1
|
Fukushima Y, Kagami A, Sonoda H, Shimokawa K, Suico MA, Kai H, Shuto T. Dietary state and impact of DMSO on Caenorhabditis elegans aging: Insights from healthspan analysis. Biochem Biophys Res Commun 2025; 742:151156. [PMID: 39657354 DOI: 10.1016/j.bbrc.2024.151156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Caenorhabditis elegans (C. elegans) is a robust model organism in cell biology, physiology, pharmacology, and toxicology. It is widely recognized for its short lifespan (about 30 days), rapid life cycle, and genetic similarities to mammals. Known for their utility in lifespan research, compounds identified in C. elegans studies have shown lifespan-extending effects in higher organisms, making them invaluable for aging research. Recent work has highlighted the importance of food source conditions, specifically whether C. elegans is fed live or dead Escherichia coli (E. coli) OP50, and solvents like dimethyl sulfoxide (DMSO) in evaluating compound efficacy and organismal health. In this study, we employed C. elegans health lifespan auto-monitoring system (C-HAS), an automated imaging technology capable of objectively analyzing lifespan and healthspan by tracking movement patterns in real-time. Our results reveal that C. elegans fed dead bacteria, specifically heat-killed (HK) and freeze-dried (Fd) E. coli, display extended lifespan and healthspan compared to those fed live bacteria, reducing the proportion of short-lived, unhealthy nematodes. Moreover, 0.1 % DMSO treatment, a concentration previously reported as not affecting nematode longevity, notably shortens both lifespan and healthspan in C. elegans under dead bacterial conditions, with similar negative effects observed across different dead bacteria types. These findings highlight the importance of considering bacterial food state and DMSO presence when conducting lifespan and healthspan studies in C. elegans. This work provides foundational insights into how specific experimental conditions impact the health quality of C. elegans, advancing our understanding of environmental influences on organismal aging.
Collapse
Affiliation(s)
- Yutaro Fukushima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Health Life Science S-HIGO Professional Fellowship Program, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 862-8555, Japan
| | - Asuka Kagami
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Program for Fostering Innovators to Lead a Better Co-being Society, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 862-8555, Japan
| | - Hirotaka Sonoda
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Kotomi Shimokawa
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
2
|
Lei M, Wu J, Tan Y, Shi Y, Yang W, Tu H, Tan W. β-asarone protects against age-related motor decline via activation of SKN-1/Nrf2 and subsequent induction of GST-4. Pharmacol Res 2024; 209:107450. [PMID: 39366648 DOI: 10.1016/j.phrs.2024.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Decelerating motor decline is important for promoting healthy aging in the elderly population. Acorus tatarinowii Schott is a traditional Chinese medicine that contains β-asarone as a pharmacologically active constituent. We found that β-asarone can decelerate motor decline in various age groups of Caenorhabditis elegans, while concurrently prolonging their lifespan and modulating synaptic transmission. To understand the mechanisms of its efficacy in motor improvement, we investigated and discovered that mitochondrial fragmentation, a marker for aging, is delayed after β-asarone treatment. Moreover, their efficacy is blocked by dysfunctional mitochondria. Corresponding to their role in regulating mitochondrial homeostasis, we found that SKN-1/Nrf2 and GST-4 are critical in the β-asarone treatment, and they appear to be activated via the insulin/IGF-1 signaling pathway. Well-developed intestinal microvilli are required for this process. Our study demonstrates the efficacy and mechanism of β-asarone treatment in age-related motor decline, contributing to the discovery of drugs for achieving healthy aging.
Collapse
Affiliation(s)
- Ming Lei
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Jiayu Wu
- College of Biology and Environmental Science, Jishou, Jishou University, Jishou, Hunan, China.
| | - Yanheng Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China.
| | - Yang Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China.
| | - Wuyan Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China.
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China.
| | - Weihong Tan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Wu P, Vandemeulebroucke L, Claeys M, Bert W, Braeckman BP. The Effect of Axenic Dietary Restriction on the Age-Related Changes in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2024; 79:glae205. [PMID: 39171522 DOI: 10.1093/gerona/glae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 08/23/2024] Open
Abstract
Axenic dietary restriction (ADR) is highly effective in extending lifespan of Caenorhabditis elegans, but its effects on healthspan improvement are less well characterized. Using transmission electron microscopy, morphometric analyses, and functional assays, we found ADR can preserve tissue ultrastructure, including the cuticle, epidermis, and intestinal lumen, and reduce age-associated pathologies like gonad degeneration, uterine tumor clusters, pharyngeal deterioration, and intestinal atrophy. However, there was no notable improvement in behavioral and functional metrics. Our results underscore that lifespan extension through ADR does not inherently translate to broad healthspan improvements.
Collapse
Affiliation(s)
- Ping Wu
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | - Lieselot Vandemeulebroucke
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | - Myriam Claeys
- Nematology Research Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Wim Bert
- Nematology Research Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Molière A, Park JYC, Goyala A, Vayndorf EM, Zhang B, Hsiung KC, Jung Y, Kwon S, Statzer C, Meyer D, Nguyen R, Chadwick J, Thompson MA, Schumacher B, Lee SJV, Essmann CL, MacArthur MR, Kaeberlein M, David D, Gems D, Ewald CY. Improved resilience and proteostasis mediate longevity upon DAF-2 degradation in old age. GeroScience 2024; 46:5015-5036. [PMID: 38900346 PMCID: PMC11335714 DOI: 10.1007/s11357-024-01232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Little is known about the possibility of reversing age-related biological changes when they have already occurred. To explore this, we have characterized the effects of reducing insulin/IGF-1 signaling (IIS) during old age. Reduction of IIS throughout life slows age-related decline in diverse species, most strikingly in the nematode Caenorhabditis elegans. Here we show that even at advanced ages, auxin-induced degradation of DAF-2 in single tissues, including neurons and the intestine, is still able to markedly increase C. elegans lifespan. We describe how reversibility varies among senescent changes. While senescent pathologies that develop in mid-life were not reversed, there was a rejuvenation of the proteostasis network, manifesting as a restoration of the capacity to eliminate otherwise intractable protein aggregates that accumulate with age. Moreover, resistance to several stressors was restored. These results support several new conclusions. (1) Loss of resilience is not solely a consequence of pathologies that develop in earlier life. (2) Restoration of proteostasis and resilience by inhibiting IIS is a plausible cause of the increase in lifespan. And (3), most interestingly, some aspects of the age-related transition from resilience to frailty can be reversed to a certain extent. This raises the possibility that the effect of IIS and related pathways on resilience and frailty during aging in higher animals might possess some degree of reversibility.
Collapse
Affiliation(s)
- Adrian Molière
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Elena M Vayndorf
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195-7470, USA
| | - Bruce Zhang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kuei Ching Hsiung
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Yoonji Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Sujeong Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - David Meyer
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital and University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Richard Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195-7470, USA
| | | | | | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital and University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Clara L Essmann
- Bioinformatics and Molecular Genetics, Institute of Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79108, Freiburg, Germany
| | - Michael R MacArthur
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195-7470, USA
| | | | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland.
| |
Collapse
|
5
|
Haghani NB, Lampe RH, Samuel BS, Chalasani SH, Matty MA. Identification and characterization of a skin microbiome on Caenorhabditis elegans suggests environmental microbes confer cuticle protection. Microbiol Spectr 2024; 12:e0016924. [PMID: 38980017 PMCID: PMC11302229 DOI: 10.1128/spectrum.00169-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
In the wild, C. elegans are emersed in environments teeming with a veritable menagerie of microorganisms. The C. elegans cuticular surface serves as a barrier and first point of contact with their microbial environments. In this study, we identify microbes from C. elegans natural habitats that associate with its cuticle, constituting a simple "skin microbiome." We rear our animals on a modified CeMbio, mCeMbio, a consortium of ecologically relevant microbes. We first combine standard microbiological methods with an adapted micro skin-swabbing tool to describe the skin-resident bacteria on the C. elegans surface. Furthermore, we conduct 16S rRNA gene sequencing studies to identify relative shifts in the proportion of mCeMbio bacteria upon surface-sterilization, implying distinct skin- and gut-microbiomes. We find that some strains of bacteria, including Enterobacter sp. JUb101, are primarily found on the nematode skin, while others like Stenotrophomonas indicatrix JUb19 and Ochrobactrum vermis MYb71 are predominantly found in the animal's gut. Finally, we show that this skin microbiome promotes host cuticle integrity in harsh environments. Together, we identify a skin microbiome for the well-studied nematode model and propose its value in conferring host fitness advantages in naturalized contexts. IMPORTANCE The genetic model organism C. elegans has recently emerged as a tool for understanding host-microbiome interactions. Nearly all of these studies either focus on pathogenic or gut-resident microbes. Little is known about the existence of native, nonpathogenic skin microbes or their function. We demonstrate that members of a modified C. elegans model microbiome, mCeMbio, can adhere to the animal's cuticle and confer protection from noxious environments. We combine a novel micro-swab tool, the first 16S microbial sequencing data from relatively unperturbed C. elegans, and physiological assays to demonstrate microbially mediated protection of the skin. This work serves as a foundation to explore wild C. elegans skin microbiomes and use C. elegans as a model for skin research.
Collapse
Affiliation(s)
- Nadia B. Haghani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, La Jolla, California, USA
| | - Robert H. Lampe
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California, USA
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Buck S. Samuel
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sreekanth H. Chalasani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, La Jolla, California, USA
| | - Molly A. Matty
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
- Biology, University of Portland, Portland, Oregon, USA
| |
Collapse
|
6
|
Eder M, Martin OMF, Oswal N, Sedlackova L, Moutinho C, Del Carmen-Fabregat A, Menendez Bravo S, Sebé-Pedrós A, Heyn H, Stroustrup N. Systematic mapping of organism-scale gene-regulatory networks in aging using population asynchrony. Cell 2024; 187:3919-3935.e19. [PMID: 38908368 DOI: 10.1016/j.cell.2024.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 06/24/2024]
Abstract
In aging, physiologic networks decline in function at rates that differ between individuals, producing a wide distribution of lifespan. Though 70% of human lifespan variance remains unexplained by heritable factors, little is known about the intrinsic sources of physiologic heterogeneity in aging. To understand how complex physiologic networks generate lifespan variation, new methods are needed. Here, we present Asynch-seq, an approach that uses gene-expression heterogeneity within isogenic populations to study the processes generating lifespan variation. By collecting thousands of single-individual transcriptomes, we capture the Caenorhabditis elegans "pan-transcriptome"-a highly resolved atlas of non-genetic variation. We use our atlas to guide a large-scale perturbation screen that identifies the decoupling of total mRNA content between germline and soma as the largest source of physiologic heterogeneity in aging, driven by pleiotropic genes whose knockdown dramatically reduces lifespan variance. Our work demonstrates how systematic mapping of physiologic heterogeneity can be applied to reduce inter-individual disparities in aging.
Collapse
Affiliation(s)
- Matthias Eder
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Olivier M F Martin
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Natasha Oswal
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Lucia Sedlackova
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Cátia Moutinho
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Andrea Del Carmen-Fabregat
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Simon Menendez Bravo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
7
|
Ham S, Kim SS, Park S, Kwon HC, Ha SG, Bae Y, Lee G, Lee SV. Combinatorial transcriptomic and genetic dissection of insulin/IGF-1 signaling-regulated longevity in Caenorhabditis elegans. Aging Cell 2024; 23:e14151. [PMID: 38529797 PMCID: PMC11258480 DOI: 10.1111/acel.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/27/2024] Open
Abstract
Classical genetic analysis is invaluable for understanding the genetic interactions underlying specific phenotypes, but requires laborious and subjective experiments to characterize polygenic and quantitative traits. Contrarily, transcriptomic analysis enables the simultaneous and objective identification of multiple genes whose expression changes are associated with specific phenotypes. Here, we conducted transcriptomic analysis of genes crucial for longevity using datasets with daf-2/insulin/IGF-1 receptor mutant Caenorhabditis elegans. Our analysis unraveled multiple epistatic relationships at the transcriptomic level, in addition to verifying genetically established interactions. Our combinatorial analysis also revealed transcriptomic changes associated with longevity conferred by daf-2 mutations. In particular, we demonstrated that the extent of lifespan changes caused by various mutant alleles of the longevity transcription factor daf-16/FOXO matched their effects on transcriptomic changes in daf-2 mutants. We identified specific aging-regulating signaling pathways and subsets of structural and functional RNA elements altered by different genes in daf-2 mutants. Lastly, we elucidated the functional cooperation between several longevity regulators, based on the combination of transcriptomic and molecular genetic analysis. These data suggest that different biological processes coordinately exert their effects on longevity in biological networks. Together our work demonstrates the utility of transcriptomic dissection analysis for identifying important genetic interactions for physiological processes, including aging and longevity.
Collapse
Affiliation(s)
- Seokjin Ham
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Sieun S. Kim
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Sangsoon Park
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Hyunwoo C. Kwon
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Seokjun G. Ha
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Yunkyu Bae
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Gee‐Yoon Lee
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Seung‐Jae V. Lee
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| |
Collapse
|
8
|
Yarmey VR, San-Miguel A. Biomarkers for aging in Caenorhabditis elegans high throughput screening. Biochem Soc Trans 2024; 52:1405-1418. [PMID: 38884801 DOI: 10.1042/bst20231303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Aging is characterized by a functional decline in organism fitness over time due to a complex combination of genetic and environmental factors [ 1-4]. With an increasing elderly population at risk of age-associated diseases, there is a pressing need for research dedicated to promoting health and longevity through anti-aging interventions. The roundworm Caenorhabditis elegans is an established model organism for aging studies due to its short life cycle, ease of culture, and conserved aging pathways. These benefits also make the worm well-suited for high-throughput screening (HTS) methods to study biomarkers of the molecular changes, cellular dysfunction, and physiological decline associated with aging. Within this review, we offer a summary of recent advances in HTS techniques to study biomarkers of aging in C. elegans.
Collapse
Affiliation(s)
- Victoria R Yarmey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27603, U.S.A
| | - Adriana San-Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27603, U.S.A
| |
Collapse
|
9
|
Zavagno G, Raimundo A, Kirby A, Saunter C, Weinkove D. Rapid measurement of ageing by automated monitoring of movement of C. elegans populations. GeroScience 2024; 46:2281-2293. [PMID: 37940787 PMCID: PMC10828257 DOI: 10.1007/s11357-023-00998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
Finding new interventions that slow ageing and maintain human health is a huge challenge of our time. The nematode Caenorhabditis elegans offers a rapid in vivo method to determine whether a compound extends its 2 to 3-week lifespan. Measuring lifespan is the standard method to monitor ageing, but a compound that extends lifespan will not necessarily maintain health. Here, we describe the automated monitoring of C. elegans movement from early to mid-adulthood as a faster healthspan-based method to measure ageing. Using the WormGazer™ technology, multiple Petri dishes each containing several C. elegans worms are imaged simultaneously and non-invasively by an array of cameras that can be scaled easily. This approach demonstrates that most functional decline in C. elegans occurs during the first week of adulthood. We find 7 days of imaging is sufficient to measure the dose-dependent efficacy of sulfamethoxazole to slow ageing, compared to 40 days required for a parallel lifespan experiment. Understanding any negative consequences of interventions that slow ageing is important. We show that the long-lived mutant age-1(hx546) stays active for longer than the wild type but it moves slower in early adulthood. Thus, continuous analysis of movement can rapidly identify interventions that slow ageing while simultaneously revealing any negative effects on health.
Collapse
Affiliation(s)
- Giulia Zavagno
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
- Magnitude Biosciences Limited, NETPark Plexus, Thomas Wright Way, Sedgefield, Durham, TS21 3FD, UK
| | - Adelaide Raimundo
- Magnitude Biosciences Limited, NETPark Plexus, Thomas Wright Way, Sedgefield, Durham, TS21 3FD, UK
| | - Andy Kirby
- Magnitude Biosciences Limited, NETPark Plexus, Thomas Wright Way, Sedgefield, Durham, TS21 3FD, UK
| | - Christopher Saunter
- Magnitude Biosciences Limited, NETPark Plexus, Thomas Wright Way, Sedgefield, Durham, TS21 3FD, UK
| | - David Weinkove
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.
- Magnitude Biosciences Limited, NETPark Plexus, Thomas Wright Way, Sedgefield, Durham, TS21 3FD, UK.
| |
Collapse
|
10
|
DuMez-Kornegay RN, Baker LS, Morris AJ, DeLoach WLM, Dowen RH. Kombucha Tea-associated microbes remodel host metabolic pathways to suppress lipid accumulation. PLoS Genet 2024; 20:e1011003. [PMID: 38547054 PMCID: PMC10977768 DOI: 10.1371/journal.pgen.1011003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/22/2024] [Indexed: 04/02/2024] Open
Abstract
The popularity of the ancient, probiotic-rich beverage Kombucha Tea (KT) has surged in part due to its purported health benefits, which include protection against metabolic diseases; however, these claims have not been rigorously tested and the mechanisms underlying host response to the probiotics in KT are unknown. Here, we establish a reproducible method to maintain C. elegans on a diet exclusively consisting of Kombucha Tea-associated microbes (KTM), which mirrors the microbial community found in the fermenting culture. KT microbes robustly colonize the gut of KTM-fed animals and confer normal development and fecundity. Intriguingly, animals consuming KTMs display a marked reduction in total lipid stores and lipid droplet size. We find that the reduced fat accumulation phenotype is not due to impaired nutrient absorption, but rather it is sustained by a programed metabolic response in the intestine of the host. KTM consumption triggers widespread transcriptional changes within core lipid metabolism pathways, including upregulation of a suite of lysosomal lipase genes that are induced during lipophagy. The elevated lysosomal lipase activity, coupled with a decrease in lipid droplet biogenesis, is partially required for the reduction in host lipid content. We propose that KTM consumption stimulates a fasting-like response in the C. elegans intestine by rewiring transcriptional programs to promote lipid utilization. Our results provide mechanistic insight into how the probiotics in Kombucha Tea reshape host metabolism and how this popular beverage may impact human metabolism.
Collapse
Affiliation(s)
- Rachel N. DuMez-Kornegay
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lillian S. Baker
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alexis J. Morris
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Whitney L. M. DeLoach
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert H. Dowen
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
11
|
Villalobos TV, Ghosh B, DeLeo KR, Alam S, Ricaurte-Perez C, Wang A, Mercola BM, Butsch TJ, Ramos CD, Das S, Eymard ED, Bohnert KA, Johnson AE. Tubular lysosome induction couples animal starvation to healthy aging. NATURE AGING 2023; 3:1091-1106. [PMID: 37580394 PMCID: PMC10501908 DOI: 10.1038/s43587-023-00470-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/17/2023] [Indexed: 08/16/2023]
Abstract
Dietary restriction promotes longevity in several species via autophagy activation. However, changes to lysosomes underlying this effect remain unclear. Here using the nematode Caenorhabditis elegans, we show that the induction of autophagic tubular lysosomes (TLs), which occurs upon dietary restriction or mechanistic target of rapamycin inhibition, is a critical event linking reduced food intake to lifespan extension. We find that starvation induces TLs not only in affected individuals but also in well-fed descendants, and the presence of gut TLs in well-fed progeny is predictive of enhanced lifespan. Furthermore, we demonstrate that expression of Drosophila small VCP-interacting protein, a TL activator in flies, artificially induces TLs in well-fed worms and improves C. elegans health in old age. These findings identify TLs as a new class of lysosomes that couples starvation to healthy aging.
Collapse
Affiliation(s)
- Tatiana V Villalobos
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Bhaswati Ghosh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Kathryn R DeLeo
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Sanaa Alam
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Andrew Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Brennan M Mercola
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Tyler J Butsch
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Cara D Ramos
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Suman Das
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Eric D Eymard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - K Adam Bohnert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| | - Alyssa E Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
12
|
Roux AE, Yuan H, Podshivalova K, Hendrickson D, Kerr R, Kenyon C, Kelley D. Individual cell types in C. elegans age differently and activate distinct cell-protective responses. Cell Rep 2023; 42:112902. [PMID: 37531250 DOI: 10.1016/j.celrep.2023.112902] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/17/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
Aging is characterized by a global decline in physiological function. However, by constructing a complete single-cell gene expression atlas, we find that Caenorhabditis elegans aging is not random in nature but instead is characterized by coordinated changes in functionally related metabolic, proteostasis, and stress-response genes in a cell-type-specific fashion, with downregulation of energy metabolism being the only nearly universal change. Similarly, the rates at which cells age differ significantly between cell types. In some cell types, aging is characterized by an increase in cell-to-cell variance, whereas in others, variance actually decreases. Remarkably, multiple resilience-enhancing transcription factors known to extend lifespan are activated across many cell types with age; we discovered new longevity candidates, such as GEI-3, among these. Together, our findings suggest that cells do not age passively but instead react strongly, and individualistically, to events that occur during aging. This atlas can be queried through a public interface.
Collapse
Affiliation(s)
| | - Han Yuan
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | | | | | - Rex Kerr
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Cynthia Kenyon
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA.
| | - David Kelley
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA.
| |
Collapse
|
13
|
Sun B, Kim H, Mello CC, Priess JR. The CERV protein of Cer1, a C. elegans LTR retrotransposon, is required for nuclear export of viral genomic RNA and can form giant nuclear rods. PLoS Genet 2023; 19:e1010804. [PMID: 37384599 PMCID: PMC10309623 DOI: 10.1371/journal.pgen.1010804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Retroviruses and closely related LTR retrotransposons export full-length, unspliced genomic RNA (gRNA) for packaging into virions and to serve as the mRNA encoding GAG and POL polyproteins. Because gRNA often includes splice acceptor and donor sequences used to splice viral mRNAs, retroelements must overcome host mechanisms that retain intron-containing RNAs in the nucleus. Here we examine gRNA expression in Cer1, an LTR retrotransposon in C. elegans which somehow avoids silencing and is highly expressed in germ cells. Newly exported Cer1 gRNA associates rapidly with the Cer1 GAG protein, which has structural similarity with retroviral GAG proteins. gRNA export requires CERV (C. elegans regulator of viral expression), a novel protein encoded by a spliced Cer1 mRNA. CERV phosphorylation at S214 is essential for gRNA export, and phosphorylated CERV colocalizes with nuclear gRNA at presumptive sites of transcription. By electron microscopy, tagged CERV proteins surround clusters of distinct, linear fibrils that likely represent gRNA molecules. Single fibrils, or groups of aligned fibrils, also localize near nuclear pores. During the C. elegans self-fertile period, when hermaphrodites fertilize oocytes with their own sperm, CERV concentrates in two nuclear foci that are coincident with gRNA. However, as hermaphrodites cease self-fertilization, and can only produce cross-progeny, CERV undergoes a remarkable transition to form giant nuclear rods or cylinders that can be up to 5 microns in length. We propose a novel mechanism of rod formation, in which stage-specific changes in the nucleolus induce CERV to localize to the nucleolar periphery in flattened streaks of protein and gRNA; these streaks then roll up into cylinders. The rods are a widespread feature of Cer1 in wild strains of C. elegans, but their function is not known and might be limited to cross-progeny. We speculate that the adaptive strategy Cer1 uses for the identical self-progeny of a host hermaphrodite might differ for heterozygous cross-progeny sired by males. For example, mating introduces male chromosomes which can have different, or no, Cer1 elements.
Collapse
Affiliation(s)
- Bing Sun
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester,United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Haram Kim
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Craig C. Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester,United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - James R. Priess
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
14
|
Spanoudakis E, Tavernarakis N. Age-associated anatomical and physiological alterations in Caenorhabditis elegans. Mech Ageing Dev 2023; 213:111827. [PMID: 37268279 DOI: 10.1016/j.mad.2023.111827] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
Since its introduction by Sydney Brenner, Caenorhabditis elegans has become a widely studied organism. Given its highly significant properties, including transparency, short lifespan, self-fertilization, high reproductive yield and ease in manipulation and genetic modifications, the nematode has contributed to the elucidation of several fundamental aspects of biology, such as development and ageing. Moreover, it has been extensively used as a platform for the modelling of ageing-associated human disorders, especially those related to neurodegeneration. The use of C. elegans for such purposes requires, and at the same time promotes the investigation of its normal ageing process. In this review we aim to summarize the major organismal alterations during normal worm ageing, in terms of morphology and functionality.
Collapse
Affiliation(s)
- Emmanuel Spanoudakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece; Department of Biology, University of Crete, Heraklion 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece; Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion 70013, Crete, Greece.
| |
Collapse
|
15
|
Jushaj A, Churgin M, De La Torre M, Kieswetter A, Driesschaert B, Dhondt I, Braeckman BP, Fang-Yen C, Temmerman L. Adult-restricted gene knock-down reveals candidates that affect locomotive healthspan in C. elegans. Biogerontology 2023; 24:225-233. [PMID: 36662373 DOI: 10.1007/s10522-022-10009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/25/2022] [Indexed: 01/21/2023]
Abstract
Understanding how we can age healthily is a challenge at the heart of biogerontological interest. Whereas myriad genes are known to affect the lifespan of model organisms, effects of such interventions on healthspan-the period of life where an animal is considered healthy, rather than merely alive-are less clear. To understand relationships between life- and healthspan, in recent years several platforms were developed with the purpose of assessing both readouts simultaneously. We here relied on one such platform, the WorMotel, to study effects of adulthood-restricted knock-down of 130 Caenorhabditis elegans genes on the locomotive health of the animals along their lifespans. We found that knock-down of six genes affected healthspan while lifespan remained unchanged. For two of these, F26A3.4 and chn-1, knock-down resulted in an improvement of healthspan. In follow-up experiments we showed that knockdown of F26A3.4 indeed improves locomotive health and muscle structure at old age.
Collapse
Affiliation(s)
- Areta Jushaj
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Matthew Churgin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| | - Miguel De La Torre
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| | - Amanda Kieswetter
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Brecht Driesschaert
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ineke Dhondt
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | | | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
16
|
He Y, Hao F, Fu H, Tian G, Zhang Y, Fu K, Qi B. N-glycosylated intestinal protein BCF-1 shapes microbial colonization by binding bacteria via its fimbrial protein. Cell Rep 2023; 42:111993. [PMID: 36662624 DOI: 10.1016/j.celrep.2023.111993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Microbial colonization plays an instrumental role in the health of the host. However, the host factors that facilitate the establishment of the microbial colonization remain unclear. Here, we establish a screening method to identify host factors regulating E. coli colonization in C. elegans. We find that a BCF-1 possessing N-glycosylation promotes E. coli colonization by directly binding to E. coli via its fimbrial protein, YdeR. BCF-1 is activated by the bacteria and interacts with an oligosaccharyl transferase, OSTB-1, which is critical for regulating E. coli colonization. We also show that the N-glycosylation of BCF-1 is critical for E. coli colonization. In addition, we find that the microbiota composition is shaped by BCF-1. In summary, this study shows a "scaffold model" for bacterial colonization between a host glycoprotein and E. coli, and it also introduces a powerful research approach to identify individual host factors involved in modulating bacterial colonization.
Collapse
Affiliation(s)
- Yongjuan He
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Fanrui Hao
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Herui Fu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Guojing Tian
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Yingyang Zhang
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Kai Fu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Bin Qi
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
17
|
Lee H, Lee SJV. Recent Progress in Regulation of Aging by Insulin/IGF-1 Signaling in Caenorhabditis elegans. Mol Cells 2022; 45:763-770. [PMID: 36380728 PMCID: PMC9676989 DOI: 10.14348/molcells.2022.0097] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022] Open
Abstract
Caenorhabditis elegans has been used as a major model organism to identify genetic factors that regulate organismal aging and longevity. Insulin/insulin-like growth factor 1 (IGF- 1) signaling (IIS) regulates aging in many species, ranging from nematodes to humans. C. elegans is a nonpathogenic genetic nematode model, which has been extensively utilized to identify molecular and cellular components that function in organismal aging and longevity. Here, we review the recent progress in the role of IIS in aging and longevity, which involves direct regulation of protein and RNA homeostasis, stress resistance, metabolism and the activities of the endocrine system. We also discuss recently identified genetic factors that interact with canonical IIS components to regulate aging and health span in C. elegans. We expect this review to provide valuable insights into understanding animal aging, which could eventually help develop anti-aging drugs for humans.
Collapse
Affiliation(s)
- Hanseul Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
18
|
Xie K, Fuchs H, Scifo E, Liu D, Aziz A, Aguilar-Pimentel JA, Amarie OV, Becker L, da Silva-Buttkus P, Calzada-Wack J, Cho YL, Deng Y, Edwards AC, Garrett L, Georgopoulou C, Gerlini R, Hölter SM, Klein-Rodewald T, Kramer M, Leuchtenberger S, Lountzi D, Mayer-Kuckuk P, Nover LL, Oestereicher MA, Overkott C, Pearson BL, Rathkolb B, Rozman J, Russ J, Schaaf K, Spielmann N, Sanz-Moreno A, Stoeger C, Treise I, Bano D, Busch DH, Graw J, Klingenspor M, Klopstock T, Mock BA, Salomoni P, Schmidt-Weber C, Weiergräber M, Wolf E, Wurst W, Gailus-Durner V, Breteler MMB, Hrabě de Angelis M, Ehninger D. Deep phenotyping and lifetime trajectories reveal limited effects of longevity regulators on the aging process in C57BL/6J mice. Nat Commun 2022; 13:6830. [PMID: 36369285 PMCID: PMC9652467 DOI: 10.1038/s41467-022-34515-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Current concepts regarding the biology of aging are primarily based on studies aimed at identifying factors regulating lifespan. However, lifespan as a sole proxy measure for aging can be of limited value because it may be restricted by specific pathologies. Here, we employ large-scale phenotyping to analyze hundreds of markers in aging male C57BL/6J mice. For each phenotype, we establish lifetime profiles to determine when age-dependent change is first detectable relative to the young adult baseline. We examine key lifespan regulators (putative anti-aging interventions; PAAIs) for a possible countering of aging. Importantly, unlike most previous studies, we include in our study design young treated groups of animals, subjected to PAAIs prior to the onset of detectable age-dependent phenotypic change. Many PAAI effects influence phenotypes long before the onset of detectable age-dependent change, but, importantly, do not alter the rate of phenotypic change. Hence, these PAAIs have limited effects on aging.
Collapse
Affiliation(s)
- Kan Xie
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Enzo Scifo
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Dan Liu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.,Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Juan Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Oana Veronica Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Patricia da Silva-Buttkus
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Yi-Li Cho
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Yushuang Deng
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - A Cole Edwards
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Lillian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Christina Georgopoulou
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Raffaele Gerlini
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Sabine M Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | | | - Stefanie Leuchtenberger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Dimitra Lountzi
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Phillip Mayer-Kuckuk
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lena L Nover
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Manuela A Oestereicher
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Clemens Overkott
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Brandon L Pearson
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.,Mailman School of Public Health, Columbia University, 630W. 168th St., New York, NY, 10032, USA
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jan Rozman
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Jenny Russ
- Nuclear Function Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Kristina Schaaf
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Claudia Stoeger
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Irina Treise
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Daniele Bano
- Aging and Neurodegeneration Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München, 81675, Munich, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, 85350, Freising-Weihenstephan, Germany
| | - Thomas Klopstock
- Friedrich-Baur-Institut, Department of Neurology, Ludwig-Maximilians-University Munich, 80336, Munich, Germany.,DZNE, German Center for Neurodegenerative Diseases, 80336, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 80336, Munich, Germany
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD, 20892, USA
| | - Paolo Salomoni
- Nuclear Function Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Carsten Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technische Universität München, and Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Marco Weiergräber
- Research Group Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices, 53175, Bonn, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,DZNE, German Center for Neurodegenerative Diseases, 80336, Munich, Germany.,Chair of Developmental Genetics, TUM School of Life Sciences (SoLS), Technische Universität München, Freising, Germany
| | - Valérie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.,Institute for Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Chair of Experimental Genetics, TUM School of Life Sciences (SoLS), Technische Universität München, 85354, Freising, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany.
| |
Collapse
|
19
|
Intestine-specific removal of DAF-2 nearly doubles lifespan in Caenorhabditis elegans with little fitness cost. Nat Commun 2022; 13:6339. [PMID: 36284093 PMCID: PMC9596710 DOI: 10.1038/s41467-022-33850-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Twenty-nine years following the breakthrough discovery that a single-gene mutation of daf-2 doubles Caenorhabditis elegans lifespan, it remains unclear where this insulin/IGF-1 receptor gene is expressed and where it acts to regulate ageing. Using knock-in fluorescent reporters, we determined that daf-2 and its downstream transcription factor daf-16 are expressed ubiquitously. Using tissue-specific targeted protein degradation, we determined that intracellular DAF-2-to-DAF-16 signaling in the intestine plays a major role in lifespan regulation, while that in the hypodermis, neurons, and germline plays a minor role. Notably, intestine-specific loss of DAF-2 activates DAF-16 in and outside the intestine, causes almost no adverse effects on development and reproduction, and extends lifespan by 94% in a way that partly requires non-intestinal DAF-16. Consistent with intestine supplying nutrients to the entire body, evidence from this and other studies suggests that altered metabolism, particularly down-regulation of protein and RNA synthesis, mediates longevity by reduction of insulin/IGF-1 signaling.
Collapse
|
20
|
Laskovs M, Partridge L, Slack C. Molecular inhibition of RAS signalling to target ageing and age-related health. Dis Model Mech 2022; 15:276620. [PMID: 36111627 PMCID: PMC9510030 DOI: 10.1242/dmm.049627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The RAS/MAPK pathway is a highly conserved signalling pathway with a well-established role in cancer. Mutations that hyperactivate this pathway are associated with unregulated cell proliferation. Evidence from a range of model organisms also links RAS/MAPK signalling to ageing. Genetic approaches that reduce RAS/MAPK signalling activity extend lifespan and also improve healthspan, delaying the onset and/or progression of age-related functional decline. Given its role in cancer, therapeutic interventions that target and inhibit this pathway's key components are under intense investigation. The consequent availability of small molecule inhibitors raises the possibility of repurposing these compounds to ameliorate the deleterious effects of ageing. Here, we review evidence that RAS/MAPK signalling inhibitors already in clinical use, such as trametinib, acarbose, statins, metformin and dihydromyricetin, lead to lifespan extension and to improved healthspan in a range of model systems. These findings suggest that the repurposing of small molecule inhibitors of RAS/MAPK signalling might offer opportunities to improve health during ageing, and to delay or prevent the development of age-related disease. However, challenges to this approach, including poor tolerance to treatment in older adults or development of drug resistance, first need to be resolved before successful clinical implementation. Summary: This Review critically discusses the links between RAS signalling and ageing, and how RAS inhibitors could extend lifespan and enhance healthspan.
Collapse
Affiliation(s)
- Mihails Laskovs
- School of Biosciences, College of Health and Life Sciences, Aston University 1 , Birmingham B4 7ET , UK
| | - Linda Partridge
- Institute of Healthy Ageing 2 , Department of Genetics, Evolution and Environment , , Darwin Building, Gower Street, London WC1E 6BT , UK
- University College London 2 , Department of Genetics, Evolution and Environment , , Darwin Building, Gower Street, London WC1E 6BT , UK
- Max Planck Institute for Biology of Ageing 3 , Joseph-Stelzmann-Strasse 9b, 50931 Cologne , Germany
| | - Cathy Slack
- School of Biosciences, College of Health and Life Sciences, Aston University 1 , Birmingham B4 7ET , UK
| |
Collapse
|
21
|
Oswal N, Martin OMF, Stroustrup S, Bruckner MAM, Stroustrup N. A hierarchical process model links behavioral aging and lifespan in C. elegans. PLoS Comput Biol 2022; 18:e1010415. [PMID: 36178967 PMCID: PMC9524676 DOI: 10.1371/journal.pcbi.1010415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Aging involves a transition from youthful vigor to geriatric infirmity and death. Individuals who remain vigorous longer tend to live longer, and within isogenic populations of C. elegans the timing of age-associated vigorous movement cessation (VMC) is highly correlated with lifespan. Yet, many mutations and interventions in aging alter the proportion of lifespan spent moving vigorously, appearing to “uncouple” youthful vigor from lifespan. To clarify the relationship between vigorous movement cessation, death, and the physical declines that determine their timing, we developed a new version of the imaging platform called “The Lifespan Machine”. This technology allows us to compare behavioral aging and lifespan at an unprecedented scale. We find that behavioral aging involves a time-dependent increase in the risk of VMC, reminiscent of the risk of death. Furthermore, we find that VMC times are inversely correlated with remaining lifespan across a wide range of genotypes and environmental conditions. Measuring and modelling a variety of lifespan-altering interventions including a new RNA-polymerase II auxin-inducible degron system, we find that vigorous movement and lifespan are best described as emerging from the interplay between at least two distinct physical declines whose rates co-vary between individuals. In this way, we highlight a crucial limitation of predictors of lifespan like VMC—in organisms experiencing multiple, distinct, age-associated physical declines, correlations between mid-life biomarkers and late-life outcomes can arise from the contextual influence of confounding factors rather than a reporting by the biomarker of a robustly predictive biological age. Aging produces a variety of outcomes—declines in various measures of health and eventually death. By studying the relationship between two outcomes of aging in the same individual, we can learn about the underlying aging processes that cause them. Here, we consider the relationship between death and an outcome often used to quantify health in C. elegans—vigorous movement cessation which describes the age-associated loss of an individuals’ ability to move long distances. We develop an automated imaging platform that allows us to precisely compare this pair of outcomes in each individual across large populations. We find that individuals who remain vigorous longer subsequently have a shorter remaining lifespan—a pattern that holds even after vigorous movement and lifespan timing are both altered by several different mutations and interventions in aging. Modelling our data using a combination of simulation and analytic studies, we demonstrate how the relative timing of vigorous movement cessation and death suggest that these two outcomes are driven by distinct aging processes. Our data and analyses demonstrate how two outcomes of aging can be correlated across individuals with the timing of one predicting the timing of the other, but nevertheless be driven by mostly distinct underlying physical declines.
Collapse
Affiliation(s)
- Natasha Oswal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Olivier M. F. Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sofia Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Monika Anna Matusiak Bruckner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- * E-mail:
| |
Collapse
|
22
|
Kerr RA, Roux AE, Goudeau J, Kenyon C. The C. elegans Observatory: High-throughput exploration of behavioral aging. FRONTIERS IN AGING 2022; 3:932656. [PMID: 36105851 PMCID: PMC9466599 DOI: 10.3389/fragi.2022.932656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022]
Abstract
Organisms undergo a variety of characteristic changes as they age, suggesting a substantial commonality in the mechanistic basis of aging. Experiments in model organisms have revealed a variety of cellular systems that impact lifespan, but technical challenges have prevented a comprehensive evaluation of how these components impact the trajectory of aging, and many components likely remain undiscovered. To facilitate the deeper exploration of aging trajectories at a sufficient scale to enable primary screening, we have created the Caenorhabditis elegans Observatory, an automated system for monitoring the behavior of group-housed C. elegans throughout their lifespans. One Observatory consists of a set of computers running custom software to control an incubator containing custom imaging and motion-control hardware. In its standard configuration, the Observatory cycles through trays of standard 6 cm plates, running four assays per day on up to 576 plates per incubator. High-speed image processing captures a range of behavioral metrics, including movement speed and stimulus-induced turning, and a data processing pipeline continuously computes summary statistics. The Observatory software includes a web interface that allows the user to input metadata and view graphs of the trajectory of behavioral aging as the experiment unfolds. Compared to the manual use of a plate-based C. elegans tracker, the Observatory reduces the effort required by close to two orders of magnitude. Within the Observatory, reducing the function of known lifespan genes with RNA interference (RNAi) gives the expected phenotypic changes, including extended motility in daf-2(RNAi) and progeria in hsf-1(RNAi). Lifespans scored manually from worms raised in conventional conditions match those scored from images captured by the Observatory. We have used the Observatory for a small candidate-gene screen and identified an extended youthful vigor phenotype for tank-1(RNAi) and a progeric phenotype for cdc-42(RNAi). By utilizing the Observatory, it is now feasible to conduct whole-genome screens for an aging-trajectory phenotype, thus greatly increasing our ability to discover and analyze new components of the aging program.
Collapse
Affiliation(s)
- Rex A. Kerr
- Calico Life Sciences LLC, South San Francisco, CA, United States
| | | | | | | |
Collapse
|
23
|
Roy C, Molin L, Alcolei A, Solyga M, Bonneau B, Vachon C, Bessereau JL, Solari F. DAF-2/insulin IGF-1 receptor regulates motility during aging by integrating opposite signaling from muscle and neuronal tissues. Aging Cell 2022; 21:e13660. [PMID: 35808897 PMCID: PMC9381905 DOI: 10.1111/acel.13660] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/27/2022] [Accepted: 06/05/2022] [Indexed: 12/11/2022] Open
Abstract
During aging, preservation of locomotion is generally considered an indicator of sustained good health, in elderlies and in animal models. In Caenorhabditis elegans, mutants of the insulin‐IGF‐1 receptor DAF2/IIRc represent a paradigm of healthy aging, as their increased lifespan is accompanied by a delay in age‐related loss of motility. Here, we investigated the DAF‐2/IIRc‐dependent relationship between longevity and motility using an auxin‐inducible degron to trigger tissue‐specific degradation of endogenous DAF‐2/IIRc. As previously reported, inactivation of DAF‐2/IIRc in neurons or intestine was sufficient to extend the lifespan of worms, whereas depletion in epidermis, germline, or muscle was not. However, neither intestinal nor neuronal depletion of DAF‐2/IIRc prevented the age‐related loss of motility. In 1‐day‐old adults, DAF‐2/IIRc depletion in neurons reduced motility in a DAF‐16/FOXO dependent manner, while muscle depletion had no effect. By contrast, DAF‐2 depletion in the muscle of middle‐age animals improved their motility independently of DAF‐16/FOXO but required UNC‐120/SRF. Yet, neuronal or muscle DAF‐2/IIRc depletion both preserved the mitochondria network in aging muscle. Overall, these results show that the motility pattern of daf‐2 mutants is determined by the sequential and opposing impact of neurons and muscle tissues and can be dissociated from the regulation of the lifespan. This work also provides the characterization of a versatile tool to analyze the tissue‐specific contribution of insulin‐like signaling in integrated phenotypes at the whole organism level.
Collapse
Affiliation(s)
- Charline Roy
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| | - Laurent Molin
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| | - Allan Alcolei
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| | - Mathilde Solyga
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| | - Benjamin Bonneau
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| | - Camille Vachon
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| | - Jean-Louis Bessereau
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| | - Florence Solari
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR5284, INSERMU1314, Institut NeuroMyoGène, MeLis, Lyon, France
| |
Collapse
|
24
|
Wirak GS, Florman J, Alkema MJ, Connor CW, Gabel CV. Age-associated changes to neuronal dynamics involve a disruption of excitatory/inhibitory balance in C. elegans. eLife 2022; 11:72135. [PMID: 35703498 PMCID: PMC9273219 DOI: 10.7554/elife.72135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
In the aging brain, many of the alterations underlying cognitive and behavioral decline remain opaque. C. elegans offers a powerful model for aging research, with a simple, well-studied nervous system to further our understanding of the cellular modifications and functional alterations accompanying senescence. We perform multi-neuronal functional imaging across the aged C. elegans nervous system, measuring an age-associated breakdown in system-wide functional organization. At single-cell resolution, we detect shifts in activity dynamics toward higher frequencies. In addition, we measure a specific loss of inhibitory signaling that occurs early in the aging process and alters the systems critical excitatory/inhibitory balance. These effects are recapitulated with mutation of the calcium channel subunit UNC-2/CaV2a. We find that manipulation of inhibitory GABA signaling can partially ameliorate or accelerate the effects of aging. The effects of aging are also partially mitigated by disruption of the insulin signaling pathway, known to increase longevity, or by a reduction of caspase activation. Data from mammals are consistent with our findings, suggesting a conserved shift in the balance of excitatory/inhibitory signaling with age that leads to breakdown in global neuronal dynamics and functional decline.
Collapse
Affiliation(s)
- Gregory S Wirak
- Department of Physiology and Biophysics, Boston University, Boston, United States
| | - Jeremy Florman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Mark J Alkema
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Christopher W Connor
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, United States
| | - Christopher V Gabel
- Department of Physiology and Biophysics, Boston University, Boston, United States
| |
Collapse
|
25
|
Cornwell A, Llop JR, Salzman P, Rasmussen N, Thakar J, Samuelson AV. The Replica Set Method is a Robust, Accurate, and High-Throughput Approach for Assessing and Comparing Lifespan in C. elegans Experiments. FRONTIERS IN AGING 2022; 3:861701. [PMID: 35821830 PMCID: PMC9261357 DOI: 10.3389/fragi.2022.861701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
The advent of feeding based RNAi in Caenorhabditis elegans led to an era of gene discovery in aging research. Hundreds of gerogenes were discovered, and many are evolutionarily conserved, raising the exciting possibility that the underlying genetic basis for healthy aging in higher vertebrates could be quickly deciphered. Yet, the majority of putative gerogenes have still only been cursorily characterized, highlighting the need for high-throughput, quantitative assessments of changes in aging. A widely used surrogate measure of aging is lifespan. The traditional way to measure mortality in C. elegans tracks the deaths of individual animals over time within a relatively small population. This traditional method provides straightforward, direct measurements of median and maximum lifespan for the sampled population. However, this method is time consuming, often underpowered, and involves repeated handling of a set of animals over time, which in turn can introduce contamination or possibly damage increasingly fragile, aged animals. We have previously developed an alternative "Replica Set" methodology, which minimizes handling and increases throughput by at least an order of magnitude. The Replica Set method allows changes in lifespan to be measured for over one hundred feeding-based RNAi clones by one investigator in a single experiment- facilitating the generation of large quantitative phenotypic datasets, a prerequisite for development of biological models at a systems level. Here, we demonstrate through analysis of lifespan experiments simulated in silico that the Replica Set method is at least as precise and accurate as the traditional method in evaluating and estimating lifespan, and requires many fewer total animal observations across the course of an experiment. Furthermore, we show that the traditional approach to lifespan experiments is more vulnerable than the Replica Set method to experimental and measurement error. We find no compromise in statistical power for Replica Set experiments, even for moderate effect sizes, or when simulated experimental errors are introduced. We compare and contrast the statistical analysis of data generated by the two approaches, and highlight pitfalls common with the traditional methodology. Collectively, our analysis provides a standard of measure for each method across comparable parameters, which will be invaluable in both experimental design and evaluation of published data for lifespan studies.
Collapse
Affiliation(s)
- Adam Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Jesse R. Llop
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Peter Salzman
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Niels Rasmussen
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
26
|
Statzer C, Reichert P, Dual J, Ewald CY. Longevity interventions temporally scale healthspan in Caenorhabditis elegans. iScience 2022; 25:103983. [PMID: 35310333 PMCID: PMC8924689 DOI: 10.1016/j.isci.2022.103983] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/30/2021] [Accepted: 02/21/2022] [Indexed: 01/14/2023] Open
Abstract
Human centenarians and longevity mutants of model organisms show lower incidence rates of late-life morbidities than the average population. However, whether longevity is caused by a compression of the portion of life spent in a state of morbidity, i.e., "sickspan," is highly debated even in isogenic Caenorhabditis elegans. Here, we developed a microfluidic device that employs acoustophoretic force fields to quantify the maximum muscle strength and dynamic power in aging C. elegans. Together with different biomarkers for healthspan, we found a stochastic onset of morbidity, starting with a decline in dynamic muscle power and structural integrity, culminating in frailty. Surprisingly, we did not observe a compression of sickspan in longevity mutants but instead observed a temporal scaling of healthspan. Given the conservation of these longevity interventions, this raises the question of whether the healthspan of mammalian longevity interventions is also temporally scaled.
Collapse
Affiliation(s)
- Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Peter Reichert
- Eidgenössische Technische Hochschule Zürich, Department of Mechanical and Process Engineering, Institute for Mechanical Systems, Zürich CH-8092, Switzerland
| | - Jürg Dual
- Eidgenössische Technische Hochschule Zürich, Department of Mechanical and Process Engineering, Institute for Mechanical Systems, Zürich CH-8092, Switzerland
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| |
Collapse
|
27
|
Kissoyan KAB, Peters L, Giez C, Michels J, Pees B, Hamerich IK, Schulenburg H, Dierking K. Exploring Effects of C. elegans Protective Natural Microbiota on Host Physiology. Front Cell Infect Microbiol 2022; 12:775728. [PMID: 35237530 PMCID: PMC8884406 DOI: 10.3389/fcimb.2022.775728] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022] Open
Abstract
The Caenorhabditis elegans natural microbiota was described only recently. Thus, our understanding of its effects on nematode physiology is still in its infancy. We previously showed that the C. elegans natural microbiota isolates Pseudomonas lurida MYb11 and P. fluorescens MYb115 protect the worm against pathogens such as Bacillus thuringiensis (Bt). However, the overall effects of the protective microbiota on worm physiology are incompletely understood. Here, we investigated how MYb11 and MYb115 affect C. elegans lifespan, fertility, and intestinal colonization. We further studied the capacity of MYb11 and MYb115 to protect the worm against purified Bt toxins. We show that while MYb115 and MYb11 affect reproductive timing and increase early reproduction only MYb11 reduces worm lifespan. Moreover, MYb11 aggravates killing upon toxin exposure. We conclude that MYb11 has a pathogenic potential in some contexts. This work thus highlights that certain C. elegans microbiota members can be beneficial and costly to the host in a context-dependent manner, blurring the line between good and bad.
Collapse
|
28
|
Sinha DB, Pincus ZS. High temporal resolution measurements of movement reveal novel early-life physiological decline in C. elegans. PLoS One 2022; 17:e0257591. [PMID: 35108272 PMCID: PMC8809618 DOI: 10.1371/journal.pone.0257591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/16/2022] [Indexed: 11/19/2022] Open
Abstract
Age-related physiological changes are most notable and best-studied late in life, while the nature of aging in early- or middle-aged individuals has not been explored as thoroughly. In C. elegans, many studies of movement vs. age generally focus on three distinct phases: sustained, youthful movement; onset of rapidly progressing impairment; and gross immobility. We investigated whether this first period of early-life adult movement is a sustained “healthy” level of high function followed by a discrete “movement catastrophe”—or whether there are early-life changes in movement that precede future physiological declines. To determine how movement varies during early adult life, we followed isolated individuals throughout life with a previously unachieved combination of duration and temporal resolution. By tracking individuals across the first six days of adulthood, we observed declines in movement starting as early as the first two days of adult life, as well as high interindividual variability in total daily movement. These findings suggest that movement is a highly dynamic behavior early in life, and that factors driving movement decline may begin acting as early as the first day of adulthood. Using simulation studies based on acquired data, we suggest that too-infrequent sampling in common movement assays limits observation of early-adult changes in motility, and we propose feasible strategies and a framework for designing assays with increased sensitivity for early movement declines.
Collapse
Affiliation(s)
- Drew Benjamin Sinha
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Departments from Genetics and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zachary Scott Pincus
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Departments from Genetics and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: ,
| |
Collapse
|
29
|
Rahmani J, Montesanto A, Giovannucci E, Zand H, Barati M, Kopchick JJ, Mirisola MG, Lagani V, Bawadi H, Vardavas R, Laviano A, Christensen K, Passarino G, Longo VD. Association between IGF-1 levels ranges and all-cause mortality: A meta-analysis. Aging Cell 2022; 21:e13540. [PMID: 35048526 PMCID: PMC8844108 DOI: 10.1111/acel.13540] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
The association between IGF‐1 levels and mortality in humans is complex with low levels being associated with both low and high mortality. The present meta‐analysis investigates this complex relationship between IGF‐1 and all‐cause mortality in prospective cohort studies. A systematic literature search was conducted in PubMed/MEDLINE, Scopus, and Cochrane Library up to September 2019. Published studies were eligible for the meta‐analysis if they had a prospective cohort design, a hazard ratio (HR) and 95% confidence interval (CI) for two or more categories of IGF‐1 and were conducted among adults. A random‐effects model with a restricted maximum likelihood heterogeneity variance estimator was used to find combined HRs for all‐cause mortality. Nineteen studies involving 30,876 participants were included. Meta‐analysis of the 19 eligible studies showed that with respect to the low IGF‐1 category, higher IGF‐1 was not associated with increased risk of all‐cause mortality (HR = 0.84, 95% CI = 0.68–1.05). Dose–response analysis revealed a U‐shaped relation between IGF‐1 and mortality HR. Pooled results comparing low vs. middle IGF‐1 showed a significant increase of all‐cause mortality (HR = 1.33, 95% CI = 1.14–1.57), as well as comparing high vs. middle IGF‐1 categories (HR = 1.23, 95% CI = 1.06–1.44). Finally, we provide data on the association between IGF‐1 levels and the intake of proteins, carbohydrates, certain vitamins/minerals, and specific foods. Both high and low levels of IGF‐1 increase mortality risk, with a specific 120–160 ng/ml range being associated with the lowest mortality. These findings can explain the apparent controversy related to the association between IGF‐1 levels and mortality.
Collapse
Affiliation(s)
- Jamal Rahmani
- Department of Community Nutrition Faculty of Nutrition and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences University of Calabria Rende Italy
| | - Edward Giovannucci
- Departments of Nutrition Harvard TH Chan School of Public Health Boston Massachusetts USA
| | - Hamid Zand
- National Nutrition and Food Technology Research Institute Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Meisam Barati
- National Nutrition and Food Technology Research Institute Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - John J. Kopchick
- Department of Biomedical Sciences Heritage College of Osteopathic Medicine Ohio and Edison Biotechnology Institute Ohio University Athens Ohio USA
| | - Mario G. Mirisola
- Department of Surgical, Oncological and Stomatological Disciplines Università di Palermo Palermo Italy
| | - Vincenzo Lagani
- Institute of Chemical Biology Ilia State University Tbilisi Georgia USA
- Biological and Environmental Sciences and Engineering Division (BESE) King Abdullah University of Science and Technology KAUST Thuwal Saudi Arabia
| | - Hiba Bawadi
- Human Nutrition Department College of Health Sciences QU‐Health Qatar University Doha Qatar
| | | | - Alessandro Laviano
- Department of Translational and Precision Medicine Sapienza University Rome Italy
| | - Kaare Christensen
- Danish Aging Research Center University of Southern Denmark Odense Denmark
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences University of Calabria Rende Italy
| | - Valter D. Longo
- Longevity Institute Davis School of Gerontology and Department of Biological Sciences University of Southern California Los Angeles California USA
- IFOM FIRC Institute of Molecular Oncology Milan Italy
| |
Collapse
|
30
|
Wilson KA, Chamoli M, Hilsabeck TA, Pandey M, Bansal S, Chawla G, Kapahi P. Evaluating the beneficial effects of dietary restrictions: A framework for precision nutrigeroscience. Cell Metab 2021; 33:2142-2173. [PMID: 34555343 PMCID: PMC8845500 DOI: 10.1016/j.cmet.2021.08.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Dietary restriction (DR) has long been viewed as the most robust nongenetic means to extend lifespan and healthspan. Many aging-associated mechanisms are nutrient responsive, but despite the ubiquitous functions of these pathways, the benefits of DR often vary among individuals and even among tissues within an individual, challenging the aging research field. Furthermore, it is often assumed that lifespan interventions like DR will also extend healthspan, which is thus often ignored in aging studies. In this review, we provide an overview of DR as an intervention and discuss the mechanisms by which it affects lifespan and various healthspan measures. We also review studies that demonstrate exceptions to the standing paradigm of DR being beneficial, thus raising new questions that future studies must address. We detail critical factors for the proposed field of precision nutrigeroscience, which would utilize individualized treatments and predict outcomes using biomarkers based on genotype, sex, tissue, and age.
Collapse
Affiliation(s)
| | - Manish Chamoli
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Tyler A Hilsabeck
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Manish Pandey
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Sakshi Bansal
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Geetanjali Chawla
- Regional Centre for Biotechnology, Faridabad, Haryana 121001, India.
| | - Pankaj Kapahi
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
31
|
Dhondt I, Verschuuren C, Zečić A, Loier T, Braeckman BP, De Vos WH. Prediction of biological age by morphological staging of sarcopenia in Caenorhabditis elegans. Dis Model Mech 2021; 14:272684. [PMID: 34723324 PMCID: PMC8649172 DOI: 10.1242/dmm.049169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/25/2021] [Indexed: 02/01/2023] Open
Abstract
Sarcopenia encompasses a progressive decline in muscle quantity and quality. Given its close association with ageing, it may represent a valuable healthspan marker. The commonalities with human muscle structure and facile visualization possibilities make Caenorhabditis elegans an attractive model for studying the relationship between sarcopenia and healthspan. However, classical visual assessment of muscle architecture is subjective and has low throughput. To resolve this, we have developed an image analysis pipeline for the quantification of muscle integrity in confocal microscopy images from a cohort of ageing myosin::GFP reporter worms. We extracted a variety of morphological descriptors and found a subset to scale linearly with age. This allowed establishing a linear model that predicts biological age from a morphological muscle signature. To validate the model, we evaluated muscle architecture in long-lived worms that are known to experience delayed sarcopenia by targeted knockdown of the daf-2 gene. We conclude that quantitative microscopy allows for staging sarcopenia in C. elegans and may foster the development of image-based screens in this model organism to identify modulators that mitigate age-related muscle frailty and thus improve healthspan. Summary: A tool for quantitative image analysis of muscle deterioration that allows predicting healthspan in the nematode model Caenorhabditis elegans and may lead to the first C. elegans-based high-throughput sarcopenia screening platform.
Collapse
Affiliation(s)
- Ineke Dhondt
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Clara Verschuuren
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Aleksandra Zečić
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Tim Loier
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Bart P Braeckman
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
32
|
Wolf AM. Rodent diet aids and the fallacy of caloric restriction. Mech Ageing Dev 2021; 200:111584. [PMID: 34673082 DOI: 10.1016/j.mad.2021.111584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Understanding the molecular mechanisms of normal aging is a prerequisite to significantly improving human health span. Caloric restriction (CR) can delay aging and has served as a yardstick to evaluate interventions extending life span. However, mice given unlimited access to food suffer severe obesity. Health gains from CR depend on control mice being sufficiently overweight and less obese mouse strains benefit far less from CR. Pharmacologic interventions that increase life span, including resveratrol, rapamycin, nicotinamide mononucleotide and metformin, also reduce body weight. In primates, CR does not delay aging unless the control group is eating enough to suffer from obesity-related disease. Human survival is optimal at a body mass index achievable without CR, and the above interventions are merely diet aids that shouldn't slow aging in healthy weight individuals. CR in humans of optimal weight can safely be declared useless, since there is overwhelming evidence that hunger, underweight and starvation reduce fitness, survival, and quality of life. Against an obese control, CR does, however, truly delay aging through a mechanism laid out in the following tumor suppression theory of aging.
Collapse
Affiliation(s)
- Alexander M Wolf
- Laboratory for Morphological and Biomolecular Imaging, Faculty of Medicine, Nippon Medical School, Japan.
| |
Collapse
|
33
|
Marchal L, Hamsanathan S, Karthikappallil R, Han S, Shinglot H, Gurkar AU. Analysis of representative mutants for key DNA repair pathways on healthspan in Caenorhabditis elegans. Mech Ageing Dev 2021; 200:111573. [PMID: 34562508 DOI: 10.1016/j.mad.2021.111573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022]
Abstract
Although the link between DNA damage and aging is well accepted, the role of different DNA repair proteins on functional/physiological aging is not well-defined. Here, using Caenorhabditis elegans, we systematically examined the effect of three DNA repair genes involved in key genome stability pathways. We assayed multiple health proxies including molecular, functional and resilience measures to define healthspan. Loss of XPF-1/ERCC-1, a protein involved in nucleotide excision repair (NER), homologous recombination (HR) and interstrand crosslink (ICL) repair, showed the highest impairment of functional and stress resilience measures along with a shortened lifespan. brc-1 mutants, with a well-defined role in HR and ICL are short-lived and highly sensitive to acute stressors, specifically oxidative stress. In contrast, ICL mutant, fcd-2 did not impact lifespan or most healthspan measures. Our efforts also uncover that DNA repair mutants show high sensitivity to oxidative stress with age, suggesting that this measure could act as a primary proxy for healthspan. Together, these data suggest that impairment of multiple DNA repair genes can drive functional/physiological aging. Further studies to examine specific DNA repair genes in a tissue specific manner will help dissect the importance and mechanistic role of these repair systems in biological aging.
Collapse
Affiliation(s)
- Lucile Marchal
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA
| | - Shruthi Hamsanathan
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA
| | - Roshan Karthikappallil
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA; Medical Sciences Division, University of Oxford, Oxford, UK
| | - Suhao Han
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA
| | - Himaly Shinglot
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA
| | - Aditi U Gurkar
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA; Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Kaufmann Medical Building Suite 500, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Centre, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
34
|
Park HEH, Hwang W, Ham S, Kim E, Altintas O, Park S, Son HG, Lee Y, Lee D, Heo WD, Lee SJV. A PTEN variant uncouples longevity from impaired fitness in Caenorhabditis elegans with reduced insulin/IGF-1 signaling. Nat Commun 2021; 12:5631. [PMID: 34561453 PMCID: PMC8463539 DOI: 10.1038/s41467-021-25920-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/24/2021] [Indexed: 01/04/2023] Open
Abstract
Insulin/IGF-1 signaling (IIS) regulates various physiological aspects in numerous species. In Caenorhabditis elegans, mutations in the daf-2/insulin/IGF-1 receptor dramatically increase lifespan and immunity, but generally impair motility, growth, and reproduction. Whether these pleiotropic effects can be dissociated at a specific step in insulin/IGF-1 signaling pathway remains unknown. Through performing a mutagenesis screen, we identified a missense mutation daf-18(yh1) that alters a cysteine to tyrosine in DAF-18/PTEN phosphatase, which maintained the long lifespan and enhanced immunity, while improving the reduced motility in adult daf-2 mutants. We showed that the daf-18(yh1) mutation decreased the lipid phosphatase activity of DAF-18/PTEN, while retaining a partial protein tyrosine phosphatase activity. We found that daf-18(yh1) maintained the partial activity of DAF-16/FOXO but restricted the detrimental upregulation of SKN-1/NRF2, contributing to beneficial physiological traits in daf-2 mutants. Our work provides important insights into how one evolutionarily conserved component, PTEN, can coordinate animal health and longevity.
Collapse
Affiliation(s)
- Hae-Eun H Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Wooseon Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Seokjin Ham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Eunah Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Ozlem Altintas
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Sangsoon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Heehwa G Son
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Yujin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
35
|
Venz R, Pekec T, Katic I, Ciosk R, Ewald CY. End-of-life targeted degradation of DAF-2 insulin/IGF-1 receptor promotes longevity free from growth-related pathologies. eLife 2021; 10:71335. [PMID: 34505574 PMCID: PMC8492056 DOI: 10.7554/elife.71335] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
Preferably, lifespan-extending therapies should work when applied late in life without causing undesired pathologies. Reducing insulin/insulin-like growth factor (IGF)-1 signaling (IIS) increases lifespan across species, but the effects of reduced IIS interventions in extreme geriatric ages remains unknown. Using the nematode Caenorhabditis elegans, we engineered the conditional depletion of the DAF-2/insulin/IGF-1 transmembrane receptor using an auxin-inducible degradation (AID) system. This allowed for the temporal and spatial reduction in DAF-2 protein levels at time points after which interventions such as RNAi become ineffective. Using this system, we found that AID-mediated depletion of DAF-2 protein surpasses the longevity of daf-2 mutants. Depletion of DAF-2 during early adulthood resulted in multiple adverse phenotypes, including growth retardation, germline shrinkage, egg retention, and reduced brood size. By contrast, AID-mediated depletion of DAF-2 post-reproduction, or specifically in the intestine in early adulthood, resulted in an extension of lifespan without these deleterious effects. Strikingly, at geriatric ages, when 75% of the population had died, AID-mediated depletion of DAF-2 protein resulted in a doubling in lifespan. Thus, we provide a proof-of-concept that even close to the end of an individual’s lifespan, it is possible to slow aging and promote longevity. The goal of geroscience, or research into old age, is to promote health during old age, and thus, to increase lifespan. In the body, the groups of biochemical reactions, or ‘pathways’, that allow an organism to sense nutrients, and regulate growth and stress, play major roles in ensuring healthy aging. Indeed, organisms that do not produce a working version of the insulin/IGF-1 receptor, a protein involved in one such pathway, show increased lifespan. In the worm Caenorhabditis elegans, mutations in the insulin/IGF-1 receptor can even double their lifespan. However, it is unclear whether this increase can be achieved once the organism has reached old age. To answer this question, Venz et al. genetically engineered the nematode worm C. elegans so that they could trigger the rapid degradation of the insulin/IGF-1 receptor either in the entire organism or in a specific tissue. Venz et al. started by aging several C. elegans worms for three weeks, until about 75% had died. At this point, they triggered the degradation of the insulin/IGF-1 receptor in some of the remaining worms, keeping the rest untreated as a control for the experiment. The results showed that the untreated worms died within a few days, while worms in which the insulin/IGF-1 receptor had been degraded lived for almost one more month. This demonstrates that it is possible to double the lifespan of an organism at the very end of life. Venz et al.’s findings suggest that it is possible to make interventions to extend an organism’s lifespan near the end of life that are as effective as if they were performed when the organism was younger. This sparks new questions regarding the quality of this lifespan extension: do the worms become younger with the intervention, or is aging simply slowed down?
Collapse
Affiliation(s)
- Richard Venz
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach-Zürich, Switzerland
| | - Tina Pekec
- University of Basel, Faculty of Natural Sciences, Basel, Switzerland.,Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Iskra Katic
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Rafal Ciosk
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego, Poland.,University of Oslo, Department of Biosciences, Oslo, Norway
| | - Collin Yvès Ewald
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, Schwerzenbach-Zürich, Switzerland
| |
Collapse
|
36
|
Lee Y, Jung Y, Jeong DE, Hwang W, Ham S, Park HEH, Kwon S, Ashraf JM, Murphy CT, Lee SJV. Reduced insulin/IGF1 signaling prevents immune aging via ZIP-10/bZIP-mediated feedforward loop. J Cell Biol 2021; 220:211856. [PMID: 33666644 PMCID: PMC7941181 DOI: 10.1083/jcb.202006174] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/14/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
A hallmark of aging is immunosenescence, a decline in immune functions, which appeared to be inevitable in living organisms, including Caenorhabditis elegans. Here, we show that genetic inhibition of the DAF-2/insulin/IGF-1 receptor drastically enhances immunocompetence in old age in C. elegans. We demonstrate that longevity-promoting DAF-16/FOXO and heat-shock transcription factor 1 (HSF-1) increase immunocompetence in old daf-2(−) animals. In contrast, p38 mitogen-activated protein kinase 1 (PMK-1), a key determinant of immunity, is only partially required for this rejuvenated immunity. The up-regulation of DAF-16/FOXO and HSF-1 decreases the expression of the zip-10/bZIP transcription factor, which in turn down-regulates INS-7, an agonistic insulin-like peptide, resulting in further reduction of insulin/IGF-1 signaling (IIS). Thus, reduced IIS prevents immune aging via the up-regulation of anti-aging transcription factors that modulate an endocrine insulin-like peptide through a feedforward mechanism. Because many functions of IIS are conserved across phyla, our study may lead to the development of strategies against immune aging in humans.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yoonji Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Dae-Eun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Wooseon Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Seokjin Ham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hae-Eun H Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sujeong Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jasmine M Ashraf
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ.,Department of Molecular Biology, Princeton University, Princeton, NJ
| | - Coleen T Murphy
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
37
|
Tataridas-Pallas N, Thompson MA, Howard A, Brown I, Ezcurra M, Wu Z, Silva IG, Saunter CD, Kuerten T, Weinkove D, Blackwell TK, Tullet JMA. Neuronal SKN-1B modulates nutritional signalling pathways and mitochondrial networks to control satiety. PLoS Genet 2021; 17:e1009358. [PMID: 33661901 PMCID: PMC7932105 DOI: 10.1371/journal.pgen.1009358] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/17/2021] [Indexed: 12/14/2022] Open
Abstract
The feeling of hunger or satiety results from integration of the sensory nervous system with other physiological and metabolic cues. This regulates food intake, maintains homeostasis and prevents disease. In C. elegans, chemosensory neurons sense food and relay information to the rest of the animal via hormones to control food-related behaviour and physiology. Here we identify a new component of this system, SKN-1B which acts as a central food-responsive node, ultimately controlling satiety and metabolic homeostasis. SKN-1B, an ortholog of mammalian NF-E2 related transcription factors (Nrfs), has previously been implicated with metabolism, respiration and the increased lifespan incurred by dietary restriction. Here we show that SKN-1B acts in two hypothalamus-like ASI neurons to sense food, communicate nutritional status to the organism, and control satiety and exploratory behaviours. This is achieved by SKN-1B modulating endocrine signalling pathways (IIS and TGF-β), and by promoting a robust mitochondrial network. Our data suggest a food-sensing and satiety role for mammalian Nrf proteins. Deciding when and how much to eat is important for maintaining health and preventing disease. It requires an intricate molecular level of communication between our nervous, physiological, and metabolic systems. These signals stimulate food intake, and afterwards the feeling of satiety which makes us stop eating. We have studied these phenomena using the simple nematode worm C. elegans which has a fully mapped nervous system and quantifiable food-related behaviours. In C. elegans, chemosensory neurons sense food and communicate this to the rest of the animal via hormones to control food-related behaviour and associated physiological changes. Here we identify a new central node of this system, the C. elegans gene SKN-1B, which acts in two sensory neurons to sense food, communicate food-status to the rest of the worm, and control satiety and exploratory behaviours. It does this by altering hormonal signalling (Insulin and Transforming Growth Factor-β), and by promoting a strong mitochondrial network. The mammalian equivalents of SKN-1B are the NF-E2 related transcription factors (Nrfs), which have previously been implicated with metabolism and respiration. Our data suggest a new food-sensing and satiety role for mammalian Nrf proteins.
Collapse
Affiliation(s)
| | | | - Alexander Howard
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Ian Brown
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Marina Ezcurra
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Ziyun Wu
- Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts, United States of America
| | | | | | - Timo Kuerten
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - David Weinkove
- Magnitude Biosciences Ltd, NETPark Plexus, Sedgefield, United Kingdom
| | - T. Keith Blackwell
- Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts, United States of America
| | | |
Collapse
|
38
|
Zhao Y, Zhang B, Marcu I, Athar F, Wang H, Galimov ER, Chapman H, Gems D. Mutation of daf-2 extends lifespan via tissue-specific effectors that suppress distinct life-limiting pathologies. Aging Cell 2021; 20:e13324. [PMID: 33609424 PMCID: PMC7963334 DOI: 10.1111/acel.13324] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/03/2021] [Accepted: 01/19/2021] [Indexed: 12/01/2022] Open
Abstract
In aging Caenorhabditis elegans, as in higher organisms, there is more than one cause of death. C. elegans exhibit early death with a swollen, infected pharynx (P death), and later death with pharyngeal atrophy (p death). Interventions that alter lifespan can differentially affect frequency and timing of each type of death, generating complex survival curve shapes. Here, we use mortality deconvolution analysis to investigate how reduction of insulin/IGF‐1 signaling (IIS), which increases lifespan (the Age phenotype), affects different forms of death. All daf‐2 insulin/IGF‐1 receptor mutants exhibit increased lifespan in the p subpopulation (p Age), while pleiotropic class 2 daf‐2 mutants show an additional marked reduction in P death frequency. The latter is promoted by pharyngeal expression of the IIS‐regulated DAF‐16 FOXO transcription factor, and at higher temperature by reduced pharyngeal pumping rate. Pharyngeal DAF‐16 also promotes p Age in class 2 daf‐2 mutants, revealing a previously unknown role for the pharynx in the regulation of aging. Necropsy analysis of daf‐2 interactions with the daf‐12 steroid receptor implies that previously described opposing effects of daf‐12 on daf‐2 longevity are attributable to internal hatching of larvae, rather than complex interactions between insulin/IGF‐1 and steroid signaling. These findings support the view that wild‐type IIS acts through multiple distinct mechanisms which promote different life‐limiting pathologies, each of which contribute to late‐life mortality. This study further demonstrates the utility of mortality deconvolution analysis to better understand the genetics of lifespan.
Collapse
Affiliation(s)
- Yuan Zhao
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| | - Bruce Zhang
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| | - Ioan Marcu
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| | - Faria Athar
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| | - Hongyuan Wang
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| | - Evgeniy R. Galimov
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| | - Hannah Chapman
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| | - David Gems
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| |
Collapse
|
39
|
Kinser HE, Mosley MC, Plutzer IB, Pincus Z. Global, cell non-autonomous gene regulation drives individual lifespan among isogenic C. elegans. eLife 2021; 10:e65026. [PMID: 33522488 PMCID: PMC7864635 DOI: 10.7554/elife.65026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/13/2021] [Indexed: 01/04/2023] Open
Abstract
Across species, lifespan is highly variable among individuals within a population. Even genetically identical Caenorhabditis elegans reared in homogeneous environments are as variable in lifespan as outbred human populations. We hypothesized that persistent inter-individual differences in expression of key regulatory genes drives this lifespan variability. As a test, we examined the relationship between future lifespan and the expression of 22 microRNA promoter::GFP constructs. Surprisingly, expression of nearly half of these reporters, well before death, could effectively predict lifespan. This indicates that prospectively long- vs. short-lived individuals have highly divergent patterns of transgene expression and transcriptional regulation. The gene-regulatory processes reported on by two of the most lifespan-predictive transgenes do not require DAF-16, the FOXO transcription factor that is a principal effector of insulin/insulin-like growth factor (IGF-1) signaling. Last, we demonstrate a hierarchy of redundancy in lifespan-predictive ability among three transgenes expressed in distinct tissues, suggesting that they collectively report on an organism-wide, cell non-autonomous process that acts to set each individual's lifespan.
Collapse
Affiliation(s)
- Holly E Kinser
- Department of Biomedical Engineering, Washington University in St. LouisSt. LouisUnited States
- Department of Developmental Biology and Department of Genetics, Washington University in St. LouisSt. LouisUnited States
| | - Matthew C Mosley
- Department of Developmental Biology and Department of Genetics, Washington University in St. LouisSt. LouisUnited States
- Program in Developmental, Regenerative, and Stem Cell Biology, Washington University in St. LouisSt. LouisUnited States
| | - Isaac B Plutzer
- Department of Developmental Biology and Department of Genetics, Washington University in St. LouisSt. LouisUnited States
| | - Zachary Pincus
- Department of Developmental Biology and Department of Genetics, Washington University in St. LouisSt. LouisUnited States
| |
Collapse
|
40
|
Rivard RS, Morris JM, Youngman MJ. The PP2A/4/6 subfamily of phosphoprotein phosphatases regulates DAF-16 and confers resistance to environmental stress in postreproductive adult C. elegans. PLoS One 2020; 15:e0229812. [PMID: 33315870 PMCID: PMC7735605 DOI: 10.1371/journal.pone.0229812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/13/2020] [Indexed: 11/28/2022] Open
Abstract
Insulin and insulin-like growth factors are longevity determinants that negatively regulate Forkhead box class O (FoxO) transcription factors. In C. elegans mutations that constitutively activate DAF-16, the ortholog of mammalian FoxO3a, extend lifespan by two-fold. While environmental insults induce DAF-16 activity in younger animals, it also becomes activated in an age-dependent manner in the absence of stress, modulating gene expression well into late adulthood. The mechanism by which DAF-16 activity is regulated during aging has not been defined. Since phosphorylation of DAF-16 generally leads to its inhibition, we asked whether phosphatases might be necessary for its increased transcriptional activity in adult C. elegans. We focused on the PP2A/4/6 subfamily of phosphoprotein phosphatases, members of which had been implicated to regulate DAF-16 under low insulin signaling conditions but had not been investigated during aging in wildtype animals. Using reverse genetics, we functionally characterized all C. elegans orthologs of human catalytic, regulatory, and scaffolding subunits of PP2A/4/6 holoenzymes in postreproductive adults. We found that PP2A complex constituents PAA-1 and PPTR-1 regulate DAF-16 transcriptional activity during aging and that they cooperate with the catalytic subunit LET-92 to protect adult animals from ultraviolet radiation. PP4 complex members PPH-4.1/4.2, and SMK-1 also appear to regulate DAF-16 in an age-dependent manner, and together with PPFR-2 they contribute to innate immunity. Interestingly, SUR-6 but no other subunit of the PP2A complex was necessary for the survival of pathogen-infected animals. Finally, we found that PP6 complex constituents PPH-6 and SAPS-1 contribute to host defense during aging, apparently without affecting DAF-16 transcriptional activity. Our studies indicate that a set of PP2A/4/6 complexes protect adult C. elegans from environmental stress, thus preserving healthspan. Therefore, along with their functions in cell division and development, the PP2A/4/6 phosphatases also appear to play critical roles later in life.
Collapse
Affiliation(s)
- Rebecca S. Rivard
- Department of Biology, Villanova University, Villanova, PA, United States of America
| | - Julia M. Morris
- Department of Biology, Villanova University, Villanova, PA, United States of America
| | - Matthew J. Youngman
- Department of Biology, Villanova University, Villanova, PA, United States of America
- * E-mail:
| |
Collapse
|
41
|
Li Q, Marcu DC, Palazzo O, Turner F, King D, Spires-Jones TL, Stefan MI, Busch KE. High neural activity accelerates the decline of cognitive plasticity with age in Caenorhabditis elegans. eLife 2020; 9:59711. [PMID: 33228848 PMCID: PMC7685709 DOI: 10.7554/elife.59711] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022] Open
Abstract
The ability to learn progressively declines with age. Neural hyperactivity has been implicated in impairing cognitive plasticity with age, but the molecular mechanisms remain elusive. Here, we show that chronic excitation of the Caenorhabditis elegans O2-sensing neurons during ageing causes a rapid decline of experience-dependent plasticity in response to environmental O2 concentration, whereas sustaining lower activity of O2-sensing neurons retains plasticity with age. We demonstrate that neural activity alters the ageing trajectory in the transcriptome of O2-sensing neurons, and our data suggest that high-activity neurons redirect resources from maintaining plasticity to sustaining continuous firing. Sustaining plasticity with age requires the K+-dependent Na+/Ca2+ (NCKX) exchanger, whereas the decline of plasticity with age in high-activity neurons acts through calmodulin and the scaffold protein Kidins220. Our findings demonstrate directly that the activity of neurons alters neuronal homeostasis to govern the age-related decline of neural plasticity and throw light on the mechanisms involved.
Collapse
Affiliation(s)
- Qiaochu Li
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel-Cosmin Marcu
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ottavia Palazzo
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Frances Turner
- Edinburgh Genomics (Genome Science), Ashworth Laboratories, The University of Edinburgh, Edinburgh, United Kingdom
| | - Declan King
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Melanie I Stefan
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,ZJU-UoE Institute, Zhejiang University, Haining, China
| | - Karl Emanuel Busch
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
42
|
Zhang S, Li F, Zhou T, Wang G, Li Z. Caenorhabditis elegans as a Useful Model for Studying Aging Mutations. Front Endocrinol (Lausanne) 2020; 11:554994. [PMID: 33123086 PMCID: PMC7570440 DOI: 10.3389/fendo.2020.554994] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
The Caenorhabditis elegans genome possesses homologs of about two-thirds of all human disease genes. Based on its physiological aging characteristics and superiority, the use of C. elegans as a model system for studies on aging, age-related diseases, mechanisms of longevity, and drug screening has been widely acknowledged in recent decades. Lifespan increasing mutations in C. elegans were found to delay aging by impinging several signaling pathways and related epigenetic modifications, including the insulin/IGF-1 signaling (IIS), AMP-activated protein kinase (AMPK), and mechanistic target of rapamycin (mTOR) pathways. Interestingly, dietary restriction (DR) has been shown to increase the lifespan of numerous metazoans and protect them from multiple age-related pathologies. However, the underlying molecular mechanisms are unclear. In recent decades, C. elegans has been used as a unique model system for high-throughput drug screening. Here, we review C. elegans mutants exhibiting increased in lifespan and age-dependent changes under DR, as well as the utility of C. elegans for drug screening. Thus, we provide evidence for the use of this model organism in research on the prevention of aging.
Collapse
Affiliation(s)
| | | | | | | | - Zhuo Li
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Bin P, Zhu C, Liu S, Li Z, Ren W, Zhu G. Perspective: Methionine Restriction-Induced Longevity-A Possible Role for Inhibiting the Synthesis of Bacterial Quorum Sensing Molecules. Adv Nutr 2020; 11:773-783. [PMID: 32221578 PMCID: PMC7360445 DOI: 10.1093/advances/nmaa028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/21/2019] [Accepted: 02/28/2020] [Indexed: 12/20/2022] Open
Abstract
Methionine restriction (MR) extends lifespans in multiple species through mechanisms that include enhanced oxidative stress resistance and inhibition of insulin/insulin-like growth factor I (IGF-I) signaling. Methionine and S-adenosylmethionine (SAM) are the essential precursors of bacterial quorum sensing (QS) molecules, and therefore, MR might also affect bacterial communication to prevent enteric bacterial infection as well as chronic inflammation, which contributes to lifespan prolongation. Here, we discuss the influence of MR on oxidative stress resistance and inhibition of insulin/IGF-I cell signaling and further propose a potential mechanism involving bacterial QS inhibition for lifespan extension. Unraveling the connection between MR and inhibition of QS provides new strategies for combating infectious diseases, resulting in enriched understanding of MR-induced lifespan extension.
Collapse
Affiliation(s)
- Peng Bin
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China,Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Congrui Zhu
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Shaojuan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhendong Li
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China,Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | | | | |
Collapse
|
44
|
Martineau CN, Brown AEX, Laurent P. Multidimensional phenotyping predicts lifespan and quantifies health in Caenorhabditis elegans. PLoS Comput Biol 2020; 16:e1008002. [PMID: 32692770 PMCID: PMC7394451 DOI: 10.1371/journal.pcbi.1008002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/31/2020] [Accepted: 05/30/2020] [Indexed: 11/21/2022] Open
Abstract
Ageing affects a wide range of phenotypes at all scales, but an objective measure of ageing remains challenging, even in simple model organisms. To measure the ageing process, we characterized the sequence of alterations of multiple phenotypes at organismal scale. Hundreds of morphological, postural, and behavioral features were extracted from high-resolution videos. Out of the 1019 features extracted, 896 are ageing biomarkers, defined as those that show a significant correlation with relative age (age divided by lifespan). We used support vector regression to predict age, remaining life and lifespan of individual C. elegans. The quality of these predictions (age R2 = 0.79; remaining life R2 = 0.77; lifespan R2 = 0.72) increased with the number of features added to the model, supporting the use of multiple features to quantify ageing. We quantified the rate of ageing as how quickly animals moved through a phenotypic space; we quantified health decline as the slope of the declining predicted remaining life. In both ageing dimensions, we found that short lived-animals aged faster than long-lived animals. In our conditions, for isogenic wild-type worms, the health decline of the individuals was scaled to their lifespan without significant deviation from the average for short- or long-lived animals.
Collapse
Affiliation(s)
- Céline N. Martineau
- Laboratory of Neurophysiology, UNI, Université Libre de Bruxelles, Brussels, Belgium
| | - André E. X. Brown
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Patrick Laurent
- Laboratory of Neurophysiology, UNI, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
45
|
An automated platform to monitor long-term behavior and healthspan in Caenorhabditis elegans under precise environmental control. Commun Biol 2020; 3:297. [PMID: 32523044 PMCID: PMC7287092 DOI: 10.1038/s42003-020-1013-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/15/2020] [Indexed: 11/23/2022] Open
Abstract
Health and longevity in all organisms are strongly influenced by the environment. To fully understand how environmental factors interact with genetic and stochastic factors to modulate the aging process, it is crucial to precisely control environmental conditions for long-term studies. In the commonly used model organism Caenorhabditis elegans, existing assays for healthspan and lifespan have inherent limitations, making it difficult to perform large-scale longitudinal aging studies under precise environmental control. To address these constraints, we developed the Health and Lifespan Testing Hub (HeALTH), an automated, microfluidic-based system for robust longitudinal behavioral monitoring. Our system provides long-term (i.e. entire lifespan) spatiotemporal environmental control. We demonstrate healthspan and lifespan studies under a variety of genetic and environmental perturbations while observing how individuality plays a role in the aging process. This system is generalizable beyond aging research, particularly for short- or long-term behavioral assays, and could be adapted for other model systems. Kim N. Le, Mei Zhan et al. develop an automated microfluidic-based system, HeALTH, which provides spatiotemporal environmental control and allows for long-term behavioral monitoring. Using Caenorhabditis elegans they demonstrate the robustness of this platform for health and lifespan studies, and highlight its adaptability to other model systems.
Collapse
|
46
|
Wong SQ, Kumar AV, Mills J, Lapierre LR. C. elegans to model autophagy-related human disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:325-373. [PMID: 32620247 DOI: 10.1016/bs.pmbts.2020.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is a highly conserved degradation process that clears damaged intracellular macromolecules and organelles in order to maintain cellular health. Dysfunctional autophagy is fundamentally linked to the development of various human disorders and pathologies. The use of the nematode Caenorhabditis elegans as a model system to study autophagy has improved our understanding of its regulation and function in organismal physiology. Here, we review the genetic, functional, and regulatory conservation of the autophagy pathway in C. elegans and we describe tools to quantify and study the autophagy process in this incredibly useful model organism. We further discuss how these nematodes have been modified to model autophagy-related human diseases and underscore the important insights obtained from such models. Altogether, we highlight the strengths of C. elegans as an exceptional tool to understand the genetic and molecular foundations underlying autophagy-related human diseases.
Collapse
Affiliation(s)
- Shi Quan Wong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Anita V Kumar
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Joslyn Mills
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
47
|
Essmann CL, Martinez-Martinez D, Pryor R, Leung KY, Krishnan KB, Lui PP, Greene NDE, Brown AEX, Pawar VM, Srinivasan MA, Cabreiro F. Mechanical properties measured by atomic force microscopy define health biomarkers in ageing C. elegans. Nat Commun 2020; 11:1043. [PMID: 32098962 PMCID: PMC7042263 DOI: 10.1038/s41467-020-14785-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Genetic and environmental factors are key drivers regulating organismal lifespan but how these impact healthspan is less well understood. Techniques capturing biomechanical properties of tissues on a nano-scale level are providing new insights into disease mechanisms. Here, we apply Atomic Force Microscopy (AFM) to quantitatively measure the change in biomechanical properties associated with ageing Caenorhabditis elegans in addition to capturing high-resolution topographical images of cuticle senescence. We show that distinct dietary restriction regimes and genetic pathways that increase lifespan lead to radically different healthspan outcomes. Hence, our data support the view that prolonged lifespan does not always coincide with extended healthspan. Importantly, we identify the insulin signalling pathway in C. elegans and interventions altering bacterial physiology as increasing both lifespan and healthspan. Overall, AFM provides a highly sensitive technique to measure organismal biomechanical fitness and delivers an approach to screen for health-improving conditions, an essential step towards healthy ageing.
Collapse
Affiliation(s)
- Clara L Essmann
- Department of Computer Science, University College London, Engineering Building, Malet Place, London, WC1E 7JG, UK.
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 6BT, UK.
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| | - Daniel Martinez-Martinez
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Rosina Pryor
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 6BT, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Kit-Yi Leung
- UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Kalaivani Bala Krishnan
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 6BT, UK
| | - Prudence Pokway Lui
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 6BT, UK
| | - Nicholas D E Greene
- UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - André E X Brown
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Vijay M Pawar
- Department of Computer Science, University College London, Engineering Building, Malet Place, London, WC1E 7JG, UK
| | - Mandayam A Srinivasan
- Department of Computer Science, University College London, Engineering Building, Malet Place, London, WC1E 7JG, UK
- Department of Mechanical Engineering and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Filipe Cabreiro
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 6BT, UK.
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
48
|
Pittman WE, Sinha DB, Kinser HE, Patil NS, Terry ES, Plutzer IB, Hong J, Pincus Z. A Simple Apparatus for Individual C. elegans Culture. Methods Mol Biol 2020; 2144:29-45. [PMID: 32410022 DOI: 10.1007/978-1-0716-0592-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We miniaturized standard, solid-phase C. elegans culture conditions to produce a system in which many isolated, individual C. elegans can be housed throughout their lives. This system, the "worm corral," is compatible with high-resolution brightfield and fluorescent microscopy, allowing imaging of fluorescent transgenes and morphological phenotypes from hatch until death. These culture devices can be constructed on the benchtop with commercially available reagents and standard laboratory equipment, making this an attainable solution for most labs.
Collapse
Affiliation(s)
- William E Pittman
- Department of Developmental Biology and Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Drew B Sinha
- Department of Developmental Biology and Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Holly E Kinser
- Department of Developmental Biology and Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Nisha S Patil
- Department of Developmental Biology and Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric S Terry
- Department of Developmental Biology and Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Isaac B Plutzer
- Department of Developmental Biology and Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Julia Hong
- Department of Developmental Biology and Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Zachary Pincus
- Department of Developmental Biology and Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
49
|
Zhao Y, Wang H, Poole RJ, Gems D. A fln-2 mutation affects lethal pathology and lifespan in C. elegans. Nat Commun 2019; 10:5087. [PMID: 31704915 PMCID: PMC6841690 DOI: 10.1038/s41467-019-13062-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Differences in genetic background in model organisms can have complex effects on phenotypes of interest. We previously reported a difference in hermaphrodite lifespan between two wild-type lines widely used by C. elegans researchers (N2 hermaphrodite and male stocks). Here, using pathology-based approaches and genome sequencing, we identify the cause of this difference as a nonsense mutation in the filamin gene fln-2 in the male stock, which reduces early mortality caused by pharyngeal infection. We show how fln-2 variation explains previous discrepancies involving effects of sir-2.1 (sirtuin deacetylase) on ageing, and show that in a fln-2(+) background, sir-2.1 over-expression causes an FUDR (DNA synthesis inhibitor)-dependent reduction in pharyngeal infection and increase in lifespan. In addition we show how fln-2 variation confounds effects on lifespan of daf-2 (insulin/IGF-1 signalling), daf-12 (steroid hormone signalling), and eat-2 (putative dietary restriction). These findings underscore the importance of identifying and controlling genetic background variation.
Collapse
Affiliation(s)
- Yuan Zhao
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Hongyuan Wang
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Richard J Poole
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - David Gems
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
50
|
Benedetto A, Bambade T, Au C, Tullet JM, Monkhouse J, Dang H, Cetnar K, Chan B, Cabreiro F, Gems D. New label-free automated survival assays reveal unexpected stress resistance patterns during C. elegans aging. Aging Cell 2019; 18:e12998. [PMID: 31309734 PMCID: PMC6718543 DOI: 10.1111/acel.12998] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022] Open
Abstract
Caenorhabditis elegans is an excellent model for high‐throughput experimental approaches but lacks an automated means to pinpoint time of death during survival assays over a short time frame, that is, easy to implement, highly scalable, robust, and versatile. Here, we describe an automated, label‐free, high‐throughput method using death‐associated fluorescence to monitor nematode population survival (dubbed LFASS for label‐free automated survival scoring), which we apply to severe stress and infection resistance assays. We demonstrate its use to define correlations between age, longevity, and severe stress resistance, and its applicability to parasitic nematodes. The use of LFASS to assess the effects of aging on susceptibility to severe stress revealed an unexpected increase in stress resistance with advancing age, which was largely autophagy‐dependent. Correlation analysis further revealed that while severe thermal stress resistance positively correlates with lifespan, severe oxidative stress resistance does not. This supports the view that temperature‐sensitive protein‐handling processes more than redox homeostasis underpin aging in C. elegans. That the ages of peak resistance to infection, severe oxidative stress, heat shock, and milder stressors differ markedly suggests that stress resistance and health span do not show a simple correspondence in C. elegans.
Collapse
Affiliation(s)
- Alexandre Benedetto
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
- Division of Biomedical and Life Sciences Lancaster University Lancaster UK
| | - Timothée Bambade
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
| | - Catherine Au
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
- Division of Biomedical and Life Sciences Lancaster University Lancaster UK
| | - Jennifer M.A. Tullet
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
- School of Biosciences University of Kent Canterbury UK
| | - Jennifer Monkhouse
- Division of Biomedical and Life Sciences Lancaster University Lancaster UK
| | - Hairuo Dang
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
| | - Kalina Cetnar
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
| | - Brian Chan
- Division of Infection, Immunity & Respiratory Medicine University of Manchester Manchester UK
| | - Filipe Cabreiro
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
- MRC London Institute of Medical Sciences, Imperial College London London UK
| | - David Gems
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
| |
Collapse
|