1
|
Saravanan L, Mahale A, Gota V, Khandelia P, Kulkarni OP. Necrostatin-1 attenuates oral squamous cell carcinoma by modulating tumour immune response in mice. Fundam Clin Pharmacol 2025; 39:e70008. [PMID: 40222051 DOI: 10.1111/fcp.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Necroptosis has been shown to play an important role in various pathologies, including pancreatic cancer (PDAC). However, its role in the progression of oral cancer (OSCC) remains unclear. OBJECTIVES To determine the expression of key necroptosis pathway markers in an OSCC mouse model and evaluate the therapeutic effect of a necroptosis inhibitor on the progression of OSCC. METHODS AND RESULTS 4-NQO-induced OSCC in mice resembles very closely to human OSCC. The expression of RIPK-1, RIPK-3, MLKL and their respective phosphorylation was increased in OSCC tissues of cancer-bearing mice. In the analysis of the necroptosis pathway in human OSCC with the TCGA database, we found similar overexpression of RIPK-1 in human cancer, which correlated with the severity of cancer in terms of different cancer grades and stages. Pharmacological blockade of necroptosis with necrostatin-1 (NEC-1) reduced the progression and development of OSCC, characterized by reduced number and severity of tumour lesions, improved histology with reduced hyperplasia, dysplasia and invasive carcinoma. Immune profiling of blood, spleen and tumour tissues demonstrated suppressed expression of MDSCs (CD11b+Gr-1+) and M2-macrophages (CD11b+F4/80+CD206+), while M1-macrophages (CD11b+F4/80+MHCII+) were elevated in the treatment group. The ratio of M2/M1 was reduced in the treated group, suggesting the promotion of anti-tumour immune response. Expression of Arg-1, YM1/2, IL-10 and TGF-β was reduced in tumour tissues in the treated group. CONCLUSION In summary, blocking the necroptosis pathway alters the tumour microenvironment (TME) and inhibits the progression of OSCC. Targeting necroptosis could be an effective therapy for treating OSCC in a clinical setup.
Collapse
Affiliation(s)
- Lavanya Saravanan
- Metabolic and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Ashutosh Mahale
- Metabolic and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Vikram Gota
- Advance Centre for Treatment Research & Education in Cancer, Tata Memorial Centre (ACTREC), Navi Mumbai, Maharashtra, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Onkar Prakash Kulkarni
- Metabolic and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| |
Collapse
|
2
|
Wang H, Feng X, He H, Li L, Wen Y, Liu X, He B, Hua S, Sun S. Crosstalk between autophagy and other forms of programmed cell death. Eur J Pharmacol 2025; 995:177414. [PMID: 39986593 DOI: 10.1016/j.ejphar.2025.177414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Cell death occurs continuously throughout individual development. By removing damaged or senescent cells, cell death not only facilitates morphogenesis during the developmental process, but also contributes to maintaining homeostasis after birth. In addition, cell death reduces the spread of pathogens by eliminating infected cells. Cell death is categorized into two main forms: necrosis and programmed cell death. Programmed cell death encompasses several types, including autophagy, pyroptosis, apoptosis, necroptosis, ferroptosis, and PANoptosis. Autophagy, a mechanism of cell death that maintains cellular equilibrium via the breakdown and reutilization of proteins and organelles, is implicated in regulating almost all forms of cell death in pathological contexts. Notably, necroptosis, ferroptosis, and PANoptosis are directly classified as autophagy-mediated cell death. Therefore, regulating autophagy presents a therapeutic approach for treating diseases such as inflammation and tumors that arise from abnormalities in other forms of programmed cell death. This review focuses on the crosstalk between autophagy and other programmed cell death modalities, providing new perspectives for clinical interventions in inflammatory and neoplastic diseases.
Collapse
Affiliation(s)
- Huaiyuan Wang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China; Clinical Medicine, class 3, 2022 Grade, Kunming Medical University, Kunming, China
| | - Xiran Feng
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China; Clinical Medicine, Kunming Medical University-Shanghai Jiaotong University Joint Program, 2022 Grade, Kunming Medical University, Kunming, China
| | - Huilin He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Lingyu Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yiqiong Wen
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaofei Liu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Bifeng He
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shu Hua
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China.
| |
Collapse
|
3
|
Morgan MJ, Kim YS. RIPK3 in necroptosis and cancer. Mol Cells 2025; 48:100199. [PMID: 40010643 PMCID: PMC11938148 DOI: 10.1016/j.mocell.2025.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
Receptor-interacting protein kinase-3 is essential for the cell death pathway called necroptosis. Necroptosis is activated by the death receptor ligands and pattern recognition receptors of the innate immune system, leading to significant consequences in inflammation and in diseases, particularly cancer. Necroptosis is highly proinflammatory compared with other modes of cell death because cell membrane integrity is lost, resulting in releases of cytokines and damage-associated molecular patterns that potentiate inflammation and activate the immune system. We discuss various ways that necroptosis is triggered along with its potential role in cancer and therapy.
Collapse
Affiliation(s)
- Michael J Morgan
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK 74464, USA.
| | - You-Sun Kim
- Department of Biochemistry, Ajou University School of Medicine, Ajou University, Suwon 16499, Korea; Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
4
|
Zhou X, Zhang D, Han M, Ma Y, Li W, Yu N. Carbohydrate polymer-functionalized metal nanoparticles in cancer therapy: A review. Int J Biol Macromol 2025; 306:141235. [PMID: 39986501 DOI: 10.1016/j.ijbiomac.2025.141235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Metal nanoparticles have been emerged as promising candidates in cancer therapy because of their large surface area, optical properties and ROS generation. Therefore, these nanoparticles are able to mediate cell death through hyperthermia, photothermal therapy and ROS-triggered apoptosis. The various metal nanoparticles including gold, silver and iron oxide nanostructures have been exploited for the theranostic application. Moreover, precision oncology and off-targeting features can be improved by metal nanoparticles. The modification of metal nanoparticles with carbohydrate polymers including chitosan, hyaluronic acid, cellulose, agarose, starch and pectin, among others can significantly improve their anti-cancer activities. Carbohydrate polymers have been idea for the purpose of drug delivery due to their biocompatibility, biodegradability and increasing nanoparticle stability. In addition, carbohydrate polymers are able to improve drug delivery, cellular uptake and sustained release of cargo. Such nanoparticles are capable of responding to the specific stimuli in the tumor microenvironment including pH and light. Furthermore, the carbohydrate polymer-modified metal nanoparticles can be utilized for the combination of chemotherapy, phototherapy and immunotherapy. Since the biocompatibility and long-term safety are critical factors for the clinical translation of nanoparticles, the modification of metal nanoparticles with carbohydrate polymers can improve this way to the application in clinic.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Dongbin Zhang
- Department of Anesthesiology, Affiliated Hospital Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mingming Han
- Department of Pharmacy and Medical Devices, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Yanhong Ma
- Department of Rehabilitation, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| | - Wentao Li
- Department of Traditional Chinese Medicine, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| | - Ning Yu
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| |
Collapse
|
5
|
Barati A, Moghimi S, Taghavi Zanjani K, Rohani M, Sohrabi Hesar M, Arfaie A, Ghezelche Khamsiyan M, Mahmoudi J, Sadigh-Eteghad S. Acute Administration of Edaravone Improves Cognitive Impairment in a Mouse Model of mPFC Ischemia: Crosstalk Between Necroptosis, Neuroinflammation, and Antioxidant Defense. Mol Neurobiol 2025; 62:4420-4434. [PMID: 39448519 DOI: 10.1007/s12035-024-04541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Edaravone (Eda), a well-known free radical scavenger, has been reported as a possible therapeutic agent for ischemic stroke patients' recovery. This study aimed to investigate the effects of time-dependent treatment with Eda on medial prefrontal cortex (mPFC) ischemia. Mice were randomly allocated into six groups: control, sham, normal saline, Eda-I, Eda-II, and Eda-III. After induction of a photothrombotic ischemia in the mPFC region, Eda-I, Eda-II, and Eda-III groups received 3 mg/kg Eda intraperitoneally at the times of 0, 2, and 6 h post-surgery. After 1 day of recovery, the mice underwent behavioral tests (open field, novel object recognition, and T-maze). Next, necroptosis, NOD-like receptor protein 3 (NLRP3), and nuclear factor erythroid 2-related factor 2 (Nrf2) pathway-related protein levels were measured in the lesioned area using western blot analysis. For double confirmation, IL-1β and IL-18 were also assessed by immunofluorescence in the area. Further, histological evaluations were performed to measure tissue damage. The results showed that mPFC ischemia impaired recognition and spatial working memory without affecting locomotor activity, while immediate Eda administration improved cognitive impairments. Furthermore, acute Eda treatment reduced RIP1, RIP3, and MLKL levels, inhibited NLRP3 inflammasome proteins (NLRP3, ASC, and Cas1), decreased IL-1β and IL-18, upregulated Nrf2 and its targets (NQO-1 and HO-1), and diminished tissue damage. Our results highlighted the effects of acute administration of Eda post-stroke on improving cognitive impairments by suppressing necroptosis and NLRP3 inflammasome pathways and activating the Nrf2 antioxidant defense mechanism.
Collapse
Affiliation(s)
- Alireza Barati
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadegh Moghimi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kiana Taghavi Zanjani
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mojde Rohani
- Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Mehri Sohrabi Hesar
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Arian Arfaie
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
O'Sullivan E, O'Shea D, Devereux M, Howe O. Apoptotic cell death induced by copper (II), manganese (II) and silver (I) complexes containing bridging dicarboxylate and 1,10-phenanthroline ligands: one of the multi-modes of anticancer activity? Biometals 2025:10.1007/s10534-025-00676-8. [PMID: 40095185 DOI: 10.1007/s10534-025-00676-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Cu(II), Mn(II) and Ag(I) complexes incorporating bridging dicarboxylate and 1,10-phenanthroline ligands have exhibited anti-cancer potential with significant in vitro and in vivo cytotoxic efficacies. Our study focuses on regulated cell death process of apoptosis as a mode of action of the anti-cancer activity by the complexes. Cytotoxicity screening of the complexes demonstrated all the metal-dicarboxylate-phenanthroline complexes exhibit superior activity compared to their non-phenanthroline containing precursors, in addition to cisplatin. The Cu(II) and Mn(II) complexes were shown to induce reactive oxygen species (ROS) but this was not observed for the Ag(I) analogues. Furthermore, apoptosis was found to be induced by all the metal-phenanthroline complexes to varying degrees contingent on the type of metal centre in the complex. Apoptotic gene expression analysis established the predominant activation of the intrinsic apoptotic pathway, with co-stimulation of the extrinsic pathway observed in some cases. The mechanistic data provided within this study highlights the multi-modal activity of the metal-phenanthroline complexes contingent on the type of metal present, warranting continued investigation of their biological modes of action beyond apoptosis induction.
Collapse
Affiliation(s)
- Ella O'Sullivan
- School of Biological, Health and Sports Sciences, Technological University Dublin, Dublin, Ireland.
- Sustainability and Health Research Hub, Technological University Dublin, Dublin, Ireland.
| | - Denis O'Shea
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Michael Devereux
- The Physical to Life Sciences Research Hub, Technological University Dublin, Dublin, Ireland
| | - Orla Howe
- School of Biological, Health and Sports Sciences, Technological University Dublin, Dublin, Ireland
- The Physical to Life Sciences Research Hub, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Liu Z, Wang S, Wang W, Lv R, Sun C. Necroptosis in obesity: a complex cell death event. Apoptosis 2025; 30:466-487. [PMID: 39702812 DOI: 10.1007/s10495-024-02055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
Obesity is an exceedingly prevalent and frequent health issue in today's society. Fat deposition is accompanied by low-grade inflammation in fat tissue and throughout the body, leading to metabolic disorders that ultimately promote the onset of obesity-related diseases. The development of obesity is accompanied by cell death events such as apoptosis as well as pyroptosis, however, the role of necroptosis in obesity has been widely reported in recent years. Necroptosis, a mode of cell death distinct from apoptosis and necrosis, is associated with developing many inflammatory conditions and their associated diseases. It also exhibits modulation of apoptosis and pyroptosis. It is morphologically similar to necroptosis, characterized by the inhibition of caspase-8, the formation of membrane pores, and the subsequent rupture of the plasma membrane. This paper focuses on the key pathways and molecules of necroptosis, exploring its connections with apoptosis and pyroptosis, and its implications in obesity. This paper posits that the modulation of necroptosis-related targets may represent a novel potential therapeutic avenue for the prevention and treatment of obesity-induced systemic inflammatory responses, and provides a synopsis of potential molecular targets that may prove beneficial in obesity-associated inflammatory diseases.
Collapse
Affiliation(s)
- Zunhai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Simeng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wentao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Lv
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Hoblos H, Cawthorne W, Samson AL, Murphy JM. Protein shapeshifting in necroptotic cell death signaling. Trends Biochem Sci 2025; 50:92-105. [PMID: 39730228 DOI: 10.1016/j.tibs.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
Necroptosis is a mode of programmed cell death executed by the mixed lineage kinase domain-like (MLKL) pseudokinase following its activation by the upstream receptor-interacting protein kinase-3 (RIPK3), subsequent to activation of death, Toll-like, and pathogen receptors. The pathway originates in innate immunity, although interest has surged in therapeutically targeting necroptosis owing to its dysregulation in inflammatory diseases. Here, we explore how protein conformation and higher order assembly of the pathway effectors - Z-DNA-binding protein-1 (ZBP1), RIPK1, RIPK3, and MLKL - can be modulated by post-translational modifications, such as phosphorylation, ubiquitylation, and lipidation, and intermolecular interactions to tune activities and modulate necroptotic signaling flux. As molecular level knowledge of cell death signaling grows, we anticipate targeting the conformations of key necrosomal effector proteins will emerge as new avenues for drug development.
Collapse
Affiliation(s)
- Hanadi Hoblos
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Wayne Cawthorne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - André L Samson
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
9
|
Yang TN, Huang NN, Wang YX, Jian PA, Ma XY, Li XN, Li JL. Melatonin protects spermatogenic cells against DNA damage and necroptosis induced by atrazine. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106209. [PMID: 39672631 DOI: 10.1016/j.pestbp.2024.106209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/26/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Atrazine (ATZ), a widely used triazine herbicide, has been shown to disrupt reproductive development in organisms. Melatonin (MLT) is a natural hormone and has been shown to have strong antioxidant properties. Due to its lipophilicity, it can cross biological barriers freely and act on germ cells directly. However, the mechanism through which melatonin affects atrazine-induced damage to male sperm cells remains unclear. This study aimed to investigate the effects of ATZ on spermatocyte development and to elucidate MLT's role in preventing ATZ-induced spermatogenesis failure. Pubertal mice were randomly divided into four groups: blank control group (Con), 5 mg/kg melatonin group (MLT), 170 mg/kg atrazine group (ATZ), and ATZ + MLT group. GC-1 cell culture was employed to access the in vitro effects of MLT and ATZ on spermatogonia. The results indicate that atrazine affected protein and metabolite composition, and reduced sperm viability, sperm motility (VAP, VSL and VCL) and levels of proteins related to spermatogenesis function in the mice testis. Melatonin alleviated the development of cellular DNA damage and necroptosis caused by atrazine both in vivo and in vitro. Moreover, we proposed that it was GC-1 cells developing necroptosis, but not other cell types in the testis. In conclusion, this study suggests that atrazine disrupts the development process, causing DNA damage in spermatozoa during spermatogenesis. Additionally, ATZ-induced necroptosis specifically targets spermatogenic cells. Notably, melatonin alleviates atrazine-induced necroptosis and DNA damage in spermatogenic cells. This study provides new insights into potential therapeutic strategies for atrazine-induced male infertility.
Collapse
Affiliation(s)
- Tian-Ning Yang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ning-Ning Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Xiang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ping-An Jian
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
10
|
De Leon-Oliva D, Boaru DL, Minaya-Bravo AM, De Castro-Martinez P, Fraile-Martinez O, Garcia-Montero C, Cobo-Prieto D, Barrena-Blázquez S, Lopez-Gonzalez L, Albillos A, Alvarez-Mon M, Saez MA, Diaz-Pedrero R, Ortega MA. Improving understanding of ferroptosis: Molecular mechanisms, connection with cellular senescence and implications for aging. Heliyon 2024; 10:e39684. [PMID: 39553553 PMCID: PMC11564042 DOI: 10.1016/j.heliyon.2024.e39684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
In the face of cell damage, cells can initiate a response ranging from survival to death, the balance being crucial for tissue homeostasis and overall health. Cell death, in both accidental and regulated forms, plays a fundamental role in maintaining tissue homeostasis. Among the regulated mechanisms of cell death, ferroptosis has garnered attention for its iron-dependent phospholipid (PL) peroxidation and its implications in aging and age-related disorders, as well as for its therapeutic relevance. In this review, we provide an overview of the mechanisms, regulation, and physiological and pathological roles of ferroptosis. We present new insights into the relationship between ferroptosis, cellular senescence and aging, emphasizing how alterations in ferroptosis pathways contribute to aging-related tissue dysfunction. In addition, we examine the therapeutic potential of ferroptosis in aging-related diseases, offering innovative insights into future interventions aimed at mitigating the effects of aging and promoting longevity.
Collapse
Affiliation(s)
- Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Ana M. Minaya-Bravo
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - David Cobo-Prieto
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Immune System Diseases-Rheumatology Service, Central University Hospital of Defence-UAH Madrid, 28801, Alcala de Henares, Spain
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Agustín Albillos
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Gastroenterology and Hepatology Service, Ramón y Cajal University Hospital, University of Alcalá, IRYCIS, Network Biomedical Research Center for Liver and Digestive Diseases (CIBERehd), Carlos III Health Institute, Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806, Alcala de Henares, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801, Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala de Henares, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| |
Collapse
|
11
|
Du B, Deng Z, Chen K, Yang Z, Wei J, Zhou L, Meng J, Cheng Y, Tian X, Tuo QZ, Lei P. Iron promotes both ferroptosis and necroptosis in the early stage of reperfusion in ischemic stroke. Genes Dis 2024; 11:101262. [PMID: 39286656 PMCID: PMC11402992 DOI: 10.1016/j.gendis.2024.101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 09/19/2024] Open
Abstract
Programmed cell death contributes to neurological damage in ischemic stroke, especially during the reperfusion stage. Several cell death pathways have been tested preclinically and clinically, including ferroptosis, necroptosis, and apoptosis. However, the sequence and complex interplay between cell death pathways during ischemia/reperfusion remains under investigation. Here, we unbiasedly investigated cell death pathways during ischemia/reperfusion by utilizing RNA sequencing analysis and immunoblot assays and revealed that ferroptosis and necroptosis occurred early post-reperfusion, followed by apoptosis. Ferroptosis inhibitor Liproxstatin-1 effectively inhibited necroptosis during reperfusion, while the necroptosis inhibitor Necrostatin-1 suppressed protein expression consistent with ferroptosis activation. Protein-protein interaction analysis and iron chelation therapy by deferoxamine mesylate indicate that iron is capable of promoting both ferroptosis and necroptosis in middle cerebral artery occlusion/repression modeled mice. Treatment of cells with iron led to a disruption in redox balance with activated necroptosis and increased susceptibility to ferroptosis. Collectively, these data uncovered a complex interplay between ferroptosis and necroptosis during ischemic stroke and indicated that multiple programmed cell death pathways may be targeted co-currently.
Collapse
Affiliation(s)
- Bin Du
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zijie Deng
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kang Chen
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhangzhong Yang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junfen Wei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liuyao Zhou
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Meng
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ying Cheng
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Tian
- Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Qing-Zhang Tuo
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
12
|
Chipón C, Riffo P, Ojeda L, Salas M, Burgos RA, Ehrenfeld P, López-Muñoz R, Zambrano A. Impact of Nordihydroguaiaretic Acid on Proliferation, Energy Metabolism, and Chemosensitization in Non-Small-Cell Lung Cancer (NSCLC) Cell Lines. Int J Mol Sci 2024; 25:11601. [PMID: 39519155 PMCID: PMC11546251 DOI: 10.3390/ijms252111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Lung cancer (LC) is the leading cause of cancer death worldwide. LC can be classified into small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC), with the last subtype accounting for approximately 85% of all diagnosed lung cancer cases. Despite the existence of different types of treatment for this disease, the development of resistance to therapies and tumor recurrence in patients have maintained the need to find new therapeutic options to combat this pathology, where natural products stand out as an attractive source for this search. Nordihydroguaiaretic acid (NDGA) is the main metabolite extracted from the Larrea tridentata plant and has been shown to have different biological activities, including anticancer activity. In this study, H1975, H1299, and A549 cell lines were treated with NDGA, and its effect on cell viability, proliferation, and metabolism was evaluated using a resazurin reduction assay, incorporation of BrdU, and ki-67 gene expression and glucose uptake measurement, respectively. In addition, the combination of NDGA with clinical chemotherapeutics was investigated using an MTT assay and Combenefit software (version 2.02). The results showed that NDGA decreases the viability and proliferation of NSCLC cells and differentially modulates the expression of genes associated with different metabolic pathways. For example, the LDH gene expression decreased in all cell lines analyzed. However, GLUT3 gene expression increased after 24 h of treatment. The expression of the HIF-1 gene decreased early in the H1299 and A549 cell lines. In addition, the combination of NDGA with three chemotherapeutics (carboplatin, gemcitabine, and taxol) shows a synergic pattern in the decrease of cell viability on the H1299 cell line. In summary, this research provides new evidence about the role of NDGA in lung cancer. Interestingly, using NDGA to enhance the anticancer activity of antitumoral drugs could be an improved therapeutic resource against lung cancer.
Collapse
Affiliation(s)
- Carina Chipón
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.C.); (P.R.); (L.O.); (M.S.)
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Paula Riffo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.C.); (P.R.); (L.O.); (M.S.)
| | - Loreto Ojeda
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.C.); (P.R.); (L.O.); (M.S.)
| | - Mónica Salas
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.C.); (P.R.); (L.O.); (M.S.)
| | - Rafael A. Burgos
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile;
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Pamela Ehrenfeld
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile;
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Rodrigo López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile;
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Angara Zambrano
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (C.C.); (P.R.); (L.O.); (M.S.)
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile;
| |
Collapse
|
13
|
Lee S, Ko MJ, Avritscher R, Lewandowski RJ, Kim DH. Cryo-Nanocatalyst Enhances Therapeutic Efficacy of Cryo-Immunotherapy through Necroptosis and Local Delivery of Programmed Death-Ligand 1 Inhibitors. ACS NANO 2024; 18:24269-24282. [PMID: 39175187 DOI: 10.1021/acsnano.4c05809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Combining cryoablation and immunotherapy presents a promising approach to revert immunosuppressive responses to solid tumors. However, challenges such as postablated residual tumors and insufficient immune activity contribute to recurrence after cryo-immunotherapy. Herein, we investigated metallic supra-structured cryo-nanocatalyst (MSCN), which features numerous ice nucleation sites and interspace loading of therapeutic agents. MSCN elevates the freezing point and enhances ice nucleation, facilitating effective ice formation during cryotreatment. MSCN-loaded tumor cells showed a 2-fold increase in cryo-cytotoxicity and undergo osmotic-related cell damage, primarily necroptosis rather than other regulated cell death mechanisms. In prostate cancer models, RNA sequencing reveals that MSCN-cryoablation promoted antitumor inflammatory pathways, including necroptosis, compared to cryoablation alone. Additionally, following programmed death-ligand 1 (PD-L1) upregulation postcryoablation, synergistic effects with PD-L1 blockade were confirmed. Given the interspace of MSCN for aPD-L1 loading, we compared the intratumoral delivery of PD-L1 blockade against systemic injection. Enhanced necrosis and necroptosis from MSCN-cryoablation and PD-L1 blockade effectively eradicated tumors and triggered antitumor and memory immune responses locally and systemically. Lastly, a spatial landscape of tumor-infiltrating immune cells was analyzed to gain insight into heterogeneous tumor responses, leading to the limitations of conventional focal ablation techniques. Our findings highlight the potential of advanced cryo-immunotherapy using cryo-nanocatalysis to promote ice formation and necroptosis, stimulating antitumor immunogenic responses.
Collapse
Affiliation(s)
- Sanghee Lee
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, United States
| | - Min Jun Ko
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, United States
| | - Rony Avritscher
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Robert J Lewandowski
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, United States
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, University of Illinois, Chicago, Illinois 60607, United States
| |
Collapse
|
14
|
Liang J, Tian X, Zhou M, Yan F, Fan J, Qin Y, Chen B, Huo X, Yu Z, Tian Y, Deng S, Peng Y, Wang Y, Liu B, Ma X. Shikonin and chitosan-silver nanoparticles synergize against triple-negative breast cancer through RIPK3-triggered necroptotic immunogenic cell death. Biomaterials 2024; 309:122608. [PMID: 38744189 DOI: 10.1016/j.biomaterials.2024.122608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Necroptotic immunogenic cell death (ICD) can activate the human immune system to treat the metastasis and recurrence of triple-negative breast cancer (TNBC). However, developing the necroptotic inducer and precisely delivering it to the tumor site is the key issue. Herein, we reported that the combination of shikonin (SHK) and chitosan silver nanoparticles (Chi-Ag NPs) effectively induced ICD by triggering necroptosis in 4T1 cells. Moreover, to address the lack of selectivity of drugs for in vivo application, we developed an MUC1 aptamer-targeted nanocomplex (MUC1@Chi-Ag@CPB@SHK, abbreviated as MUC1@ACS) for co-delivering SHK and Chi-Ag NPs. The accumulation of MUC1@ACS NPs at the tumor site showed a 6.02-fold increase compared to the free drug. Subsequently, upon reaching the tumor site, the acid-responsive release of SHK and Chi-Ag NPs from MUC1@ACS NPs cooperatively induced necroptosis in tumor cells by upregulating the expression of RIPK3, p-RIPK3, and tetrameric MLKL, thereby effectively triggering ICD. The sequential maturation of dendritic cells (DCs) subsequently enhanced the infiltration of CD8+ and CD4+ T cells in tumors, while inhibiting regulatory T cells (Treg cells), resulting in the effective treatment of primary and distal tumor growth and the inhibition of TNBC metastasis. This work highlights the importance of nanoparticles in mediating drug interactions during necroptotic ICD.
Collapse
Affiliation(s)
- Jiahao Liang
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiangge Tian
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Meirong Zhou
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Fei Yan
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha, China
| | - Yan Qin
- College of Biology, Hunan University, Changsha, China
| | - Binlong Chen
- College of Biology, Hunan University, Changsha, China
| | - Xiaokui Huo
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhenlong Yu
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China.
| | - Yan Tian
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Sa Deng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yulin Peng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yan Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, China.
| | - Xiaochi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
15
|
Bak S, Kim KS, Na K. Human adipose-derived stem cells genetically programmed to induce necroptosis for cancer immunotherapy. Cancer Gene Ther 2024; 31:995-1006. [PMID: 38858535 DOI: 10.1038/s41417-024-00794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Herein, we present human adipose-derived stem cells (ADSCs) inserted with the receptor-interacting protein kinase-3 (RIP3) gene (RP@ADSCs), which induces cell necroptosis, for tumor immunotherapy. Necroptosis has characteristics of both apoptosis, such as programmed cell death, and necrosis, such as swelling and plasma membrane rupture, during which damage-related molecular patterns are released, triggering an immune response. Therefore, necroptosis has the potential to be used as an effective anticancer immunotherapy. RP@ADSCs were programmed to necroptosis after a particular time after being injected in vivo, and various pro-inflammatory cytokines secreted during the stem cell death process stimulated the immune system, showing local and sustained anticancer effects. It was confirmed that RIP3 protein expression increased in ADSCs after RP transfection. RP@ADSCs continued to induce ADSCs death for 7 days, and various pro-inflammatory cytokines were secreted through ADSCs death. The efficacy of RP@ADSCs-mediated immunotherapy was evaluated in mouse models bearing GL-26 (glioblastoma) and K1735 (melanoma), and it was found that RP resulted in an increase in the population of long-term cytotoxic T cells and a decrease in the population of regulatory T cells. This shows that RP@ADSCs have potential and applicability as an excellent anticancer immunotherapy agent in clinical practice.
Collapse
Affiliation(s)
- Soyeon Bak
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Kyoung Sub Kim
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Kun Na
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
16
|
Salgado M, Márquez-Miranda V, Ferrada L, Rojas M, Poblete-Flores G, González-Nilo FD, Ardiles ÁO, Sáez JC. Ca 2+ permeation through C-terminal cleaved, but not full-length human Pannexin1 hemichannels, mediates cell death. Proc Natl Acad Sci U S A 2024; 121:e2405468121. [PMID: 38861601 PMCID: PMC11194574 DOI: 10.1073/pnas.2405468121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
Pannexin1 hemichannels (Panx1 HCs) are found in the membrane of most mammalian cells and communicate the intracellular and extracellular spaces, enabling the passive transfer of ions and small molecules. They are involved in physiological and pathophysiological conditions. During apoptosis, the C-terminal tail of Panx1 is proteolytically cleaved, but the permeability features of hemichannels and their role in cell death remain elusive. To address these topics, HeLa cells transfected with full-length human Panx1 (fl-hPanx1) or C-terminal truncated hPanx1 (Δ371hPanx1) were exposed to alkaline extracellular saline solution, increasing the activity of Panx1 HCs. The Δ371hPanx1 HC was permeable to DAPI and Etd+, but not to propidium iodide, whereas fl-hPanx1 HC was only permeable to DAPI. Furthermore, the cytoplasmic Ca2+ signal increased only in Δ371hPanx1 cells, which was supported by bioinformatics approaches. The influx of Ca2+ through Δ371hPanx1 HCs was necessary to promote cell death up to about 95% of cells, whereas the exposure to alkaline saline solution without Ca2+ failed to induce cell death, and the Ca2+ ionophore A23187 promoted more than 80% cell death even in fl-hPanx1 transfectants. Moreover, cell death was prevented with carbenoxolone or 10Panx1 in Δ371hPanx1 cells, whereas it was undetectable in HeLa Panx1-/- cells. Pretreatment with Ferrostatin-1 and necrostatin-1 did not prevent cell death, suggesting that ferroptosis or necroptosis was not involved. In comparison, zVAD-FMK, a pancaspase inhibitor, reduced death by ~60%, suggesting the involvement of apoptosis. Therefore, alkaline pH increases the activity of Δ371hPanx1HCs, leading to a critical intracellular free-Ca2+ overload that promotes cell death.
Collapse
Affiliation(s)
- Magdiel Salgado
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso2381850, Chile
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago8370146, Chile
| | - Luciano Ferrada
- Centro de Microscopía Avanzada-Biobío, Universidad de Concepción, Concepción4070386, Chile
| | - Maximiliano Rojas
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago8370146, Chile
| | - Gonzalo Poblete-Flores
- Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso2341386, Chile
| | - Fernando D. González-Nilo
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso2381850, Chile
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago8370146, Chile
| | - Álvaro O. Ardiles
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso2381850, Chile
- Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso2341386, Chile
| | - Juan C. Sáez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso2381850, Chile
| |
Collapse
|
17
|
Deepa SS, Thadathil N, Corral J, Mohammed S, Pham S, Rose H, Kinter MT, Richardson A, Díaz-García CM. MLKL overexpression leads to Ca 2+ and metabolic dyshomeostasis in a neuronal cell model. Cell Calcium 2024; 119:102854. [PMID: 38430790 PMCID: PMC10990772 DOI: 10.1016/j.ceca.2024.102854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
The necroptotic effector molecule MLKL accumulates in neurons over the lifespan of mice, and its downregulation has the potential to improve cognition through neuroinflammation, and changes in the abundance of synaptic proteins and enzymes in the central nervous system. Notwithstanding, direct evidence of cell-autonomous effects of MLKL expression on neuronal physiology and metabolism are lacking. Here, we tested whether the overexpression of MLKL in the absence of cell death in the neuronal cell line Neuro-2a recapitulates some of the hallmarks of aging at the cellular level. Using genetically-encoded fluorescent biosensors, we monitored the cytosolic and mitochondrial Ca2+ levels, along with the cytosolic concentrations of several metabolites involved in energy metabolism (lactate, glucose, ATP) and oxidative stress (oxidized/reduced glutathione). We found that MLKL overexpression marginally decreased cell viability, however, it led to reduced cytosolic and mitochondrial Ca2+ elevations in response to Ca2+ influx from the extracellular space. On the contrary, Ca2+ signals were elevated after mobilizing Ca2+ from the endoplasmic reticulum. Transient elevations in cytosolic Ca2+, mimicking neuronal stimulation, lead to higher lactate levels and lower glucose concentrations in Neuro-2a cells when overexpressing MLKL, which suggest enhanced neuronal glycolysis. Despite these alterations, energy levels and glutathione redox state in the cell bodies remained largely preserved after inducing MLKL overexpression for 24-48 h. Taken together, our proof-of-concept experiments are consistent with the hypothesis that MLKL overexpression in the absence of cell death contributes to both Ca2+ and metabolic dyshomeostasis, which are cellular hallmarks of brain aging.
Collapse
Affiliation(s)
- Sathyaseelan S Deepa
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Nidheesh Thadathil
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA
| | - Jorge Corral
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA
| | - Sabira Mohammed
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sophia Pham
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA
| | - Hadyn Rose
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA
| | - Michael T Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Arlan Richardson
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, OK, USA.
| |
Collapse
|
18
|
Thal DR, Gawor K, Moonen S. Regulated cell death and its role in Alzheimer's disease and amyotrophic lateral sclerosis. Acta Neuropathol 2024; 147:69. [PMID: 38583129 DOI: 10.1007/s00401-024-02722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024]
Abstract
Despite considerable research efforts, it is still not clear which mechanisms underlie neuronal cell death in neurodegenerative diseases. During the last 20 years, multiple pathways have been identified that can execute regulated cell death (RCD). Among these RCD pathways, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-related cell death, and lysosome-dependent cell death have been intensively investigated. Although RCD consists of numerous individual pathways, multiple common proteins have been identified that allow shifting from one cell death pathway to another. Another layer of complexity is added by mechanisms such as the endosomal machinery, able to regulate the activation of some RCD pathways, preventing cell death. In addition, restricted axonal degeneration and synaptic pruning can occur as a result of RCD activation without loss of the cell body. RCD plays a complex role in neurodegenerative processes, varying across different disorders. It has been shown that RCD is differentially involved in Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), among the most common neurodegenerative diseases. In AD, neuronal loss is associated with the activation of not only necroptosis, but also pyroptosis. In ALS, on the other hand, motor neuron death is not linked to canonical necroptosis, whereas pyroptosis pathway activation is seen in white matter microglia. Despite these differences in the activation of RCD pathways in AD and ALS, the accumulation of protein aggregates immunoreactive for p62/SQSTM1 (sequestosome 1) is a common event in both diseases and many other neurodegenerative disorders. In this review, we describe the major RCD pathways with clear activation in AD and ALS, the main interactions between these pathways, as well as their differential and similar involvement in these disorders. Finally, we will discuss targeting RCD as an innovative therapeutic concept for neurodegenerative diseases, such as AD and ALS. Considering that the execution of RCD or "cellular suicide" represents the final stage in neurodegeneration, it seems crucial to prevent neuronal death in patients by targeting RCD. This would offer valuable time to address upstream events in the pathological cascade by keeping the neurons alive.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium.
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sebastiaan Moonen
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute (LBI), KU-Leuven, Herestraat 49, 3000, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
- Center for Brain & Disease Research, VIB, Leuven, Belgium
| |
Collapse
|
19
|
Zeng J, Zhang X, Lin Z, Zhang Y, Yang J, Dou P, Liu T. Harnessing ferroptosis for enhanced sarcoma treatment: mechanisms, progress and prospects. Exp Hematol Oncol 2024; 13:31. [PMID: 38475936 DOI: 10.1186/s40164-024-00498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Sarcoma is a malignant tumor that originates from mesenchymal tissue. The common treatment for sarcoma is surgery supplemented with radiotherapy and chemotherapy. However, patients have a 5-year survival rate of only approximately 60%, and sarcoma cells are highly resistant to chemotherapy. Ferroptosis is an iron-dependent nonapoptotic type of regulated programmed cell death that is closely related to the pathophysiological processes underlying tumorigenesis, neurological diseases and other conditions. Moreover, ferroptosis is mediated via multiple regulatory pathways that may be targets for disease therapy. Recent studies have shown that the induction of ferroptosis is an effective way to kill sarcoma cells and reduce their resistance to chemotherapeutic drugs. Moreover, ferroptosis-related genes are related to the immune system, and their expression can be used to predict sarcoma prognosis. In this review, we describe the molecular mechanism underlying ferroptosis in detail, systematically summarize recent research progress with respect to ferroptosis application as a sarcoma treatment in various contexts, and point out gaps in the theoretical research on ferroptosis, challenges to its clinical application, potential resolutions of these challenges to promote ferroptosis as an efficient, reliable and novel method of clinical sarcoma treatment.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yu Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jing Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
20
|
Hirata Y, Mishima E. Membrane Dynamics and Cation Handling in Ferroptosis. Physiology (Bethesda) 2024; 39:73-87. [PMID: 38193763 PMCID: PMC11283900 DOI: 10.1152/physiol.00029.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024] Open
Abstract
Ferroptosis, a regulated cell death hallmarked by excessive lipid peroxidation, is implicated in various (patho)physiological contexts. During ferroptosis, lipid peroxidation leads to a diverse change in membrane properties and the dysregulation of ion homeostasis via the cation channels, ultimately resulting in plasma membrane rupture. This review illuminates cellular membrane dynamics and cation handling in ferroptosis regulation.
Collapse
Affiliation(s)
- Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
21
|
Oladapo A, Jackson T, Menolascino J, Periyasamy P. Role of pyroptosis in the pathogenesis of various neurological diseases. Brain Behav Immun 2024; 117:428-446. [PMID: 38336022 PMCID: PMC10911058 DOI: 10.1016/j.bbi.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Pyroptosis, an inflammatory programmed cell death process, has recently garnered significant attention due to its pivotal role in various neurological diseases. This review delves into the intricate molecular signaling pathways governing pyroptosis, encompassing both caspase-1 dependent and caspase-1 independent routes, while emphasizing the critical role played by the inflammasome machinery in initiating cell death. Notably, we explore the Nucleotide-binding domain leucine-rich repeat (NLR) containing protein family, the Absent in melanoma 2-like receptor family, and the Pyrin receptor family as essential activators of pyroptosis. Additionally, we comprehensively examine the Gasdermin family, renowned for their role as executioner proteins in pyroptosis. Central to our review is the interplay between pyroptosis and various central nervous system (CNS) cell types, including astrocytes, microglia, neurons, and the blood-brain barrier (BBB). Pyroptosis emerges as a significant factor in the pathophysiology of each cell type, highlighting its far-reaching impact on neurological diseases. This review also thoroughly addresses the involvement of pyroptosis in specific neurological conditions, such as HIV infection, drug abuse-mediated pathologies, Alzheimer's disease, and Parkinson's disease. These discussions illuminate the intricate connections between pyroptosis, chronic inflammation, and cell death in the development of these disorders. We also conducted a comparative analysis, contrasting pyroptosis with other cell death mechanisms, thereby shedding light on their unique aspects. This approach helps clarify the distinct contributions of pyroptosis to neuroinflammatory processes. In conclusion, this review offers a comprehensive exploration of the role of pyroptosis in various neurological diseases, emphasizing its multifaceted molecular mechanisms within various CNS cell types. By elucidating the link between pyroptosis and chronic inflammation in the context of neurodegenerative disorders and infections, it provides valuable insights into potential therapeutic targets for mitigating these conditions.
Collapse
Affiliation(s)
- Abiola Oladapo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Thomas Jackson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Jueliet Menolascino
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
22
|
Liu S, Perez P, Sun X, Chen K, Fatirkhorani R, Mammadova J, Wang Z. MLKL polymerization-induced lysosomal membrane permeabilization promotes necroptosis. Cell Death Differ 2024; 31:40-52. [PMID: 37996483 PMCID: PMC10782024 DOI: 10.1038/s41418-023-01237-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Mixed lineage kinase-like protein (MLKL) forms amyloid-like polymers to promote necroptosis; however, the mechanism through which these polymers trigger cell death is not clear. We have determined that activated MLKL translocates to the lysosomal membrane during necroptosis induction. The subsequent polymerization of MLKL induces lysosome clustering and fusion and eventual lysosomal membrane permeabilization (LMP). This LMP leads to the rapid release of lysosomal contents into the cytosol, resulting in a massive surge in cathepsin levels, with Cathepsin B (CTSB) as a significant contributor to the ensuing cell death as it cleaves many proteins essential for cell survival. Importantly, chemical inhibition or knockdown of CTSB protects cells from necroptosis. Furthermore, induced polymerization of the MLKL N-terminal domain (NTD) also triggers LMP, leading to CTSB release and subsequent cell death. These findings clearly establish the critical role of MLKL polymerization induced lysosomal membrane permeabilization (MPI-LMP) in the process of necroptosis.
Collapse
Affiliation(s)
- Shuzhen Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Preston Perez
- Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 560 Channelside Drive, MDD714, Tampa, FL, 33602, USA
| | - Xue Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Department of Emergency Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 21500, China
| | - Ken Chen
- Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 560 Channelside Drive, MDD714, Tampa, FL, 33602, USA
| | - Rojin Fatirkhorani
- Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 560 Channelside Drive, MDD714, Tampa, FL, 33602, USA
| | - Jamila Mammadova
- Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 560 Channelside Drive, MDD714, Tampa, FL, 33602, USA
| | - Zhigao Wang
- Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 560 Channelside Drive, MDD714, Tampa, FL, 33602, USA.
| |
Collapse
|
23
|
Sun Y, Lian T, Huang Q, Chang Y, Li Y, Guo X, Kong W, Yang Y, Zhang K, Wang P, Wang X. Nanomedicine-mediated regulated cell death in cancer immunotherapy. J Control Release 2023; 364:174-194. [PMID: 37871752 DOI: 10.1016/j.jconrel.2023.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Immunotherapy has attracted widespread attention in cancer treatment and has achieved considerable success in the clinical treatment of some tumors, but it has a low response rate in most tumors. To achieve sufficient activation of the immune response, significant efforts using nanotechnology have been made to enhance cancer immune response. In recent years, the induction of various regulated cell death (RCD) has emerged as a potential antitumor immuno-strategy, including processes related to apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis. In particular, damage-associated molecular patterns (DAMPs) released from the damaged membrane of dying cells act as in situ adjuvants to trigger antigen-specific immune responses by the exposure of an increased antigenicity. Thus, RCD-based immunotherapy offers a new approach for enhancing cancer treatment efficacy. Furthermore, incorporation with multimodal auxiliary therapies in cell death-based immunotherapy can trigger stronger immune responses, resulting in more efficient therapeutic outcome. This review discusses different RCD modalities and summarizes recent nanotechnology-mediated RCDs in cancer immunotherapy.
Collapse
Affiliation(s)
- Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Ting Lian
- Research Center for Prevention and Treatment of Respiratory Disease, School of Clinical Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Qichao Huang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yawei Chang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaoyu Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Weirong Kong
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yifang Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
24
|
Hao M, Han X, Yao Z, Zhang H, Zhao M, Peng M, Wang K, Shan Q, Sang X, Wu X, Wang L, Lv Q, Yang Q, Bao Y, Kuang H, Zhang H, Cao G. The pathogenesis of organ fibrosis: Focus on necroptosis. Br J Pharmacol 2023; 180:2862-2879. [PMID: 36111431 DOI: 10.1111/bph.15952] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is a common process of tissue repair response to multiple injuries in all chronic progressive diseases, which features with excessive deposition of extracellular matrix. Fibrosis can occur in all organs and tends to be nonreversible with the progress of the disease. Different cells types in different organs are involved in the occurrence and development of fibrosis, that is, hepatic stellate cells, pancreatic stellate cells, fibroblasts and myofibroblasts. Various types of programmed cell death, including apoptosis, autophagy, ferroptosis and necroptosis, are closely related to organ fibrosis. Among these programmed cell death types, necroptosis, an emerging regulated cell death type, is regarded as a huge potential target to ameliorate organ fibrosis. In this review, we summarize the role of necroptosis signalling in organ fibrosis and collate the small molecule compounds targeting necroptosis. In addition, we discuss the potential challenges, opportunities and open questions in using necroptosis signalling as a potential target for antifibrotic therapies. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhouhui Yao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Han Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengting Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Lv
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yini Bao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haodan Kuang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyan Zhang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
25
|
Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review. Cell Mol Biol Lett 2023; 28:76. [PMID: 37777764 PMCID: PMC10541721 DOI: 10.1186/s11658-023-00489-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.
Collapse
Affiliation(s)
- Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
26
|
Wang K, Zhao A, Tayier D, Tan K, Song W, Cheng Q, Li X, Chen Z, Wei Q, Yuan Y, Yang Z. Activation of AMPK ameliorates acute severe pancreatitis by suppressing pancreatic acinar cell necroptosis in obese mice models. Cell Death Discov 2023; 9:363. [PMID: 37777514 PMCID: PMC10542799 DOI: 10.1038/s41420-023-01655-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Obese people with acute pancreatitis (AP) have an increased risk of developing severe acute pancreatitis (SAP), which prolongs the length of hospital stay and increases mortality. Thus, elucidation of the mechanisms through which SAP occurs in obese individuals will provide clues for possible treatment targets. Differences in early events in obese or lean patients with AP have not been conclusively reported. We selected C57BL/6 mice as lean mice models, ob/ob mice or diet induced obese (DIO) mice as obese mice models and then induced experimental AP in mice via injections of caerulein. There were suppressed p-AMPK expressions in the pancreas of obese mice, compared with same-age lean C57BL/6 mice, which were further reduced in AP mice models. Obese AP mice were treated using AICAR, a direct AMPK agonist, which prevented pancreatic damage and cell death, suppressed pancreatic enzyme levels in serum, reduced the areas of fat saponification in the peritoneal cavity, prevented injury in other organs and decreased mice mortality rate. Further assays showed that AICAR activates p-AMPK to stabilize pro-caspase-8. Pro-caspase-8 enhances RIPK3 degradation, inhibits pancreatic acinar cell necroptosis, and downregulates the release of pancreatic enzymes. Thus, activation of AMPK by AICAR alleviates pancreatic acinar cell necroptosis and converts SAP to mild acute pancreatitis in obese mice.
Collapse
Affiliation(s)
- Kunlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Anbang Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Dilinigeer Tayier
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Kai Tan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Wenjing Song
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Qian Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Xinyin Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Zhinan Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Qifeng Wei
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China.
| | - Zhiyong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, China.
| |
Collapse
|
27
|
Giansante V, Stati G, Sancilio S, Guerra E, Alberti S, Di Pietro R. The Dual Role of Necroptosis in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:12633. [PMID: 37628814 PMCID: PMC10454309 DOI: 10.3390/ijms241612633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic cancer (PC) is the seventh leading cause of cancer-related death. PC incidence has continued to increase by about 1% each year in both men and women. Although the 5-year relative survival rate of PC has increased from 3% to 12%, it is still the lowest among cancers. Hence, novel therapeutic strategies are urgently needed. Challenges in PC-targeted therapeutic strategies stem from the high PC heterogeneity and from the poorly understood interplay between cancer cells and the surrounding microenvironment. Signaling pathways that drive PC cell growth have been the subject of intense scrutiny and interest has been attracted by necroptosis, a distinct type of programmed cell death. In this review, we provide a historical background on necroptosis and a detailed analysis of the ongoing debate on the role of necroptosis in PC malignant progression.
Collapse
Affiliation(s)
- Valentina Giansante
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gianmarco Stati
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Sancilio
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Emanuela Guerra
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technologies (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Saverio Alberti
- Unit of Medical Genetics, Department of Biomedical Sciences, University of Messina, 98122 Messina, Italy
| | - Roberta Di Pietro
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
28
|
Gupta R, Kumari S, Tripathi R, Ambasta RK, Kumar P. Unwinding the modalities of necrosome activation and necroptosis machinery in neurological diseases. Ageing Res Rev 2023; 86:101855. [PMID: 36681250 DOI: 10.1016/j.arr.2023.101855] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Necroptosis, a regulated form of cell death, is involved in the genesis and development of various life-threatening diseases, including cancer, neurological disorders, cardiac myopathy, and diabetes. Necroptosis initiates with the formation and activation of a necrosome complex, which consists of RIPK1, RIPK2, RIPK3, and MLKL. Emerging studies has demonstrated the regulation of the necroptosis cell death pathway through the implication of numerous post-translational modifications, namely ubiquitination, acetylation, methylation, SUMOylation, hydroxylation, and others. In addition, the negative regulation of the necroptosis pathway has been shown to interfere with brain homeostasis through the regulation of axonal degeneration, mitochondrial dynamics, lysosomal defects, and inflammatory response. Necroptosis is controlled by the activity and expression of signaling molecules, namely VEGF/VEGFR, PI3K/Akt/GSK-3β, c-Jun N-terminal kinases (JNK), ERK/MAPK, and Wnt/β-catenin. Herein, we briefly discussed the implication and potential of necrosome activation in the pathogenesis and progression of neurological manifestations, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, traumatic brain injury, and others. Further, we present a detailed picture of natural compounds, micro-RNAs, and chemical compounds as therapeutic agents for treating neurological manifestations.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
29
|
Flores-Romero H, Dadsena S, García-Sáez AJ. Mitochondrial pores at the crossroad between cell death and inflammatory signaling. Mol Cell 2023; 83:843-856. [PMID: 36931255 DOI: 10.1016/j.molcel.2023.02.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
Mitochondria are cellular organelles with a major role in many cellular processes, including not only energy production, metabolism, and calcium homeostasis but also regulated cell death and innate immunity. Their proteobacterial origin makes them a rich source of potent immune agonists, normally hidden within the mitochondrial membrane barriers. Alteration of mitochondrial permeability through mitochondrial pores thus provides efficient mechanisms not only to communicate mitochondrial stress to the cell but also as a key event in the integration of cellular responses. In this regard, eukaryotic cells have developed diverse signaling networks that sense and respond to the release of mitochondrial components into the cytosol and play a key role in controlling cell death and inflammatory pathways. Modulating pore formation at mitochondria through direct or indirect mechanisms may thus open new opportunities for therapy. In this review, we discuss the current understanding of the structure and molecular mechanisms of mitochondrial pores and how they function at the interface between cell death and inflammatory signaling to regulate cellular outcomes.
Collapse
Affiliation(s)
- Hector Flores-Romero
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Shashank Dadsena
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany.
| |
Collapse
|
30
|
Wang Q, Ye Q, Xi X, Cao X, Wang X, Zhang M, Xu Y, Deng T, Deng X, Zhang G, Xiao C. KW2449 ameliorates collagen-induced arthritis by inhibiting RIPK1-dependent necroptosis. Front Immunol 2023; 14:1135014. [PMID: 36993980 PMCID: PMC10040599 DOI: 10.3389/fimmu.2023.1135014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
ObjectiveNecroptosis has recently been found to be associated with the pathogenesis of many autoimmune diseases, including rheumatoid arthritis (RA). This study was undertaken to explore the role of RIPK1-dependent necroptosis in the pathogenesis of RA and the potential new treatment options.MethodsThe plasma levels of receptor-interacting protein kinase 1 (RIPK1) and mixed lineage kinase domain-like pseudokinase (MLKL) in 23 controls and 42 RA patients were detected by ELISA. Collagen-induced arthritis (CIA) rats were treated with KW2449 by gavage for 28 days. Arthritis index score, H&E staining, and Micro-CT analysis were used to evaluate joint inflammation. The levels of RIPK1-dependent necroptosis related proteins and inflammatory cytokines were detected by qRT-PCR, ELISA and Western blot, and the cell death morphology was detected by flow cytometry analysis and high-content imaging analysis.ResultsThe plasma levels of RIPK1 and MLKL in RA patients were higher than those in healthy people, and were positively correlated with the severity of RA. KW2449 could reduce joint swelling, joint bone destruction, tissue damage, and the plasma levels of inflammatory cytokines in CIA rats. Lipopolysaccharide combined with zVAD (LZ) could induce necroptosis in RAW 264.7 cells, which could be reduced by KW2449. RIPK1-dependent necroptosis related proteins and inflammatory factors increased after LZ induction and decreased after KW2449 treatment or knockdown of RIPK1.ConclusionThese findings suggest that the overexpression of RIPK1 is positively correlated with the severity of RA. KW2449, as a small molecule inhibitor targeting RIPK1, has the potential to be a therapeutic strategy for RA treatment by inhibiting RIPK1-dependent necroptosis.
Collapse
Affiliation(s)
- Qiong Wang
- Beijing University of Chinese Medicine, China-Japan Friendship Hospital Clinical Medicine, Beijing, China
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qinbin Ye
- Beijing University of Chinese Medicine, China-Japan Friendship Hospital Clinical Medicine, Beijing, China
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoyu Xi
- Beijing University of Chinese Medicine, China-Japan Friendship Hospital Clinical Medicine, Beijing, China
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xing Wang
- Beijing University of Chinese Medicine, China-Japan Friendship Hospital Clinical Medicine, Beijing, China
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaobing Deng
- Department of Drug Discovery, Double-Crane Run Therapeutics, Beijing, China
| | - Guoqiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Guoqiang Zhang, ; Cheng Xiao,
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Guoqiang Zhang, ; Cheng Xiao,
| |
Collapse
|
31
|
Margheritis E, Kappelhoff S, Cosentino K. Pore-Forming Proteins: From Pore Assembly to Structure by Quantitative Single-Molecule Imaging. Int J Mol Sci 2023; 24:ijms24054528. [PMID: 36901959 PMCID: PMC10003378 DOI: 10.3390/ijms24054528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Pore-forming proteins (PFPs) play a central role in many biological processes related to infection, immunity, cancer, and neurodegeneration. A common feature of PFPs is their ability to form pores that disrupt the membrane permeability barrier and ion homeostasis and generally induce cell death. Some PFPs are part of the genetically encoded machinery of eukaryotic cells that are activated against infection by pathogens or in physiological programs to carry out regulated cell death. PFPs organize into supramolecular transmembrane complexes that perforate membranes through a multistep process involving membrane insertion, protein oligomerization, and finally pore formation. However, the exact mechanism of pore formation varies from PFP to PFP, resulting in different pore structures with different functionalities. Here, we review recent insights into the molecular mechanisms by which PFPs permeabilize membranes and recent methodological advances in their characterization in artificial and cellular membranes. In particular, we focus on single-molecule imaging techniques as powerful tools to unravel the molecular mechanistic details of pore assembly that are often obscured by ensemble measurements, and to determine pore structure and functionality. Uncovering the mechanistic elements of pore formation is critical for understanding the physiological role of PFPs and developing therapeutic approaches.
Collapse
|
32
|
Barisch C, Holthuis JCM, Cosentino K. Membrane damage and repair: a thin line between life and death. Biol Chem 2023; 404:467-490. [PMID: 36810295 DOI: 10.1515/hsz-2022-0321] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
Bilayered membranes separate cells from their surroundings and form boundaries between intracellular organelles and the cytosol. Gated transport of solutes across membranes enables cells to establish vital ion gradients and a sophisticated metabolic network. However, an advanced compartmentalization of biochemical reactions makes cells also particularly vulnerable to membrane damage inflicted by pathogens, chemicals, inflammatory responses or mechanical stress. To avoid potentially lethal consequences of membrane injuries, cells continuously monitor the structural integrity of their membranes and readily activate appropriate pathways to plug, patch, engulf or shed the damaged membrane area. Here, we review recent insights into the cellular mechanisms that underly an effective maintenance of membrane integrity. We discuss how cells respond to membrane lesions caused by bacterial toxins and endogenous pore-forming proteins, with a primary focus on the intimate crosstalk between membrane proteins and lipids during wound formation, detection and elimination. We also discuss how a delicate balance between membrane damage and repair determines cell fate upon bacterial infection or activation of pro-inflammatory cell death pathways.
Collapse
Affiliation(s)
- Caroline Barisch
- Molecular Infection Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Katia Cosentino
- Molecular Cell Biophysics Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| |
Collapse
|
33
|
Liccardi G, Annibaldi A. MLKL post-translational modifications: road signs to infection, inflammation and unknown destinations. Cell Death Differ 2023; 30:269-278. [PMID: 36175538 PMCID: PMC9520111 DOI: 10.1038/s41418-022-01061-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/14/2022] Open
Abstract
Necroptosis is a caspase-independent modality of cell death that requires the activation of the executioner MLKL. In the last ten years the field gained a substantial amount of evidence regarding its involvement in host response to pathogens, TNF-induced inflammatory diseases as well as pathogen recognition receptors (PRR)-induced inflammation. However, there are still a lot of questions that remain unanswered. While it is clear that there are specific events needed to drive MLKL activation, substantial differences between human and mouse MLKL not only highlight different evolutionary pressure, but also provide potential insights on alternative modalities of activation. While in TNF-induced necroptosis it is clear the involvement of the RIPK3 mediated phosphorylation, it still remains to be understood how certain inflammatory in vivo phenotypes are not equally rescued by either RIPK3 or MLKL loss. Moreover, the plethora of different reported phosphorylation events on MLKL, even in cells that do not express RIPK3, suggest indeed that there is more to MLKL than RIPK3-mediated activation, not only in the execution of necroptosis but perhaps in other inflammatory conditions that include IFN response. The recent discovery of MLKL ubiquitination has highlighted a new checkpoint in the regulation of MLKL activation and the somewhat conflicting evidence reported certainly require some untangling. In this review we will highlight the recent findings on MLKL activation and involvement to pathogen response with a specific focus on MLKL post-translational modifications, in particular ubiquitination. This review will highlight the outstanding main questions that have risen from the last ten years of research, trying at the same time to propose potential avenues of research.
Collapse
Affiliation(s)
- Gianmaria Liccardi
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany.
| | - Alessandro Annibaldi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Strasse 21, 50931, Cologne, Germany.
| |
Collapse
|
34
|
Wang SC, Hu XM, Xiong K. The regulatory role of Pin1 in neuronal death. Neural Regen Res 2023; 18:74-80. [PMID: 35799512 PMCID: PMC9241412 DOI: 10.4103/1673-5374.341043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/14/2021] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
Regulated cell death predominantly involves apoptosis, autophagy, and regulated necrosis. It is vital that we understand how key regulatory signals can control the process of cell death. Pin1 is a cis-trans isomerase that catalyzes the isomerization of phosphorylated serine or threonine-proline motifs of a protein, thereby acting as a crucial molecular switch and regulating the protein functionality and the signaling pathways involved. However, we know very little about how Pin1-associated pathways might play a role in regulated cell death. In this paper, we review the role of Pin1 in regulated cell death and related research progress and summarize Pin1-related pathways in regulated cell death. Aside from the involvement of Pin1 in the apoptosis that accompanies neurodegenerative diseases, accumulating evidence suggests that Pin1 also plays a role in regulated necrosis and autophagy, thereby exhibiting distinct effects, including both neurotoxic and neuroprotective effects. Gaining an enhanced understanding of Pin1 in neuronal death may provide us with new options for the development of therapeutic target for neurodegenerative disorders.
Collapse
Affiliation(s)
- Shu-Chao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| |
Collapse
|
35
|
Onal T, Ozgul-Onal M, Chefetz I. Mixed lineage kinase domain-like pseudokinase: Conventional (necroptosis) and unconventional (necroptosis-independent) functions and features. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:225-243. [PMID: 36858737 DOI: 10.1016/bs.apcsb.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mixed lineage kinase domain-like pseudokinase (MLKL) is the terminal and indispensable mediator of necroptosis. Necroptosis, also known as programmed cell necrosis, is a caspase-independent cell death mechanism involved in various pathologic and inflammatory processes. Triggering necroptosis could be an alternative approach in treating apoptosis-resistant cancer cells to prevent recurrent disease. In addition to its function in necroptosis, MLKL plays a role as a regulator in many cellular processes independent of necroptosis. A better understanding of the intracellular function of MLKL and its role in various diseases and pathologic conditions is needed to enable discovery of new targeted therapies. Various necroptosis-dependent and independent functions of MLKL are reviewed in this chapter, with a focus on functions of MLKL in necroptosis, autophagy, inflammation, tissue regeneration, and endosomal trafficking.
Collapse
Affiliation(s)
- Tuna Onal
- Faculty of Medicine, Department of Histology and Embryology, Bandirma Onyedi Eylul University, Balikesir, Turkey; The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Melike Ozgul-Onal
- The Hormel Institute, University of Minnesota, Austin, MN, United States; Faculty of Medicine, Department of Histology and Embryology, Mugla Sitki Kocman University, Mugla, Turkey
| | - Ilana Chefetz
- The Hormel Institute, University of Minnesota, Austin, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States; Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
36
|
Röck BF, Shalaby R, García-Sáez AJ. Pyroptosis Induction and Visualization at the Single-Cell Level Using Optogenetics. Methods Mol Biol 2023; 2696:135-147. [PMID: 37578721 DOI: 10.1007/978-1-0716-3350-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Pyroptosis has been identified as a pro-inflammatory form of programmed cell death. It can be triggered by different stimuli including pathogen invasion or cell stress/danger signals releasing hundreds of proteins upon lysis that cause complex responses in neighboring cells. Pyroptosis is executed by the gasdermin (GSDM) family of proteins which, upon cleavage by caspases, form transmembrane pores that release cytokines to induce inflammation. However, despite the importance of gasdermins in the development of inflammatory diseases and cancer, a lot is still to be understood in the downstream consequences of this cell death pathway. Currently, conventional methods, such as drug treatments or chemically forced oligomerization, are limited in the spatiotemporal analysis of pyroptosis signaling in the cellular population, since all cells are primed for undergoing pyroptosis. Here, we provide a protocol for the application of a novel optogenetics tool called NLS_PhoCl_N-GSDMD_mCherry that enables precise temporal and spatial pyroptosis induction in a confocal microscopy setup, followed by imaging of the cell death process and subsequent quantitative analysis of the experiment. This tool opens new opportunities for the study of pyroptosis activation and of its effects on the bystander cell responses.
Collapse
Affiliation(s)
- Bernhard F Röck
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Raed Shalaby
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ana J García-Sáez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
37
|
Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat Rev Mol Cell Biol 2022; 24:312-333. [PMID: 36543934 DOI: 10.1038/s41580-022-00564-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Regulated cell death (RCD) relies on activation and recruitment of pore-forming proteins (PFPs) that function as executioners of specific cell death pathways: apoptosis regulator BAX (BAX), BCL-2 homologous antagonist/killer (BAK) and BCL-2-related ovarian killer protein (BOK) for apoptosis, gasdermins (GSDMs) for pyroptosis and mixed lineage kinase domain-like protein (MLKL) for necroptosis. Inactive precursors of PFPs are converted into pore-forming entities through activation, membrane recruitment, membrane insertion and oligomerization. These mechanisms involve protein-protein and protein-lipid interactions, proteolytic processing and phosphorylation. In this Review, we discuss the structural rearrangements incurred by RCD-related PFPs and describe the mechanisms that manifest conversion from autoinhibited to membrane-embedded molecular states. We further discuss the formation and maturation of membrane pores formed by BAX/BAK/BOK, GSDMs and MLKL, leading to diverse pore architectures. Lastly, we highlight commonalities and differences of PFP mechanisms involving BAX/BAK/BOK, GSDMs and MLKL and conclude with a discussion on how, in a population of challenged cells, the coexistence of cell death modalities may have profound physiological and pathophysiological implications.
Collapse
|
38
|
Wang WY, Yi WQ, Liu YS, Hu QY, Qian SJ, Liu JT, Mao H, Cai F, Yang HL. Z-DNA/RNA Binding Protein 1 Senses Mitochondrial DNA to Induce Receptor-Interacting Protein Kinase-3/Mixed Lineage Kinase Domain-Like-Driven Necroptosis in Developmental Sevoflurane Neurotoxicity. Neuroscience 2022; 507:99-111. [PMID: 36370933 DOI: 10.1016/j.neuroscience.2022.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Developmental sevoflurane exposure leads to widespread neuronal cell death known as sevoflurane-induced neurotoxicity (SIN). Receptor-interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like (MLKL)-driven necroptosis plays an important role in cell fate. Previous research has shown that inhibition of RIPK1 activity alone did not attenuate SIN. Since RIPK3/MLKL signaling could also be activated by Z-DNA/RNA binding protein 1 (ZBP1), the present study was designed to investigate whether ZBP1-mediated and RIPK3/MLKL-driven necroptosis is involved in SIN through in vitro and in vivo experiments. We found that sevoflurane priming triggers neuronal cell death and LDH release in a time-dependent manner. The expression levels of RIPK1, RIPK3, ZBP1 and membrane phosphorylated MLKL were also dramatically enhanced in SIN. Intriguingly, knockdown of RIPK3, but not RIPK1, abolished MLKL-mediated neuronal necroptosis in SIN. Additionally, inhibition of RIPK3-mediated necroptosis with GSK'872, rather than inhibition of apoptosis with zVAD, significantly ameliorated SIN. Further investigation showed that sevoflurane treatment causes mitochondrial DNA (mtDNA) release into the cytosol. Accordingly, ZBP1 senses cytosolic mtDNA and consequently activates RIPK3/MLKL signaling. This conclusion was reinforced by the evidence that knockdown of ZBP1 or depleting mtDNA with ethidium bromide remarkably improved SIN. Finally, the administration of the RIPK3 inhibitor GSK'872 relieved sevoflurane-induced spatial and emotional disorders without influence on locomotor activity. Altogether, these results illustrate that ZBP1 senses cytosolic mtDNA to induce RIPK3/MLKL-driven necroptosis in SIN. Elucidating the role of necroptosis in SIN will provide new insights into understanding the mechanism of anesthetic exposure in the developing brain.
Collapse
Affiliation(s)
- Wen-Yuan Wang
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.
| | - Wan-Qing Yi
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yu-Si Liu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Qi-Yun Hu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Shao-Jie Qian
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Jin-Tao Liu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Hui Mao
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Fang Cai
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Hui-Ling Yang
- Department of Anesthesiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou 310023, China.
| |
Collapse
|
39
|
Yang Y, Wang M, Zhang YY, Zhao SZ, Gu S. The endosomal sorting complex required for transport repairs the membrane to delay cell death. Front Oncol 2022; 12:1007446. [PMID: 36330465 PMCID: PMC9622947 DOI: 10.3389/fonc.2022.1007446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/20/2022] [Indexed: 08/15/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery plays a key role in the repair of damaged plasma membranes with puncta form and removes pores from the plasma membrane in regulated cell death, apoptosis, necroptosis, pyroptosis, ferroptosis, and autophagy. ESCRT-I overexpression and ESCRT-III-associated charged multivesicular body protein (CHMP) 4B participate in apoptosis, and the ESCRT-1 protein TSG 101 maintains low levels of ALIX and ALG-2 and prevents predisposition to apoptosis. The ESCRT-III components CHMP2A and CHMP4B are recruited to broken membrane bubble sites with the requirement of extracellular Ca2+, remove membrane vesicles from cells, and delay the time required for active MLKL to mediate necroptosis, thus preserving cell survival. CHMP4B disturbed pyroptosis by recruiting around the plasma membrane neck to remove the GSDMD pores and preserve plasma membrane integrity depending on Ca2+ influx. The accumulation of the ESCRT-III subunits CHMP5 and CHMP6 in the plasma membrane is increased by the classical ferroptosis activators erastin-1 and ras-selective lethal small molecule 3 (RSL3) upon cytosolic calcium influx and repairs the ferroptotic plasma membrane. ESCRT-III- and VPS4-induced macroautophagy, ESCRT-0-initiated microautophagy. ESCRT-I, ESCRT-II, ESCRT-III, ALIX, and VPS4A are recruited to damaged lysosomes and precede lysophagy, indicating that ESCRT is a potential target to overcome drug resistance during tumor therapy.
Collapse
Affiliation(s)
- Ye Yang
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Wang
- General Surgery Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Ying Zhang
- Respiratory and Critical Care Medicine Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Zhi Zhao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People’s Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Song Gu
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Roles of RIPK3 in necroptosis, cell signaling, and disease. Exp Mol Med 2022; 54:1695-1704. [PMID: 36224345 PMCID: PMC9636380 DOI: 10.1038/s12276-022-00868-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/14/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022] Open
Abstract
Receptor-interacting protein kinase-3 (RIPK3, or RIP3) is an essential protein in the "programmed" and "regulated" cell death pathway called necroptosis. Necroptosis is activated by the death receptor ligands and pattern recognition receptors of the innate immune system, and the findings of many reports have suggested that necroptosis is highly significant in health and human disease. This significance is largely because necroptosis is distinguished from other modes of cell death, especially apoptosis, in that it is highly proinflammatory given that cell membrane integrity is lost, triggering the activation of the immune system and inflammation. Here, we discuss the roles of RIPK3 in cell signaling, along with its role in necroptosis and various pathways that trigger RIPK3 activation and cell death. Lastly, we consider pathological situations in which RIPK3/necroptosis may play a role.
Collapse
|
41
|
Koper MJ, Tomé SO, Gawor K, Belet A, Van Schoor E, Schaeverbeke J, Vandenberghe R, Vandenbulcke M, Ghebremedhin E, Otto M, von Arnim CAF, Balusu S, Blaschko MB, De Strooper B, Thal DR. LATE-NC aggravates GVD-mediated necroptosis in Alzheimer's disease. Acta Neuropathol Commun 2022; 10:128. [PMID: 36057624 PMCID: PMC9441100 DOI: 10.1186/s40478-022-01432-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 12/26/2022] Open
Abstract
It has become evident that Alzheimer's Disease (AD) is not only linked to its hallmark lesions-amyloid plaques and neurofibrillary tangles (NFTs)-but also to other co-occurring pathologies. This may lead to synergistic effects of the respective cellular and molecular players, resulting in neuronal death. One of these co-pathologies is the accumulation of phosphorylated transactive-response DNA binding protein 43 (pTDP-43) as neuronal cytoplasmic inclusions, currently considered to represent limbic-predominant age-related TDP-43 encephalopathy neuropathological changes (LATE-NC), in up to 70% of symptomatic AD cases. Granulovacuolar degeneration (GVD) is another AD co-pathology, which also contains TDP-43 and other AD-related proteins. Recently, we found that all proteins required for necroptosis execution, a previously defined programmed form of neuronal cell death, are present in GVD, such as the phosphorylated necroptosis executioner mixed-lineage kinase domain-like protein (pMLKL). Accordingly, this protein is a reliable marker for GVD lesions, similar to other known GVD proteins. Importantly, it is not yet known whether the presence of LATE-NC in symptomatic AD cases is associated with necroptosis pathway activation, presumably contributing to neuron loss by cell death execution. In this study, we investigated the impact of LATE-NC on the severity of necroptosis-associated GVD lesions, phosphorylated tau (pTau) pathology and neuronal density. First, we used 230 human post-mortem cases, including 82 controls without AD neuropathological changes (non-ADNC), 81 non-demented cases with ADNC, i.e.: pathologically-defined preclinical AD (p-preAD) and 67 demented cases with ADNC. We found that Braak NFT stage and LATE-NC stage were good predictors for GVD expansion and neuronal loss in the hippocampal CA1 region. Further, we compared the impact of TDP-43 accumulation on hippocampal expression of pMLKL-positive GVD, pTau as well as on neuronal density in a subset of nine non-ADNC controls, ten symptomatic AD cases with (ADTDP+) and eight without LATE-NC (ADTDP-). Here, we observed increased levels of pMLKL-positive, GVD-exhibiting neurons in ADTDP+ cases, compared to ADTDP- and controls, which was accompanied by augmented pTau pathology. Neuronal loss in the CA1 region was increased in ADTDP+ compared to ADTDP- cases. These data suggest that co-morbid LATE-NC in AD impacts not only pTau pathology but also GVD-mediated necroptosis pathway activation, which results in an accelerated neuronal demise. This further highlights the cumulative and synergistic effects of comorbid pathologies leading to neuronal loss in AD. Accordingly, protection against necroptotic neuronal death appears to be a promising therapeutic option for AD and LATE.
Collapse
Affiliation(s)
- Marta J Koper
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Annelies Belet
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Evelien Van Schoor
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Center for Brain and Disease Research, VIB, Leuven, Belgium
- Laboratory for Neurobiology, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jolien Schaeverbeke
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Laboratory for Translational Neuropsychiatry, Department of Neuroscience, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Laboratory for Translational Neuropsychiatry, Department of Neuroscience, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Department of Geriatric Psychiatry, UZ Leuven, Leuven, Belgium
| | - Estifanos Ghebremedhin
- Institute of Anatomy - Anatomy I, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Markus Otto
- Department of Neurology, Ulm University, Ulm, Germany
- Department of Neurology, University of Halle, Halle, Germany
| | - Christine A F von Arnim
- Department of Neurology, Ulm University, Ulm, Germany
- Department of Geriatrics, Göttingen University, Göttingen, Germany
| | - Sriram Balusu
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Matthew B Blaschko
- Department of Electronics, Center for Processing Speech and Images, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Pathology, UZ Leuven, Leuven, Belgium.
| |
Collapse
|
42
|
The role of RHIM in necroptosis. Biochem Soc Trans 2022; 50:1197-1205. [PMID: 36040212 PMCID: PMC9444067 DOI: 10.1042/bst20220535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
Abstract
The RIP homotypic interaction motif (RHIM) is a conserved protein domain that is approximately 18–22 amino acids in length. In humans, four proteins carrying RHIM domains have been identified: receptor-interacting serine/threonine protein kinase (RIPK) 1, RIPK3, Z-DNA-binding protein 1 (ZBP1), and TIR domain-containing adapter-inducing IFN-β (TRIF), which are all major players in necroptosis, a distinct form of regulated cell death. Necroptosis is mostly presumed to be a fail-safe form of cell death, occurring in cells in which apoptosis is compromised. Upon activation, RIPK1, ZBP1, and TRIF each hetero-oligomerize with RIPK3 and induce the assembly of an amyloid-like structure of RIPK3 homo-oligomers. These act as docking stations for the recruitment of the pseudokinase mixed-lineage kinase domain like (MLKL), the pore-forming executioner of necroptosis. As RHIM domain interactions are a vital component of the signaling cascade and can also be involved in apoptosis and pyroptosis activation, it is unsurprising that viral and bacterial pathogens have developed means of disrupting RHIM-mediated signaling to ensure survival. Moreover, as these mechanisms play an essential part of regulated cell death signaling, they have received much attention in recent years. Herein, we present the latest insights into the supramolecular structure of interacting RHIM proteins and their distinct signaling cascades in inflammation and infection. Their uncovering will ultimately contribute to the development of new therapeutic strategies in the regulation of lytic cell death.
Collapse
|
43
|
Rosin Derivative IDOAMP Inhibits Prostate Cancer Growth via Activating RIPK1/RIPK3/MLKL Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9325973. [PMID: 35965682 PMCID: PMC9371855 DOI: 10.1155/2022/9325973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022]
Abstract
Rosin derivatives such as dehydroabietic acid and dehydroabietic amine belonging to diterpenoids have similar structure with androgen that inhibited the occurrence and development of prostate cancer. In this study, the effects and possible mechanism of the rosin derivative IDOAMP on prostate cancer were investigated. Our results showed that IDOAMP effectively inhibited cell viabilities of LNCaP, PC3, and DU145 prostate cells. After the treatment with IDOAMP, the levels of cleaved-PARP, LC3BII/I, and HMGB1 were increased, whereas the expression of GPX4 was decreased. Interestingly, cell viability was reversed by the supplements of necrostatin-1 and necrosulfonamide. Meanwhile, the IDOAMP downregulated the expression of human Aurora kinase A that was overexpressed in prostate cancer. In addition, co-IP results showed that IDOAMP inhibited the binding of Aurora kinase A to the receptor-interacting serine/threonine kinase 1 (RIPK1) and RIPK3. However, the binding of RIPK1 to FADD, RIPK3, or MLKL was significantly promoted. Further studies showed that the phosphorylation levels of RIPK1, RIPK, and MLKL were increased in a concentration-dependent manner. In in vivo model, IDOAMP reduced the tumor volumes and weights. In conclusion, IDOAMP directly inhibited Aurora kinase A and promoted the RIPK1/RIPK3/MLKL necrosome activation to inhibit the prostate cancer.
Collapse
|
44
|
Li H, Wang Z, Fang X, Zeng W, Yang Y, Jin L, Wei X, Qin Y, Wang C, Liang W. Poroptosis: A form of cell death depending on plasma membrane nanopores formation. iScience 2022; 25:104481. [PMID: 35712073 PMCID: PMC9194171 DOI: 10.1016/j.isci.2022.104481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/19/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immunogenic cell death (ICD) in malignant cells can decrease tumor burden and activate antitumor immune response to obtain lasting antitumor immunity, leading to the elimination of distant metastases and prevention of recurrence. Here, we reveal that ppM1 peptide is capable of forming irreparable transmembrane pores on tumor cell membrane, leading to ICD which we name poroptosis. Poroptosis is directly dependent on cell membrane nanopores regardless of the upstream signaling of cell death. ppM1-induced poroptosis was characterized by the sustained release of intracellular LDH. This unique feature is distinct from other well-characterized types of acute necrosis induced by freezing-thawing (F/T) and detergents, which leads to the burst release of intracellular LDH. Our results suggested that steady transmembrane-nanopore-mediated subacute cell death played a vital role in subsequent activated immunity that transforms to an antitumor immune microenvironment. Selectively generating poroptosis in cancer cell could be a promise strategy for cancer therapy.
Collapse
Affiliation(s)
- Hao Li
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zihao Wang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaocui Fang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenfeng Zeng
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlian Yang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lingtao Jin
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Xiuli Wei
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Yan Qin
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Chen Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Liang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
45
|
Parker JE, Hessler G, Cui H. A new biochemistry connecting pathogen detection to induced defense in plants. THE NEW PHYTOLOGIST 2022; 234:819-826. [PMID: 34921418 DOI: 10.1111/nph.17924] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Plant cell surface and intracellular immune receptors recognizing pathogen attack utilize the same defense machineries to mobilize resistance. New genetic, protein structural and biochemical information on receptor activation and signaling is transforming understanding of how their shared defense network operates. We discuss the biochemical activities of two classes of intracellular nucleotide-binding/leucine-rich repeat (NLR) receptor - one forming a Ca2+ channel, the other an NADase enzyme - which define engagement of enhanced disease susceptibility 1 (EDS1)-family heterodimers and cofunctioning helper NLRs (RNLs) to connect receptor systems and amplify defenses. Toll-interleukin-1 receptor (TIR) domain NLR receptors and TIR-domain proteins, with a capacity to produce NAD+-derived small molecules, require EDS1 dimers and RNLs for defense induction. The TIR-driven EDS1/RNL modules emerge as central elements in Ca2+ -based immunity signaling initiated by receptors outside and inside host cells.
Collapse
Affiliation(s)
- Jane E Parker
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 50225, Düsseldorf, Germany
| | - Giuliana Hessler
- Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Haitao Cui
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
46
|
Regulation of the release of damage-associated molecular patterns from necroptotic cells. Biochem J 2022; 479:677-685. [PMID: 35293986 DOI: 10.1042/bcj20210604] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
Damage-associated molecular patterns (DAMPs) are molecules within living cells that are released when cell membranes are ruptured. Although DAMPs have physiological functions inside the cell, once DAMPs are released extracellularly, they elicit various biological responses, including inflammation, proliferation, tissue damage, and tissue repair, in a context-dependent manner. In past decades, it was assumed that the release of DAMPs was induced by a membrane rupture, caused by passive ATP depletion, or by chemical or mechanical damage to the membrane. However, that concept has been challenged by recent advancements in understanding the regulation of cell death. Necroptosis is a form of regulated cell death, where cells show necrotic morphology. Necroptosis is triggered by death receptors, toll-like receptors, and some viral infections. The membrane rupture is executed by the mixed lineage-like kinase domain-like pseudokinase (MLKL), which forms oligomers that translocate to the plasma membrane during necroptosis. Although the causal relationship between MLKL function and membrane rupture has been extensively investigated, the detailed molecular mechanisms by which oligomerized MLKL induces membrane rupture are not fully understood. This review summarizes recent advances in understanding how MLKL regulates DAMP release and new technologies for visualizing DAMP release at single-cell resolution.
Collapse
|
47
|
Zhao W, Song Y, Wang QQ, Han S, Li XX, Cui Y, Gao H, Yuan R, Yang S. Cryptotanshinone Induces Necroptosis through Ca2+ Release and ROS Production in vitro and in vivo. Curr Mol Pharmacol 2022; 15:1009-1023. [PMID: 35086466 DOI: 10.2174/1874467215666220127112201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Necroptosis is a type of programmed necrosis mediated by receptor-interacting protein kinases 1 and 3 (RIP1 and RIP3), which is morphologically characterized by enlarged organelles, ruptured plasma membrane, and subsequent loss of intracellular contents. Cryptotanshinone (CPT), a diterpene quinone compound extracted from the root of Salvia miltiorrhiza Bunge, has been reported to have significant anticancer activities. However, the detailed mechanism of CPT has not been clearly illustrated. OBJECTIVE The present study aimed to explore the cell death type and mechanisms of CPT-induced in non-small cell lung cancer (NSCLC) cells. METHODS The cytotoxicity of CPT on A549 cells was assessed by MTS assay. Ca2+ release and reactive oxygen species (ROS) generation were detected by flow cytometry. The changes in mitochondrial membrane potential (MMP) were observed through JC-1 staining. The expressions of p-RIP1, p-RIP3, p-MLKL, and MAPKs pathway proteins were analyzed by western blotting analysis. The efficacy of CPT in vivo was evaluated by the Lewis lung carcinoma (LLC) xenograft mice model. Blood samples were collected for hematology analysis. ELISA investigated the effects of CPT on tumor necrosis factor α (TNF-α). Hematoxylin and eosin staining (HE) was used to determine the tumor tissues. Proteins' expression of tumor tissues was quantified by western blotting. RESULTS CPT inhibited the cell viability of A549 cells in a time- and concentration-dependent manner, which was reversed by Necrostatin-1 (Nec-1). In addition, CPT treatment increased the expression of p-RIP1, p-RIP3, p-MLKL, the release of Ca2+, ROS generation, and the MAPKs pathway activated in A549 cells. Moreover, animal experiment results showed that intraperitoneal injection of CPT (15 mg/kg and 30 mg/kg) significantly inhibited tumor growth in C57BL/6 mice without affecting the bodyweight and injuring the organs. CONCLUSION Our findings suggested that CPT-induced necroptosis via RIP1/RIP3/MLKL signaling pathway both in vitro and in vivo, indicating that CPT may be a promising agent in the treatment of NSCLC.
Collapse
Affiliation(s)
- Wentong Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yuanbo Song
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine
| | - Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530200, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Xin-Xing Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yushun Cui
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530200, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| |
Collapse
|
48
|
Zhang X, Li X, Zheng C, Yang C, Zhang R, Wang A, Feng J, Hu X, Chang S, Zhang H. Ferroptosis, a new form of cell death defined after radiation exposure. Int J Radiat Biol 2022; 98:1201-1209. [PMID: 34982648 DOI: 10.1080/09553002.2022.2020358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE Ferroptosis is an iron-dependent form of regulated cell death, driven by excessive lipid peroxidation and/or inactivation/depletion of protective molecules against lipid peroxidation. Ionizing radiation can induce ferroptosis in both normal tissues and tumor cells. Here, we reviewed the findings of ionizing radiation-induced ferroptosis. CONCLUSIONS Ionizing radiation induces an increase in hydroxyl radicals, free iron, and lipid metabolic enzymes, which subsequently synergistically initiate a high level of lipid peroxidation, making ionizing radiation an exogenous inducer of ferroptosis. In addition, ferroptosis may be the primary form of cell death in the bone marrow under hematopoietic acute radiation syndrome. Ionizing radiation can also induce changes in iron metabolism, which may be a target for regulating ferroptosis. Finally, ionizing radiation-induced ferroptosis initiates from the cytoplasm and ends on the membrane, and is independent of DNA damage.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, PR China.,Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing, PR China.,Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, PR China
| | - Xin Li
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China
| | - Chunyan Zheng
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China
| | - Chunzhi Yang
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China
| | - Rui Zhang
- Department of Ophthalmology, Zhongda Hospital, Southeast University, Nanjing, PR China
| | - Ailian Wang
- Department of Ophthalmology, First Affiliated Hospital, Bengbu Medical College, Bengbu, PR China
| | - Jundong Feng
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China.,Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing, PR China
| | - Xiaodan Hu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China
| | - Shuquan Chang
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China.,Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing, PR China
| | - Haiqian Zhang
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, PR China.,Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing, PR China.,Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, PR China
| |
Collapse
|
49
|
Stereotactic body radiation combined with oncolytic vaccinia virus induces potent anti-tumor effect by triggering tumor cell necroptosis and DAMPs. Cancer Lett 2021; 523:149-161. [PMID: 34606928 DOI: 10.1016/j.canlet.2021.09.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023]
Abstract
Radiation is an integral part of cancer therapy. With the emergence of oncolytic vaccinia virus immunotherapy, it is important to study the combination of radiation and vaccinia virus in cancer therapy. In this study, we investigated the anti-tumor effect of and immune mechanisms underlying the combination of high-dose hypofractionated stereotactic body radiotherapy (SBRT) and oncolytic vaccinia virus in preclinical murine models. The combination enhanced the in vivo anti-tumor effect and increased the numbers of splenic CD4+Ki-67+ helper T lymphocytes and CD8+Ki-67+ cytotoxic T lymphocytes. Combinational therapy also increased tumor-infiltrating CD3+CD4+ helper T lymphocytes and CD3+CD8+ cytotoxic T lymphocytes, but decreased tumor-infiltrating regulatory T cells. In addition, SBRT combined with oncolytic vaccinia virus enhanced in vitro cell death, partly through necroptosis, and subsequent release of damage-associated molecular patterns (DAMPs), and shifted the macrophage M1/M2 ratio. We concluded that SBRT combined with oncolytic vaccinia virus can trigger tumor cell necroptosis and modify macrophages through the release of DAMPs, and then generate potent anti-tumor immunity and effects. Thus, combined therapy is potentially an important strategy for clinical cancer therapy.
Collapse
|
50
|
Apoptosis, Pyroptosis, and Necroptosis-Oh My! The Many Ways a Cell Can Die. J Mol Biol 2021; 434:167378. [PMID: 34838807 DOI: 10.1016/j.jmb.2021.167378] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/12/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022]
Abstract
Cell death is an essential process in all living organisms and occurs through different mechanisms. The three main types of programmed cell death are apoptosis, pyroptosis, and necroptosis, and each of these pathways employs complex molecular and cellular mechanisms. Although there are mechanisms and outcomes specific to each pathway, they share common components and features. In this review, we discuss recent discoveries in these three best understood modes of cell death, highlighting their singularities, and examining the intriguing notion that common players shape different individual pathways in this highly interconnected and coordinated cell death system. Understanding the similarities and differences of these cell death processes is crucial to enable targeted strategies to manipulate these pathways for therapeutic benefit.
Collapse
|