1
|
Ku HY, Bilder D. Basement membrane patterning by spatial deployment of a secretion-regulating protease. Proc Natl Acad Sci U S A 2025; 122:e2412161122. [PMID: 40359035 DOI: 10.1073/pnas.2412161122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
While paradigms for patterning of cell fates in development are well established, paradigms for patterning morphogenesis, particularly when organ shape is influenced by the extracellular matrix (ECM), are not. Morphogenesis of the Drosophila egg chamber (follicle) depends on anterior-posterior distribution of basement membrane (BM) components such as Collagen IV (Col4), whose gradient creates tissue mechanical properties that specify the degree of elongation. Here, we show that the gradient is not regulated by Col4 transcription but instead relies on posttranscriptional mechanisms. The metalloprotease ADAMTS-A, expressed in a gradient inverse to that of Col4, limits Col4 deposition in the follicle center and manipulation of its levels can cause either organ hyper- or hypoelongation. We present evidence that ADAMTS-A acts within the secretory pathway, rather than extracellularly, to limit Col4 incorporation into the BM. High levels of ADAMTS-A in follicle termini are normally dispensable but suppress Col4 incorporation when transcription is elevated. Meanwhile, the terminally expressed metalloprotease Stall increases Col4 turnover in the posterior. Our data show how an organ can employ patterned expression of ECM proteases with intracellular as well as extracellular activity to specify BM properties that control shape.
Collapse
Affiliation(s)
- Hui-Yu Ku
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720
| | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720
| |
Collapse
|
2
|
Clayworth KV, Auld VJ. Dystroglycan mediates polarized deposition of laminin and axon ensheathment by wrapping glia. Development 2025; 152:dev204391. [PMID: 40309933 DOI: 10.1242/dev.204391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
The Drosophila peripheral nerve contains multiple layers of glial cells and an overlying extracellular matrix, which together support neuronal survival and function. The innermost glial layer, the wrapping glia (WG), ensheathes axons and facilitates action potential conduction. Recent work has identified involvement of laminin, a heterotrimeric extracellular matrix protein complex in WG development. However, the localization and function of laminin in the WG remains poorly understood. Here, we found that the α subunit, Laminin A (LanA), is dynamically expressed by WG, and loss of LanA results in a reduction in WG-axon contact. The deposition of LanA by WG is concentrated between WG and axons and is deposited preferentially around motor axons versus sensory axons. We identified Crag, a GDP-GTP exchange protein, as a factor that controls LanA deposition. We found that Dystroglycan also controls LanA deposition by the WG, and that both Dystroglycan and Dystrophin are present and necessary for WG ensheathment of axons. Thus, WG contain the highly conserved Dystroglycan/Dystrophin complex, which not only associates with deposited laminin but is necessary for the polarized deposition of laminin and the correct ensheathment of peripheral nerve axons.
Collapse
Affiliation(s)
- Katherine V Clayworth
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Vanessa J Auld
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
3
|
Hodgson JJ, Chen RY, Blissard GW, Buchon N. Viral and cellular determinants of polarized trafficking of viral envelope proteins from insect-specific and insect-vectored viruses in insect midgut and salivary gland cells. J Virol 2024; 98:e0054024. [PMID: 39162433 PMCID: PMC11406959 DOI: 10.1128/jvi.00540-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Systemic viral infection of insects typically begins with the primary infection of midgut epithelial cells (enterocytes) and subsequent transit of the progeny virus in an apical-to-basal orientation into the hemocoel. For insect-vectored viruses, an oppositely oriented process (basal-to-apical transit) occurs upon secondary infection of salivary glands and is necessary for virus transmission to non-insect hosts. To examine this inversely oriented virus transit in these polarized tissues, we assessed the intracellular trafficking of two model viral envelope proteins (baculovirus GP64 and vesicular stomatitis virus G) in the midgut and salivary gland cells of the model insect, Drosophila melanogaster. Using fly lines that inducibly express either GP64 or VSV G, we found that each protein, expressed alone, was trafficked basally in midgut enterocytes. In salivary gland cells, VSV G was trafficked apically in most but not all cells, whereas GP64 was consistently trafficked basally. We demonstrated that a YxxØ motif present in both proteins was critical for basal trafficking in midgut enterocytes but dispensable for trafficking in salivary gland cells. Using RNAi, we found that clathrin adaptor protein complexes AP-1 and AP-3, as well as seven Rab GTPases, were involved in polarized VSV G trafficking in midgut enterocytes. Our results indicate that these viral envelope proteins encode the requisite information and require no other viral factors for appropriately polarized trafficking. In addition, they exploit tissue-specific differences in protein trafficking pathways to facilitate virus egress in the appropriate orientation for establishing systemic infections and vectoring infection to other hosts. IMPORTANCE Viruses that use insects as hosts must navigate specific routes through different insect tissues to complete their life cycles. The routes may differ substantially depending on the life cycle of the virus. Both insect pathogenic viruses and insect-vectored viruses must navigate through the polarized cells of the midgut epithelium to establish a systemic infection. In addition, insect-vectored viruses must also navigate through the polarized salivary gland epithelium for transmission. Thus, insect-vectored viruses appear to traffic in opposite directions in these two tissues. In this study, we asked whether two viral envelope proteins (VSV G and baculovirus GP64) alone encode the signals necessary for the polarized trafficking associated with their respective life cycles. Using Drosophila as a model to examine tissue-specific polarized trafficking of these viral envelope proteins, we identified one of the virus-encoded signals and several host proteins associated with regulating the polarized trafficking in the midgut epithelium.
Collapse
Affiliation(s)
- Jeffrey J. Hodgson
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
- Boyce Thompson Institute at Cornell University, Ithaca, New York, USA
| | - Robin Y. Chen
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
| | - Gary W. Blissard
- Boyce Thompson Institute at Cornell University, Ithaca, New York, USA
| | - Nicolas Buchon
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Ku HY, Bilder D. Basement membrane patterning by spatial deployment of a secretion-regulating protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602330. [PMID: 39026720 PMCID: PMC11257494 DOI: 10.1101/2024.07.06.602330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
While paradigms for patterning of cell fates in development are well-established, paradigms for patterning morphogenesis, particularly when organ shape is influenced by the extracellular matrix (ECM), are less so. Morphogenesis of the Drosophila egg chamber (follicle) depends on anterior-posterior distribution of basement membrane (BM) components such as Collagen IV (Col4), whose symmetric gradient creates tissue mechanical properties that specify the degree of elongation. Here we show that the gradient is not regulated by Col4 transcription but instead relies on post-transcriptional mechanisms. The metalloprotease ADAMTS-A, expressed in a gradient inverse to that of Col4, limits Col4 deposition in the follicle center and manipulation of its levels can cause either organ hyper- or hypo-elongation. We present evidence that ADAMTS-A acts within the secretory pathway, rather than extracellularly, to limit Col4 incorporation into the BM. High levels of ADAMTS-A in follicle termini are normally dispensable but suppress Col4 incorporation when transcription is elevated. Our data show how an organ can employ patterned expression of ECM proteases with intracellular as well as extracellular activity to specify BM properties that control shape.
Collapse
Affiliation(s)
- Hui-Yu Ku
- Department of Molecular and Cell Biology, University of California-Berkeley Berkeley CA, 94720, USA
| | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley Berkeley CA, 94720, USA
| |
Collapse
|
5
|
Dennis C, Pouchin P, Richard G, Mirouse V. Basement membrane diversification relies on two competitive secretory routes defined by Rab10 and Rab8 and modulated by dystrophin and the exocyst complex. PLoS Genet 2024; 20:e1011169. [PMID: 38437244 PMCID: PMC10939200 DOI: 10.1371/journal.pgen.1011169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
The basement membrane (BM) is an essential structural element of tissues, and its diversification participates in organ morphogenesis. However, the traffic routes associated with BM formation and the mechanistic modulations explaining its diversification are still poorly understood. Drosophila melanogaster follicular epithelium relies on a BM composed of oriented BM fibrils and a more homogenous matrix. Here, we determined the specific molecular identity and cell exit sites of BM protein secretory routes. First, we found that Rab10 and Rab8 define two parallel routes for BM protein secretion. When both routes were abolished, BM production was fully blocked; however, genetic interactions revealed that these two routes competed. Rab10 promoted lateral and planar-polarized secretion, whereas Rab8 promoted basal secretion, leading to the formation of BM fibrils and homogenous BM, respectively. We also found that the dystrophin-associated protein complex (DAPC) and Rab10 were both present in a planar-polarized tubular compartment containing BM proteins. DAPC was essential for fibril formation and sufficient to reorient secretion towards the Rab10 route. Moreover, we identified a dual function for the exocyst complex in this context. First, the Exo70 subunit directly interacted with dystrophin to limit its planar polarization. Second, the exocyst complex was also required for the Rab8 route. Altogether, these results highlight important mechanistic aspects of BM protein secretion and illustrate how BM diversity can emerge from the spatial control of distinct traffic routes.
Collapse
Affiliation(s)
- Cynthia Dennis
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Pierre Pouchin
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Graziella Richard
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Vincent Mirouse
- Université Clermont Auvergne, Institute of Genetics, Reproduction and Development (iGReD), UMR CNRS 6293—INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| |
Collapse
|
6
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
7
|
Oh HH, Park YL, Park SY, Joo YE. A disintegrin and metalloprotease 12 contributes to colorectal cancer metastasis by regulating epithelial‑mesenchymal transition. Int J Oncol 2023; 62:50. [PMID: 36866761 PMCID: PMC9990586 DOI: 10.3892/ijo.2023.5498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
A disintegrin and metalloprotease 12 (ADAM12) and epithelial‑mesenchymal transition (EMT) are linked in the metastasis of various types of cancer. The present study aimed to assess the ability of ADAM12 to induce EMT and its potential as a therapeutic target for colorectal cancer (CRC). ADAM12 expression in CRC cell lines, CRC tissues and a mouse model of peritoneal metastasis was assessed. The effect of ADAM12 on CRC EMT and metastasis was investigated using ADAM12‑pcDNA6‑myc and ADAM12‑pGFP‑C‑shLenti constructs. ADAM12 overexpression enhanced the proliferation, migration, invasion and EMT of CRC cells. The phosphorylation levels of factors associated with the PI3K/Akt pathway were also increased by ADAM12 overexpression. The knockdown of ADAM12 reversed these effects. ADAM12 expression and the loss of E‑cadherin expression were significantly associated with poorer survival compared with other expression statuses of both proteins. In a mouse model of peritoneal metastasis, overexpression of ADAM12 induced increased tumor weight and peritoneal carcinomatosis index compared with that in the negative control group. Conversely, knockdown of ADAM12 reversed these effects. Furthermore, E‑cadherin expression was significantly decreased by overexpression of ADAM12 compared with in the negative control group. By contrast, E‑cadherin expression was increased by knockdown of ADAM12 compared with in the negative control group. ADAM12 overexpression contributed to CRC metastasis by regulating EMT. In addition, in the mouse model of peritoneal metastasis, ADAM12 knockdown exhibited strong anti‑metastatic action. Consequently, ADAM12 may be considered a therapeutic target for CRC metastasis.
Collapse
Affiliation(s)
- Hyung-Hoon Oh
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501‑757, Republic of Korea
| | - Young-Lan Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501‑757, Republic of Korea
| | - Sun-Young Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501‑757, Republic of Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501‑757, Republic of Korea
| |
Collapse
|
8
|
Ritter DJ, Choudhary D, Unlu G, Knapik EW. Rgp1 contributes to craniofacial cartilage development and Rab8a-mediated collagen II secretion. Front Endocrinol (Lausanne) 2023; 14:1120420. [PMID: 36843607 PMCID: PMC9947155 DOI: 10.3389/fendo.2023.1120420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Rgp1 was previously identified as a component of a guanine nucleotide exchange factor (GEF) complex to activate Rab6a-mediated trafficking events in and around the Golgi. While the role of Rgp1 in protein trafficking has been examined in vitro and in yeast, the role of Rgp1 during vertebrate embryogenesis and protein trafficking in vivo is unknown. Using genetic, CRISPR-induced zebrafish mutants for Rgp1 loss-of-function, we found that Rgp1 is required for craniofacial cartilage development. Within live rgp1-/- craniofacial chondrocytes, we observed altered movements of Rab6a+ vesicular compartments, consistent with a conserved mechanism described in vitro. Using transmission electron microscopy (TEM) and immunofluorescence analyses, we show that Rgp1 plays a role in the secretion of collagen II, the most abundant protein in cartilage. Our overexpression experiments revealed that Rab8a is a part of the post-Golgi collagen II trafficking pathway. Following loss of Rgp1, chondrocytes activate an Arf4b-mediated stress response and subsequently respond with nuclear DNA fragmentation and cell death. We propose that an Rgp1-regulated Rab6a-Rab8a pathway directs secretion of ECM cargoes such as collagen II, a pathway that may also be utilized in other tissues where coordinated trafficking and secretion of collagens and other large cargoes is required for normal development and tissue function.
Collapse
Affiliation(s)
- Dylan J. Ritter
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Dharmendra Choudhary
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Gokhan Unlu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ela W. Knapik
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
9
|
Ochi Y, Yamashita H, Yamada Y, Satoh T, Satoh AK. Stratum is required for both apical and basolateral transport through stable expression of Rab10 and Rab35 in Drosophila photoreceptors. Mol Biol Cell 2022; 33:br17. [PMID: 35767331 DOI: 10.1091/mbc.e21-12-0596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Post-Golgi transport for specific membrane domains, also termed polarized transport, is essential for the construction and maintenance of polarized cells. Highly polarized Drosophila photoreceptors serve as a good model system for studying the mechanisms underlying polarized transport. The Mss4 Drosophila ortholog, Stratum (Strat), controls basal restriction of basement membrane proteins in follicle cells, and Rab8 acts downstream of Strat. We investigated the function of Strat in fly photoreceptors and found that polarized transport in both the basolateral and the rhabdomere membrane domains was inhibited in Strat-deficient photoreceptors. We also observed 79 and 55% reductions in Rab10 and Rab35 levels, respectively, but no reduction in Rab11 levels in whole-eye homozygous clones of Stratnull. Moreover, Rab35 was localized in the rhabdomere, and loss of Rab35 resulted in impaired Rh1 transport to the rhabdomere. These results indicate that Strat is essential for the stable expression of Rab10 and Rab35, which regulate basolateral and rhabdomere transport, respectively, in fly photoreceptors.
Collapse
Affiliation(s)
- Yuka Ochi
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Hitomi Yamashita
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Yumi Yamada
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Takunori Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akiko K Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
10
|
Shah HP, Devergne O. Confocal and Super-Resolution Imaging of Polarized Intracellular Trafficking and Secretion of Basement Membrane Proteins During Drosophila Oogenesis. J Vis Exp 2022:10.3791/63778. [PMID: 35662240 PMCID: PMC10325488 DOI: 10.3791/63778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023] Open
Abstract
The basement membrane (BM) - a specialized sheet of extracellular matrix present at the basal side of epithelial cells - is critical for the establishment and maintenance of epithelial tissue morphology and organ morphogenesis. Moreover, the BM is essential for tissue modeling, serving as a signaling platform, and providing external forces to shape tissues and organs. Despite the many important roles that the BM plays during normal development and pathological conditions, the biological pathways controlling the intracellular trafficking of BM-containing vesicles and how basal secretion leads to the polarized deposition of BM proteins are poorly understood. The follicular epithelium of the Drosophila ovary is an excellent model system to study the basal deposition of BM membrane proteins, as it produces and secretes all major components of the BM. Confocal and super-resolution imaging combined with image processing in fixed tissues allows for the identification and characterization of cellular factors specifically involved in the intracellular trafficking and deposition of BM proteins. This article presents a detailed protocol for staining and imaging BM-containing vesicles and deposited BM using endogenously tagged proteins in the follicular epithelium of the Drosophila ovary. This protocol can be applied to address both qualitative and quantitative questions and it was developed to accommodate high-throughput screening, allowing for the rapid and efficient identification of factors involved in the polarized intracellular trafficking and secretion of vesicles during epithelial tissue development.
Collapse
Affiliation(s)
- Hemin P Shah
- Department of Biological Sciences, Northern Illinois University
| | - Olivier Devergne
- Department of Biological Sciences, Northern Illinois University;
| |
Collapse
|
11
|
Banerjee S, Lo WC, Majumder P, Roy D, Ghorai M, Shaikh NK, Kant N, Shekhawat MS, Gadekar VS, Ghosh S, Bursal E, Alrumaihi F, Dubey NK, Kumar S, Iqbal D, Alturaiki W, Upadhye VJ, Jha NK, Dey A, Gundamaraju R. Multiple roles for basement membrane proteins in cancer progression and EMT. Eur J Cell Biol 2022; 101:151220. [PMID: 35366585 DOI: 10.1016/j.ejcb.2022.151220] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
Metastasis or the progression of malignancy poses a major challenge in cancer therapy and is the principal reason for increased mortality. The epithelial-Mesenchymal transition (EMT) of the Basement Membrane (BM) allows cells of epithelial phenotype to transform into a mesenchymal-like (quasi-mesenchymal) phenotype and metastasize via the lymphovascular system through a metastatic cascade by intravasation and extravasation. This helps in the progression of carcinoma from the primary site to distant organs. Collagen, laminin, and integrin are the prime components of BM and help in tumor cell metastasis, which makes them ideal cancer drug targets. Further, recent studies have shown that collagen, laminin, and integrin can be used as a biomarker for metastatic cells. In this review, we have summarized the current knowledge of such therapeutics, which are either currently in preclinical or clinical stages and could be promising cancer therapeutics. DATA AVAILABILITY: Not applicable.
Collapse
Affiliation(s)
| | - Wen-Cheng Lo
- Department of Surgery, Division of Neurosurgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei 11031, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| | | | - Debleena Roy
- PG Department of Botany, Lady Brabourne College, Kolkata, West Bengal, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Nusrat K Shaikh
- Smt. N. M. Padalia Pharmacy College, Ahmedabad, Gujarat, India
| | - Nishi Kant
- Department of Biotechnology, ARKA Jain University, Jamshedpur 831005, India
| | - Mahipal S Shekhawat
- Plant Biotechnology Unit, KM Government Institute for Postgraduate Studies and Research, Puducherry, India
| | | | | | - Ercan Bursal
- Department of Biochemistry, Mus Alparslan University, Turkey
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Navneet Kumar Dubey
- Victory Biotechnology Co., Ltd., Taipei 114757, Taiwan; ShiNeo Technology Co., Ltd., New Taipei City 24262, Taiwan
| | - Sanjay Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Knowledge Park-III, Greater Noida, UP 201310, India
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Vijay Jagdish Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), PO Limda, Tal Waghodia 391760, Vadodara, Gujarat, India
| | - Niraj Kumar Jha
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia; Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| | - Rohit Gundamaraju
- ER stress and Mucosal immunology lab, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia.
| |
Collapse
|
12
|
Zajac AL, Horne-Badovinac S. Kinesin-directed secretion of basement membrane proteins to a subdomain of the basolateral surface in Drosophila epithelial cells. Curr Biol 2022; 32:735-748.e10. [PMID: 35021047 PMCID: PMC8891071 DOI: 10.1016/j.cub.2021.12.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022]
Abstract
Epithelial tissues are lined with a sheet-like basement membrane (BM) extracellular matrix at their basal surfaces that plays essential roles in adhesion and signaling. BMs also provide mechanical support to guide morphogenesis. Despite their importance, we know little about how epithelial cells secrete and assemble BMs during development. BM proteins are sorted into a basolateral secretory pathway distinct from other basolateral proteins. Because BM proteins self-assemble into networks, and the BM lines only a small portion of the basolateral domain, we hypothesized that the site of BM protein secretion might be tightly controlled. Using the Drosophila follicular epithelium, we show that kinesin-3 and kinesin-1 motors work together to define this secretion site. Similar to all epithelia, the follicle cells have polarized microtubules (MTs) along their apical-basal axes. These cells collectively migrate, and they also have polarized MTs along the migratory axis at their basal surfaces. We find follicle cell MTs form one interconnected network, which allows kinesins to transport Rab10+ BM secretory vesicles both basally and to the trailing edge of each cell. This positions them near the basal surface and the basal-most region of the lateral domain for exocytosis. When kinesin transport is disrupted, the site of BM protein secretion is expanded, and ectopic BM networks form between cells that impede migration and disrupt tissue architecture. These results show how epithelial cells can define a subdomain on their basolateral surface through MT-based transport and highlight the importance of controlling the exocytic site of network-forming proteins.
Collapse
Affiliation(s)
- Allison L. Zajac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
13
|
Gore T, Matusek T, D'Angelo G, Giordano C, Tognacci T, Lavenant-Staccini L, Rabouille C, Thérond PP. The GTPase Rab8 differentially controls the long- and short-range activity of the Hedgehog morphogen gradient by regulating Hedgehog apico-basal distribution. Development 2021; 148:dev.191791. [PMID: 33547132 DOI: 10.1242/dev.191791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 01/19/2021] [Indexed: 01/02/2023]
Abstract
The Hedgehog (Hh) morphogen gradient is required for patterning during metazoan development, yet the mechanisms involved in Hh apical and basolateral release and how this influences short- and long-range target induction are poorly understood. We found that depletion of the GTPase Rab8 in Hh-producing cells induces an imbalance between the level of apically and laterally released Hh. This leads to non-cell-autonomous differential effects on the expression of Hh target genes, namely an increase in its short-range targets and a concomitant decrease in long-range targets. We further found that Rab8 regulates the endocytosis and apico-basal distribution of Ihog, a transmembrane protein known to bind to Hh and to be crucial for establishment of the Hh gradient. Our data provide new insights into morphogen gradient formation, whereby morphogen activity is functionally distributed between apically and basolaterally secreted pools.
Collapse
Affiliation(s)
- Tanvi Gore
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| | - Tamás Matusek
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| | - Gisela D'Angelo
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France.,Institut Curie, UMR144 CNRS, 12 Rue Lhomond, 75005 Paris, France
| | - Cécile Giordano
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France.,Institut Curie, UMR144 CNRS, 12 Rue Lhomond, 75005 Paris, France
| | - Thomas Tognacci
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| | - Laurence Lavenant-Staccini
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| | - Catherine Rabouille
- Department of Cell Biology, Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences & University Medical Center Utrecht, 3584 CT Utrecht, Netherlands.,Department of Biomedical Science of Cells and Systems, University Medical Center Groningen, 9700 AD Groningen, Netherlands
| | - Pascal P Thérond
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| |
Collapse
|
14
|
Bellec K, Pinot M, Gicquel I, Le Borgne R. The Clathrin adaptor AP-1 and Stratum act in parallel pathways to control Notch activation in Drosophila sensory organ precursors cells. Development 2021; 148:dev191437. [PMID: 33298463 PMCID: PMC7823167 DOI: 10.1242/dev.191437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/24/2020] [Indexed: 11/20/2022]
Abstract
Drosophila sensory organ precursors divide asymmetrically to generate pIIa/pIIb cells, the identity of which relies on activation of Notch at cytokinesis. Although Notch is present apically and basally relative to the midbody at the pIIa-pIIb interface, the basal pool of Notch is reported to be the main contributor for Notch activation in the pIIa cell. Intra-lineage signalling requires appropriate apico-basal targeting of Notch, its ligand Delta and its trafficking partner Sanpodo. We have previously reported that AP-1 and Stratum regulate the trafficking of Notch and Sanpodo from the trans-Golgi network to the basolateral membrane. Loss of AP-1 or Stratum caused mild Notch gain-of-function phenotypes. Here, we report that their concomitant loss results in a penetrant Notch gain-of-function phenotype, indicating that they control parallel pathways. Although unequal partitioning of cell fate determinants and cell polarity were unaffected, we observed increased amounts of signalling-competent Notch as well as Delta and Sanpodo at the apical pIIa-pIIb interface, at the expense of the basal pool of Notch. We propose that AP-1 and Stratum operate in parallel pathways to localize Notch and control where receptor activation takes place.
Collapse
Affiliation(s)
- Karen Bellec
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Mathieu Pinot
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Isabelle Gicquel
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Roland Le Borgne
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
15
|
Rivero-Ríos P, Romo-Lozano M, Fasiczka R, Naaldijk Y, Hilfiker S. LRRK2-Related Parkinson's Disease Due to Altered Endolysosomal Biology With Variable Lewy Body Pathology: A Hypothesis. Front Neurosci 2020; 14:556. [PMID: 32581693 PMCID: PMC7287096 DOI: 10.3389/fnins.2020.00556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in the gene encoding for leucine-rich repeat kinase 2 (LRRK2) are associated with both familial and sporadic Parkinson's disease (PD). LRRK2 encodes a large protein comprised of a GTPase and a kinase domain. All pathogenic variants converge on enhancing LRRK2 kinase substrate phosphorylation, and distinct LRRK2 kinase inhibitors are currently in various stages of clinical trials. Although the precise pathophysiological functions of LRRK2 remain largely unknown, PD-associated mutants have been shown to alter various intracellular vesicular trafficking pathways, especially those related to endolysosomal protein degradation events. In addition, biochemical studies have identified a subset of Rab proteins, small GTPases required for all vesicular trafficking steps, as substrate proteins for the LRRK2 kinase activity in vitro and in vivo. Therefore, it is crucial to evaluate the impact of such phosphorylation on neurodegenerative mechanisms underlying LRRK2-related PD, especially with respect to deregulated Rab-mediated endolysosomal membrane trafficking and protein degradation events. Surprisingly, a significant proportion of PD patients due to LRRK2 mutations display neuronal cell loss in the substantia nigra pars compacta in the absence of any apparent α-synuclein-containing Lewy body neuropathology. These findings suggest that endolysosomal alterations mediated by pathogenic LRRK2 per se are not sufficient to cause α-synuclein aggregation. Here, we will review current knowledge about the link between pathogenic LRRK2, Rab protein phosphorylation and endolysosomal trafficking alterations, and we will propose a testable working model whereby LRRK2-related PD may present with variable LB pathology.
Collapse
Affiliation(s)
- Pilar Rivero-Ríos
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - María Romo-Lozano
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Rachel Fasiczka
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Yahaira Naaldijk
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Sabine Hilfiker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
16
|
Cerqueira Campos F, Dennis C, Alégot H, Fritsch C, Isabella A, Pouchin P, Bardot O, Horne-Badovinac S, Mirouse V. Oriented basement membrane fibrils provide a memory for F-actin planar polarization via the Dystrophin-Dystroglycan complex during tissue elongation. Development 2020; 147:dev.186957. [PMID: 32156755 DOI: 10.1242/dev.186957] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/24/2020] [Indexed: 12/31/2022]
Abstract
How extracellular matrix contributes to tissue morphogenesis is still an open question. In the Drosophila ovarian follicle, it has been proposed that after Fat2-dependent planar polarization of the follicle cell basal domain, oriented basement membrane (BM) fibrils and F-actin stress fibers constrain follicle growth, promoting its axial elongation. However, the relationship between BM fibrils and stress fibers and their respective impact on elongation are unclear. We found that Dystroglycan (Dg) and Dystrophin (Dys) are involved in BM fibril deposition. Moreover, they also orient stress fibers, by acting locally and in parallel to Fat2. Importantly, Dg-Dys complex-mediated cell-autonomous control of F-actin fiber orientation relies on the preceding BM fibril deposition, indicating two distinct but interdependent functions. Thus, the Dg-Dys complex works as a crucial organizer of the epithelial basal domain, regulating both F-actin and BM. Furthermore, BM fibrils act as a persistent cue for the orientation of stress fibers that are the main effector of elongation.
Collapse
Affiliation(s)
- Fabiana Cerqueira Campos
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Cynthia Dennis
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Hervé Alégot
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Cornelia Fritsch
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Adam Isabella
- Committee on Development, Regeneration and Stem Cell Biology, and Department of Molecular Genetics and Cell Biology - The University of Chicago, 920 East 58th Street, Chicago IL 60653, USA
| | - Pierre Pouchin
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Olivier Bardot
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Sally Horne-Badovinac
- Committee on Development, Regeneration and Stem Cell Biology, and Department of Molecular Genetics and Cell Biology - The University of Chicago, 920 East 58th Street, Chicago IL 60653, USA
| | - Vincent Mirouse
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
17
|
Nakamura Y, Ochi Y, Satoh T, Satoh AK. Rab10, Crag and Ehbp1 regulate the basolateral transport of Na +K +ATPase in Drosophila photoreceptors. J Cell Sci 2020; 133:jcs238790. [PMID: 32041903 DOI: 10.1242/jcs.238790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/27/2020] [Indexed: 08/31/2023] Open
Abstract
Cells in situ are often polarized and have multiple plasma membrane domains. To establish and maintain these domains, polarized transport is essential, and its impairment results in genetic disorders. Nevertheless, the underlying mechanisms of polarized transport have not been elucidated. Drosophila photoreceptor offers an excellent model for studying this. We found that Rab10 impairment significantly reduced basolateral levels of Na+K+ATPase, mislocalizing it to the stalk membrane, which is a domain of the apical plasma membrane. Furthermore, the shrunken basolateral and the expanded stalk membranes were accompanied with abnormalities in the Golgi cisternae of Rab10-impaired retinas. The deficiencies of Rab10-GEF Crag or the Rab10 effector Ehbp1 phenocopied Rab10 deficiency, indicating that Crag, Rab10 and Ehbp1 work together for polarized trafficking of membrane proteins to the basolateral membrane. These phenotypes were similar to those seen upon deficiency of AP1 or clathrin, which are known to be involved in the basolateral transport in other systems. Additionally, Crag, Rab10 and Ehbp1 colocalized with AP1 and clathrin on the trans-side of Golgi stacks. Taken together, these results indicate that AP1 and clathrin, and Crag, Rab10 and Ehbp1 collaborate in polarized basolateral transport, presumably in the budding process in the trans-Golgi network.
Collapse
Affiliation(s)
- Yuri Nakamura
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Yuka Ochi
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Takunori Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akiko K Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
18
|
Multiple Requirements for Rab GTPases in the Development of Drosophila Tracheal Dorsal Branches and Terminal Cells. G3-GENES GENOMES GENETICS 2020; 10:1099-1112. [PMID: 31980432 PMCID: PMC7056964 DOI: 10.1534/g3.119.400967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tracheal epithelium in fruit fly larvae is a popular model for multi- and unicellular migration and morphogenesis. Like all epithelial cells, tracheal cells use Rab GTPases to organize their internal membrane transport, resulting in the specific localization or secretion of proteins on the apical or basal membrane compartments. Some contributions of Rabs to junctional remodelling and governance of tracheal lumen contents are known, but it is reasonable to assume that they play important further roles in morphogenesis. This pertains in particular to terminal tracheal cells, specialized branch-forming cells that drastically reshape both their apical and basal membrane during the larval stages. We performed a loss-of-function screen in the tracheal system, knocking down endogenously tagged alleles of 26 Rabs by targeting the tag via RNAi. This revealed that at least 14 Rabs are required to ensure proper cell fate specification and migration of the dorsal branches, as well as their epithelial fusion with the contralateral dorsal branch. The screen implicated four Rabs in the subcellular morphogenesis of terminal cells themselves. Further tests suggested residual gene function after knockdown, leading us to discuss the limitations of this approach. We conclude that more Rabs than identified here may be important for tracheal morphogenesis, and that the tracheal system offers great opportunities for studying several Rabs that have barely been characterized so far.
Collapse
|
19
|
Schüpbach T. Genetic Screens to Analyze Pattern Formation of Egg and Embryo in Drosophila: A Personal History. Annu Rev Genet 2019; 53:1-18. [DOI: 10.1146/annurev-genet-112618-043708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In Drosophila development, the axes of the egg and future embryo are established during oogenesis. To learn about the underlying genetic and molecular pathways that lead to axis formation, I conducted a large-scale genetic screen at the beginning of my independent career. This led to the eventual understanding that both anterior-posterior and dorsal-ventral pattern information is transmitted from the oocyte to the surrounding follicle cells and in turn from the follicle cells back to the oocyte. How I came to conduct this screen and what further insights were gained by studying the mutants isolated in the screen are the topics of this autobiographical article.
Collapse
Affiliation(s)
- Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
20
|
Lattner J, Leng W, Knust E, Brankatschk M, Flores-Benitez D. Crumbs organizes the transport machinery by regulating apical levels of PI(4,5)P 2 in Drosophila. eLife 2019; 8:e50900. [PMID: 31697234 PMCID: PMC6881148 DOI: 10.7554/elife.50900] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
An efficient vectorial intracellular transport machinery depends on a well-established apico-basal polarity and is a prerequisite for the function of secretory epithelia. Despite extensive knowledge on individual trafficking pathways, little is known about the mechanisms coordinating their temporal and spatial regulation. Here, we report that the polarity protein Crumbs is essential for apical plasma membrane phospholipid-homeostasis and efficient apical secretion. Through recruiting βHeavy-Spectrin and MyosinV to the apical membrane, Crumbs maintains the Rab6-, Rab11- and Rab30-dependent trafficking and regulates the lipid phosphatases Pten and Ocrl. Crumbs knock-down results in increased apical levels of PI(4,5)P2 and formation of a novel, Moesin- and PI(4,5)P2-enriched apical membrane sac containing microvilli-like structures. Our results identify Crumbs as an essential hub required to maintain the organization of the apical membrane and the physiological activity of the larval salivary gland.
Collapse
Affiliation(s)
- Johanna Lattner
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Weihua Leng
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Elisabeth Knust
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| | - Marko Brankatschk
- The Biotechnological Center of the TU Dresden (BIOTEC)DresdenGermany
| | - David Flores-Benitez
- Max-Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG)DresdenGermany
| |
Collapse
|
21
|
Davis MN, Horne-Badovinac S, Naba A. In-silico definition of the Drosophila melanogaster matrisome. Matrix Biol Plus 2019; 4:100015. [PMID: 33543012 PMCID: PMC7852309 DOI: 10.1016/j.mbplus.2019.100015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 01/02/2023] Open
Abstract
The extracellular matrix (ECM) is an assembly of hundreds of proteins that structurally supports the cells it surrounds and biochemically regulates their functions. Drosophila melanogaster has emerged as a powerful model organism to study fundamental mechanisms underlying ECM protein secretion, ECM assembly, and ECM roles in pathophysiological processes. However, as of today, we do not possess a well-defined list of the components forming the ECM of this organism. We previously reported the development of computational pipelines to define the matrisome - the ensemble of genes encoding ECM and ECM-associated proteins - of humans, mice, zebrafish and C. elegans. Using a similar approach, we report here that our pipeline has identified 641 genes constituting the Drosophila matrisome. We further classify these genes into different structural and functional categories, including an expanded way to classify genes encoding proteins forming apical ECMs. We illustrate how having a comprehensive list of Drosophila matrisome proteins can be used to annotate large proteomic datasets and identify unsuspected roles for the ECM in pathophysiological processes. Last, to aid the dissemination and usage of the proposed definition and categorization of the Drosophila matrisome by the scientific community, our list has been made available through three public portals: The Matrisome Project (http://matrisome.org), The FlyBase (https://flybase.org/), and GLAD (https://www.flyrnai.org/tools/glad/web/).
Collapse
Affiliation(s)
- Martin N. Davis
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| |
Collapse
|
22
|
Rivero-Ríos P, Romo-Lozano M, Madero-Pérez J, Thomas AP, Biosa A, Greggio E, Hilfiker S. The G2019S variant of leucine-rich repeat kinase 2 (LRRK2) alters endolysosomal trafficking by impairing the function of the GTPase RAB8A. J Biol Chem 2019; 294:4738-4758. [PMID: 30709905 PMCID: PMC6442034 DOI: 10.1074/jbc.ra118.005008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/30/2019] [Indexed: 12/25/2022] Open
Abstract
Mutations in the gene encoding for leucine-rich repeat kinase 2 (LRRK2) are a common cause of hereditary Parkinson's disease. LRRK2 regulates various intracellular vesicular trafficking pathways, including endolysosomal degradative events such as epidermal growth factor receptor (EGFR) degradation. Recent studies have revealed that a subset of RAB proteins involved in secretory and endocytic recycling are LRRK2 kinase substrates in vivo. However, the effects of LRRK2-mediated phosphorylation of these substrates on membrane trafficking remain unknown. Here, using an array of immunofluorescence and pulldown assays, we report that expression of active or phosphodeficient RAB8A variants rescues the G2019S LRRK2–mediated effects on endolysosomal membrane trafficking. Similarly, up-regulation of the RAB11–Rabin8–RAB8A cascade, which activates RAB8A, also reverted these trafficking deficits. Loss of RAB8A mimicked the effects of G2019S LRRK2 on endolysosomal trafficking and decreased RAB7A activity. Expression of pathogenic G2019S LRRK2 or loss of RAB8A interfered with EGFR degradation by causing its accumulation in a RAB4-positive endocytic compartment, which was accompanied by a deficit in EGFR recycling and was rescued upon expression of active RAB7A. Dominant-negative RAB7A expression resulted in similar deficits in EGF degradation, accumulation in a RAB4 compartment, and deficits in EGFR recycling, which were all rescued upon expression of active RAB8A. Taken together, these findings suggest that, by impairing RAB8A function, pathogenic G2019S LRRK2 deregulates endolysosomal transport and endocytic recycling events.
Collapse
Affiliation(s)
- Pilar Rivero-Ríos
- From the Institute of Parasitology and Biomedicine "López-Neyra," Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain
| | - María Romo-Lozano
- From the Institute of Parasitology and Biomedicine "López-Neyra," Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain
| | - Jesús Madero-Pérez
- From the Institute of Parasitology and Biomedicine "López-Neyra," Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain
| | - Andrew P Thomas
- the Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, and
| | - Alice Biosa
- the Department of Biology, University of Padova, Padova 35121, Italy
| | - Elisa Greggio
- the Department of Biology, University of Padova, Padova 35121, Italy
| | - Sabine Hilfiker
- From the Institute of Parasitology and Biomedicine "López-Neyra," Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain,
| |
Collapse
|
23
|
Bellec K, Gicquel I, Le Borgne R. Stratum recruits Rab8 at Golgi exit sites to regulate the basolateral sorting of Notch and Sanpodo. Development 2018; 145:145/13/dev163469. [PMID: 29967125 DOI: 10.1242/dev.163469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/21/2018] [Indexed: 01/03/2023]
Abstract
In Drosophila, the sensory organ precursor (SOP or pI cell) divides asymmetrically to give birth to daughter cells, the fates of which are governed by the differential activation of the Notch pathway. Proteolytic activation of Notch induced by ligand is based on the correct polarized sorting and localization of the Notch ligand Delta, the Notch receptor and its trafficking partner Sanpodo (Spdo). Here, we have identified Stratum (Strat), a presumptive guanine nucleotide exchange factor for Rab GTPases, as a regulator of Notch activation. Loss of Strat causes cell fate transformations associated with an accumulation of Notch, Delta and Spdo in the trans-Golgi network (TGN), and an apical accumulation of Spdo. The strat mutant phenotype is rescued by the catalytically active as well as the wild-type form of Rab8, suggesting a chaperone function for Strat rather than that of exchange factor. Strat is required to localize Rab8 at the TGN, and rab8 phenocopies strat We propose that Strat and Rab8 act at the exit of the Golgi apparatus to regulate the sorting and the polarized distribution of Notch, Delta and Spdo.
Collapse
Affiliation(s)
- Karen Bellec
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Isabelle Gicquel
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Roland Le Borgne
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
24
|
Sánchez-Sánchez BJ, Urbano JM, Comber K, Dragu A, Wood W, Stramer B, Martín-Bermudo MD. Drosophila Embryonic Hemocytes Produce Laminins to Strengthen Migratory Response. Cell Rep 2018; 21:1461-1470. [PMID: 29117553 PMCID: PMC5695906 DOI: 10.1016/j.celrep.2017.10.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/05/2017] [Accepted: 10/11/2017] [Indexed: 12/28/2022] Open
Abstract
The most prominent developmental function attributed to the extracellular matrix (ECM) is cell migration. While cells in culture can produce ECM to migrate, the role of ECM in regulating developmental cell migration is classically viewed as an exogenous matrix presented to the moving cells. In contrast to this view, we show here that Drosophila embryonic hemocytes deposit their own laminins in streak-like structures to migrate efficiently throughout the embryo. With the help of transplantation experiments, live microscopy, and image quantification, we demonstrate that autocrine-produced laminin regulates hemocyte migration by controlling lamellipodia dynamics, stability, and persistence. Proper laminin deposition is regulated by the RabGTPase Rab8, which is highly expressed and required in hemocytes for lamellipodia dynamics and migration. Our results thus support a model in which, during embryogenesis, the Rab8-regulated autocrine deposition of laminin reinforces directional and effective migration by stabilizing cellular protrusions and strengthening otherwise transient adhesion states. Drosophila embryonic hemocytes use autocrine-produced laminins for their migration Autocrine laminins regulate lamellipodia dynamics, stability, and persistence Rab8 regulates laminin deposition and lamellipodia dynamics in migrating hemocytes Laminins deposit in tracks around hemocytes and in a fibrillar mesh over the VNC
Collapse
Affiliation(s)
- Besaiz J Sánchez-Sánchez
- CABD (CSIC-Universidad Pablo de Olavide-JA), Sevilla 41013, Spain; Randall Centre for Cell and Molecular Biophysics, King's College London, London SE5 9AP, UK
| | - José M Urbano
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Kate Comber
- Department of Cellular and Molecular Medicine, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Anca Dragu
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE5 9AP, UK
| | - Will Wood
- Department of Cellular and Molecular Medicine, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Brian Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE5 9AP, UK
| | | |
Collapse
|
25
|
Tian A, Jiang J. Dual role of BMP signaling in the regulation of Drosophila intestinal stem cell self-renewal. Fly (Austin) 2017; 11:297-302. [PMID: 28945500 PMCID: PMC5721945 DOI: 10.1080/19336934.2017.1384104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Many adult organs including Drosophila adult midguts rely on resident stem cells to replenish damaged cells during tissue homeostasis and regeneration. Previous studies have shown that, upon injury, intestinal stem cells (ISCs) in the midguts can increase proliferation and lineage differentiation to meet the demand for tissue repair. Our recent study has demonstrated that, in response to certain injury, midguts can expand ISC population size as an additional regenerative mechanism. We found that injury elicited by bleomycin feeding or bacterial infection increased the production of two BMP ligands (Dpp and Gbb) in enterocytes (ECs), leading to elevated BMP signaling in progenitor cells that drove an expansion of ISCs by promoting their symmetric self-renewing division. Interestingly, we also found that BMP signaling in ECs inhibits the production of Dpp and Gbb, and that this negative feedback mechanism is required to reset ISC pool size to the homeostatic state. Our findings suggest that BMP signaling exerts two opposing influences on stem cell activity depending on where it acts: BMP signaling in progenitor cells promotes ISC self-renewal while BMP signaling in ECs restricts ISC self-renewal by preventing excessive production of BMP ligands. Our results further suggest that transient expansion of ISC population in conjunction with increasing ISC proliferation provides a more effective strategy for tissue regeneration.
Collapse
Affiliation(s)
- Aiguo Tian
- a Department of Molecular Biology , University of Texas Southwestern Medical Center at Dallas , Dallas , TX , USA
| | - Jin Jiang
- a Department of Molecular Biology , University of Texas Southwestern Medical Center at Dallas , Dallas , TX , USA.,b Department of Pharmacology , University of Texas Southwestern Medical Center at Dallas , Dallas , TX , USA
| |
Collapse
|