3 pyramidal neurons. We provide a concise and comprehensive map of CA2 outputs by comparing (1) ipsi versus contra projections, (2) septal versus temporal projections, and (3) lamellar structures of CA2 and CA3 pyramidal neurons.
Collapse
Affiliation(s)
- Yoshiaki Shinohara
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Keigo Kohara
- KMU Biobank Center, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
35
|
Hall AF, Wang DV. The two tales of hippocampal sharp-wave ripple content: The rigid and the plastic. Prog Neurobiol 2023; 221:102396. [PMID: 36563928 PMCID: PMC9899323 DOI: 10.1016/j.pneurobio.2022.102396] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Sharp-wave ripples, prominently in the CA1 region of the hippocampus, are short oscillatory events accompanied by bursts of neural firing. Ripples and associated hippocampal place cell sequences communicate with cortical ensembles during slow-wave sleep, which has been shown to be critical for systems consolidation of episodic memories. This consolidation is not limited to a newly formed memory trace; instead, ripples appear to reactivate and consolidate memories spanning various experiences. Despite this broad spanning influence, ripples remain capable of producing precise memories. The underlying mechanisms that enable ripples to consolidate memories broadly and with specificity across experiences remain unknown. In this review, we discuss data that uncovers circuit-level processes that generate ripples and influence their characteristics during consolidation. Based on current knowledge, we propose that memory emerges from the integration of two parallel consolidation pathways in CA1: the rigid and plastic pathways. The rigid pathway generates ripples stochastically, providing a backbone upon which dynamic plastic pathway inputs carrying novel information are integrated.
Collapse
Affiliation(s)
- Arron F Hall
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Dong V Wang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
36
|
Ohara S, Rannap M, Tsutsui KI, Draguhn A, Egorov AV, Witter MP. Hippocampal-medial entorhinal circuit is differently organized along the dorsoventral axis in rodents. Cell Rep 2023; 42:112001. [PMID: 36680772 DOI: 10.1016/j.celrep.2023.112001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/14/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023] Open
Abstract
The general understanding of hippocampal circuits is that the hippocampus and the entorhinal cortex (EC) are topographically connected through parallel identical circuits along the dorsoventral axis. Our anterograde tracing and in vitro electrophysiology data, however, show a markedly different dorsoventral organization of the hippocampal projection to the medial EC (MEC). While dorsal hippocampal projections are confined to the dorsal MEC, ventral hippocampal projections innervate both dorsal and ventral MEC. Further, whereas the dorsal hippocampus preferentially targets layer Vb (LVb) neurons, the ventral hippocampus mainly targets cells in layer Va (LVa). This connectivity scheme differs from hippocampal projections to the lateral EC, which are topographically organized along the dorsoventral axis. As LVa neurons project to telencephalic structures, our findings indicate that the ventral hippocampus regulates LVa-mediated entorhinal-neocortical output from both dorsal and ventral MEC. Overall, the marked dorsoventral differences in hippocampal-entorhinal connectivity impose important constraints on signal flow in hippocampal-neocortical circuits.
Collapse
Affiliation(s)
- Shinya Ohara
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan; Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway; PRESTO, Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Märt Rannap
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Ken-Ichiro Tsutsui
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Alexei V Egorov
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Heidelberg, Germany.
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
37
|
Bilash OM, Chavlis S, Johnson CD, Poirazi P, Basu J. Lateral entorhinal cortex inputs modulate hippocampal dendritic excitability by recruiting a local disinhibitory microcircuit. Cell Rep 2023; 42:111962. [PMID: 36640337 DOI: 10.1016/j.celrep.2022.111962] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
The lateral entorhinal cortex (LEC) provides multisensory information to the hippocampus, directly to the distal dendrites of CA1 pyramidal neurons. LEC neurons perform important functions for episodic memory processing, coding for contextually salient elements of an environment or experience. However, we know little about the functional circuit interactions between the LEC and the hippocampus. We combine functional circuit mapping and computational modeling to examine how long-range glutamatergic LEC projections modulate compartment-specific excitation-inhibition dynamics in hippocampal area CA1. We demonstrate that glutamatergic LEC inputs can drive local dendritic spikes in CA1 pyramidal neurons, aided by the recruitment of a disinhibitory VIP interneuron microcircuit. Our circuit mapping and modeling further reveal that LEC inputs also recruit CCK interneurons that may act as strong suppressors of dendritic spikes. These results highlight a cortically driven GABAergic microcircuit mechanism that gates nonlinear dendritic computations, which may support compartment-specific coding of multisensory contextual features within the hippocampus.
Collapse
Affiliation(s)
- Olesia M Bilash
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete 70013, Greece
| | - Cara D Johnson
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete 70013, Greece.
| | - Jayeeta Basu
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Psychiatry, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
38
|
Huszár R, Zhang Y, Blockus H, Buzsáki G. Preconfigured dynamics in the hippocampus are guided by embryonic birthdate and rate of neurogenesis. Nat Neurosci 2022; 25:1201-1212. [PMID: 35995878 PMCID: PMC10807234 DOI: 10.1038/s41593-022-01138-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/12/2022] [Indexed: 02/08/2023]
Abstract
The incorporation of new information into the hippocampal network is likely to be constrained by its innate architecture and internally generated activity patterns. However, the origin, organization and consequences of such patterns remain poorly understood. In the present study we show that hippocampal network dynamics are affected by sequential neurogenesis. We birthdated CA1 pyramidal neurons with in utero electroporation over 4 embryonic days, encompassing the peak of hippocampal neurogenesis, and compared their functional features in freely moving adult mice. Neurons of the same birthdate displayed distinct connectivity, coactivity across brain states and assembly dynamics. Same-birthdate neurons exhibited overlapping spatial representations, which were maintained across different environments. Overall, the wiring and functional features of CA1 pyramidal neurons reflected a combination of birthdate and the rate of neurogenesis. These observations demonstrate that sequential neurogenesis during embryonic development shapes the preconfigured forms of adult network dynamics.
Collapse
Affiliation(s)
- Roman Huszár
- Neuroscience Institute, New York University, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| | - Yunchang Zhang
- Neuroscience Institute, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Heike Blockus
- Department of Neuroscience, Columbia University, New York, NY, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - György Buzsáki
- Neuroscience Institute, New York University, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
- Department of Neurology, Langone Medical Center, New York, NY, USA.
| |
Collapse
|
39
|
Sumser A, Joesch M, Jonas P, Ben-Simon Y. Fast, high-throughput production of improved rabies viral vectors for specific, efficient and versatile transsynaptic retrograde labeling. eLife 2022; 11:e79848. [PMID: 36040301 PMCID: PMC9477495 DOI: 10.7554/elife.79848] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
To understand the function of neuronal circuits, it is crucial to disentangle the connectivity patterns within the network. However, most tools currently used to explore connectivity have low throughput, low selectivity, or limited accessibility. Here, we report the development of an improved packaging system for the production of the highly neurotropic RVdGenvA-CVS-N2c rabies viral vectors, yielding titers orders of magnitude higher with no background contamination, at a fraction of the production time, while preserving the efficiency of transsynaptic labeling. Along with the production pipeline, we developed suites of 'starter' AAV and bicistronic RVdG-CVS-N2c vectors, enabling retrograde labeling from a wide range of neuronal populations, tailored for diverse experimental requirements. We demonstrate the power and flexibility of the new system by uncovering hidden local and distal inhibitory connections in the mouse hippocampal formation and by imaging the functional properties of a cortical microcircuit across weeks. Our novel production pipeline provides a convenient approach to generate new rabies vectors, while our toolkit flexibly and efficiently expands the current capacity to label, manipulate and image the neuronal activity of interconnected neuronal circuits in vitro and in vivo.
Collapse
Affiliation(s)
- Anton Sumser
- Institute of Science and Technology Austria (ISTA)KlosterneuburgAustria
| | - Maximilian Joesch
- Institute of Science and Technology Austria (ISTA)KlosterneuburgAustria
| | - Peter Jonas
- Institute of Science and Technology Austria (ISTA)KlosterneuburgAustria
| | - Yoav Ben-Simon
- Institute of Science and Technology Austria (ISTA)KlosterneuburgAustria
- Department of Neurophysiology and Neuropharmacology, Vienna Medical UniversityViennaAustria
- Allen Institute for Brain ScienceSeattle, WAUnited States
| |
Collapse
|
40
|
Vandyshev G, Mysin I. Homogeneous inhibition is optimal for the phase precession of place cells in the CA1 field. J Comput Neurosci 2022; 51:389-403. [PMID: 37402950 DOI: 10.1007/s10827-023-00855-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 07/06/2023]
Abstract
Place cells are hippocampal neurons encoding the position of an animal in space. Studies of place cells are essential to understanding the processing of information by neural networks of the brain. An important characteristic of place cell spike trains is phase precession. When an animal is running through the place field, the discharges of the place cells shift from the ascending phase of the theta rhythm through the minimum to the descending phase. The role of excitatory inputs to pyramidal neurons along the Schaffer collaterals and the perforant pathway in phase precession is described, but the role of local interneurons is poorly understood. Our goal is estimating of the contribution of field CA1 interneurons to the phase precession of place cells using mathematical methods. The CA1 field is chosen because it provides the largest set of experimental data required to build and verify the model. Our simulations discover optimal parameters of the excitatory and inhibitory inputs to the pyramidal neuron so that it generates a spike train with the effect of phase precession. The uniform inhibition of pyramidal neurons best explains the effect of phase precession. Among interneurons, axo-axonal neurons make the greatest contribution to the inhibition of pyramidal cells.
Collapse
Affiliation(s)
- Georgy Vandyshev
- Laboratory of Systemic Organization of Neurons, Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Institutskya, 3, Pushchino, 124290, Moscow Region, Russian Federation.
- Faculty of General and Applied Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky Lane, 9, Dolgoprudnyi, 141701, Moscow Region, Russian Federation.
| | - Ivan Mysin
- Laboratory of Systemic Organization of Neurons, Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Institutskya, 3, Pushchino, 124290, Moscow Region, Russian Federation
| |
Collapse
|
41
|
Honda Y, Shimokawa T, Matsuda S, Kobayashi Y, Moriya-Ito K. Hippocampal Connectivity of the Presubiculum in the Common Marmoset (Callithrix jacchus). Front Neural Circuits 2022; 16:863478. [PMID: 35860211 PMCID: PMC9289110 DOI: 10.3389/fncir.2022.863478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
The marmoset (a New World monkey) has recently received much attention as an experimental animal model; however, little is known about the connectivity of limbic regions, including cortical and hippocampal memory circuits, in the marmoset. Here, we investigated the neuronal connectivity of the marmoset, especially focusing on the connectivity between the hippocampal formation and the presubiculum, using retrograde and anterograde tracers (cholera toxin-B subunit and biotin dextran amine). We demonstrated the presence of a direct projection from the CA1 pyramidal cell layer to the deep layers of the presubiculum in the marmoset, which was previously identified in the rabbit brain, but not in the rat. We also found that the cells of origin of the subiculo-presubicular projections were localized in the middle part along the superficial-to-deep axis of the pyramidal cell layer of the distal subiculum in the marmoset, which was similar to that in both rats and rabbits. Our results suggest that, compared to the rat and rabbit brains, connections between the hippocampal formation and presubiculum are highly organized and characteristic in the marmoset brain.
Collapse
Affiliation(s)
- Yoshiko Honda
- Department of Anatomy and Neurobiology, School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan
- *Correspondence: Yoshiko Honda,
| | - Tetsuya Shimokawa
- Division of Anatomy and Embryology, Department of Functional Biomedicine, Ehime University, Toon, Japan
| | - Seiji Matsuda
- Division of Anatomy and Embryology, Department of Functional Biomedicine, Ehime University, Toon, Japan
| | - Yasushi Kobayashi
- Department of Anatomy, National Defense Medical College, Tokorozawa, Japan
| | - Keiko Moriya-Ito
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
42
|
Bosch C, Ackels T, Pacureanu A, Zhang Y, Peddie CJ, Berning M, Rzepka N, Zdora MC, Whiteley I, Storm M, Bonnin A, Rau C, Margrie T, Collinson L, Schaefer AT. Functional and multiscale 3D structural investigation of brain tissue through correlative in vivo physiology, synchrotron microtomography and volume electron microscopy. Nat Commun 2022; 13:2923. [PMID: 35614048 PMCID: PMC9132960 DOI: 10.1038/s41467-022-30199-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Understanding the function of biological tissues requires a coordinated study of physiology and structure, exploring volumes that contain complete functional units at a detail that resolves the relevant features. Here, we introduce an approach to address this challenge: Mouse brain tissue sections containing a region where function was recorded using in vivo 2-photon calcium imaging were stained, dehydrated, resin-embedded and imaged with synchrotron X-ray computed tomography with propagation-based phase contrast (SXRT). SXRT provided context at subcellular detail, and could be followed by targeted acquisition of multiple volumes using serial block-face electron microscopy (SBEM). In the olfactory bulb, combining SXRT and SBEM enabled disambiguation of in vivo-assigned regions of interest. In the hippocampus, we found that superficial pyramidal neurons in CA1a displayed a larger density of spine apparati than deeper ones. Altogether, this approach can enable a functional and structural investigation of subcellular features in the context of cells and tissues.
Collapse
Affiliation(s)
- Carles Bosch
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK.
| | - Tobias Ackels
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College, London, UK
| | - Alexandra Pacureanu
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College, London, UK
- ESRF, The European Synchrotron, Grenoble, France
| | - Yuxin Zhang
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College, London, UK
| | | | - Manuel Berning
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Scalable minds GmbH, Potsdam, Germany
| | | | - Marie-Christine Zdora
- Department of Physics and Astronomy, University College London, London, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- School of Physics and Astronomy, University of Southampton, Highfield Campus, Southampton, UK
| | - Isabell Whiteley
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK
- Department of Neuroscience, Physiology and Pharmacology, University College, London, UK
| | - Malte Storm
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Anne Bonnin
- Paul Scherrer Institut, Villigen, Switzerland
| | - Christoph Rau
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Troy Margrie
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Lucy Collinson
- Electron Microscopy STP, The Francis Crick Institute, London, UK
| | - Andreas T Schaefer
- Sensory Circuits and Neurotechnology Lab., The Francis Crick Institute, London, UK.
- Department of Neuroscience, Physiology and Pharmacology, University College, London, UK.
| |
Collapse
|
43
|
Beesley S, Sullenberger T, Lee C, Kumar SS. GluN3 Subunit Expression Correlates with Increased Vulnerability of Hippocampus and Entorhinal Cortex to Neurodegeneration in a Model of Temporal Lobe Epilepsy. J Neurophysiol 2022; 127:1496-1510. [PMID: 35475675 DOI: 10.1152/jn.00070.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common type of epilepsy in adults that is often refractory to anti-epileptic medication therapy. Neither the pathology nor the etiology of TLE are fully characterized, although recent studies have established that the two are causally related. TLE pathology entails a stereotypic pattern of neuron loss in hippocampal and parahippocampal regions, predominantly in CA1 subfield of the hippocampus and layer 3 of the medial entorhinal area (MEA), deemed hallmark pathological features of the disease. Through this work, we address the contribution of glutamatergic N-methyl-D-aspartate receptors (NMDARs) to the pathology (vulnerability and pattern of neuronal loss), and by extension to the pathophysiology (Ca2+ induced excitotoxicity), by assaying the spatial expression of their subunit proteins (GluN1, GluN2A, GluN2B and GluN3A) in these regions using ASTA (area specific tissue analysis), a novel methodology for harvesting brain chads from hard-to-reach regions within brain slices for Western blotting. Our data suggest gradient expression of the GluN3A subunit along the mid-lateral extent of layer 3 MEA and along the CA1-subicular axis in the hippocampus, unlike GluN1 or GluN2 subunits which are uniformly distributed. Incorporation of GluN3A in the subunit composition of conventional diheteromeric (d-) NMDARs yield triheteromeric (t-) NMDARs which by virtue of their increased selectivity for Ca2+ render neurons vulnerable to excitotoxic damage. Thus, the expression profile of this subunit sheds light on the spatial extent of the pathology observed in these regions and implicates the GluN3 subunit of NMDARs in hippocampal and entorhinal cortical pathology underlying TLE.
Collapse
Affiliation(s)
- Stephen Beesley
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience Florida State University, Tallahassee, FL, United States
| | - Thomas Sullenberger
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience Florida State University, Tallahassee, FL, United States
| | - Christopher Lee
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience Florida State University, Tallahassee, FL, United States
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience Florida State University, Tallahassee, FL, United States
| |
Collapse
|
44
|
Bitzenhofer SH, Westeinde EA, Zhang HXB, Isaacson JS. Rapid odor processing by layer 2 subcircuits in lateral entorhinal cortex. eLife 2022; 11:75065. [PMID: 35129439 PMCID: PMC8860446 DOI: 10.7554/elife.75065] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/04/2022] [Indexed: 11/27/2022] Open
Abstract
Olfactory information is encoded in lateral entorhinal cortex (LEC) by two classes of layer 2 (L2) principal neurons: fan and pyramidal cells. However, the functional properties of L2 cells and how they contribute to odor coding are unclear. Here, we show in awake mice that L2 cells respond to odors early during single sniffs and that LEC is essential for rapid discrimination of both odor identity and intensity. Population analyses of L2 ensembles reveal that rate coding distinguishes odor identity, but firing rates are only weakly concentration dependent and changes in spike timing can represent odor intensity. L2 principal cells differ in afferent olfactory input and connectivity with inhibitory circuits and the relative timing of pyramidal and fan cell spikes provides a temporal code for odor intensity. Downstream, intensity is encoded purely by spike timing in hippocampal CA1. Together, these results reveal the unique processing of odor information by LEC subcircuits and highlight the importance of temporal coding in higher olfactory areas.
Collapse
Affiliation(s)
| | - Elena A Westeinde
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Han-Xiong Bear Zhang
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Jeffry S Isaacson
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| |
Collapse
|
45
|
Ding L, Balsamo G, Chen H, Blanco-Hernandez E, Zouridis IS, Naumann R, Preston-Ferrer P, Burgalossi A. Juxtacellular opto-tagging of hippocampal CA1 neurons in freely moving mice. eLife 2022; 11:71720. [PMID: 35080491 PMCID: PMC8791633 DOI: 10.7554/elife.71720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/06/2022] [Indexed: 01/05/2023] Open
Abstract
Neural circuits are made of a vast diversity of neuronal cell types. While immense progress has been made in classifying neurons based on morphological, molecular, and functional properties, understanding how this heterogeneity contributes to brain function during natural behavior has remained largely unresolved. In the present study, we combined the juxtacellular recording and labeling technique with optogenetics in freely moving mice. This allowed us to selectively target molecularly defined cell classes for in vivo single-cell recordings and morphological analysis. We validated this strategy in the CA1 region of the mouse hippocampus by restricting Channelrhodopsin expression to Calbindin-positive neurons. Directly versus indirectly light-activated neurons could be readily distinguished based on the latencies of light-evoked spikes, with juxtacellular labeling and post hoc histological analysis providing ‘ground-truth’ validation. Using these opto-juxtacellular procedures in freely moving mice, we found that Calbindin-positive CA1 pyramidal cells were weakly spatially modulated and conveyed less spatial information than Calbindin-negative neurons – pointing to pyramidal cell identity as a key determinant for neuronal recruitment into the hippocampal spatial map. Thus, our method complements current in vivo techniques by enabling optogenetic-assisted structure–function analysis of single neurons recorded during natural, unrestrained behavior.
Collapse
Affiliation(s)
- Lingjun Ding
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.,Graduate Training Centre of Neuroscience - International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Giuseppe Balsamo
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.,Graduate Training Centre of Neuroscience - International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Hongbiao Chen
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.,Graduate Training Centre of Neuroscience - International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Eduardo Blanco-Hernandez
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| | - Ioannis S Zouridis
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.,Graduate Training Centre of Neuroscience - International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Robert Naumann
- Chinese Academy of Sciences, Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Nanshan, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| | - Andrea Burgalossi
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| |
Collapse
|
46
|
Sánchez-Bellot C, AlSubaie R, Mishchanchuk K, Wee RWS, MacAskill AF. Two opposing hippocampus to prefrontal cortex pathways for the control of approach and avoidance behaviour. Nat Commun 2022; 13:339. [PMID: 35039510 PMCID: PMC8763938 DOI: 10.1038/s41467-022-27977-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/13/2021] [Indexed: 11/09/2022] Open
Abstract
The decision to either approach or avoid a potentially threatening environment is thought to rely upon the coordinated activity of heterogeneous neural populations in the hippocampus and prefrontal cortex (PFC). However, how this circuitry is organized to flexibly promote both approach or avoidance at different times has remained elusive. Here, we show that the hippocampal projection to PFC is composed of two parallel circuits located in the superficial or deep pyramidal layers of the CA1/subiculum border. These circuits have unique upstream and downstream connectivity, and are differentially active during approach and avoidance behaviour. The superficial population is preferentially connected to widespread PFC inhibitory interneurons, and its activation promotes exploration; while the deep circuit is connected to PFC pyramidal neurons and fast spiking interneurons, and its activation promotes avoidance. Together this provides a mechanism for regulation of behaviour during approach avoidance conflict: through two specialized, parallel circuits that allow bidirectional hippocampal control of PFC.
Collapse
Affiliation(s)
- Candela Sánchez-Bellot
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St, London, WC1E 6BT, UK
| | - Rawan AlSubaie
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St, London, WC1E 6BT, UK
| | - Karyna Mishchanchuk
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St, London, WC1E 6BT, UK
| | - Ryan W S Wee
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St, London, WC1E 6BT, UK
| | - Andrew F MacAskill
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St, London, WC1E 6BT, UK.
| |
Collapse
|
47
|
Reconstruction of the Hippocampus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1359:261-283. [DOI: 10.1007/978-3-030-89439-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe hippocampus is a widely studied brain region thought to play an important role in higher cognitive functions such as learning, memory, and navigation. The amount of data on this region increases every day and delineates a complex and fragmented picture, but an integrated understanding of hippocampal function remains elusive. Computational methods can help to move the research forward, and reconstructing a full-scale model of the hippocampus is a challenging yet feasible task that the research community should undertake.In this chapter, we present strategies for reconstructing a large-scale model of the hippocampus. Based on a previously published approach to reconstruct and simulate brain tissue, which is also explained in Chap. 10, we discuss the characteristics of the hippocampus in the light of its special anatomical and physiological features, data availability, and existing large-scale hippocampus models. A large-scale model of the hippocampus is a compound model of several building blocks: ion channels, morphologies, single cell models, connections, synapses. We discuss each of those building blocks separately and discuss how to merge them back and simulate the resulting network model.
Collapse
|
48
|
Distal CA1 Maintains a More Coherent Spatial Representation than Proximal CA1 When Local and Global Cues Conflict. J Neurosci 2021; 41:9767-9781. [PMID: 34670850 DOI: 10.1523/jneurosci.2938-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 09/10/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
Entorhinal cortical projections show segregation along the transverse axis of CA1, with the medial entorhinal cortex (MEC) sending denser projections to proximal CA1 (pCA1) and the lateral entorhinal cortex (LEC) sending denser projections to distal CA1 (dCA1). Previous studies have reported functional segregation along the transverse axis of CA1 correlated with the functional differences in MEC and LEC. pCA1 shows higher spatial selectivity than dCA1 in these studies. We employ a double rotation protocol, which creates an explicit conflict between the local and the global cues, to understand the differential contributions of these reference frames to the spatial code in pCA1 and dCA1 in male Long-Evans rats. We show that pCA1 and dCA1 respond differently to this local-global cue conflict. pCA1 representation splits as predicted from the strong conflicting inputs it receives from MEC and dCA3. In contrast, dCA1 rotates more in concert with the global cues. In addition, pCA1 and dCA1 display comparable levels of spatial selectivity in this study. This finding differs from the previous studies, perhaps because of richer sensory information available in our behavior arena. Together, these observations indicate that the functional segregation along proximodistal axis of CA1 is not of the amount of spatial selectivity but that of the nature of the different inputs used to create and anchor spatial representations.SIGNIFICANCE STATEMENT Subregions of the hippocampus are thought to play different roles in spatial navigation and episodic memory. It was previously thought that the distal part of area CA1 of the hippocampus carries lesser information about space than proximal CA1 (pCA1). We report that distal CA1 (dCA1) spatial representation moves more in concert with the global cues than pCA1 when the local and the global cues conflict. We also show that spatial selectivity is comparable along the proximodistal axis in this experimental protocol. Thus, different parts of the brain receiving differential outputs from pCA1 and dCA1 receive spatial information in different spatial reference frames encoded using different sets of inputs, rather than different amounts of spatial information as thought earlier.
Collapse
|
49
|
Cavalieri D, Angelova A, Islah A, Lopez C, Bocchio M, Bollmann Y, Baude A, Cossart R. CA1 pyramidal cell diversity is rootedin the time of neurogenesis. eLife 2021; 10:69270. [PMID: 34723790 PMCID: PMC8660020 DOI: 10.7554/elife.69270] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/31/2021] [Indexed: 11/18/2022] Open
Abstract
Cellular diversity supports the computational capacity and flexibility of cortical circuits. Accordingly, principal neurons at the CA1 output node of the murine hippocampus are increasingly recognized as a heterogeneous population. Their genes, molecular content, intrinsic morpho-physiology, connectivity, and function seem to segregate along the main anatomical axes of the hippocampus. Since these axes reflect the temporal order of principal cell neurogenesis, we directly examined the relationship between birthdate and CA1 pyramidal neuron diversity, focusing on the ventral hippocampus. We used a genetic fate-mapping approach that allowed tagging three groups of age-matched principal neurons: pioneer, early-, and late-born. Using a combination of neuroanatomy, slice physiology, connectivity tracing, and cFos staining in mice, we show that birthdate is a strong predictor of CA1 principal cell diversity. We unravel a subpopulation of pioneer neurons recruited in familiar environments with remarkable positioning, morpho-physiological features, and connectivity. Therefore, despite the expected plasticity of hippocampal circuits, given their role in learning and memory, the diversity of their main components is also partly determined at the earliest steps of development.
Collapse
Affiliation(s)
| | | | - Anas Islah
- INMED, INSERM Aix-Marseille University, marseille, France
| | | | | | | | - Agnès Baude
- INMED, French Institute of Health and Medical Research, Marseille, France
| | - Rosa Cossart
- INMED, French Institute of Health and Medical Research, Marseille, France
| |
Collapse
|
50
|
Abstract
In mammals, the selective transformation of transient experience into stored memory occurs in the hippocampus, which develops representations of specific events in the context in which they occur. In this review, we focus on the development of hippocampal circuits and the self-organized dynamics embedded within them since the latter critically support the role of the hippocampus in learning and memory. We first discuss evidence that adult hippocampal cells and circuits are sculpted by development as early as during embryonic neurogenesis. We argue that these primary developmental programs provide a scaffold onto which later experience of the external world can be grafted. Next, we review the different sequences in the development of hippocampal cells and circuits at anatomical and functional levels. We cover a period extending from neurogenesis and migration to the appearance of phenotypic diversity within hippocampal cells, and their wiring into functional networks. We describe the progressive emergence of network dynamics in the hippocampus, from sensorimotor-driven early sharp waves to sequences of place cells tracking relational information. We outline the critical turn points and discontinuities in that developmental journey, and close by formulating open questions. We propose that rewinding the process of hippocampal development helps understand the main organization principles of memory circuits.
Collapse
Affiliation(s)
- Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems, Aix Marseille University, Marseille, France
| | - Rustem Khazipov
- Inserm, INMED, Turing Center for Living Systems, Aix Marseille University, Marseille, France.,Laboratory of Neurobiology, Kazan Federal University, Kazan Russia
| |
Collapse
|