1
|
Kim YK, Ramalho-Santos M. 20 years of stemness: From stem cells to hypertranscription and back. Stem Cell Reports 2025; 20:102406. [PMID: 39919752 PMCID: PMC11960510 DOI: 10.1016/j.stemcr.2025.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
Transcriptional profiling of stem cells came of age at the beginning of the century with the use of microarrays to analyze cell populations in bulk. Since then, stem cell transcriptomics has become increasingly sophisticated, notably with the recent widespread use of single-cell RNA sequencing. Here, we provide a perspective on how an early signature of genes upregulated in embryonic and adult stem cells, identified using microarrays over 20 years ago, serendipitously led to the recent discovery that stem/progenitor cells across organs are in a state of hypertranscription, a global elevation of the transcriptome. Looking back, we find that the 2002 stemness signature is a robust marker of stem cell hypertranscription, even though it was developed well before it was known what hypertranscription meant or how to detect it. We anticipate that studies of stem cell hypertranscription will be rich in novel insights in physiological and disease contexts for years to come.
Collapse
Affiliation(s)
- Yun-Kyo Kim
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto ON M5G 1X5, Canada.
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto ON M5T 3L9, Canada; Department of Molecular Genetics, University of Toronto, Toronto ON M5G 1X5, Canada.
| |
Collapse
|
2
|
Zhao J, Tang K, Jiang G, Yang X, Cui M, Wan C, Ouyang Z, Zheng Y, Liu Z, Wang M, Zhao X, Chang G. Dynamic transcriptomic and regulatory networks underpinning the transition from fetal primordial germ cells to spermatogonia in mice. Cell Prolif 2025; 58:e13755. [PMID: 39329203 PMCID: PMC11839193 DOI: 10.1111/cpr.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/24/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
The transition from fetal primordial germ cells (PGCs) to spermatogonia (SPG) is critical for male germ cell development; however, the detailed transcriptomic dynamics and regulation underlying this transition remain poorly understood. Here by interrogating the comprehensive transcriptome atlas dataset of mouse male germ cells and gonadal cells development, we elucidated the regulatory networks underlying this transition. Our single-cell transcriptome analysis revealed that the transition from PGCs to SPG was characterized by global hypertranscription. A total of 315 highly active regulators were identified to be potentially involved in this transition, among which a non-transcription factor (TF) regulator TAGLN2 was validated to be essential for spermatogonial stem cells (SSCs) maintenance and differentiation. Metabolism profiling analysis also revealed dynamic changes in metabolism-related gene expression during PGC to SPG transition. Furthermore, we uncovered that intricate cell-cell communication exerted potential functions in the regulation of hypertranscription in germ cells by collaborating with stage-specific active regulators. Collectively, our work extends the understanding of molecular mechanisms underlying male germ cell development, offering insights into the recapitulation of germ cell generation in vitro.
Collapse
Affiliation(s)
- Jiexiang Zhao
- The Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanGuangdongPR China
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Kang Tang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Gurong Jiang
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Xinyan Yang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Manman Cui
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Cong Wan
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
- Maoming People's HospitalMaomingGuangdongPR China
| | - Zhaoxiang Ouyang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Yi Zheng
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Zhaoting Liu
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Mei Wang
- The Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanGuangdongPR China
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Xiao‐Yang Zhao
- The Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanGuangdongPR China
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongPR China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSouthern Medical UniversityGuangzhouGuangdongPR China
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong Joint Laboratory for Psychiatric Disorders
- Department of Gynecology, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongPR China
| | - Gang Chang
- Department of Biochemistry and Molecular BiologyShenzhen University Medical SchoolShenzhenGuangdongPR China
| |
Collapse
|
3
|
Kim YK, Collignon E, Martin SB, Ramalho-Santos M. Hypertranscription: the invisible hand in stem cell biology. Trends Genet 2024; 40:1032-1046. [PMID: 39271397 DOI: 10.1016/j.tig.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
Stem cells are the fundamental drivers of growth during development and adult organ homeostasis. The properties that define stem cells - self-renewal and differentiation - are highly biosynthetically demanding. In order to fuel this demand, stem and progenitor cells engage in hypertranscription, a global amplification of the transcriptome. While standard normalization methods in transcriptomics typically mask hypertranscription, new approaches are beginning to reveal a remarkable range in global transcriptional output in stem and progenitor cells. We discuss technological advancements to probe global transcriptional shifts, review recent findings that contribute to defining hallmarks of stem cell hypertranscription, and propose future directions in this field.
Collapse
Affiliation(s)
- Yun-Kyo Kim
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada.
| | - Evelyne Collignon
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC) and Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| | - S Bryn Martin
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada.
| | - Miguel Ramalho-Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada.
| |
Collapse
|
4
|
Krasikova A, Kulikova T, Schelkunov M, Makarova N, Fedotova A, Plotnikov V, Berngardt V, Maslova A, Fedorov A. The first chicken oocyte nucleus whole transcriptomic profile defines the spectrum of maternal mRNA and non-coding RNA genes transcribed by the lampbrush chromosomes. Nucleic Acids Res 2024; 52:12850-12877. [PMID: 39494543 PMCID: PMC11602149 DOI: 10.1093/nar/gkae941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
Lampbrush chromosomes, with their unusually high rate of nascent RNA synthesis, provide a valuable model for studying mechanisms of global transcriptome up-regulation. Here, we obtained a whole-genomic profile of transcription along the entire length of all lampbrush chromosomes in the chicken karyotype. With nuclear RNA-seq, we obtained information about a wider set of transcripts, including long non-coding RNAs retained in the nucleus and stable intronic sequence RNAs. For a number of protein-coding genes, we visualized their nascent transcripts on the lateral loops of lampbrush chromosomes by RNA-FISH. The set of genes transcribed on the lampbrush chromosomes is required for basic cellular processes and is characterized by a broad expression pattern. We also present the first high-throughput transcriptome characterization of miRNAs and piRNAs in chicken oocytes at the lampbrush chromosome stage. Major targets of predicted piRNAs include CR1 and long terminal repeat (LTR) containing retrotransposable elements. Transcription of tandem repeat arrays was demonstrated by alignment against the whole telomere-to-telomere chromosome assemblies. We show that transcription of telomere-derived RNAs is initiated at adjacent LTR elements. We conclude that hypertranscription on the lateral loops of giant lampbrush chromosomes is required for synthesizing large amounts of transferred to the embryo maternal RNA for thousands of genes.
Collapse
Affiliation(s)
- Alla Krasikova
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Tatiana Kulikova
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Mikhail Schelkunov
- Genomics Core Facility, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Institute for Information Transmission Problems, Moscow, 127051, Russia
| | - Nadezhda Makarova
- Genomics Core Facility, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Anna Fedotova
- Genomics Core Facility, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir Plotnikov
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Valeria Berngardt
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Antonina Maslova
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Anton Fedorov
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| |
Collapse
|
5
|
Beitz A, Teves J, Oakes C, Johnstone C, Wang N, Brickman JM, Galloway KE. Cells transit through a quiescent-like state to convert to neurons at high rates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624928. [PMID: 39651159 PMCID: PMC11623504 DOI: 10.1101/2024.11.22.624928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
While transcription factors (TFs) provide essential cues for directing and redirecting cell fate, TFs alone are insufficient to drive cells to adopt alternative fates. Rather, transcription factors rely on receptive cell states to induce novel identities. Cell state emerges from and is shaped by cellular history and the activity of diverse processes. Here, we define the cellular and molecular properties of a highly receptive state amenable to transcription factor-mediated direct conversion from fibroblasts to induced motor neurons. Using a well-defined model of direct conversion to a post-mitotic fate, we identify the highly proliferative, receptive state that transiently emerges during conversion. Through examining chromatin accessibility, histone marks, and nuclear features, we find that cells reprogram from a state characterized by global reductions in nuclear size and transcriptional activity. Supported by globally increased levels of H3K27me3, cells enter a quiescent-like state of reduced RNA metabolism and elevated expression of REST and p27, markers of quiescent neural stem cells. From this transient state, cells convert to neurons at high rates. Inhibition of Ezh2, the catalytic subunit of PRC2 that deposits H3K27me3, abolishes conversion. Our work offers a roadmap to identify global changes in cellular processes that define cells with different conversion potentials that may generalize to other cell-fate transitions. Highlights Proliferation drives cells to a compact nuclear state that is receptive to TF-mediated conversion.Increased receptivity to TFs corresponds to reduced nuclear volumes.Reprogrammable cells display global, genome-wide increases in H3K27me3.High levels of H3K27me3 support cells' transits through a state of altered RNA metabolism.Inhibition of Ezh2 increases nuclear size, reduces the expression of the quiescence marker p27.Acute inhibition of Ezh2 abolishes motor neuron conversion. One Sentence Summary Cells transit through a quiescent-like state characterized by global reductions in nuclear size and transcriptional activity to convert to neurons at high rates.
Collapse
|
6
|
Hayashi Y, Kaneko J, Ito-Matsuoka Y, Takehara A, Funakoshi M, Maezawa S, Shirane K, Furuya S, Matsui Y. Control of epigenomic landscape and development of fetal male germ cells through L-serine metabolism. iScience 2024; 27:110702. [PMID: 39262797 PMCID: PMC11388182 DOI: 10.1016/j.isci.2024.110702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Sex-specific metabolic characteristics emerge in the mouse germ line after reaching the genital ridges around embryonic day 10.5, coinciding with sexual differentiation. However, the impact of such metabolic characteristics on germ cell development remains unclear. In this study, we observed the specific upregulation in male fetal germ cells of D-3-phosphoglycerate dehydrogenase (PHGDH), the primary enzyme in the serine-glycine-one-carbon metabolism, along with an increase in a downstream metabolite, S-adenosylmethionine (SAM), crucial for protein and nucleic acid methylation. Inhibiting PHGDH in fetal testes resulted in reduced SAM levels in germ cells, accompanied by increases in the number of mouse vasa homolog (MVH/VASA)-positive germ cells and the promyelocytic leukemia zinc finger (PLZF)-positive undifferentiated spermatogonia ratio. Furthermore, PHGDH inhibition led to a decrease in the methylation of histone H3 and DNA, resulting in aberrations in gene expression profiles. In summary, our findings underscore the significant role of certain metabolic mechanisms in the development of male germ cells.
Collapse
Affiliation(s)
- Yohei Hayashi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Jintaro Kaneko
- School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yumi Ito-Matsuoka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Asuka Takehara
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Mayuka Funakoshi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
| | - So Maezawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
| | - Kenjiro Shirane
- Department of Genome Biology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeki Furuya
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
7
|
Wen C, Cao L, Wang S, Xu W, Yu Y, Zhao S, Yang F, Chen ZJ, Zhao S, Yang Y, Qin Y. MCM8 interacts with DDX5 to promote R-loop resolution. EMBO J 2024; 43:3044-3071. [PMID: 38858601 PMCID: PMC11251167 DOI: 10.1038/s44318-024-00134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
MCM8 has emerged as a core gene in reproductive aging and is crucial for meiotic homologous recombination repair. It also safeguards genome stability by coordinating the replication stress response during mitosis, but its function in mitotic germ cells remains elusive. Here we found that disabling MCM8 in mice resulted in proliferation defects of primordial germ cells (PGCs) and ultimately impaired fertility. We further demonstrated that MCM8 interacted with two known helicases DDX5 and DHX9, and loss of MCM8 led to R-loop accumulation by reducing the retention of these helicases at R-loops, thus inducing genome instability. Cells expressing premature ovarian insufficiency-causative mutants of MCM8 with decreased interaction with DDX5 displayed increased R-loop levels. These results show MCM8 interacts with R-loop-resolving factors to prevent R-loop-induced DNA damage, which may contribute to the maintenance of genome integrity of PGCs and reproductive reserve establishment. Our findings thus reveal an essential role for MCM8 in PGC development and improve our understanding of reproductive aging caused by genome instability in mitotic germ cells.
Collapse
Affiliation(s)
- Canxin Wen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Lili Cao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Shuhan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Weiwei Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Yongze Yu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Simin Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Fan Yang
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shidou Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| | - Yajuan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| | - Yingying Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| |
Collapse
|
8
|
Takahashi F, Baba T, Christianto A, Yanai S, Lee-Okada HC, Ishiwata K, Nakabayashi K, Hata K, Ishii T, Hasegawa T, Yokomizo T, Choi MH, Morohashi KI. Development of sexual dimorphism of skeletal muscles through the adrenal cortex, caused by androgen-induced global gene suppression. Cell Rep 2024; 43:113715. [PMID: 38306273 DOI: 10.1016/j.celrep.2024.113715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/08/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024] Open
Abstract
The zona fasciculata (zF) in the adrenal cortex contributes to multiple physiological actions through glucocorticoid synthesis. The size, proliferation, and glucocorticoid synthesis characteristics are all female biased, and sexual dimorphism is established by androgen. In this study, transcriptomes were obtained to unveil the sex differentiation mechanism. Interestingly, both the amount of mRNA and the expressions of nearly all genes were higher in females. The expression of Nr5a1, which is essential for steroidogenic cell differentiation, was also female biased. Whole-genome studies demonstrated that NR5A1 regulates nearly all gene expression directly or indirectly. This suggests that androgen-induced global gene suppression is potentially mediated by NR5A1. Using Nr5a1 heterozygous mice, whose adrenal cortex is smaller than the wild type, we demonstrated that the size of skeletal muscles is possibly regulated by glucocorticoid synthesized by zF. Taken together, considering the ubiquitous presence of glucocorticoid receptors, our findings provide a pathway for sex differentiation through glucocorticoid synthesis.
Collapse
Affiliation(s)
- Fumiya Takahashi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Baba
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Antonius Christianto
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shogo Yanai
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hyeon-Cheol Lee-Okada
- Department of Biochemistry, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Keisuke Ishiwata
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-0074, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-0074, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-0074, Japan; Department of Human Molecular Genetics, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Tomohiro Ishii
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Man Ho Choi
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Ken-Ichirou Morohashi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Internal Medicine, Kurume University School of Medicine, 67 Asahimachi, Kurume 830-0011, Japan.
| |
Collapse
|
9
|
Yang X, Ren S, Yang J, Pan Y, Zhou Z, Chen Q, Fang Y, Shang L, Zhang F, Zhang X, Wu Y. Rare variants in FANCJ induce premature ovarian insufficiency in humans and mice. J Genet Genomics 2024; 51:252-255. [PMID: 37062450 DOI: 10.1016/j.jgg.2023.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Affiliation(s)
- Xi Yang
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Shuting Ren
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Jialin Yang
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Yuncheng Pan
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Zixue Zhou
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Qing Chen
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Yunzheng Fang
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Lingyue Shang
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China; Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201203, China.
| | - Xiaojin Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China.
| | - Yanhua Wu
- State Key Laboratory of Genetic Engineering at School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200438, China; National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
10
|
Huhtala L, Karabiyik G, Rautajoki KJ. Development and epigenetic regulation of Atypical teratoid/rhabdoid tumors in the context of cell-of-origin and halted cell differentiation. Neurooncol Adv 2024; 6:vdae162. [PMID: 39465218 PMCID: PMC11502914 DOI: 10.1093/noajnl/vdae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) are aggressive brain tumors primarily observed in infants. The only characteristic, recurrent genetic aberration of AT/RTs is biallelic inactivation of SMARCB1 (or SMARCA4). These genes are members of the mSWI/SNF chromatin-remodeling complex, which regulates various developmental processes, including neural differentiation. This review explores AT/RT subgroups regarding their distinct SMARCB1 loss-of-function mechanisms, molecular features, and patient characteristics. Additionally, it addresses the ongoing debate about the oncogenic relevance of cell-of-origin, examining the influence of developmental stage and lineage commitment of the seeding cell on tumor malignancy and other characteristics. Epigenetic dysregulation, particularly through the regulation of histone modifications and DNA hypermethylation, has been shown to play an integral role in AT/RTs' malignancy and differentiation blockage, maintaining cells in a poorly differentiated state via the insufficient activation of differentiation-related genes. Here, the differentiation blockage and its contribution to malignancy are also explored in a cellular context. Understanding these mechanisms and AT/RT heterogeneity is crucial for therapeutic improvements against AT/RTs.
Collapse
Affiliation(s)
- Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Goktug Karabiyik
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kirsi J Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
11
|
Lau MS, Hu Z, Zhao X, Tan YS, Liu J, Huang H, Yeo CJ, Leong HF, Grinchuk OV, Chan JK, Yan J, Tee WW. Transcriptional repression by a secondary DNA binding surface of DNA topoisomerase I safeguards against hypertranscription. Nat Commun 2023; 14:6464. [PMID: 37833256 PMCID: PMC10576097 DOI: 10.1038/s41467-023-42078-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Regulation of global transcription output is important for normal development and disease, but little is known about the mechanisms involved. DNA topoisomerase I (TOP1) is an enzyme well-known for its role in relieving DNA supercoils for enabling transcription. Here, we report a non-enzymatic function of TOP1 that downregulates RNA synthesis. This function is dependent on specific DNA-interacting residues located on a conserved protein surface. A loss-of-function knock-in mutation on this surface, R548Q, is sufficient to cause hypertranscription and alter differentiation outcomes in mouse embryonic stem cells (mESCs). Hypertranscription in mESCs is accompanied by reduced TOP1 chromatin binding and change in genomic supercoiling. Notably, the mutation does not impact TOP1 enzymatic activity; rather, it diminishes TOP1-DNA binding and formation of compact protein-DNA structures. Thus, TOP1 exhibits opposing influences on transcription through distinct activities which are likely to be coordinated. This highlights TOP1 as a safeguard of appropriate total transcription levels in cells.
Collapse
Affiliation(s)
- Mei Sheng Lau
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
| | - Zhenhua Hu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaodan Zhao
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute (BII), A*STAR, 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
| | - Jinyue Liu
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Hua Huang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Electrophysiology Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Clarisse Jingyi Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Hwei Fen Leong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Oleg V Grinchuk
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Justin Kaixuan Chan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore.
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, 117557, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore.
| | - Wee-Wei Tee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
12
|
Collignon E, Cho B, Furlan G, Fothergill-Robinson J, Martin SB, McClymont SA, Ross RL, Limbach PA, Ramalho-Santos M. m 6A RNA methylation orchestrates transcriptional dormancy during paused pluripotency. Nat Cell Biol 2023; 25:1279-1289. [PMID: 37696947 PMCID: PMC11619322 DOI: 10.1038/s41556-023-01212-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/21/2023] [Indexed: 09/13/2023]
Abstract
Embryos across metazoan lineages can enter reversible states of developmental pausing, or diapause, in response to adverse environmental conditions. The molecular mechanisms that underlie this remarkable dormant state remain largely unknown. Here we show that N6-methyladenosine (m6A) RNA methylation by Mettl3 is required for developmental pausing in mouse blastocysts and embryonic stem (ES) cells. Mettl3 enforces transcriptional dormancy through two interconnected mechanisms: (1) it promotes global mRNA destabilization and (2) it suppresses global nascent transcription by destabilizing the mRNA of the transcriptional amplifier and oncogene N-Myc, which we identify as a crucial anti-pausing factor. Knockdown of N-Myc rescues pausing in Mettl3-/- ES cells, and forced demethylation and stabilization of Mycn mRNA in paused wild-type ES cells largely recapitulates the transcriptional defects of Mettl3-/- ES cells. These findings uncover Mettl3 as a key orchestrator of the crosstalk between transcriptomic and epitranscriptomic regulation during developmental pausing, with implications for dormancy in adult stem cells and cancer.
Collapse
Affiliation(s)
- Evelyne Collignon
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC) and Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| | - Brandon Cho
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Giacomo Furlan
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Julie Fothergill-Robinson
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sylvia-Bryn Martin
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sarah A McClymont
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Ruthig VA, Hatkevich T, Hardy J, Friedersdorf MB, Mayère C, Nef S, Keene JD, Capel B. The RNA binding protein DND1 is elevated in a subpopulation of pro-spermatogonia and targets chromatin modifiers and translational machinery during late gestation. PLoS Genet 2023; 19:e1010656. [PMID: 36857387 PMCID: PMC10010562 DOI: 10.1371/journal.pgen.1010656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 03/13/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
DND1 is essential to maintain germ cell identity. Loss of Dnd1 function results in germ cell differentiation to teratomas in some inbred strains of mice or to somatic fates in zebrafish. Using our knock-in mouse line in which a functional fusion protein between DND1 and GFP is expressed from the endogenous locus (Dnd1GFP), we distinguished two male germ cell (MGC) populations during late gestation cell cycle arrest (G0), consistent with recent reports of heterogeneity among MGCs. Most MGCs express lower levels of DND1-GFP (DND1-GFP-lo), but some MGCs express elevated levels of DND1-GFP (DND1-GFP-hi). A RNA-seq time course confirmed high Dnd1 transcript levels in DND1-GFP-hi cells along with 5-10-fold higher levels for multiple epigenetic regulators. Using antibodies against DND1-GFP for RNA immunoprecipitation (RIP)-sequencing, we identified multiple epigenetic and translational regulators that are binding targets of DND1 during G0 including DNA methyltransferases (Dnmts), histone deacetylases (Hdacs), Tudor domain proteins (Tdrds), actin dependent regulators (Smarcs), and a group of ribosomal and Golgi proteins. These data suggest that in DND1-GFP-hi cells, DND1 hosts coordinating mRNA regulons that consist of functionally related and localized groups of epigenetic enzymes and translational components.
Collapse
Affiliation(s)
- Victor A. Ruthig
- Sexual Medicine Lab, Department of Urology, Weill Cornell Medicine, New York, New York, United States of America
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Talia Hatkevich
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Josiah Hardy
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Matthew B. Friedersdorf
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Chloé Mayère
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Jack D. Keene
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
14
|
Collignon E, Cho B, Fothergill-Robinson J, Furlan G, Ross RL, Limbach PA, Ramalho-Santos M. m 6 A RNA methylation orchestrates transcriptional dormancy during developmental pausing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526234. [PMID: 36778216 PMCID: PMC9915470 DOI: 10.1101/2023.01.30.526234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Embryos across metazoan lineages can enter reversible states of developmental pausing, or diapause, in response to adverse environmental conditions. The molecular mechanisms that underlie this remarkable dormant state remain largely unknown. Here we show that m 6 A RNA methylation by Mettl3 is required for developmental pausing in mice by maintaining dormancy of paused embryonic stem cells and blastocysts. Mettl3 enforces transcriptional dormancy via two interconnected mechanisms: i) it promotes global mRNA destabilization and ii) suppresses global nascent transcription by specifically destabilizing the mRNA of the transcriptional amplifier and oncogene N-Myc, which we identify as a critical anti-pausing factor. Our findings reveal Mettl3 as a key orchestrator of the crosstalk between transcriptomic and epitranscriptomic regulation during pausing, with implications for dormancy in stem cells and cancer.
Collapse
Affiliation(s)
- Evelyne Collignon
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto; Toronto, ON M5T 3H7, Canada
| | - Brandon Cho
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto; Toronto, ON M5T 3H7, Canada
| | - Julie Fothergill-Robinson
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto; Toronto, ON M5T 3H7, Canada
| | - Giacomo Furlan
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto; Toronto, ON M5T 3H7, Canada
| | | | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati; Cincinnati, OH 45221, USA
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto; Toronto, ON M5T 3H7, Canada
| |
Collapse
|
15
|
Kim YK, Cho B, Cook DP, Trcka D, Wrana JL, Ramalho-Santos M. Absolute scaling of single-cell transcriptomes identifies pervasive hypertranscription in adult stem and progenitor cells. Cell Rep 2023; 42:111978. [PMID: 36640358 DOI: 10.1016/j.celrep.2022.111978] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 10/27/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Hypertranscription supports biosynthetically demanding cellular states through global transcriptome upregulation. Despite its potential widespread relevance, documented examples of hypertranscription remain few and limited to early development. Here, we demonstrate that absolute scaling of single-cell RNA-sequencing data enables the estimation of total transcript abundances per cell. We validate absolute scaling in known cases of developmental hypertranscription and apply it to adult cell types, revealing a remarkable dynamic range in transcriptional output. In adult organs, hypertranscription marks activated stem/progenitor cells with multilineage potential and is redeployed in conditions of tissue injury, where it precedes bursts of proliferation during regeneration. Our analyses identify a common set of molecular pathways associated with both adult and embryonic hypertranscription, including chromatin remodeling, DNA repair, ribosome biogenesis, and translation. These shared features across diverse cell contexts support hypertranscription as a general and dynamic cellular program that is pervasively employed during development, organ maintenance, and regeneration.
Collapse
Affiliation(s)
- Yun-Kyo Kim
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada.
| | - Brandon Cho
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - David P Cook
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada
| | - Dan Trcka
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
16
|
DNA repair protein FANCD2 has both ubiquitination-dependent and ubiquitination-independent functions during germ cell development. J Biol Chem 2023; 299:102905. [PMID: 36642183 PMCID: PMC9971320 DOI: 10.1016/j.jbc.2023.102905] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
When DNA interstrand crosslink lesions occur, a core complex of Fanconi anemia proteins promotes the ubiquitination of FANCD2 and FANCI, which recruit downstream factors to repair the lesion. However, FANCD2 maintains genome stability not only through its ubiquitination-dependent but also its ubiquitination-independent functions in various DNA damage response pathways. Increasing evidence suggests that FANCD2 is essential for fertility, but its ubiquitination-dependent and ubiquitination-independent roles during germ cell development are not well characterized. In this study, we analyzed germ cell development in Fancd2 KO and ubiquitination-deficient mutant (Fancd2K559R/K559R) mice. We showed that in the embryonic stage, both the ubiquitination-dependent and ubiquitination-independent functions of FANCD2 were required for the expansion of primordial germ cells and establishment of the reproductive reserve by reducing transcription-replication conflicts and thus maintaining genome stability in primordial germ cells. Furthermore, we found that during meiosis in spermatogenesis, FANCD2 promoted chromosome synapsis and regulated crossover formation independently of its ubiquitination, but that both ubiquitinated and nonubiquitinated FANCD2 functioned in programmed double strand break repair. Finally, we revealed that on meiotic XY chromosomes, H3K4me2 accumulation required ubiquitination-independent functionality of FANCD2, while the regulation of H3K9me2 and H3K9me3 depended on FANCD2 ubiquitination. Taken together, our findings suggest that FANCD2 has distinct functions that are both dependent on and independent of its ubiquitination during germ cell development.
Collapse
|
17
|
Zatzman M, Fuligni F, Ripsman R, Suwal T, Comitani F, Edward LM, Denroche R, Jang GH, Notta F, Gallinger S, Selvanathan SP, Toretsky JA, Hellmann MD, Tabori U, Huang A, Shlien A. Widespread hypertranscription in aggressive human cancers. SCIENCE ADVANCES 2022; 8:eabn0238. [PMID: 36417526 PMCID: PMC9683723 DOI: 10.1126/sciadv.abn0238] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 10/07/2022] [Indexed: 05/10/2023]
Abstract
Cancers are often defined by the dysregulation of specific transcriptional programs; however, the importance of global transcriptional changes is less understood. Hypertranscription is the genome-wide increase in RNA output. Hypertranscription's prevalence, underlying drivers, and prognostic significance are undefined in primary human cancer. This is due, in part, to limitations of expression profiling methods, which assume equal RNA output between samples. Here, we developed a computational method to directly measure hypertranscription in 7494 human tumors, spanning 31 cancer types. Hypertranscription is ubiquitous across cancer, especially in aggressive disease. It defines patient subgroups with worse survival, even within well-established subtypes. Our data suggest that loss of transcriptional suppression underpins the hypertranscriptional phenotype. Single-cell analysis reveals hypertranscriptional clones, which dominate transcript production regardless of their size. Last, patients with hypertranscribed mutations have improved response to immune checkpoint therapy. Our results provide fundamental insights into gene dysregulation across human cancers and may prove useful in identifying patients who would benefit from novel therapies.
Collapse
Affiliation(s)
- Matthew Zatzman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fabio Fuligni
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ryan Ripsman
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tannu Suwal
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Federico Comitani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lisa-Monique Edward
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rob Denroche
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Wallace McCain Centre for Pancreatic Cancer, Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
| | | | - Jeffrey A. Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA
| | - Matthew D. Hellmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Uri Tabori
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Annie Huang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adam Shlien
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Romeike M, Spach S, Huber M, Feng S, Vainorius G, Elling U, Versteeg GA, Buecker C. Transient upregulation of IRF1 during exit from naive pluripotency confers viral protection. EMBO Rep 2022; 23:e55375. [PMID: 35852463 PMCID: PMC9442322 DOI: 10.15252/embr.202255375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
Stem cells intrinsically express a subset of genes which are normally associated with interferon stimulation and the innate immune response. However, the expression of these interferon-stimulated genes (ISG) in stem cells is independent from external stimuli such as viral infection. Here, we show that the interferon regulatory factor 1, Irf1, is directly controlled by the murine formative pluripotency gene regulatory network and transiently upregulated during the transition from naive to formative pluripotency. IRF1 binds to regulatory regions of a conserved set of ISGs and is required for their faithful expression upon exit from naive pluripotency. We show that in the absence of IRF1, cells exiting the naive pluripotent stem cell state are more susceptible to viral infection. Irf1 therefore acts as a link between the formative pluripotency network, regulation of innate immunity genes, and defense against viral infections during formative pluripotency.
Collapse
Affiliation(s)
- Merrit Romeike
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
- Vienna Biocenter PhD ProgramA Doctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Stephanie Spach
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
| | - Marie Huber
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
| | - Songjie Feng
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
- Vienna Biocenter PhD ProgramA Doctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Gintautas Vainorius
- Vienna Biocenter PhD ProgramA Doctoral School of the University of Vienna and Medical University of ViennaViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA)Vienna Biocenter (VBC)ViennaAustria
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA)Vienna Biocenter (VBC)ViennaAustria
| | - Gjis A Versteeg
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
| | - Christa Buecker
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
| |
Collapse
|
19
|
Transcription-replication conflicts in primordial germ cells necessitate the Fanconi anemia pathway to safeguard genome stability. Proc Natl Acad Sci U S A 2022; 119:e2203208119. [PMID: 35969748 PMCID: PMC9407672 DOI: 10.1073/pnas.2203208119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Germ cells are capable of preserving their genetic information with high fidelity. We report that rapidly dividing mouse primordial germ cells (PGCs) are faced with high levels of endogenous replication stress due to frequent occurrence of transcription–replication conflicts (TRCs). Thus, PGCs have an increased requirement for the replication-coupled Fanconi anemia (FA) pathway to counteract TRC-induced replication stress, enabling their rapid proliferation to establish a sufficient reproductive reserve. This work provides insights into the unique genome feature of developing PGCs and helps to explain the reproductive defects in FA individuals. Preserving a high degree of genome integrity and stability in germ cells is of utmost importance for reproduction and species propagation. However, the regulatory mechanisms of maintaining genome stability in the developing primordial germ cells (PGCs), in which rapid proliferation is coupled with global hypertranscription, remain largely unknown. Here, we find that mouse PGCs encounter a constitutively high frequency of transcription–replication conflicts (TRCs), which lead to R-loop accumulation and impose endogenous replication stress on PGCs. We further demonstrate that the Fanconi anemia (FA) pathway is activated by TRCs and has a central role in the coordination between replication and transcription in the rapidly proliferating PGCs, as disabling the FA pathway leads to TRC and R-loop accumulation, replication fork destabilization, increased DNA damage, dramatic loss of mitotically dividing mouse PGCs, and consequent sterility of both sexes. Overall, our findings uncover the unique source and resolving mechanism of endogenous replication stress during PGC proliferation, provide a biological explanation for reproductive defects in individuals with FA, and improve our understanding of the monitoring strategies for genome stability during germ cell development.
Collapse
|
20
|
Phan TP, Boatwright CA, Drown CG, Skinner MW, Strong MA, Jordan PW, Holland AJ. Upstream open reading frames control PLK4 translation and centriole duplication in primordial germ cells. Genes Dev 2022; 36:718-736. [PMID: 35772791 PMCID: PMC9296005 DOI: 10.1101/gad.349604.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022]
Abstract
Centrosomes are microtubule-organizing centers comprised of a pair of centrioles and the surrounding pericentriolar material. Abnormalities in centriole number are associated with cell division errors and can contribute to diseases such as cancer. Centriole duplication is limited to once per cell cycle and is controlled by the dosage-sensitive Polo-like kinase 4 (PLK4). Here, we show that PLK4 abundance is translationally controlled through conserved upstream open reading frames (uORFs) in the 5' UTR of the mRNA. Plk4 uORFs suppress Plk4 translation and prevent excess protein synthesis. Mice with homozygous knockout of Plk4 uORFs (Plk4 Δu/Δu ) are viable but display dramatically reduced fertility because of a significant depletion of primordial germ cells (PGCs). The remaining PGCs in Plk4 Δu/Δu mice contain extra centrioles and display evidence of increased mitotic errors. PGCs undergo hypertranscription and have substantially more Plk4 mRNA than somatic cells. Reducing Plk4 mRNA levels in mice lacking Plk4 uORFs restored PGC numbers and fully rescued fertility. Together, our data uncover a specific requirement for uORF-dependent control of PLK4 translation in counterbalancing the increased Plk4 transcription in PGCs. Thus, uORF-mediated translational suppression of PLK4 has a critical role in preventing centriole amplification and preserving the genomic integrity of future gametes.
Collapse
Affiliation(s)
- Thao P Phan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Christina A Boatwright
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Chelsea G Drown
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Marnie W Skinner
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
21
|
Owsian D, Gruchota J, Arnaiz O, Nowak JK. The transient Spt4-Spt5 complex as an upstream regulator of non-coding RNAs during development. Nucleic Acids Res 2022; 50:2603-2620. [PMID: 35188560 PMCID: PMC8934623 DOI: 10.1093/nar/gkac106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
The Spt4-Spt5 complex is conserved and essential RNA polymerase elongation factor. To investigate the role of the Spt4-Spt5 complex in non-coding transcription during development, we used the unicellular model Paramecium tetraurelia. In this organism harboring both germline and somatic nuclei, massive transcription of the entire germline genome takes place during meiosis. This phenomenon starts a series of events mediated by different classes of non-coding RNAs that control developmentally programmed DNA elimination. We focused our study on Spt4, a small zinc-finger protein encoded in P. tetraurelia by two genes expressed constitutively and two genes expressed during meiosis. SPT4 genes are not essential in vegetative growth, but they are indispensable for sexual reproduction, even though genes from both expression families show functional redundancy. Silencing of the SPT4 genes resulted in the absence of double-stranded ncRNAs and reduced levels of scnRNAs - 25 nt-long sRNAs produced from these double-stranded precursors in the germline nucleus. Moreover, we observed that the presence of a germline-specific Spt4-Spt5m complex is necessary for transfer of the scnRNA-binding PIWI protein between the germline and somatic nucleus. Our study establishes that Spt4, together with Spt5m, is essential for expression of the germline genome and necessary for developmental genome rearrangements.
Collapse
Affiliation(s)
- Dawid Owsian
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Julita Gruchota
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jacek K Nowak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
22
|
Saga Y. How Germ Cells Determine Their Own Sexual Fate in Mice. Sex Dev 2022:1-13. [PMID: 35263749 DOI: 10.1159/000520976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Whether to produce sperm or eggs is the most basic and important choice from the perspective of germ cell development and differentiation. However, the induction mechanism has not received much attention until relatively recently. This is because the issue of sexual differentiation has generally been considered a theme of somatic cells to make a testis or ovary. Basically, the sex of individual somatic cells and germ cells matches. Therefore, the sex of germ cells is thought to follow the sex of somatic cells once determined. However, researchers realized that a big, open question remained: What somatic cell signals actually induce the sexual differentiation of germ cells and what is the sex determinant in germ cells? SUMMARY In vitro experiments demonstrated that 2 somatic signals (BMP and RA) act directly on germ cells to induce oogonia. Therefore, these 2 signals may be referred to as oogonia inducers. From the viewpoint of germ cells, an independent experiment identified SMAD4 and STRA8, which are directly downstream of BMP and RA, respectively, acting in germ cells as female determinants. However, what about male? If these factors are female determinants, their absence may result in the induction of spermatogonia. This may be true in vivo because germ cells enter a male pathway if they do not receive these signals even in the ovary. However, this has not been confirmed in an in vitro culture system. There should be signals required for germ cells to enter a male pathway. KEY MESSAGES The important message is that although testis-specific factors secreted from the testis are considered to include male-inducing factors for germ cells, this may not be the case, and the male-inducing factor, if it exists, also exists in the ovary.
Collapse
Affiliation(s)
- Yumiko Saga
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Xie SQ, Leeke BJ, Whilding C, Wagner RT, Garcia-Llagostera F, Low Y, Chammas P, Cheung NTF, Dormann D, McManus MT, Percharde M. Nucleolar-based Dux repression is essential for embryonic two-cell stage exit. Genes Dev 2022; 36:331-347. [PMID: 35273077 PMCID: PMC8973846 DOI: 10.1101/gad.349172.121] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
Upon fertilization, the mammalian embryo must switch from dependence on maternal transcripts to transcribing its own genome, and in mice this involves the transient up-regulation of MERVL transposons and MERVL-driven genes at the two-cell stage. The mechanisms and requirement for MERVL and two-cell (2C) gene up-regulation are poorly understood. Moreover, this MERVL-driven transcriptional program must be rapidly shut off to allow two-cell exit and developmental progression. Here, we report that robust ribosomal RNA (rRNA) synthesis and nucleolar maturation are essential for exit from the 2C state. 2C-like cells and two-cell embryos show similar immature nucleoli with altered structure and reduced rRNA output. We reveal that nucleolar disruption via blocking RNA polymerase I activity or preventing nucleolar phase separation enhances conversion to a 2C-like state in embryonic stem cells (ESCs) by detachment of the MERVL activator Dux from the nucleolar surface. In embryos, nucleolar disruption prevents proper nucleolar maturation and Dux silencing and leads to two- to four-cell arrest. Our findings reveal an intriguing link between rRNA synthesis, nucleolar maturation, and gene repression during early development.
Collapse
Affiliation(s)
- Sheila Q Xie
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Bryony J Leeke
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Chad Whilding
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Ryan T Wagner
- University of California at San Francisco, San Francisco, California 91413, USA
| | - Ferran Garcia-Llagostera
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - YiXuan Low
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Paul Chammas
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Nathan T-F Cheung
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Dirk Dormann
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Michael T McManus
- University of California at San Francisco, San Francisco, California 91413, USA
| | - Michelle Percharde
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
24
|
Hayashi Y, Matsui Y. Metabolic Control of Germline Formation and Differentiation in Mammals. Sex Dev 2022:1-16. [PMID: 35086109 PMCID: PMC10389803 DOI: 10.1159/000520662] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/27/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The germ cell lineage involves dynamic epigenetic changes during its formation and differentiation that are completely different from those of the somatic cell lineage. Metabolites and metabolic pathways have been reported as key factors related to the regulation of epigenetics as cofactors and substrates. However, our knowledge about the metabolic characteristics of germ cells, especially during the fetal stage, and their transition during differentiation is quite limited due to the rarity of the cells. Nevertheless, recent developments in omics technologies have made it possible to extract comprehensive metabolomic features of germ cells. SUMMARY In this review, we present the latest researches on the metabolic properties of germ cells in 4 stages: primordial germ cell specification, fetal germ cell differentiation, spermatogenesis, and oogenesis. At every stage, extensive published data has been accumulated on energy metabolism, and it is possible to describe its changes during germ cell differentiation in detail. As pluripotent stem cells differentiate into germ cells, energy metabolism shifts from glycolysis to oxidative phosphorylation; however, in spermatogenesis, glycolytic pathways are also temporarily dominant in spermatogonial stem cells. Although the significance of metabolic pathways other than energy metabolism in germ cell differentiation is largely unknown, the relation of the pentose phosphate pathway and Ser-Gly-one-carbon metabolism with germ cell properties has been suggested at various stages. We further discuss the relationship between these characteristic metabolic pathways and epigenetic regulation during germ cell specification and differentiation. Finally, the relevance of dietary and supplemental interventions on germ cell function and epigenomic regulation is also discussed. Key Messages: Comprehensive elucidation of metabolic features and metabolism-epigenome crosstalk in germ cells is important to reveal how the characteristic metabolic pathways are involved in the germ cell regulation. The accumulation of such insights would lead to suggestions for optimal diets and supplements to maintain reproductive health through modulating metabolic and epigenetic status of germ cells.
Collapse
Affiliation(s)
- Yohei Hayashi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
25
|
Matsui Y, Hayashi Y. Metabolic pathways regulating the development and non-genomic heritable traits of germ cells. J Reprod Dev 2021; 68:96-103. [PMID: 34955463 PMCID: PMC8979796 DOI: 10.1262/jrd.2021-137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Metabolism is an important cellular process necessary not only for producing energy and building blocks for cells, but also for regulating various cell functions, including intracellular
signaling, epigenomic effects, and transcription. The regulatory roles of metabolism have been extensively studied in somatic cells, including stem cells and cancer cells, but data regarding
germ cells are limited. Because germ cells produce individuals of subsequent generations, understanding the role of metabolism and its regulatory functions in germ cells is important.
Although limited information concerning the specific role of metabolism in germ cells is available, recent advances in related research have revealed specific metabolic states of
undifferentiated germ cells in embryos as well as in germ cells undergoing oogenesis and spermatogenesis. Studies have also elucidated the functions of some metabolic pathways associated
with germ cell development and the non-genomic heritable machinery of germ cells. In this review, we summarized all the available knowledge on the characteristic metabolic pathways in germ
cells, focusing on their regulatory functions, while discussing the issues that need to be addressed to enhance the understanding of germ cell metabolism.
Collapse
Affiliation(s)
- Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Miyagi 980-8575, Japan.,Graduate School of Life Sciences, Tohoku University, Miyagi 980-8577, Japan.,Graduate School of Medicine, Tohoku University, Miyagi 980-8575, Japan
| | - Yohei Hayashi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Miyagi 980-8575, Japan.,Graduate School of Life Sciences, Tohoku University, Miyagi 980-8577, Japan.,Graduate School of Medicine, Tohoku University, Miyagi 980-8575, Japan
| |
Collapse
|
26
|
Ramakrishna NB, Murison K, Miska EA, Leitch HG. Epigenetic Regulation during Primordial Germ Cell Development and Differentiation. Sex Dev 2021; 15:411-431. [PMID: 34847550 DOI: 10.1159/000520412] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/10/2021] [Indexed: 11/19/2022] Open
Abstract
Germline development varies significantly across metazoans. However, mammalian primordial germ cell (PGC) development has key conserved landmarks, including a critical period of epigenetic reprogramming that precedes sex-specific differentiation and gametogenesis. Epigenetic alterations in the germline are of unique importance due to their potential to impact the next generation. Therefore, regulation of, and by, the non-coding genome is of utmost importance during these epigenomic events. Here, we detail the key chromatin changes that occur during mammalian PGC development and how these interact with the expression of non-coding RNAs alongside broader epitranscriptomic changes. We identify gaps in our current knowledge, in particular regarding epigenetic regulation in the human germline, and we highlight important areas of future research.
Collapse
Affiliation(s)
- Navin B Ramakrishna
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Genome Institute of Singapore, A*STAR, Biopolis, Singapore, Singapore
| | - Keir Murison
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Eric A Miska
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Harry G Leitch
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Bulut-Karslioglu A, Jin H, Kim YK, Cho B, Guzman-Ayala M, Williamson AJK, Hejna M, Stötzel M, Whetton AD, Song JS, Ramalho-Santos M. Chd1 protects genome integrity at promoters to sustain hypertranscription in embryonic stem cells. Nat Commun 2021; 12:4859. [PMID: 34381042 PMCID: PMC8357957 DOI: 10.1038/s41467-021-25088-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/20/2021] [Indexed: 11/09/2022] Open
Abstract
Stem and progenitor cells undergo a global elevation of nascent transcription, or hypertranscription, during key developmental transitions involving rapid cell proliferation. The chromatin remodeler Chd1 mediates hypertranscription in pluripotent cells but its mechanism of action remains poorly understood. Here we report a novel role for Chd1 in protecting genome integrity at promoter regions by preventing DNA double-stranded break (DSB) accumulation in ES cells. Chd1 interacts with several DNA repair factors including Atm, Parp1, Kap1 and Topoisomerase 2β and its absence leads to an accumulation of DSBs at Chd1-bound Pol II-transcribed genes and rDNA. Genes prone to DNA breaks in Chd1 KO ES cells are longer genes with GC-rich promoters, a more labile nucleosomal structure and roles in chromatin regulation, transcription and signaling. These results reveal a vulnerability of hypertranscribing stem cells to accumulation of endogenous DNA breaks, with important implications for developmental and cancer biology.
Collapse
Affiliation(s)
- Aydan Bulut-Karslioglu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | - Hu Jin
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Yun-Kyo Kim
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Brandon Cho
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Marcela Guzman-Ayala
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Senti Biosciences, South San Francisco, CA, USA
| | - Andrew J K Williamson
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, UK
- Thermo Fisher Scientific, Stafford House, UK
| | - Miroslav Hejna
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | | | - Anthony D Whetton
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, UK
| | - Jun S Song
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Miguel Ramalho-Santos
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
28
|
Hayashi Y, Mori M, Igarashi K, Tanaka K, Takehara A, Ito-Matsuoka Y, Kanai A, Yaegashi N, Soga T, Matsui Y. Proteomic and metabolomic analyses uncover sex-specific regulatory pathways in mouse fetal germline differentiation†. Biol Reprod 2020; 103:717-735. [PMID: 32627815 DOI: 10.1093/biolre/ioaa115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/01/2020] [Accepted: 07/01/2020] [Indexed: 11/13/2022] Open
Abstract
Regulatory mechanisms of germline differentiation have generally been explained via the function of signaling pathways, transcription factors, and epigenetic regulation; however, little is known regarding proteomic and metabolomic regulation and their contribution to germ cell development. Here, we conducted integrated proteomic and metabolomic analyses of fetal germ cells in mice on embryonic day (E)13.5 and E18.5 and demonstrate sex- and developmental stage-dependent changes in these processes. In male germ cells, RNA processing, translation, oxidative phosphorylation, and nucleotide synthesis are dominant in E13.5 and then decline until E18.5, which corresponds to the prolonged cell division and more enhanced hyper-transcription/translation in male primordial germ cells and their subsequent repression. Tricarboxylic acid cycle and one-carbon pathway are consistently upregulated in fetal male germ cells, suggesting their involvement in epigenetic changes preceding in males. Increased protein stability and oxidative phosphorylation during female germ cell differentiation suggests an upregulation of aerobic energy metabolism, which likely contributes to the proteostasis required for oocyte maturation in subsequent stages. The features elucidated in this study shed light on the unrevealed mechanisms of germ cell development.
Collapse
Affiliation(s)
- Yohei Hayashi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan.,Laboratory of Germ Cell Development, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Kaori Igarashi
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Keiko Tanaka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Asuka Takehara
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
| | - Yumi Ito-Matsuoka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan.,Laboratory of Germ Cell Development, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
29
|
Percharde M, Sultana T, Ramalho-Santos M. What Doesn't Kill You Makes You Stronger: Transposons as Dual Players in Chromatin Regulation and Genomic Variation. Bioessays 2020; 42:e1900232. [PMID: 32053231 DOI: 10.1002/bies.201900232] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/10/2020] [Indexed: 12/22/2022]
Abstract
Transposable elements (TEs) are sequences currently or historically mobile, and are present across all eukaryotic genomes. A growing interest in understanding the regulation and function of TEs has revealed seemingly dichotomous roles for these elements in evolution, development, and disease. On the one hand, many gene regulatory networks owe their organization to the spread of cis-elements and DNA binding sites through TE mobilization during evolution. On the other hand, the uncontrolled activity of transposons can generate mutations and contribute to disease, including cancer, while their increased expression may also trigger immune pathways that result in inflammation or senescence. Interestingly, TEs have recently been found to have novel essential functions during mammalian development. Here, the function and regulation of TEs are discussed, with a focus on LINE1 in mammals. It is proposed that LINE1 is a beneficial endogenous dual regulator of gene expression and genomic diversity during mammalian development, and that both of these functions may be detrimental if deregulated in disease contexts.
Collapse
Affiliation(s)
- Michelle Percharde
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Tania Sultana
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, M5T 3L9, Ontario, Canada
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, M5T 3L9, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Ontario, Canada
| |
Collapse
|
30
|
Gura MA, Mikedis MM, Seymour KA, de Rooij DG, Page DC, Freiman RN. Dynamic and regulated TAF gene expression during mouse embryonic germ cell development. PLoS Genet 2020; 16:e1008515. [PMID: 31914128 PMCID: PMC7010400 DOI: 10.1371/journal.pgen.1008515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/10/2020] [Accepted: 11/11/2019] [Indexed: 12/02/2022] Open
Abstract
Germ cells undergo many developmental transitions before ultimately becoming either eggs or sperm, and during embryonic development these transitions include epigenetic reprogramming, quiescence, and meiosis. To begin understanding the transcriptional regulation underlying these complex processes, we examined the spatial and temporal expression of TAF4b, a variant TFIID subunit required for fertility, during embryonic germ cell development. By analyzing published datasets and using our own experimental system to validate these expression studies, we determined that both Taf4b mRNA and protein are highly germ cell-enriched and that Taf4b mRNA levels dramatically increase from embryonic day 12.5–18.5. Surprisingly, additional mRNAs encoding other TFIID subunits are coordinately upregulated through this time course, including Taf7l and Taf9b. The expression of several of these germ cell-enriched TFIID genes is dependent upon Dazl and/or Stra8, known regulators of germ cell development and meiosis. Together, these data suggest that germ cells employ a highly specialized and dynamic form of TFIID to drive the transcriptional programs that underlie mammalian germ cell development. Assisted reproductive therapy and fertility preservation are increasingly used to improve human reproduction across the world, yet there are still many unanswered questions regarding what factors govern the development of eggs and sperm and how these factors work together. We previously identified a subunit of the general transcription factor TFIID, TAF4b, that is essential for fertility. However, many basic characteristics of how Taf4b and its associated TFIID family members contribute to the formation of healthy sperm and eggs in mice and humans remain unknown. In this study, we find that mouse Taf4b and several closely related TFIID subunits become highly abundant during mouse embryonic gonad development, specifically in the cells that ultimately become eggs and sperm. Here, we analyzed data from public repositories and isolated these developing cells to examine their gene expression patterns throughout embryonic development. Together these data suggest that the dynamic expression of Taf4b and other TFIID family members are dependent on the well-established reproductive cell regulators Dazl and Stra8. This understanding of Taf4b gene expression and regulation in mouse reproductive cell development is likely conserved during development of human cells and offers novel insights into the interconnectedness of the factors that govern the formation of healthy eggs and sperm.
Collapse
Affiliation(s)
- Megan A. Gura
- Brown University, MCB Graduate Program and Department of Molecular Biology, Cell Biology and Biochemistry, Providence, RI, United States of America
| | | | - Kimberly A. Seymour
- Brown University, MCB Graduate Program and Department of Molecular Biology, Cell Biology and Biochemistry, Providence, RI, United States of America
| | | | - David C. Page
- Whitehead Institute, Cambridge, MA, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA, United States of America
| | - Richard N. Freiman
- Brown University, MCB Graduate Program and Department of Molecular Biology, Cell Biology and Biochemistry, Providence, RI, United States of America
- * E-mail:
| |
Collapse
|
31
|
Singh P, Patel RK, Palmer N, Grenier JK, Paduch D, Kaldis P, Grimson A, Schimenti JC. CDK2 kinase activity is a regulator of male germ cell fate. Development 2019; 146:dev180273. [PMID: 31582414 PMCID: PMC6857589 DOI: 10.1242/dev.180273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/21/2019] [Indexed: 12/27/2022]
Abstract
The ability of men to remain fertile throughout their lives depends upon establishment of a spermatogonial stem cell (SSC) pool from gonocyte progenitors, and thereafter balancing SSC renewal versus terminal differentiation. Here, we report that precise regulation of the cell cycle is crucial for this balance. Whereas cyclin-dependent kinase 2 (Cdk2) is not necessary for mouse viability or gametogenesis stages prior to meiotic prophase I, mice bearing a deregulated allele (Cdk2Y15S ) are severely deficient in spermatogonial differentiation. This allele disrupts an inhibitory phosphorylation site (Tyr15) for the kinase WEE1. Remarkably, Cdk2Y15S/Y15S mice possess abnormal clusters of mitotically active SSC-like cells, but these are eventually removed by apoptosis after failing to differentiate properly. Analyses of lineage markers, germ cell proliferation over time, and single cell RNA-seq data revealed delayed and defective differentiation of gonocytes into SSCs. Biochemical and genetic data demonstrated that Cdk2Y15S is a gain-of-function allele causing elevated kinase activity, which underlies these differentiation defects. Our results demonstrate that precise regulation of CDK2 kinase activity in male germ cell development is crucial for the gonocyte-to-spermatogonia transition and long-term spermatogenic homeostasis.
Collapse
Affiliation(s)
- Priti Singh
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - Ravi K Patel
- Cornell University, Department of Molecular Biology and Genetics, Ithaca, NY 14853, USA
| | - Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore 138673
- Department of Biochemistry, National University of Singapore, Singapore 117599, Republic of Singapore
| | - Jennifer K Grenier
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - Darius Paduch
- Cornell University, Weill Cornell Medicine, Department of Urology, New York, NY 10065, USA
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore 138673
- Department of Biochemistry, National University of Singapore, Singapore 117599, Republic of Singapore
| | - Andrew Grimson
- Cornell University, Department of Molecular Biology and Genetics, Ithaca, NY 14853, USA
| | - John C Schimenti
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| |
Collapse
|
32
|
DiTroia SP, Percharde M, Guerquin MJ, Wall E, Collignon E, Ebata KT, Mesh K, Mahesula S, Agathocleous M, Laird DJ, Livera G, Ramalho-Santos M. Maternal vitamin C regulates reprogramming of DNA methylation and germline development. Nature 2019; 573:271-275. [PMID: 31485074 PMCID: PMC8423347 DOI: 10.1038/s41586-019-1536-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/02/2019] [Indexed: 02/07/2023]
Abstract
Development is often assumed to be hardwired in the genome, but several lines of evidence indicate that it is susceptible to environmental modulation with potential long-term consequences, including in mammals1,2. The embryonic germline is of particular interest because of the potential for intergenerational epigenetic effects. The mammalian germline undergoes extensive DNA demethylation3-7 that occurs in large part by passive dilution of methylation over successive cell divisions, accompanied by active DNA demethylation by TET enzymes3,8-10. TET activity has been shown to be modulated by nutrients and metabolites, such as vitamin C11-15. Here we show that maternal vitamin C is required for proper DNA demethylation and the development of female fetal germ cells in a mouse model. Maternal vitamin C deficiency does not affect overall embryonic development but leads to reduced numbers of germ cells, delayed meiosis and reduced fecundity in adult offspring. The transcriptome of germ cells from vitamin-C-deficient embryos is remarkably similar to that of embryos carrying a null mutation in Tet1. Vitamin C deficiency leads to an aberrant DNA methylation profile that includes incomplete demethylation of key regulators of meiosis and transposable elements. These findings reveal that deficiency in vitamin C during gestation partially recapitulates loss of TET1, and provide a potential intergenerational mechanism for adjusting fecundity to environmental conditions.
Collapse
Affiliation(s)
- Stephanie P DiTroia
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michelle Percharde
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- MRC London Institute of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Marie-Justine Guerquin
- UMR967 INSERM, CEA/DRF/iRCM/SCSR/LDG, Université Paris Diderot, Sorbonne Paris Cité, Université Paris-Sud, Université Paris-Saclay, Laboratory of Development of the Gonads, Fontenay aux Roses, France
| | - Estelle Wall
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Evelyne Collignon
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Kevin T Ebata
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kathryn Mesh
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Swetha Mahesula
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michalis Agathocleous
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Diana J Laird
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Gabriel Livera
- UMR967 INSERM, CEA/DRF/iRCM/SCSR/LDG, Université Paris Diderot, Sorbonne Paris Cité, Université Paris-Sud, Université Paris-Saclay, Laboratory of Development of the Gonads, Fontenay aux Roses, France
| | - Miguel Ramalho-Santos
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
EZHIP constrains Polycomb Repressive Complex 2 activity in germ cells. Nat Commun 2019; 10:3858. [PMID: 31451685 PMCID: PMC6710278 DOI: 10.1038/s41467-019-11800-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 08/06/2019] [Indexed: 12/18/2022] Open
Abstract
The Polycomb group of proteins is required for the proper orchestration of gene expression due to its role in maintaining transcriptional silencing. It is composed of several chromatin modifying complexes, including Polycomb Repressive Complex 2 (PRC2), which deposits H3K27me2/3. Here, we report the identification of a cofactor of PRC2, EZHIP (EZH1/2 Inhibitory Protein), expressed predominantly in the gonads. EZHIP limits the enzymatic activity of PRC2 and lessens the interaction between the core complex and its accessory subunits, but does not interfere with PRC2 recruitment to chromatin. Deletion of Ezhip in mice leads to a global increase in H3K27me2/3 deposition both during spermatogenesis and at late stages of oocyte maturation. This does not affect the initial number of follicles but is associated with a reduction of follicles in aging. Our results suggest that mature oocytes Ezhip-/- might not be fully functional and indicate that fertility is strongly impaired in Ezhip-/- females. Altogether, our study uncovers EZHIP as a regulator of chromatin landscape in gametes.
Collapse
|
34
|
Meganathan K, Prakasam R, Kroll KL. A translational rheostat integrates euchromatin regulation and growth of pluripotent embryonic cells. Stem Cell Investig 2019; 6:11. [PMID: 31231668 DOI: 10.21037/sci.2019.05.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/10/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Kesavan Meganathan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ramachandran Prakasam
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
35
|
Campbell AE, Belleville AE, Resnick R, Shadle SC, Tapscott SJ. Facioscapulohumeral dystrophy: activating an early embryonic transcriptional program in human skeletal muscle. Hum Mol Genet 2019; 27:R153-R162. [PMID: 29718206 DOI: 10.1093/hmg/ddy162] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 12/12/2022] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is the third most prevalent muscular dystrophy. A progressive disease, it presents clinically as weakness and wasting of the face, shoulder and upper arm muscles, with later involvement of the trunk and lower extremities. FSHD develops through complex genetic and epigenetic events that converge on a common mechanism of toxicity with mis-expression of the transcription factor double homeobox 4 (DUX4). There is currently no treatment available for FSHD. However, the consensus that ectopic DUX4 expression in skeletal muscle is the root cause of FSHD pathophysiology has allowed research efforts to turn toward cultivating a deeper understanding of DUX4 biology and the pathways that underlie FSHD muscle pathology, and to translational studies aimed at developing targeted therapeutics using ever more sophisticated cell and animal-based models of FSHD. This review summarizes recent advances in our understanding of FSHD, including the regulation and activity of DUX4 in its normal developmental roles as well as its pathological contexts. We highlight how these advances raise new questions and challenges for the field as it moves into the next decade of FSHD research.
Collapse
Affiliation(s)
- Amy E Campbell
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrea E Belleville
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rebecca Resnick
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.,Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Sean C Shadle
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
36
|
He S, Vickers M, Zhang J, Feng X. Natural depletion of histone H1 in sex cells causes DNA demethylation, heterochromatin decondensation and transposon activation. eLife 2019; 8:42530. [PMID: 31135340 PMCID: PMC6594752 DOI: 10.7554/elife.42530] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/26/2019] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs), the movement of which can damage the genome, are epigenetically silenced in eukaryotes. Intriguingly, TEs are activated in the sperm companion cell - vegetative cell (VC) - of the flowering plant Arabidopsis thaliana. However, the extent and mechanism of this activation are unknown. Here we show that about 100 heterochromatic TEs are activated in VCs, mostly by DEMETER-catalyzed DNA demethylation. We further demonstrate that DEMETER access to some of these TEs is permitted by the natural depletion of linker histone H1 in VCs. Ectopically expressed H1 suppresses TEs in VCs by reducing DNA demethylation and via a methylation-independent mechanism. We demonstrate that H1 is required for heterochromatin condensation in plant cells and show that H1 overexpression creates heterochromatic foci in the VC progenitor cell. Taken together, our results demonstrate that the natural depletion of H1 during male gametogenesis facilitates DEMETER-directed DNA demethylation, heterochromatin relaxation, and TE activation.
Collapse
Affiliation(s)
- Shengbo He
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Martin Vickers
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Jingyi Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Xiaoqi Feng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
37
|
Bloom JC, Loehr AR, Schimenti JC, Weiss RS. Germline genome protection: implications for gamete quality and germ cell tumorigenesis. Andrology 2019; 7:516-526. [PMID: 31119900 DOI: 10.1111/andr.12651] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Germ cells have a unique and critical role as the conduit for hereditary information and therefore employ multiple strategies to protect genomic integrity and avoid mutations. Unlike somatic cells, which often respond to DNA damage by arresting the cell cycle and conducting DNA repair, germ cells as well as long-lived pluripotent stem cells typically avoid the use of error-prone repair mechanisms and favor apoptosis, reducing the risk of genetic alterations. Testicular germ cell tumors, the most common cancers of young men, arise from pre-natal germ cells. OBJECTIVES To summarize the current understanding of DNA damage response mechanisms in pre-meiotic germ cells and to discuss how they impact both the origins of testicular germ cell tumors and their remarkable responsiveness to genotoxic chemotherapy. MATERIALS AND METHODS We conducted a review of literature gathered from PubMed regarding the DNA damage response properties of testicular germ cell tumors and the germ cells from which they arise, as well as the influence of these mechanisms on therapeutic responses by testicular germ cell tumors. RESULTS AND DISCUSSION This review provides a comprehensive evaluation of how the developmental origins of male germ cells and their inherent germ cell-like DNA damage response directly impact the development and therapeutic sensitivity of testicular germ cell tumors. CONCLUSIONS The DNA damage response of germ cells directly impacts the development and therapeutic sensitivity of testicular germ cell tumors. Recent advances in the study of primordial germ cells, post-natal mitotically dividing germ cells, and pluripotent stem cells will allow for new investigations into the initiation, progression, and treatment of testicular germ cell tumors.
Collapse
Affiliation(s)
- J C Bloom
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - A R Loehr
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - J C Schimenti
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - R S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
38
|
Abstract
Primordial germ cells (PGCs) must complete a complex and dynamic developmental program during embryogenesis to establish the germline. This process is highly conserved and involves a diverse array of tasks required of PGCs, including migration, survival, sex differentiation, and extensive epigenetic reprogramming. A common theme across many organisms is that PGC success is heterogeneous: only a portion of all PGCs complete all these steps while many other PGCs are eliminated from further germline contribution. The differences that distinguish successful PGCs as a population are not well understood. Here, we examine variation that exists in PGCs as they navigate the many stages of this developmental journey. We explore potential sources of PGC heterogeneity and their potential implications in affecting germ cell behaviors. Lastly, we discuss the potential for PGC development to function as a multistage selection process that assesses heterogeneity in PGCs to refine germline quality.
Collapse
Affiliation(s)
- Daniel H Nguyen
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, United States
| | - Rebecca G Jaszczak
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, United States
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, United States.
| |
Collapse
|
39
|
Maslon MM, Braunschweig U, Aitken S, Mann AR, Kilanowski F, Hunter CJ, Blencowe BJ, Kornblihtt AR, Adams IR, Cáceres JF. A slow transcription rate causes embryonic lethality and perturbs kinetic coupling of neuronal genes. EMBO J 2019; 38:embj.2018101244. [PMID: 30988016 PMCID: PMC6484407 DOI: 10.15252/embj.2018101244] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
The rate of RNA polymerase II (RNAPII) elongation has an important role in the control of alternative splicing (AS); however, the in vivo consequences of an altered elongation rate are unknown. Here, we generated mouse embryonic stem cells (ESCs) knocked in for a slow elongating form of RNAPII We show that a reduced transcriptional elongation rate results in early embryonic lethality in mice. Focusing on neuronal differentiation as a model, we observed that slow elongation impairs development of the neural lineage from ESCs, which is accompanied by changes in AS and in gene expression along this pathway. In particular, we found a crucial role for RNAPII elongation rate in transcription and splicing of long neuronal genes involved in synapse signaling. The impact of the kinetic coupling of RNAPII elongation rate with AS is greater in ESC-differentiated neurons than in pluripotent cells. Our results demonstrate the requirement for an appropriate transcriptional elongation rate to ensure proper gene expression and to regulate AS during development.
Collapse
Affiliation(s)
- Magdalena M Maslon
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ulrich Braunschweig
- Donnelly Centre, Department of Molecular Genetics University of Toronto, Toronto, ON, Canada
| | - Stuart Aitken
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Abigail R Mann
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Fiona Kilanowski
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Chris J Hunter
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Benjamin J Blencowe
- Donnelly Centre, Department of Molecular Genetics University of Toronto, Toronto, ON, Canada
| | - Alberto R Kornblihtt
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ian R Adams
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
40
|
The Hippo Pathway Prevents YAP/TAZ-Driven Hypertranscription and Controls Neural Progenitor Number. Dev Cell 2018; 47:576-591.e8. [PMID: 30523785 DOI: 10.1016/j.devcel.2018.09.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/24/2018] [Accepted: 09/25/2018] [Indexed: 01/12/2023]
Abstract
The Hippo pathway controls the activity of YAP/TAZ transcriptional coactivators through a kinase cascade. Despite the critical role of this pathway in tissue growth and tumorigenesis, it remains unclear how YAP/TAZ-mediated transcription drives proliferation. By analyzing the effects of inactivating LATS1/2 kinases, the direct upstream inhibitors of YAP/TAZ, on mouse brain development and applying cell-number-normalized transcriptome analyses, we discovered that YAP/TAZ activation causes a global increase in transcription activity, known as hypertranscription, and upregulates many genes associated with cell growth and proliferation. In contrast, conventional read-depth-normalized RNA-sequencing analysis failed to detect the scope of the transcriptome shift and missed most relevant gene ontologies. Following a transient increase in proliferation, however, hypertranscription in neural progenitors triggers replication stress, DNA damage, and p53 activation, resulting in massive apoptosis. Our findings reveal a significant impact of YAP/TAZ activation on global transcription activity and have important implications for understanding YAP/TAZ function.
Collapse
|
41
|
Percharde M, Lin CJ, Yin Y, Guan J, Peixoto GA, Bulut-Karslioglu A, Biechele S, Huang B, Shen X, Ramalho-Santos M. A LINE1-Nucleolin Partnership Regulates Early Development and ESC Identity. Cell 2018; 174:391-405.e19. [PMID: 29937225 PMCID: PMC6046266 DOI: 10.1016/j.cell.2018.05.043] [Citation(s) in RCA: 364] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 03/20/2018] [Accepted: 05/17/2018] [Indexed: 01/07/2023]
Abstract
Transposable elements represent nearly half of mammalian genomes and are generally described as parasites, or "junk DNA." The LINE1 retrotransposon is the most abundant class and is thought to be deleterious for cells, yet it is paradoxically highly expressed during early development. Here, we report that LINE1 plays essential roles in mouse embryonic stem cells (ESCs) and pre-implantation embryos. In ESCs, LINE1 acts as a nuclear RNA scaffold that recruits Nucleolin and Kap1/Trim28 to repress Dux, the master activator of a transcriptional program specific to the 2-cell embryo. In parallel, LINE1 RNA mediates binding of Nucleolin and Kap1 to rDNA, promoting rRNA synthesis and ESC self-renewal. In embryos, LINE1 RNA is required for Dux silencing, synthesis of rRNA, and exit from the 2-cell stage. The results reveal an essential partnership between LINE1 RNA, Nucleolin, Kap1, and peri-nucleolar chromatin in the regulation of transcription, developmental potency, and ESC self-renewal.
Collapse
Affiliation(s)
- Michelle Percharde
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chih-Jen Lin
- The University of Edinburgh, MRC Centre for Reproductive Health, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Yafei Yin
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Juan Guan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gabriel A Peixoto
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aydan Bulut-Karslioglu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Steffen Biechele
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Xiaohua Shen
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Miguel Ramalho-Santos
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
42
|
Bulut-Karslioglu A, Macrae TA, Oses-Prieto JA, Covarrubias S, Percharde M, Ku G, Diaz A, McManus MT, Burlingame AL, Ramalho-Santos M. The Transcriptionally Permissive Chromatin State of Embryonic Stem Cells Is Acutely Tuned to Translational Output. Cell Stem Cell 2018; 22:369-383.e8. [PMID: 29499153 PMCID: PMC5836508 DOI: 10.1016/j.stem.2018.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 12/20/2017] [Accepted: 02/07/2018] [Indexed: 10/17/2022]
Abstract
A permissive chromatin environment coupled to hypertranscription drives the rapid proliferation of embryonic stem cells (ESCs) and peri-implantation embryos. We carried out a genome-wide screen to systematically dissect the regulation of the euchromatic state of ESCs. The results revealed that cellular growth pathways, most prominently translation, perpetuate the euchromatic state and hypertranscription of ESCs. Acute inhibition of translation rapidly depletes euchromatic marks in mouse ESCs and blastocysts, concurrent with delocalization of RNA polymerase II and reduction in nascent transcription. Translation inhibition promotes rewiring of chromatin accessibility, which decreases at a subset of active developmental enhancers and increases at histone genes and transposable elements. Proteome-scale analyses revealed that several euchromatin regulators are unstable proteins and continuously depend on a high translational output. We propose that this mechanistic interdependence of euchromatin, transcription, and translation sets the pace of proliferation at peri-implantation and may be employed by other stem/progenitor cells.
Collapse
Affiliation(s)
- Aydan Bulut-Karslioglu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Trisha A Macrae
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, Mass Spectrometry Facility, School of Pharmacy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sergio Covarrubias
- UCSF Diabetes Center, WM Keck Center for Noncoding RNAs, Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michelle Percharde
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gregory Ku
- UCSF Diabetes Center, WM Keck Center for Noncoding RNAs, Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aaron Diaz
- Department of Neurological Surgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael T McManus
- UCSF Diabetes Center, WM Keck Center for Noncoding RNAs, Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, Mass Spectrometry Facility, School of Pharmacy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Miguel Ramalho-Santos
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
43
|
Cleary MD. Uncovering cell type-specific complexities of gene expression and RNA metabolism by TU-tagging and EC-tagging. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e315. [PMID: 29369522 DOI: 10.1002/wdev.315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/07/2017] [Accepted: 12/19/2017] [Indexed: 01/17/2023]
Abstract
Cell type-specific transcription is a key determinant of cell fate and function. An ongoing challenge in biology is to develop robust and stringent biochemical methods to explore gene expression with cell type specificity. This challenge has become even greater as researchers attempt to apply high-throughput RNA analysis methods under in vivo conditions. TU-tagging and EC-tagging are in vivo biosynthetic RNA tagging techniques that allow spatial and temporal specificity in RNA purification. Spatial specificity is achieved through targeted expression of pyrimidine salvage enzymes (uracil phosphoribosyltransferase and cytosine deaminase) and temporal specificity is achieved by controlling exposure to bioorthogonal substrates of these enzymes (4-thiouracil and 5-ethynylcytosine). Tagged RNAs can be purified from total RNA extracted from an animal or tissue and used in transcriptome profiling analyses. In addition to identifying cell type-specific mRNA profiles, these techniques are applicable to noncoding RNAs and can be used to measure RNA transcription and decay. Potential applications of TU-tagging and EC-tagging also include fluorescent RNA imaging and selective definition of RNA-protein interactions. TU-tagging and EC-tagging hold great promise for supporting research at the intersection of RNA biology and developmental biology. This article is categorized under: Technologies > Analysis of the Transcriptome.
Collapse
Affiliation(s)
- Michael D Cleary
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, California
| |
Collapse
|