1
|
Haidurov A, Budanov AV. Sestrins in Carcinogenesis-The Firefighters That Sometimes Stoke the Fire. Cancers (Basel) 2025; 17:1578. [PMID: 40361504 PMCID: PMC12071529 DOI: 10.3390/cancers17091578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Sestrins (SESN1-3) are a family of stress-responsive proteins that regulate cellular metabolism and redox balance, both of which are frequently disrupted in cancer. As direct targets of stress-responsive transcription factors, including tumour suppressor p53, Sestrins function as leucine-dependent inhibitors of mTORC1 and potent antioxidants. Their downregulation is widely observed across multiple cancers and is associated with increased tumour growth and poor prognosis. Despite their consistent tumour-suppressive effects through mTORC1 inhibition and promotion of p53-dependent apoptosis, Sestrins exhibit a limited role in tumour initiation, which appears to be context-dependent. Their antioxidant activity reduces oxidative damage, thereby protecting against genomic instability and other cancer-promoting events. However, in certain contexts, Sestrins may promote tumour survival and progression by stimulating pro-survival pathways, such as AKT signalling through mTORC2 activation. This review examines the molecular mechanisms underlying these dual functions, with a particular focus on mTOR signalling and oxidative stress. We also discuss Sestrin expression patterns and functional outcomes in various cancer types, including lung, liver, colon, skin, prostate, and follicular lymphomas, highlighting their potential as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Alexander Haidurov
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, D02 R590 Dublin, Ireland
| | - Andrei V. Budanov
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, D02 R590 Dublin, Ireland
| |
Collapse
|
2
|
Pan Z, Liu Y, Li H, Qiu H, Zhang P, Li Z, Wang X, Tian Y, Feng Z, Zhu S, Wang X. The role and mechanism of aerobic glycolysis in nasopharyngeal carcinoma. PeerJ 2025; 13:e19213. [PMID: 40191756 PMCID: PMC11971989 DOI: 10.7717/peerj.19213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
This review delves into the pivotal role and intricate mechanisms of aerobic glycolysis in nasopharyngeal carcinoma (NPC). NPC, a malignancy originating from the nasopharyngeal epithelium, displays distinct geographical and clinical features. The article emphasizes the significance of aerobic glycolysis, a pivotal metabolic alteration in cancer cells, in NPC progression. Key enzymes such as hexokinase 2, lactate dehydrogenase A, phosphofructokinase 1, and pyruvate kinase M2 are discussed for their regulatory functions in NPC glycolysis through signaling pathways like PI3K/Akt and mTOR. Further, the article explores how oncogenic signaling pathways and transcription factors like c-Myc and HIF-1α modulate aerobic glycolysis, thereby affecting NPC's proliferation, invasion, metastasis, angiogenesis, and immune evasion. By elucidating these mechanisms, the review aims to advance research and clinical practice in NPC, informing the development of targeted therapeutic strategies that enhance treatment precision and reduce side effects. Overall, this review offers a broad understanding of the multifaceted role of aerobic glycolysis in NPC and its potential impact on therapeutic outcomes.
Collapse
Affiliation(s)
- Zhiyong Pan
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yuyi Liu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Hui Li
- Department of Ophthalmology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Huisi Qiu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Pingmei Zhang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Zhiying Li
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xinyu Wang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yuxiao Tian
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Zhengfu Feng
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Song Zhu
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xin Wang
- Department of Radiotherapy, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China
| |
Collapse
|
3
|
Koizume S, Miyagi Y. Adaptation mechanisms in cancer: Lipid metabolism under hypoxia and nutrient deprivation as a target for novel therapeutic strategies (Review). Mol Med Rep 2025; 31:83. [PMID: 39886950 PMCID: PMC11799873 DOI: 10.3892/mmr.2025.13448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025] Open
Abstract
Tumor tissues generally exist in a relatively hypovascular state, and cancer cells must adapt to severe tissue conditions with a limited molecular oxygen and nutrient supply for their survival. Lipid metabolism serves a role in this adaptation. Lipids are supplied not only through the bloodstream but also through autonomous synthesis by cancer cells, and they function as sources of adenosine triphosphate and cell components. Although cancer‑associated lipid metabolism has been widely reviewed, how this metabolism responds to the tumor environment with poor molecular oxygen and nutrient supply remains to be fully discussed. The main aim of the present review was to summarize the findings on this issue and to provide insights into how cancer cells adapt to better cope with metabolic stresses within tumors. It may be suggested that diverse types of lipid metabolism have a role in enabling cancer cells to adapt to both hypoxia and nutrient‑poor conditions. Gaining a deeper understanding of these molecular mechanisms may reveal novel possibilities of exploration for cancer treatment.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa 241-8515, Japan
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Kanagawa 241-8515, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa 241-8515, Japan
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Kanagawa 241-8515, Japan
| |
Collapse
|
4
|
Li J, Zhang D, Wang S, Yu P, Sun J, Zhang Y, Meng X, Li J, Xiang L. Baicalein induces apoptosis by inhibiting the glutamine-mTOR metabolic pathway in lung cancer. J Adv Res 2025; 68:341-357. [PMID: 38432394 PMCID: PMC11785570 DOI: 10.1016/j.jare.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024] Open
Abstract
INTRODUCTION Baicalein, a bioactive component of Scutellaria baicalensis Georgi, has been shown to promote apoptosis in non-small cell lung cancer cells. However, previous studies have not determined if baicalein exerts proapoptotic effects by modulating the metabolic pathways. OBJECTIVE To investigate if baicalein induces apoptosis in lung cancer cells by modulating the glutamine-mTOR metabolic pathway. METHODS The in vivo anti-lung cancer activity of baicalein (50, 100, and 200 mg/kg) was evaluated using a xenograft model. In vitro experiments were used to assess the efficacy of baicalein (for H1299: 12.5, 25, and 50 μM; for A549: 10, 20, and 40 μM) on lung cancer cell proliferation, colony formation, and apoptosis. Metabolomics analysis was performed using liquid chromatography-mass spectrometry. The binding of baicalein to glutamine transporters and glutaminase was examined using molecular docking. The overexpression of glutamine transporters was validated using qRT-PCR and western blot analyses. The levels of ASCT2, LAT1, GLS1, p-mTOR, mTOR, and apoptosis-related proteins were evaluated using western blot analysis. RESULTS Baicalein inhibited lung cancer xenograft tumor growth in vivo and suppressed proliferation and promoted apoptosis in lung cancer cells in vitro. Additionally, baicalein altered amino acid metabolites, especially glutamine metabolites, in H1299 and A549 cells. Mechanistically, baicalein interacted with glutamine transporters as well as glutaminase and inhibited their activation. The expression of mTOR, an apoptosis-related protein and downstream target of glutamine metabolism, was also inhibited by baicalein treatment. Importantly, we next demonstrated the suppression of mTOR signaling and the induction of apoptosis by baicalein were achieved by regulating glutamine metabolism. CONCLUSION Baicalein inhibited the mTOR signaling pathway and induced apoptosis by downregulating glutamine metabolism. The potential of baicalein to induce apoptosis in lung cancer cells by selectively targeting the glutamine-mTOR pathway suggests an encouraging approach for treating lung cancer.
Collapse
Affiliation(s)
- Jingyang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Di Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayi Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Juan Li
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Xu W, Chen H, Xiao H. mTORC2: A neglected player in aging regulation. J Cell Physiol 2024; 239:e31363. [PMID: 38982866 DOI: 10.1002/jcp.31363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays a pivotal role in various biological processes, through integrating external and internal signals, facilitating gene transcription and protein translation, as well as by regulating mitochondria and autophagy functions. mTOR kinase operates within two distinct protein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which engage separate downstream signaling pathways impacting diverse cellular processes. Although mTORC1 has been extensively studied as a pro-proliferative factor and a pro-aging hub if activated aberrantly, mTORC2 received less attention, particularly regarding its implication in aging regulation. However, recent studies brought increasing evidence or clues for us, which implies the associations of mTORC2 with aging, as the genetic elimination of unique subunits of mTORC2, such as RICTOR, has been shown to alleviate aging progression in comparison to mTORC1 inhibition. In this review, we first summarized the basic characteristics of mTORC2, including its protein architecture and signaling network. We then focused on reviewing the molecular signaling regulation of mTORC2 in cellular senescence and organismal aging, and proposed the multifaceted regulatory characteristics under senescent and nonsenescent contexts. Next, we outlined the research progress of mTOR inhibitors in the field of antiaging and discussed future prospects and challenges. It is our pleasure if this review article could provide meaningful information for our readers and call forth more investigations working on this topic.
Collapse
Affiliation(s)
- Weitong Xu
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Honghan Chen
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Xiao
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Kim M, Hwang S, Jeong SM. Targeting cellular adaptive responses to glutaminolysis perturbation for cancer therapy. Mol Cells 2024; 47:100096. [PMID: 39038517 PMCID: PMC11342766 DOI: 10.1016/j.mocell.2024.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Metabolic aberrations, notably deviations in glutamine metabolism, are crucial in the oncogenic process, offering vital resources for the unlimited proliferation and enhanced survival capabilities of cancer cells. The dependency of malignant cells on glutamine metabolism has led to the proposition of targeted therapeutic strategies. However, the capability of cancer cells to initiate adaptive responses undermines the efficacy of these therapeutic interventions. This review meticulously examines the multifaceted adaptive mechanisms that cancer cells deploy to sustain survival and growth following the disruption of glutamine metabolism. Emphasis is placed on the roles of transcription factors, alterations in metabolic pathways, the mechanistic target of rapamycin complex 1 signaling axis, autophagy, macropinocytosis, nucleotide biosynthesis, and the scavenging of ROS. Thus, the delineation and subsequent targeting of these adaptive responses in the context of therapies aimed at glutamine metabolism offer a promising avenue for circumventing drug resistance in cancer treatment.
Collapse
Affiliation(s)
- Minjoong Kim
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Sunsook Hwang
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Seung Min Jeong
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea.
| |
Collapse
|
7
|
Bornaun T, Akkaya S, Güven HZ. Evaluation of Serum Sestrin 2 Levels in Patients Diagnosed with Endometrial Polyps and Uterine Leiomyomas. J Clin Med 2024; 13:3413. [PMID: 38929943 PMCID: PMC11204883 DOI: 10.3390/jcm13123413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/26/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Background/Objectives: This study investigates the correlation between the serum levels of Sestrin 2 and the presence of endometrial polyps or uterine leiomyomas, aiming to enhance the understanding of the pathophysiology underlying these gynecological conditions and evaluate the potential of Sestrin 2 as an early diagnostic biomarker. Methods: In a prospective case-control format, patients with preliminary diagnoses of endometrial polyps or uterine leiomyomas confirmed by histopathological analysis following surgery were included. This study analyzed serum Sestrin 2 levels across different patient groups, revealing significant variations that underscore the diagnostic value of Sestrin 2. Results: Elevated serum Sestrin 2 levels were observed in patients with endometrial polyps and uterine leiomyomas compared to the control group, suggesting its utility as a novel marker for early detection. Conclusions: The study indicates the promising role of serum Sestrin 2 levels as a valuable biomarker for early diagnosis of endometrial polyps and uterine leiomyomas, advocating for further research into its diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Teymur Bornaun
- Department of Obstetrics and Gynecology, Istanbul University Health Sciences Istanbul Bagcilar Training and Research Hospital, Istanbul 34200, Turkey
| | - Selim Akkaya
- Istanbul University Health Sciences Istanbul Bagcilar Training and Research Hospital, Istanbul 34200, Turkey; (S.A.); (H.Z.G.)
| | - Hamid Zafer Güven
- Istanbul University Health Sciences Istanbul Bagcilar Training and Research Hospital, Istanbul 34200, Turkey; (S.A.); (H.Z.G.)
| |
Collapse
|
8
|
Zhou Y, Zhang Y, Botchway BOA, Huang M, Liu X. Sestrin2 can alleviate endoplasmic reticulum stress to improve traumatic brain injury by activating AMPK/mTORC1 signaling pathway. Metab Brain Dis 2024; 39:439-452. [PMID: 38047978 DOI: 10.1007/s11011-023-01323-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023]
Abstract
Traumatic brain injury (TBI), as a serious central nervous system disease, can result in severe neurological dysfunction or even disability and death of patients. The early and effective intervention of secondary brain injury can improve the prognosis of TBI. Endoplasmic reticulum (ER) stress is one of the main reasons to recover TBI. ER stress inhibition may be beneficial in treating TBI. Sestrin2 is a crucial regulator of ER stress, and its activation can significantly improve TBI. In this paper, we analyze the biological function of sestrin2, the latest findings on ER stress, and the relationship between ER stress and TBI. We elucidate the relationship of sestrin2 inhibiting ER stress via activating the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin complex 1 (MTORC1) signaling. Finally, we elaborate on the possible role of sestrin2 in TBI and explain how its activation potentially improves TBI.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, 312000, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, 312000, China
| | | | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, 312000, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, 312000, China.
| |
Collapse
|
9
|
Wang X, Tian Z, He L, Meng H, Zhu J, Li Y, Wang J, Hua X, Huang H, Huang C. DNMT3a-mediated upregulation of the stress inducible protein sestrin-2 contributes to malignant transformation of human bronchial epithelial cells following nickel exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115954. [PMID: 38232523 DOI: 10.1016/j.ecoenv.2024.115954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/07/2023] [Accepted: 01/06/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND Nickel is a confirmed human lung carcinogen. Nonetheless, the molecular mechanisms driving its carcinogenic impact on lung tissue remain poorly defined. In this study, we assessed SESN2 expression and the signaling pathways responsible for cellular transformation in human bronchial epithelial cells (HBECs) as a result of nickel exposure. METHODS We employed the Western blotting to determine the induction of SESN2 by nickel. To clarify the signaling pathways leading to cellular transformation following nickel exposure, we applied techniques such as gene knockdown, methylation-specific PCR, and chromatin immunoprecipitation. RESULT Exposure to nickel results in the upregulation of SESN2 and the initiation of autophagy in human bronchial epithelial cells (HBECs). This leads to degradation of HUR protein and consequently downregulation of USP28 mRNA, PP2AC protein, β-catenin protein, and diminished VHL transcription, culminating in the accumulation of hypoxia-inducible factor-1α (HIF-1α) and the malignant transformation of these cells. Mechanistic studies revealed that the increased expression of SESN2 is attributed to the demethylation of the SESN2 promoter induced by nickel, a process facilitated by decreased DNA methyl-transferase 3 A (DNMT3a) expression, while The downregulation of VHL transcription is linked to the suppression of the PP2A-C/GSK3β/β-Catenin/C-Myc pathway. Additionally, we discovered that SESN2-mediated autophagy triggers the degradation of HUR protein, which subsequently reduces the stability of USP28 mRNA and inhibits the PP2A-C/GSK3β/β-Catenin pathway and c-Myc transcription in HBECs post nickel exposure. CONCLUSION Our results reveal that nickel exposure leads to the downregulation of DNMT3a, resulting in the hypomethylation of the SESN2 promoter and its protein induction. This triggers autophagy-dependent suppression of the HUR/USP28/PP2A/β-Catenin/c-Myc pathway, subsequently leading to reduced VHL transcription, accumulation of HIF-1α protein, and the malignant transformation of human bronchial epithelial cells (HBECs). Our research offers novel insights into the molecular mechanisms that underlie the lung carcinogenic effects of nickel exposure. Specifically, nickel induces aberrant DNA methylation in the SESN2 promoter region through the decrease of DNMT3a levels, which ultimately leads to HIF-1α protein accumulation and the malignant transformation of HBECs. Specifically, nickel initiates DNA-methylation of the SESN2 promoter region by decreasing DNMT3a, ultimately resulting in HIF-1α protein accumulation and malignant transformation of HBECs. This study highlights DNMT3a as a potential prognostic biomarker or therapeutic target to improve clinical outcomes in lung cancer patients.
Collapse
Affiliation(s)
- Xinxing Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory, Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory, Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lijiong He
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory, Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hao Meng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory, Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Junlan Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory, Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yang Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory, Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingjing Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory, Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaohui Hua
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory, Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haishan Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory, Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory, Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
10
|
Ragupathi A, Kim C, Jacinto E. The mTORC2 signaling network: targets and cross-talks. Biochem J 2024; 481:45-91. [PMID: 38270460 PMCID: PMC10903481 DOI: 10.1042/bcj20220325] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
The mechanistic target of rapamycin, mTOR, controls cell metabolism in response to growth signals and stress stimuli. The cellular functions of mTOR are mediated by two distinct protein complexes, mTOR complex 1 (mTORC1) and mTORC2. Rapamycin and its analogs are currently used in the clinic to treat a variety of diseases and have been instrumental in delineating the functions of its direct target, mTORC1. Despite the lack of a specific mTORC2 inhibitor, genetic studies that disrupt mTORC2 expression unravel the functions of this more elusive mTOR complex. Like mTORC1 which responds to growth signals, mTORC2 is also activated by anabolic signals but is additionally triggered by stress. mTORC2 mediates signals from growth factor receptors and G-protein coupled receptors. How stress conditions such as nutrient limitation modulate mTORC2 activation to allow metabolic reprogramming and ensure cell survival remains poorly understood. A variety of downstream effectors of mTORC2 have been identified but the most well-characterized mTORC2 substrates include Akt, PKC, and SGK, which are members of the AGC protein kinase family. Here, we review how mTORC2 is regulated by cellular stimuli including how compartmentalization and modulation of complex components affect mTORC2 signaling. We elaborate on how phosphorylation of its substrates, particularly the AGC kinases, mediates its diverse functions in growth, proliferation, survival, and differentiation. We discuss other signaling and metabolic components that cross-talk with mTORC2 and the cellular output of these signals. Lastly, we consider how to more effectively target the mTORC2 pathway to treat diseases that have deregulated mTOR signaling.
Collapse
Affiliation(s)
- Aparna Ragupathi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Christian Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| |
Collapse
|
11
|
Yu W, Guo J, Mao L, Wang Q, Liu Y, Xu D, Ma J, Luo C. Glucose promotes cell growth and casein synthesis via ATF4/Nrf2-Sestrin2- AMPK-mTORC1 pathway in dairy cow mammary epithelial cells. Anim Biotechnol 2023; 34:3808-3818. [PMID: 37435839 DOI: 10.1080/10495398.2023.2228847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
In the dairy industry, glucose (Glu) is used as bioactive substance to increase milk yield. However, the molecular regulation underneath needs further clarification. Here, the regulation and its molecular mechanism of Glu on cell growth and casein synthesis of dairy cow mammary epithelial cells (DCMECs) were investigated. When Glu was added from DCMECs, both cell growth, β-casein expression and the mechanistic target of rapamycin complex 1 (mTORC1) pathway were increased. Overexpression and silencing of mTOR revealed that Glu promoted cell growth and β-casein expression through the mTORC1 pathway. When Glu was added from DCMECs, both Adenosine 5'-monophosphate-activated protein kinase α (AMPKα) and Sestrin2 (SESN2) expression were decreased. Overexpression and silencing of AMPKα or SESN2 uncovered that AMPKα suppressed cell growth and β-casein synthesis through inhibiting mTORC1 pathway, and SESN2 suppressed cell growth and β-casein synthesis through activating AMPK pathway. When Glu was depleted from DCMECs, both activating transcription factor 4 (ATF4) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression were increased. Overexpression or silencing of ATF4 or Nrf2 demonstrated that Glu depletion promoted SESN2 expression through ATF4 and Nrf2. Together, these results indicate that in DCMECs, Glu promoted cell growth and casein synthesis via ATF4/Nrf2-SESN2-AMPK-mTORC1 pathway.
Collapse
Affiliation(s)
- Wei Yu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Jinqi Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Lei Mao
- College of Life Sciences, Shihezi University, Shihezi, P. R. China
| | - Qingzhu Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, P. R. China
| | - Yuanyuan Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Dong Xu
- Harbin Weike Biotechnology Co., Ltd, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Jiage Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
- Harbin Weike Biotechnology Co., Ltd, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Chaochao Luo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Branch of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
12
|
Perpiñán E, Sanchez-Fueyo A, Safinia N. Immunoregulation: the interplay between metabolism and redox homeostasis. FRONTIERS IN TRANSPLANTATION 2023; 2:1283275. [PMID: 38993920 PMCID: PMC11235320 DOI: 10.3389/frtra.2023.1283275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/13/2023] [Indexed: 07/13/2024]
Abstract
Regulatory T cells are fundamental for the induction and maintenance of immune homeostasis, with their dysfunction resulting in uncontrolled immune responses and tissue destruction predisposing to autoimmunity, transplant rejection and several inflammatory and metabolic disorders. Recent discoveries have demonstrated that metabolic processes and mitochondrial function are critical for the appropriate functioning of these cells in health, with their metabolic adaptation, influenced by microenvironmental factors, seen in several pathological processes. Upon activation regulatory T cells rearrange their oxidation-reduction (redox) system, which in turn supports their metabolic reprogramming, adding a layer of complexity to our understanding of cellular metabolism. Here we review the literature surrounding redox homeostasis and metabolism of regulatory T cells to highlight new mechanistic insights of these interlinked pathways in immune regulation.
Collapse
Affiliation(s)
| | | | - N. Safinia
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Institute of Liver Studies, James Black Centre, King’s College London, London, United Kingdom
| |
Collapse
|
13
|
Zhang X, Luo Z, Li J, Lin Y, Li Y, Li W. Sestrin2 in diabetes and diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1274686. [PMID: 37920252 PMCID: PMC10619741 DOI: 10.3389/fendo.2023.1274686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Diabetes is a global health problem which is accompanied with multi-systemic complications. It is of great significance to elucidate the pathogenesis and to identify novel therapies of diabetes and diabetic complications. Sestrin2, a stress-inducible protein, is primarily involved in cellular responses to various stresses. It plays critical roles in regulating a series of cellular events, such as oxidative stress, mitochondrial function and endoplasmic reticulum stress. Researches investigating the correlations between Sestrin2, diabetes and diabetic complications are increasing in recent years. This review incorporates recent findings, demonstrates the diverse functions and regulating mechanisms of Sestrin2, and discusses the potential roles of Sestrin2 in the pathogenesis of diabetes and diabetic complications, hoping to highlight a promising therapeutic direction.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zirui Luo
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Jiahong Li
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yaxuan Lin
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yu Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
An S, Nedumaran B, Koh H, Joo DJ, Lee H, Park CS, Harris RA, Shin KS, Djalilian AR, Kim YD. Enhancement of the SESN2-SHP cascade by melatonin ameliorates hepatic gluconeogenesis by inhibiting the CRBN-BTG2-CREBH signaling pathway. Exp Mol Med 2023; 55:1556-1569. [PMID: 37488285 PMCID: PMC10393991 DOI: 10.1038/s12276-023-01040-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 07/26/2023] Open
Abstract
Melatonin is involved in the regulation of various biological functions. Here, we explored a novel molecular mechanism by which the melatonin-induced sestrin2 (SESN2)-small heterodimer partner (SHP) signaling pathway protects against fasting- and diabetes-mediated hepatic glucose metabolism. Various key gene expression analyses were performed and multiple metabolic changes were assessed in liver specimens and primary hepatocytes of mice and human participants. The expression of the hepatic cereblon (CRBN) and b-cell translocation gene 2 (BTG2) genes was significantly increased in fasting mice, diabetic mice, and patients with diabetes. Overexpression of Crbn and Btg2 increased hepatic gluconeogenesis by enhancing cyclic adenosine monophosphate (cAMP)-responsive element-binding protein H (CREBH), whereas this phenomenon was prominently ablated in Crbn null mice and Btg2-silenced mice. Interestingly, melatonin-induced SESN2 and SHP markedly reduced hepatic glucose metabolism in diabetic mice and primary hepatocytes, and this protective effect of melatonin was strikingly reversed by silencing Sesn2 and Shp. Finally, the melatonin-induced SESN2-SHP signaling pathway inhibited CRBN- and BTG2-mediated hepatic gluconeogenic gene transcription via the competition of BTG2 and the interaction of CREBH. Mitigation of the CRBN-BTG2-CREBH axis by the melatonin-SESN2-SHP signaling network may provide a novel therapeutic strategy to treat metabolic dysfunction due to diabetes.
Collapse
Affiliation(s)
- Seungwon An
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Balachandar Nedumaran
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Hong Koh
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Severance Children's Hospital, Severance Pediatric Liver Disease Research Group, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dong Jin Joo
- Department of Surgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyungjo Lee
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Chul-Seung Park
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute Science and Technology, Gwangju, 61005, Republic of Korea
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Keong Sub Shin
- DUKSAN Institute of Biomedical and Life Science, Gwangmyeong, 14348, Republic of Korea
- Young Sciences, Inc., Bucheon, 14449, Republic of Korea
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yong Deuk Kim
- DUKSAN Institute of Biomedical and Life Science, Gwangmyeong, 14348, Republic of Korea.
- Young Sciences, Inc., Bucheon, 14449, Republic of Korea.
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
15
|
Kozak J, Jonak K. Association between the antioxidant properties of SESN proteins and anti-cancer therapies. Amino Acids 2023:10.1007/s00726-023-03281-6. [PMID: 37284849 PMCID: PMC10372130 DOI: 10.1007/s00726-023-03281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
Since the beginning of SESN protein development, they have attracted highly progressive attention due to their regulatory role in multiple signalling pathways. Through their antioxidant activity and autophagy regulation implication, they can function as powerful antioxidants to reduce oxidative stress in cells. SESN proteins received special attention in the field of regulation of reactive oxygen species level in the cell and its interplay with signalling pathways determining energy and nutrient homeostasis. Since perturbations in these pathways are implicated in cancer onset and development, SESNs might constitute potential novel therapeutic targets of broad interest. In this review, we discuss the impact of SESN proteins on anti-cancer therapy based on naturally occurring compounds and conventionally used drugs that influence oxidative stress and autophagy-induced cellular signalling pathways. The significant changes in reactive oxygen species level and nutrient status in cancer cells generate subsequent biological effect through the regulation of SESN-dependent pathways. Thus, SESN may serve as the key molecule for regulating anti-cancer drugs' induced cellular response.
Collapse
Affiliation(s)
- Joanna Kozak
- Chair of Fundamental Sciences, Department of Human Anatomy, Medical University of Lublin, Kazimierza Jaczewskiego 4, 20-090, Lublin, Poland.
| | - Katarzyna Jonak
- Department of Foreign Languages, Interfaculty Centre for Didactics, Medical University of Lublin, 20-081, Lublin, Poland
| |
Collapse
|
16
|
Kong Y, Wu M, Wan X, Sun M, Zhang Y, Wu Z, Li C, Liang X, Gao L, Ma C, Yue X. Lipophagy-mediated cholesterol synthesis inhibition is required for the survival of hepatocellular carcinoma under glutamine deprivation. Redox Biol 2023; 63:102732. [PMID: 37150151 DOI: 10.1016/j.redox.2023.102732] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023] Open
Abstract
Glutamine is critical for tumor progression, and restriction of its availability is emerging as a potential therapeutic strategy. The metabolic plasticity of tumor cells helps them adapting to glutamine restriction. However, the role of cholesterol metabolism in this process is relatively unexplored. Here, we reported that glutamine deprivation inhibited cholesterol synthesis in hepatocellular carcinoma (HCC). Reactivation of cholesterol synthesis enhanced glutamine-deprivation-induced cell death of HCC cells, which is partially duo to augmented NADPH depletion and lipid peroxidation. Mechanistically, glutamine deprivation induced lipophagy to transport cholesterol from lipid droplets (LDs) to endoplasmic reticulum (ER), leading to inhibit SREBF2 maturation and cholesterol synthesis, and maintain redox balance for survival. Glutamine deprivation decreased mTORC1 activity to induce lipophagy. Importantly, administration of U18666A, CQ, or shTSC2 viruses further augmented GPNA-induced inhibition of xenograft tumor growth. Clinical data supported that glutamine utilization positively correlated with cholesterol synthesis, which is associated with poor prognosis of HCC patients. Collectively, our study revealed that cholesterol synthesis inhibition is required for the survival of HCC under glutamine-restricted tumor microenvironment.
Collapse
Affiliation(s)
- Youzi Kong
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Mengting Wu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaoyu Wan
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Min Sun
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yankun Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Chunyang Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xuetian Yue
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
17
|
Jin J, Byun JK, Choi YK, Park KG. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp Mol Med 2023; 55:706-715. [PMID: 37009798 PMCID: PMC10167356 DOI: 10.1038/s12276-023-00971-9] [Citation(s) in RCA: 194] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 04/04/2023] Open
Abstract
Proliferating cancer cells rely largely on glutamine for survival and proliferation. Glutamine serves as a carbon source for the synthesis of lipids and metabolites via the TCA cycle, as well as a source of nitrogen for amino acid and nucleotide synthesis. To date, many studies have explored the role of glutamine metabolism in cancer, thereby providing a scientific rationale for targeting glutamine metabolism for cancer treatment. In this review, we summarize the mechanism(s) involved at each step of glutamine metabolism, from glutamine transporters to redox homeostasis, and highlight areas that can be exploited for clinical cancer treatment. Furthermore, we discuss the mechanisms underlying cancer cell resistance to agents that target glutamine metabolism, as well as strategies for overcoming these mechanisms. Finally, we discuss the effects of glutamine blockade on the tumor microenvironment and explore strategies to maximize the utility of glutamine blockers as a cancer treatment.
Collapse
Affiliation(s)
- Jonghwa Jin
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea
| | - Jun-Kyu Byun
- BK21 FOUR Community-based Intelligent Novel Drug Discovery Education Unit, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, Korea
| | - Yeon-Kyung Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, 41404, Korea.
| | - Keun-Gyu Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea.
| |
Collapse
|
18
|
Papež M, Jiménez Lancho V, Eisenhut P, Motheramgari K, Borth N. SLAM-seq reveals early transcriptomic response mechanisms upon glutamine deprivation in Chinese hamster ovary cells. Biotechnol Bioeng 2023; 120:970-986. [PMID: 36575109 DOI: 10.1002/bit.28320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Mammalian cells frequently encounter subtle perturbations during recombinant protein production. Identifying the genetic factors that govern the cellular stress response can facilitate targeted genetic engineering to obtain production cell lines that demonstrate a higher stress tolerance. To simulate nutrient stress, Chinese hamster ovary (CHO) cells were transferred into a glutamine(Q)-free medium and transcriptional dynamics using thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq) along with standard RNA-seq of stressed and unstressed cells were investigated. The SLAM-seq method allows differentiation between actively transcribed, nascent mRNA, and total (previously present) mRNA in the sample, adding an additional, time-resolved layer to classic RNA-sequencing. The cells tackle amino acid (AA) limitation by inducing the integrated stress response (ISR) signaling pathway, reflected in Atf4 overexpression in the early hours post Q deprivation, leading to subsequent activation of its targets, Asns, Atf3, Ddit3, Eif4ebp1, Gpt2, Herpud1, Slc7a1, Slc7a11, Slc38a2, Trib3, and Vegfa. The GCN2-eIF2α-ATF4 pathway is confirmed by a significant halt in transcription of translation-related genes at 24 h post Q deprivation. The downregulation of lipid synthesis indicates the inhibition of the mTOR pathway, further confirmed by overexpression of Sesn2. Furthermore, SLAM-seq detects short-lived transcription factors, such as Egr1, that would have been missed in standard experimental designs with RNA-seq. Our results describe the successful establishment of SLAM-seq in CHO cells and therefore facilitate its future use in other scenarios where dynamic transcriptome profiling in CHO cells is essential.
Collapse
Affiliation(s)
- Maja Papež
- Austrian Centre of Industrial Biotechnology (acib GmbH), Graz, Austria
| | | | - Peter Eisenhut
- Austrian Centre of Industrial Biotechnology (acib GmbH), Graz, Austria
| | | | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (acib GmbH), Graz, Austria
- University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
19
|
Sun Y, Wang H, Qu T, Luo J, An P, Ren F, Luo Y, Li Y. mTORC2: a multifaceted regulator of autophagy. Cell Commun Signal 2023; 21:4. [PMID: 36604720 PMCID: PMC9814435 DOI: 10.1186/s12964-022-00859-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/06/2022] [Indexed: 01/06/2023] Open
Abstract
Autophagy is a multi-step catabolic process that delivers cellular components to lysosomes for degradation and recycling. The dysregulation of this precisely controlled process disrupts cellular homeostasis and leads to many pathophysiological conditions. The mechanistic target of rapamycin (mTOR) is a central nutrient sensor that integrates growth signals with anabolism to fulfil biosynthetic and bioenergetic requirements. mTOR nucleates two distinct evolutionarily conserved complexes (mTORC1 and mTORC2). However, only mTORC1 is acutely inhibited by rapamycin. Consequently, mTORC1 is a well characterized regulator of autophagy. While less is known about mTORC2, the availability of acute small molecule inhibitors and multiple genetic models has led to increased understanding about the role of mTORC2 in autophagy. Emerging evidence suggests that the regulation of mTORC2 in autophagy is mainly through its downstream effector proteins, and is variable under different conditions and cellular contexts. Here, we review recent advances that describe a role for mTORC2 in this catabolic process, and propose that mTORC2 could be a potential clinical target for the treatment of autophagy-related diseases. Video abstract.
Collapse
Affiliation(s)
- Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Huihui Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070 China
| | - Taiqi Qu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Junjie Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Peng An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083 China
| |
Collapse
|
20
|
Sestrin2 contributes to BRAF inhibitor resistance via reducing redox vulnerability of melanoma cells. J Dermatol Sci 2022; 109:52-60. [PMID: 36858850 DOI: 10.1016/j.jdermsci.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Treatment resistance often occurs with BRAF inhibitor (BRAFi) therapy for melanoma, bringing in a great challenge to the treatment of melanoma patients harboring mutant BRAF gene. Recent studies revealed redox vulnerability constitutes a novel opportunity to overcome BRAFi resistance. Previously we found Sestrin2 provided protection to metastatic melanoma cells by detoxifying reactive oxygen species (ROS) induced by anoikis, but its defensive role against redox stimuli elicited by BRAFi was unclear. OBJECTIVE In-depth explored the role of Sestrin2 in BRAFi-resistant melanoma. METHODS Vemurafenib-resistant melanoma cells were established using 451Lu and UACC62 cell lines carrying BRAFV600E mutation. Mechanistic studies were subsequently performed by transfection of lentiviral vectors encoding an shRNA against SESN2 or embedded with the coding sequences of SESN2 cDNA. RESULTS Elevated Sestrin2 expression was found in vemurafenib-resistance melanoma cells. Further mechanistic studies revealed that BRAFi-resistant melanoma cells employ Sestrin2 to adapt to higher oxidative stress under vemurafenib exposure. It was also demonstrated that mTOR signaling was significantly activated following Sestrin2 knockdown. Given the known promoting role of active mTOR signaling in melanoma proliferation and survival, the effects of mTOR blocker and Sestrin2 ablation on BRAFi-resistant melanoma cells were further tested, and the combination was found to result in enhanced inhibition of melanoma cell growth. CONCLUSIONS Our findings demonstrated the contribution of Sestrin2 to the development of BRAFi resistance and the fact that the combination of mTOR blocker assisted Sestrein2 ablation in eliminating BRAFi resistance of melanoma. Therefore, mTOR and Sestrin2 may be novel combinatorial therapeutic targets to overcome BRAFi resistance of melanoma.
Collapse
|
21
|
Qu N, Qu J, Huang N, Zhang K, Ye T, Shi J, Chen B, Kan C, Zhang J, Han F, Hou N, Sun X, Pan R. Calycosin induces autophagy and apoptosis via Sestrin2/AMPK/mTOR in human papillary thyroid cancer cells. Front Pharmacol 2022; 13:1056687. [PMID: 36588732 PMCID: PMC9800829 DOI: 10.3389/fphar.2022.1056687] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Calycosin, one of small molecules derived from astragalus, has anti-tumor effects in various tumors. However, the effects of calycosin on papillary thyroid cancer (PTC) remain unclear. This study aimed to explore the anti-tumor ability of calycosin on human PTC and its potential mechanisms. The B-CPAP cells were treated with calycosin, then cell proliferation, apoptosis and invasiveness were measured by CCK8 assay, flow cytometry, wound healing and transwell invasion assay, respectively. The cells were also performed by whole transcriptome microarray bioinformatics analysis. Apoptosis and autophagy-related markers or proteins were measured by qRT-PCR or western blot. Sestrin2-mediated AMPK/mTOR pathways were determined by western blot. We found that calycosin inhibited migration and invasion of B-CPAP cells and induced apoptosis (Bax/Bcl-2) and autophagy (LC3II/I, Beclin1) of B-CPAP cells. Differential expressed genes were screened between the calycosin-treated cells and control (524 genes upregulated and 328 genes downregulated). The pathway enrichment suggested that the role of calycosin in B-CPAP cells is closely related to apoptosis-related genes and p70S6 Kinase. Transmission electron microscopy found an increase in autophagosomes in calycosin-treated cells. Sestrin2 in human PTC tissues and B-CPAP cells was lower than in normal thyroid tissues and cells. And the pharmacological effects of calycosin in PTC cells were related to Sestrin2 activation, increased p-AMPK and inhibited p-mTOR and p-p70S6Kinase; these alterations were reversed when silencing Sestrin2. In conclusion, calycosin has an inhibitory effect on PTC via promoting apoptosis and autophagy through the Sestrin2/AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Na Qu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Junsheng Qu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Na Huang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Tongtong Ye
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Bing Chen
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ruiyan Pan
- School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
22
|
Cell Type-Specific Metabolic Response to Amino Acid Starvation Dictates the Role of Sestrin2 in Regulation of mTORC1. Cells 2022; 11:cells11233863. [PMID: 36497120 PMCID: PMC9736985 DOI: 10.3390/cells11233863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Targeting cancer metabolism has become one of the strategies for a rational anti-tumor therapy. However, cellular plasticity, driven by a major regulator of cellular growth and metabolism, mTORC1, often leads toward treatment resistance. Sestrin2, a stress-inducible protein, has been described as an mTORC1 inhibitor upon various types of stress signals. Immune assays and online measurements of cellular bioenergetics were employed to investigate the nature of Sestrin2 regulation, and finally, by silencing the SESN2 gene, to identify the role of induced Sestrin2 upon a single amino acid deprivation in cancer cells of various origins. Our data suggest that a complex interplay of either oxidative, energetic, nutritional stress, or in combination, play a role in Sestrin2 regulation upon single amino acid deprivation. Therefore, cellular metabolic background and sequential metabolic response dictate Sestrin2 expression in the absence of an amino acid. While deprivations of essential amino acids uniformly induce Sestrin2 levels, non-essential amino acids regulate Sestrin2 differently, drawing a characteristic Sestrin2 expression fingerprint, which could serve as a first indication of the underlying cellular vulnerability. Finally, we show that canonical GCN2-ATF4-mediated Sestrin2 induction leads to mTORC1 inhibition only in amino acid auxotroph cells, where the amino acid cannot be replenished by metabolic reprogramming.
Collapse
|
23
|
Kabakci M, Topbas Selcuki NF, Aydin Z, Bagci K, Kaya C, Yalcin Bahat P. Serum sestrin 2 levels in patients with uterine leiomyomas. J OBSTET GYNAECOL 2022; 42:3616-3620. [PMID: 36346966 DOI: 10.1080/01443615.2022.2141613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our aim was to evaluate SESN2 levels in patients with uterine leiomyomas by comparing serum SESN2 levels in myoma patients with the levels in healthy women to deepen our understanding of the pathophysiology of uterine leiomyomas. Patients 18-50 years of age who applied to the University of Health Sciences Turkey, Istanbul Kanuni Sultan Suleyman Training and Research Hospital between January and March 2021 and who were diagnosed with uterine leiomyoma were defined as the 'myoma group'. The control group included patients without any sign of leiomyomas in routine ultrasonography. The patients' demographic features, gynecological symptoms, myoma volume and classification were recorded. Serum SESN2 concentrations in venous blood samples were measured using a sandwich enzyme-linked immunosorbent assay (ELISA) kit.The study included 31 patients in the myoma group and 30 in the control group. The mean age/gravid/parity or BMI values did not differ significantly between the groups. The only gynecological symptom that showed a significant difference was menorrhagia. Serum SESN2 levels were significantly higher in the myoma group then the control groups (11.7 ± 2.5) (p < 0.001). In conclusion, although uterine leiomyoma is the most common benign tumour in women of reproductive age, there are no known markers for predicting the development of leiomyomas. Based on the results of the current study, SESN2 could be such a marker.IMPACT STATEMENTWhat is already known on this subject? Uterine leiomyoma is the most common type of benign tumour in women of reproductive age as well as the most common indication for a hysterectomy. Symptoms associated with uterine leiomyoma include abnormal bleeding, chronic pelvic pain, menorrhagia, dysmenorrhoea, dyspareunia and anaemia, which adversely affect the patient's quality of life. Sestrins are a family of metabolic regulator proteins that play a potential role in carcinogenesis.What the results of this study add? This is the first study evaluating the role of sestrin in the development of uterine leiomyomas. Significantly higher levels of sestrin 2 (SESN2) were detected in patients with leiomyomas.What are the implications of these findings for clinical practice and/or further research? Although uterine leiomyoma is the most common type of benign tumour in women of reproductive age, there are still many unknowns regarding its pathophysiology. Further, there are still no known markers for predicting the development of leiomyomas. Hence, primary prevention is not possible. Based on the results of the current study SESN2, could be such a marker. Further studies are needed to confirm the results of this study.
Collapse
Affiliation(s)
- Meric Kabakci
- Department of Obstetrics and Gynecology, University of Health Sciences Turkey, Istanbul Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Nura Fitnat Topbas Selcuki
- Department of Obstetrics and Gynecology, University of Health Sciences Turkey, Istanbul Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Zelal Aydin
- Department of Obstetrics and Gynecology, Mus State Hospital, Mus, Turkey
| | - Kubra Bagci
- Department of Obstetrics and Gynecology, Acibadem Bodrum Medical Center, Mugla, Turkey
| | - Cihan Kaya
- Department of Obstetrics and Gynecology, Acibadem Mehmet Ali Aydinlar University, Acibadem Bakirkoy Hospital, Istanbul, Turkey
| | - Pinar Yalcin Bahat
- Department of Obstetrics and Gynecology, University of Health Sciences Turkey, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
24
|
Doolittle WKL, Park S, Lee SG, Jeong S, Lee G, Ryu D, Schoonjans K, Auwerx J, Lee J, Jo YS. Non-genomic activation of the AKT-mTOR pathway by the mitochondrial stress response in thyroid cancer. Oncogene 2022; 41:4893-4904. [PMID: 36195659 DOI: 10.1038/s41388-022-02484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022]
Abstract
Cancer progression is associated with metabolic reprogramming and causes significant intracellular stress; however, the mechanisms that link cellular stress and growth signalling are not fully understood. Here, we identified a mechanism that couples the mitochondrial stress response (MSR) with tumour progression. We demonstrated that the MSR is activated in a significant proportion of human thyroid cancers via the upregulation of heat shock protein D family members and the mitokine, growth differentiation factor 15. Our study also revealed that MSR triggered AKT/S6K signalling by activating mTORC2 via activating transcription factor 4/sestrin 2 activation whilst promoting leucine transporter and nutrient-induced mTORC1 activation. Importantly, we found that an increase in mtDNA played an essential role in MSR-induced mTOR activation and that crosstalk between MYC and MSR potentiated mTOR activation. Together, these findings suggest that the MSR could be a predictive marker for aggressive human thyroid cancer as well as a useful therapeutic target.
Collapse
Affiliation(s)
- Woo Kyung Lee Doolittle
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sunmi Park
- Department of Internal Medicine, Open NBI Convergence Technology Research Laboratory, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Seul Gi Lee
- Department of Surgery, Eulji University School of Medicine, Daejeon, 34824, South Korea
| | - Seonhyang Jeong
- Department of Internal Medicine, Open NBI Convergence Technology Research Laboratory, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Gibbeum Lee
- Department of Surgery, Open NBI Convergence Technology Research Laboratory, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Dongryeol Ryu
- Laboratory of Molecular and Integrative Biology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Jandee Lee
- Department of Surgery, Open NBI Convergence Technology Research Laboratory, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Young Suk Jo
- Department of Internal Medicine, Open NBI Convergence Technology Research Laboratory, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
25
|
Elucidation of an mTORC2-PKC-NRF2 pathway that sustains the ATF4 stress response and identification of Sirt5 as a key ATF4 effector. Cell Death Dis 2022; 8:357. [PMID: 35963851 PMCID: PMC9376072 DOI: 10.1038/s41420-022-01156-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022]
Abstract
Proliferating cancer cells are dependent on glutamine metabolism for survival when challenged with oxidative stresses caused by reactive oxygen species, hypoxia, nutrient deprivation and matrix detachment. ATF4, a key stress responsive transcription factor, is essential for cancer cells to sustain glutamine metabolism when challenged with these various types of stress. While it is well documented how the ATF4 transcript is translated into protein as a stress response, an important question concerns how the ATF4 message levels are sustained to enable cancer cells to survive the challenges of nutrient deprivation and damaging reactive oxygen species. Here, we now identify the pathway in triple negative breast cancer cells that provides a sustained ATF4 response and enables their survival when encountering these challenges. This signaling pathway starts with mTORC2, which upon sensing cellular stresses arising from glutamine deprivation or an acute inhibition of glutamine metabolism, initiates a cascade of events that triggers an increase in ATF4 transcription. Surprisingly, this signaling pathway is not dependent on AKT activation, but rather requires the mTORC2 target, PKC, which activates the transcription factor Nrf2 that then induces ATF4 expression. Additionally, we identify a sirtuin family member, the NAD+-dependent de-succinylase Sirt5, as a key transcriptional target for ATF4 that promotes cancer cell survival during metabolic stress. Sirt5 plays fundamental roles in supporting cancer cell metabolism by regulating various enzymatic activities and by protecting an enzyme essential for glutaminolysis, glutaminase C (GAC), from degradation. We demonstrate that ectopic expression of Sirt5 compensates for knockdowns of ATF4 in cells exposed to glutamine deprivation-induced stress. These findings provide important new insights into the signaling cues that lead to sustained ATF4 expression as a general stress-induced regulator of glutamine metabolism, as well as highlight Sirt5 an essential effector of the ATF4 response to metabolic stress.
Collapse
|
26
|
Pohjoismäki JLO, Goffart S. Adaptive and Pathological Outcomes of Radiation Stress-Induced Redox Signaling. Antioxid Redox Signal 2022; 37:336-348. [PMID: 35044250 DOI: 10.1089/ars.2021.0257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Ionizing radiation can damage cells either directly or through oxidative damage caused by ionization. Although radiation exposure from natural sources is very limited, ionizing radiation in nuclear disaster zones and long spaceflights causes inconspicuous, yet measurable physiological effects in men and animals, whose significance remains poorly known. Understanding the physiological impacts of ionizing radiation has a wide importance due to the increased use of medical imaging and radiotherapy. Recent Advances: Radiation exposure has been traditionally investigated from the perspective of DNA damage and its consequences. However, recent studies from Chernobyl as well as spaceflights have provided interesting insights into oxidative stress-induced metabolic alterations and disturbances in the circadian regulation. Critical Issues: In this review, we discuss the physiological consequences of radiation exposure in the light of oxidative stress signaling. Radiation exposure likely triggers many converging or interconnecting signaling pathways, some of which mimic mitochondrial dysfunction and might explain the observed metabolic changes. Future Directions: Better understanding of the different radiation-induced signaling pathways might help to devise strategies for mitigation of the long-term effects of radiation exposure. The utility of fibroblast growth factor 21 (FGF21) as a radiation exposure biomarker and the use of radiation hormesis as a method to protect astronauts on a prolonged spaceflight, such as a mission to Mars, should be investigated. Antioxid. Redox Signal. 37, 336-348.
Collapse
Affiliation(s)
- Jaakko L O Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
27
|
Abstract
AbstractSestrin2 is a conserved antioxidant, metabolism regulator, and downstream of P53. Sestrin2 can suppress oxidative stress and inflammation, thereby preventing the development and progression of cancer. However, Sestrin2 attenuates severe oxidative stress by activating nuclear factor erythroid 2-related factor 2 (Nrf2), thereby enhancing cancer cells survival and chemoresistance. Sestrin2 inhibits endoplasmic reticulum stress and activates autophagy and apoptosis in cancer cells. Attenuation of endoplasmic reticulum stress and augmentation of autophagy hinders cancer development but can either expedite or impede cancer progression under specific conditions. Furthermore, Sestrin2 can vigorously inhibit oncogenic signaling pathways through downregulation of mammalian target of rapamycin complex 1 (mTORC1) and hypoxia-inducible factor 1-alpha (HIF-1α). Conversely, Sestrin2 decreases the cytotoxic activity of T cells and natural killer cells which helps tumor cells immune evasion. Sestrin2 can enhance tumor cells viability in stress conditions such as glucose or glutamine deficiency. Cancer cells can also upregulate Sestrin2 during chemotherapy or radiotherapy to attenuate severe oxidative stress and ER stress, augment autophagy and resist the treatment. Recent studies unveiled that Sestrin2 is involved in the development and progression of several types of human cancer. The effect of Sestrin2 may differ depending on the type of tumor, for instance, several studies revealed that Sestrin2 protects against colorectal cancer, whereas results are controversial regarding lung cancer. Furthermore, Sestrin2 expression correlates with metastasis and survival in several types of human cancer such as colorectal cancer, lung cancer, and hepatocellular carcinoma. Targeted therapy for Sestrin2 or regulation of its expression by new techniques such as non-coding RNAs delivery and vector systems may improve cancer chemotherapy and overcome chemoresistance, metastasis and immune evasion that should be investigated by future trials.
Collapse
|
28
|
Chen Y, Huang T, Yu Z, Yu Q, Wang Y, Hu J, Shi J, Yang G. The functions and roles of sestrins in regulating human diseases. Cell Mol Biol Lett 2022; 27:2. [PMID: 34979914 PMCID: PMC8721191 DOI: 10.1186/s11658-021-00302-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Sestrins (Sesns), highly conserved stress-inducible metabolic proteins, are known to protect organisms against various noxious stimuli including DNA damage, oxidative stress, starvation, endoplasmic reticulum (ER) stress, and hypoxia. Sesns regulate metabolism mainly through activation of the key energy sensor AMP-dependent protein kinase (AMPK) and inhibition of mammalian target of rapamycin complex 1 (mTORC1). Sesns also play pivotal roles in autophagy activation and apoptosis inhibition in normal cells, while conversely promoting apoptosis in cancer cells. The functions of Sesns in diseases such as metabolic disorders, neurodegenerative diseases, cardiovascular diseases, and cancer have been broadly investigated in the past decades. However, there is a limited number of reviews that have summarized the functions of Sesns in the pathophysiological processes of human diseases, especially musculoskeletal system diseases. One aim of this review is to discuss the biological functions of Sesns in the pathophysiological process and phenotype of diseases. More significantly, we include some new evidence about the musculoskeletal system. Another purpose is to explore whether Sesns could be potential biomarkers or targets in the future diagnostic and therapeutic process.
Collapse
Affiliation(s)
- Yitong Chen
- Department of Orthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Tingben Huang
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Zhou Yu
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Qiong Yu
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Ying Wang
- Department of Oral Medicine, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Ji'an Hu
- Department of Oral Pathology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| | - Jiejun Shi
- Department of Orthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| | - Guoli Yang
- Department of Implantology, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
29
|
Qu J, Luo M, Zhang J, Han F, Hou N, Pan R, Sun X. A paradoxical role for sestrin 2 protein in tumor suppression and tumorigenesis. Cancer Cell Int 2021; 21:606. [PMID: 34784907 PMCID: PMC8596924 DOI: 10.1186/s12935-021-02317-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Sestrin 2, a highly conserved stress-induced protein, participates in the pathological processes of metabolic and age-related diseases. This p53-inducible protein also regulates cell growth and metabolism, which is closely related to malignant tumorigenesis. Sestrin 2 was reported to regulate various cellular processes, such as tumor cell proliferation, invasion and metastasis, apoptosis, anoikis resistance, and drug resistance. Although sestrin 2 is associated with colorectal, lung, liver, and other cancers, sestrin 2 expression varies among different types of cancer, and the effects and mechanisms of action of this protein are also different. Sestrin 2 was considered a tumor suppressor gene in most studies, whereas conflicting reports considered sestrin 2 an oncogene. Thus, this review aims to examine the literature regarding sestrin 2 in various cancers, summarize its roles in suppression and tumorigenesis, discuss potential mechanisms in the regulation of cancer, and provide a basis for follow-up research and potential cancer treatment development.
Collapse
Affiliation(s)
- Junsheng Qu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Moyi Luo
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Ruiyan Pan
- School of Pharmacy, Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China.
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
30
|
Kazyken D, Lentz SI, Fingar DC. Alkaline intracellular pH (pHi) activates AMPK-mTORC2 signaling to promote cell survival during growth factor limitation. J Biol Chem 2021; 297:101100. [PMID: 34418433 PMCID: PMC8479482 DOI: 10.1016/j.jbc.2021.101100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) complex 2 (mTORC2) signaling controls cell metabolism, promotes cell survival, and contributes to tumorigenesis, yet its upstream regulation remains poorly defined. Although considerable evidence supports the prevailing view that amino acids activate mTOR complex 1 but not mTORC2, several studies reported paradoxical activation of mTORC2 signaling by amino acids. We noted that after amino acid starvation of cells in culture, addition of an amino acid solution increased mTORC2 signaling. Interestingly, we found the pH of the amino acid solution to be alkaline, ∼pH 10. These observations led us to discover and demonstrate here that alkaline intracellular pH (pHi) represents a previously unknown activator of mTORC2. Using a fluorescent pH-sensitive dye (cSNARF1-AM) coupled with live-cell imaging, we demonstrate that culturing cells in media at an alkaline pH induces a rapid rise in the pHi, which increases mTORC2 catalytic activity and downstream signaling to the pro-growth and pro-survival kinase Akt. Alkaline pHi also activates AMPK, a canonical sensor of energetic stress. Functionally, alkaline pHi activates AMPK-mTOR signaling, which attenuates apoptosis caused by growth factor withdrawal. Collectively, these findings reveal that alkaline pHi increases mTORC2- and AMPK-mediated signaling to promote cell survival during conditions of growth factor limitation, analogous to the demonstrated ability of energetic stress to activate AMPK–mTORC2 and promote cell survival. As an elevated pHi represents an underappreciated hallmark of cancer cells, we propose that the alkaline pHi stress sensing by AMPK–mTORC2 may contribute to tumorigenesis by enabling cancer cells at the core of a growing tumor to evade apoptosis and survive.
Collapse
Affiliation(s)
- D Kazyken
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - S I Lentz
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - D C Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
31
|
An P, Xu W, Luo J, Luo Y. Expanding TOR Complex 2 Signaling: Emerging Regulators and New Connections. Front Cell Dev Biol 2021; 9:713806. [PMID: 34395443 PMCID: PMC8363310 DOI: 10.3389/fcell.2021.713806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022] Open
Abstract
Almost three decades after its seminal discovery, our understanding of the remarkable TOR pathway continues to expand. As a TOR complex, TORC2 lies at the nexus of many signaling pathways and directs a diverse array of fundamental processes such as cell survival, proliferation, and metabolism by integrating environmental and intracellular cues. The dysregulation of TORC2 activity disrupts cellular homeostasis and leads to many pathophysiological conditions. With continued efforts at mapping the signaling landscape, the pace of discovery in TORC2 regulation has been accelerated in recent years. Consequently, emerging evidence has expanded the repertoire of upstream regulators and has revealed unexpected diversity in the modes of TORC2 regulation. Multiple environmental cues and plasma membrane proteins that fine-tune TORC2 activity are unfolding. Furthermore, TORC2 signaling is intricately intertwined with other major signaling pathways. Therefore, feedback and crosstalk regulation also extensively modulate TORC2. In this context, we provide a comprehensive overview of revolutionary concepts regarding emerging regulators of TORC2 and discuss evidence of feedback and crosstalk regulation that shed new light on TORC2 biology.
Collapse
Affiliation(s)
| | | | - Junjie Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yongting Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Abstract
The ageing population is becoming a significant socio-economic issue. To address the expanding health gap, it is important to deepen our understanding of the mechanisms underlying ageing in various organisms at the single-cell level. The discovery of the antifungal, immunosuppressive, and anticancer drug rapamycin, which possesses the ability to extend the lifespan of several species, has prompted extensive research in the areas of cell metabolic regulation, development, and senescence. At the centre of this research is the mTOR pathway, with key roles in cell growth, proteosynthesis, ribosomal biogenesis, transcriptional regulation, glucose and lipid metabolism, and autophagy. Recently, it has become obvious that mTOR dysregulation is involved in several age-related diseases, such as cancer, neurodegenerative diseases, and type 2 diabetes mellitus. Additionally, mTOR hyperactivation affects the process of ageing per se. In this review, we provide an overview of recent insights into the mTOR signalling pathway, including its regulation and its influence on various hallmarks of ageing at the cellular level.
Collapse
Affiliation(s)
- Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
33
|
Fang Z, Kim HG, Huang M, Chowdhury K, Li MO, Liangpunsakul S, Dong XC. Sestrin Proteins Protect Against Lipotoxicity-Induced Oxidative Stress in the Liver via Suppression of C-Jun N-Terminal Kinases. Cell Mol Gastroenterol Hepatol 2021; 12:921-942. [PMID: 33962074 PMCID: PMC8346671 DOI: 10.1016/j.jcmgh.2021.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Sestrin 1/2/3 (Sesn1/2/3) belong to a small family of proteins that have been implicated in the regulation of metabolic homeostasis and oxidative stress. However, the underlying mechanisms remain incompletely understood. The aim of this work was to illustrate the collective function of Sesn1/2/3 in the protection against hepatic lipotoxicity. METHODS We used Sesn1/2/3 triple knockout (TKO) mouse and cell models to characterize oxidative stress and signal transduction under lipotoxic conditions. Biochemical, histologic, and physiological approaches were applied to illustrate the related processes. RESULTS After feeding with a Western diet for 8 weeks, TKO mice developed remarkable metabolic associated fatty liver disease that was manifested by exacerbated hepatic steatosis, inflammation, and fibrosis compared with wild-type counterparts. Moreover, TKO mice exhibited higher levels of hepatic lipotoxicity and oxidative stress. Our biochemical data revealed a critical signaling node from sestrins to c-Jun N-terminal kinases (JNKs) in that sestrins interact with JNKs and mitogen-activated protein kinase kinase 7 and suppress the JNK phosphorylation and activity. In doing so, sestrins markedly reduced palmitate-induced lipotoxicity and oxidative stress in both mouse and human hepatocytes. CONCLUSIONS The data from this study suggest that Sesn1/2/3 play an important role in the protection against lipotoxicity-associated oxidative stress and related pathology in the liver.
Collapse
Affiliation(s)
- Zhigang Fang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana,Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China,The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hyeong-Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Menghao Huang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kushan Chowdhury
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ming O. Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Suthat Liangpunsakul
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana,Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana,Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| | - X. Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana,Correspondence Address correspondence to: X. Charlie Dong, PhD, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 1021D, Indianapolis, Indiana 46202. fax: (317) 274-4686.
| |
Collapse
|
34
|
Metabolic Reprogramming in Anticancer Drug Resistance: A Focus on Amino Acids. Trends Cancer 2021; 7:682-699. [PMID: 33736962 DOI: 10.1016/j.trecan.2021.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 11/22/2022]
Abstract
Overcoming anticancer drug resistance is a major challenge in cancer therapy, requiring innovative strategies that consider the extensive tumor heterogeneity and adaptability. We provide recent evidence highlighting the key role of amino acid (AA) metabolic reprogramming in cancer cells and the supportive microenvironment in driving resistance to anticancer therapies. AAs sustain the acquisition of anticancer resistance by providing essential building blocks for biosynthetic pathways and for maintaining a balanced redox status, and modulating the epigenetic profile of both malignant and non-malignant cells. In addition, AAs support the reduced intrinsic susceptibility of cancer stem cells to antineoplastic therapies. These findings shed new light on the possibility of targeting nonresponding tumors by modulating AA availability through pharmacological or dietary interventions.
Collapse
|
35
|
Abstract
Cells metabolize nutrients for biosynthetic and bioenergetic needs to fuel growth and proliferation. The uptake of nutrients from the environment and their intracellular metabolism is a highly controlled process that involves cross talk between growth signaling and metabolic pathways. Despite constant fluctuations in nutrient availability and environmental signals, normal cells restore metabolic homeostasis to maintain cellular functions and prevent disease. A central signaling molecule that integrates growth with metabolism is the mechanistic target of rapamycin (mTOR). mTOR is a protein kinase that responds to levels of nutrients and growth signals. mTOR forms two protein complexes, mTORC1, which is sensitive to rapamycin, and mTORC2, which is not directly inhibited by this drug. Rapamycin has facilitated the discovery of the various functions of mTORC1 in metabolism. Genetic models that disrupt either mTORC1 or mTORC2 have expanded our knowledge of their cellular, tissue, as well as systemic functions in metabolism. Nevertheless, our knowledge of the regulation and functions of mTORC2, particularly in metabolism, has lagged behind. Since mTOR is an important target for cancer, aging, and other metabolism-related pathologies, understanding the distinct and overlapping regulation and functions of the two mTOR complexes is vital for the development of more effective therapeutic strategies. This review discusses the key discoveries and recent findings on the regulation and metabolic functions of the mTOR complexes. We highlight findings from cancer models but also discuss other examples of the mTOR-mediated metabolic reprogramming occurring in stem and immune cells, type 2 diabetes/obesity, neurodegenerative disorders, and aging.
Collapse
Affiliation(s)
- Angelia Szwed
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Eugene Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
36
|
Sun HW, Wu WC, Chen HT, Xu YT, Yang YY, Chen J, Yu XJ, Wang Z, Shuang ZY, Zheng L. Glutamine Deprivation Promotes the Generation and Mobilization of MDSCs by Enhancing Expression of G-CSF and GM-CSF. Front Immunol 2021; 11:616367. [PMID: 33603745 PMCID: PMC7884351 DOI: 10.3389/fimmu.2020.616367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
Solid tumors are often challenged by hypoxic and nutrient-deprived tumor microenvironments (TME) as tumors progress, due to limited perfusion and rapid nutrient consumption. While cancer cells can demonstrate the ability to survive in nutrient-deprived conditions through multiple intrinsic alterations, it is poorly understood how nutrient-deprived cancer cells co-opt the TME to promote cancer cell survival and tumor progression. In the present study, we found that glutamine deprivation markedly potentiated the expression of G-CSF and GM-CSF in mouse mammary cancer cells. The IRE1α-JNK pathway, which is activated by glutamine starvation, was found to be important for the upregulation of these cytokines. G-CSF and GM-CSF are well-known facilitators of myelopoiesis and mobilization of hematopoietic progenitor cells (HPC). Consistently, as tumors progressed, we found that several myeloid HPC compartments were gradually decreased in the bone marrow but were significantly increased in the spleen. Mechanistically, the HPC-maintaining capacity of the bone marrow was significantly impaired in tumor-bearing mice, with lower expression of HPC maintaining genes (i.e., CXCL12, SCF, ANGPT1, and VCAM1), and reduced levels of mesenchymal stem cells and CXCL12-producing cells. Furthermore, the mobilized HPCs that displayed the capacity for myelopoiesis were also found to accumulate in tumor tissue. Tumor-infiltrating HPCs were highly proliferative and served as important sources of immunosuppressive myeloid-derived suppressor cells (MDSCs) in the TME. Our work has identified an important role for glutamine starvation in regulating the expression of G-CSF and GM-CSF, and in facilitating the generation of immunosuppressive MDSCs in breast cancer.
Collapse
Affiliation(s)
- Hong-Wei Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Chao Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hai-Tian Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi-Tuo Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan-Yan Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xing-Juan Yu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zilian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ze-Yu Shuang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Limin Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Liu Y, Li M, Du X, Huang Z, Quan N. Sestrin 2, a potential star of antioxidant stress in cardiovascular diseases. Free Radic Biol Med 2021; 163:56-68. [PMID: 33310138 DOI: 10.1016/j.freeradbiomed.2020.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Physiological reactive oxygen species (ROS) play an important role in cellular signal transduction. However, excessive ROS is an important pathological mechanism in most cardiovascular diseases (CVDs), such as myocardial aging, cardiomyopathy, ischemia/reperfusion injury (e.g., myocardial infarction) and heart failure. Programmed cell death, hypertrophy and fibrosis may be due to oxidative stress. Sestrin 2 (Sesn2), a stress-inducible protein associated with various stress conditions, is a potential antioxidant. Sesn2 can suppress the process of heart damage caused by oxidative stress, promote cell survival and play a key role in a variety of CVDs. This review discusses the effect of Sesn2 on the redox signal, mainly via participation in the signaling pathway of nuclear factor erythroid 2-related factor 2, activation of adenosine monophosphate-activated protein kinase and inhibition of mammalian target of rapamycin complex 1. It also discusses the effect of Sesn2's antioxidant activity on different CVDs. We speculate that Sesn2 plays an important role in CVDs by stimulating the process of antioxidation and promoting the adaptation of cells to stress conditions and/or the environment, opening a new avenue for related therapeutic strategies.
Collapse
Affiliation(s)
- Yunxia Liu
- Department of Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Meina Li
- Department of Infection Control, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiaoyu Du
- Department of Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhehao Huang
- Department of Neurosurgery, The Third Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Nanhu Quan
- Department of Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
38
|
Migneault F, Hébert MJ. Autophagy, tissue repair, and fibrosis: a delicate balance. Matrix Biol 2021; 100-101:182-196. [PMID: 33454422 DOI: 10.1016/j.matbio.2021.01.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Tissue repair and fibrosis, an abnormal form of repair, occur in most human organs in response to injury or inflammation. Fibroblasts play a major role in the normal repair process by differentiating into myofibroblasts that synthesize extracellular matrix (ECM) components and favor tissue remodeling to reestablish normal function and integrity. However, their persistent accumulation at the site of injury is a hallmark of fibrosis. Autophagy is a catabolic process that occurs in eukaryotic cells as a stress response to allow cell survival and maintenance of cellular homeostasis by degrading and recycling intracellular components. Recent advances identify autophagy as an important regulator of myofibroblast differentiation, tissue remodeling, and fibrogenesis. In this mini-review, we provide an overview of the interactions between autophagy, ECM, and fibrosis, and emphasize the molecular mechanisms involved in myofibroblast differentiation. We also describe the emerging concept of secretory autophagy as a new avenue for intercellular communication at the site of tissue injury and repair.
Collapse
Affiliation(s)
- Francis Migneault
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC H2X 0A9, Canada; Canadian Donation and Transplantation Research Program, Edmonton, Alberta T6G 2E1, Canada
| | - Marie-Josée Hébert
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC H2X 0A9, Canada; Canadian Donation and Transplantation Research Program, Edmonton, Alberta T6G 2E1, Canada; Département de médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
39
|
Wang B J, Wang S, Xiao M, Zhang J, Wang A J, Guo Y, Tang Y, Gu J. Regulatory mechanisms of Sesn2 and its role in multi-organ diseases. Pharmacol Res 2020; 164:105331. [PMID: 33285232 DOI: 10.1016/j.phrs.2020.105331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
Sestrin2 (Sesn2) is a powerful anti-oxidant that can prevent acute and chronic diseases. The role of Sesn2 has been thoroughly reviewed in liver, nervous system, and immune system diseases. However, there is a limited number of reviews that have summarized the effects of Sesn2 in heart and vascular diseases, and very less literature-based information is available on involvement of Sesn2 in renal and respiratory pathologies. This review summarizes the latest research on Sesn2 in multi-organ stress responses, with a particular focus on the protective role of Sesn2 in cardiovascular, respiratory, and renal diseases, emphasizing the potential therapeutic benefit of targeting Sesn2 in stress-related diseases.
Collapse
Affiliation(s)
- Jie Wang B
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shudong Wang
- Department of Cardiology at the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Mengjie Xiao
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingjing Zhang
- Department of Cardiology at the First Hospital of China Medical University, Department of Cardiology at the People's Hospital of Liaoning Province, Shenyang, Liaoning, 110016, China
| | - Jie Wang A
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yuanfang Guo
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Junlian Gu
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
40
|
Byun JK, Park M, Lee S, Yun JW, Lee J, Kim JS, Cho SJ, Jeon HJ, Lee IK, Choi YK, Park KG. Inhibition of Glutamine Utilization Synergizes with Immune Checkpoint Inhibitor to Promote Antitumor Immunity. Mol Cell 2020; 80:592-606.e8. [PMID: 33159855 DOI: 10.1016/j.molcel.2020.10.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/21/2020] [Accepted: 10/11/2020] [Indexed: 02/07/2023]
Abstract
Despite its outstanding clinical success, immune checkpoint blockade remains ineffective in many patients. Accordingly, combination therapy capable of achieving greater antitumor immunity is urgently required. Here, we report that limiting glutamine metabolism in cancer cells bolsters the effectiveness of anti-programmed death ligand-1 (PD-L1) antibody. Inhibition of glutamine utilization increased PD-L1 levels in cancer cells, thereby inactivating co-cultured T cells. Under glutamine-limited conditions, reduced cellular GSH levels caused an upregulation of PD-L1 expression by impairing SERCA activity, which activates the calcium/NF-κB signaling cascade. Consequently, in tumors grown in immunocompetent mice, inhibition of glutamine metabolism decreased the antitumor activity of T cells. In combination with anti-PD-L1, however, glutamine depletion strongly promoted the antitumor efficacy of T cells in vitro and in vivo due to simultaneous increases in Fas/CD95 levels. Our results demonstrate the relevance of cancer glutamine metabolism to antitumor immunity and suggest that co-targeting of glutamine metabolism and PD-L1 represents a promising therapeutic approach.
Collapse
Affiliation(s)
- Jun-Kyu Byun
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea; Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41566, South Korea
| | - Mihyang Park
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41566, South Korea
| | - Seunghyeong Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41566, South Korea
| | - Jae Won Yun
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, South Korea; Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06355, South Korea
| | - Jaebon Lee
- Sungkyunkwan University School of Medicine, Seoul 16419, South Korea
| | - Jae Sun Kim
- Sungkyunkwan University School of Medicine, Seoul 16419, South Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Hui-Jeon Jeon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea; Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41566, South Korea; Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41566, South Korea
| | - Yeon-Kyung Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea; Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41566, South Korea.
| | - Keun-Gyu Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea; Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41566, South Korea; Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
41
|
Abstract
Sestrins are a family of proteins that respond to a variety of environmental stresses, including genotoxic, oxidative, and nutritional stresses. Sestrins affect multiple signaling pathways: AMP-activated protein kinase, mammalian target of rapamycin complexes, insulin-AKT, and redox signaling pathways. By regulating these pathways, Sestrins are thought to help adapt to stressful environments and subsequently restore cell and tissue homeostasis. In this review, we describe how Sestrins mediate physiological stress responses in the context of nutritional and chemical stresses (liver), physical movement and exercise (skeletal muscle), and chemical, physical, and inflammatory injuries (heart). These findings also support the idea that Sestrins are a molecular mediator of hormesis, a paradoxical beneficial effect of low- or moderate-level stresses in living organisms.
Collapse
Affiliation(s)
- Myungjin Kim
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA; ,
| | - Allison H Kowalsky
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA; ,
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA; ,
| |
Collapse
|
42
|
Kumar A, Dhiman D, Shaha C. Sestrins: Darkhorse in the regulation of mitochondrial health and metabolism. Mol Biol Rep 2020; 47:8049-8060. [DOI: 10.1007/s11033-020-05769-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022]
|
43
|
Chae HS, Gil M, Saha SK, Kwak HJ, Park HW, Vellingiri B, Cho SG. Sestrin2 Expression Has Regulatory Properties and Prognostic Value in Lung Cancer. J Pers Med 2020; 10:jpm10030109. [PMID: 32882793 PMCID: PMC7565522 DOI: 10.3390/jpm10030109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Lung cancer remains the most dangerous type of cancer despite recent progress in therapeutic modalities. Development of prognostic markers and therapeutic targets is necessary to enhance lung cancer patient survival. Sestrin family genes (Sestrin1, Sestrin2, and Sestrin3) are involved in protecting cells from stress. In particular, Sestrin2, which mainly protects cells from oxidative stress and acts as a leucine sensor protein in mammalian target of rapamycin (mTOR) signaling, is thought to affect various cancers in different ways. To investigate the role of Sestrin2 expression in lung cancer cells, we knocked down Sestrin2 in A549, a non-small cell lung cancer cell line; this resulted in reduced cell proliferation, migration, sphere formation, and drug resistance, suggesting that Sestrin2 is closely related to lung cancer progression. We analyzed Sestrin2 expression in human tissue using various bioinformatic databases and confirmed higher expression of Sestrin2 in lung cancer cells than in normal lung cells using Oncomine and the Human Protein Atlas. Moreover, analyses using Prognoscan and KMplotter showed that Sestrin2 expression is negatively correlated with the survival of lung cancer patients in multiple datasets. Co-expressed gene analysis revealed Sestrin2-regulated genes and possible associated pathways. Overall, these data suggest that Sestrin2 expression has prognostic value and that it is a possible therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Hee Sung Chae
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.S.C.); (M.G.); (S.K.S.); (H.J.K.)
| | - Minchan Gil
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.S.C.); (M.G.); (S.K.S.); (H.J.K.)
| | - Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.S.C.); (M.G.); (S.K.S.); (H.J.K.)
| | - Hee Jeung Kwak
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.S.C.); (M.G.); (S.K.S.); (H.J.K.)
| | - Hwan-Woo Park
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea;
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641-046, India;
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.S.C.); (M.G.); (S.K.S.); (H.J.K.)
- Correspondence: ; Tel.: +82-2-450-4207; Fax: +82-2-444-4207
| |
Collapse
|
44
|
Liu Y, Du X, Huang Z, Zheng Y, Quan N. Sestrin 2 controls the cardiovascular aging process via an integrated network of signaling pathways. Ageing Res Rev 2020; 62:101096. [PMID: 32544433 DOI: 10.1016/j.arr.2020.101096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/03/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
As an inevitable biological process, cardiovascular aging is the greatest risk factor for cardiovascular diseases (CVDs). Sestrin 2 (Sesn2), a stress-inducible and age-related protein associated with various stress conditions, plays a pivotal role in slowing this process. It acts as an anti-aging agent, mainly through its antioxidant enzymatic activity and regulation of antioxidant signaling pathways, as well as by activating adenosine monophosphate-activated protein kinase and inhibiting mammalian target of rapamycin complex 1. In this review, we first introduce the biochemical functions of Sesn2 in the cardiovascular aging process, and describe how Sesn2 expression is regulated under various stress conditions. Next, we emphasize the role of Sesn2 signal transduction in a series of age-related CVDs, including hypertension, myocardial ischemia and reperfusion, atherosclerosis, and heart failure, as well as provide potential mechanisms for the association of Sesn2 with CVDs. Finally, we present the potential therapeutic applications of Sesn2-directed therapy and future prospects.
Collapse
Affiliation(s)
- Yunxia Liu
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiaoyu Du
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhehao Huang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Yang Zheng
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Nanhu Quan
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
45
|
Ogata T, Makino H, Ishizuka N, Iwamoto E, Masaki T, Kizaki K, Kim YH, Sato S. Long-term high-grain diet alters ruminal pH, fermentation, and epithelial transcriptomes, leading to restored mitochondrial oxidative phosphorylation in Japanese Black cattle. Sci Rep 2020; 10:6381. [PMID: 32286493 PMCID: PMC7156705 DOI: 10.1038/s41598-020-63471-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/22/2020] [Indexed: 01/16/2023] Open
Abstract
To increase intramuscular fat accumulation, Japanese Black beef cattle are commonly fed a high-grain diet from 10 to 30 months of age. Castrated and fistulated cattle (n = 9) were fed a high-concentrate diets during the early, middle, and late stages consecutively (10-14, 15-22, 23-30 months of age, respectively). Ruminal pH was measured continuously, and rumen epithelium and fluid samples were collected on each stage. The 24-h mean ruminal pH during the late stage was significantly lower than that during the early stage. Total volatile fatty acid (VFA) and lactic acid levels during the late stage were significantly lower and higher, respectively, than those during the early and middle stages. In silico analysis of differentially expressed genes showed that "Oxidative Phosphorylation" was the pathway inhibited most between the middle and early stages in tandem with an inhibited upstream regulator (PPARGC1A, also called PGC-1α) but the most activated pathway between the late and middle stages. These results suggest that mitochondrial dysfunction and thereby impaired cell viability due to acidic irritation under the higher VFA concentration restored stable mitochondrial oxidative phosphorylation and cell viability by higher lactic acid levels used as cellular oxidative fuel under a different underlying mechanism in subacute ruminal acidosis.
Collapse
Affiliation(s)
- Toru Ogata
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Hiroki Makino
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Naoki Ishizuka
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Eiji Iwamoto
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Hyogo, 679-0198, Japan
| | - Tatsunori Masaki
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Hyogo, 679-0198, Japan
| | - Keiichiro Kizaki
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Yo-Han Kim
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan.
| | - Shigeru Sato
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan.
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan.
| |
Collapse
|
46
|
Kim M, Sujkowski A, Namkoong S, Gu B, Cobb T, Kim B, Kowalsky AH, Cho CS, Semple I, Ro SH, Davis C, Brooks SV, Karin M, Wessells RJ, Lee JH. Sestrins are evolutionarily conserved mediators of exercise benefits. Nat Commun 2020; 11:190. [PMID: 31929512 PMCID: PMC6955242 DOI: 10.1038/s41467-019-13442-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 11/06/2019] [Indexed: 01/04/2023] Open
Abstract
Exercise is among the most effective interventions for age-associated mobility decline and metabolic dysregulation. Although long-term endurance exercise promotes insulin sensitivity and expands respiratory capacity, genetic components and pathways mediating the metabolic benefits of exercise have remained elusive. Here, we show that Sestrins, a family of evolutionarily conserved exercise-inducible proteins, are critical mediators of exercise benefits. In both fly and mouse models, genetic ablation of Sestrins prevents organisms from acquiring metabolic benefits of exercise and improving their endurance through training. Conversely, Sestrin upregulation mimics both molecular and physiological effects of exercise, suggesting that it could be a major effector of exercise metabolism. Among the various targets modulated by Sestrin in response to exercise, AKT and PGC1α are critical for the Sestrin effects in extending endurance. These results indicate that Sestrin is a key integrating factor that drives the benefits of chronic exercise to metabolism and physical endurance.
Collapse
Affiliation(s)
- Myungjin Kim
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alyson Sujkowski
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Sim Namkoong
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Bondong Gu
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tyler Cobb
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Boyoung Kim
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Allison H Kowalsky
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chun-Seok Cho
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ian Semple
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Seung-Hyun Ro
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA
| | - Carol Davis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Susan V Brooks
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael Karin
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Robert J Wessells
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Jun Hee Lee
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
47
|
Segalés J, Perdiguero E, Serrano AL, Sousa-Victor P, Ortet L, Jardí M, Budanov AV, Garcia-Prat L, Sandri M, Thomson DM, Karin M, Hee Lee J, Muñoz-Cánoves P. Sestrin prevents atrophy of disused and aging muscles by integrating anabolic and catabolic signals. Nat Commun 2020; 11:189. [PMID: 31929511 PMCID: PMC6955241 DOI: 10.1038/s41467-019-13832-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
A unique property of skeletal muscle is its ability to adapt its mass to changes in activity. Inactivity, as in disuse or aging, causes atrophy, the loss of muscle mass and strength, leading to physical incapacity and poor quality of life. Here, through a combination of transcriptomics and transgenesis, we identify sestrins, a family of stress-inducible metabolic regulators, as protective factors against muscle wasting. Sestrin expression decreases during inactivity and its genetic deficiency exacerbates muscle wasting; conversely, sestrin overexpression suffices to prevent atrophy. This protection occurs through mTORC1 inhibition, which upregulates autophagy, and AKT activation, which in turn inhibits FoxO-regulated ubiquitin-proteasome-mediated proteolysis. This study reveals sestrin as a central integrator of anabolic and degradative pathways preventing muscle wasting. Since sestrin also protected muscles against aging-induced atrophy, our findings have implications for sarcopenia.
Collapse
Affiliation(s)
- Jessica Segalés
- Department of Experimental & Health Sciences, University Pompeu Fabra, CIBERNED, 08003, Barcelona, Spain
- Centro Nacional de Investigaciones Cardiovasculares, 28019, Madrid, Spain
| | - Eusebio Perdiguero
- Department of Experimental & Health Sciences, University Pompeu Fabra, CIBERNED, 08003, Barcelona, Spain
| | - Antonio L Serrano
- Department of Experimental & Health Sciences, University Pompeu Fabra, CIBERNED, 08003, Barcelona, Spain
| | - Pedro Sousa-Victor
- Department of Experimental & Health Sciences, University Pompeu Fabra, CIBERNED, 08003, Barcelona, Spain
- Instituto de Medicina Molecular (iMM), Faculdade de Medicina, Universidade de Lisboa, 1649, Lisbon, Portugal
| | - Laura Ortet
- Department of Experimental & Health Sciences, University Pompeu Fabra, CIBERNED, 08003, Barcelona, Spain
| | - Mercè Jardí
- Department of Experimental & Health Sciences, University Pompeu Fabra, CIBERNED, 08003, Barcelona, Spain
| | - Andrei V Budanov
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 R590, Ireland
- Engelhardt Institute of Molecular Biology, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, 119991, Moscow, Russia
| | - Laura Garcia-Prat
- Department of Experimental & Health Sciences, University Pompeu Fabra, CIBERNED, 08003, Barcelona, Spain
- Centro Nacional de Investigaciones Cardiovasculares, 28019, Madrid, Spain
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, ON, Canada
| | - Marco Sandri
- Department of Biomedical Science, University of Padova, 35100, Padova, Italy
| | - David M Thomson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Michael Karin
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Pura Muñoz-Cánoves
- Department of Experimental & Health Sciences, University Pompeu Fabra, CIBERNED, 08003, Barcelona, Spain.
- Centro Nacional de Investigaciones Cardiovasculares, 28019, Madrid, Spain.
- ICREA, 08003, Barcelona, Spain.
| |
Collapse
|
48
|
Cordover E, Wei J, Patel C, Shan NL, Gionco J, Sargsyan D, Wu R, Cai L, Kong AN, Jacinto E, Minden A. KPT-9274, an Inhibitor of PAK4 and NAMPT, Leads to Downregulation of mTORC2 in Triple Negative Breast Cancer Cells. Chem Res Toxicol 2020; 33:482-491. [PMID: 31876149 DOI: 10.1021/acs.chemrestox.9b00376] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Triple negative breast cancer (TNBC) is difficult to treat due to lack of druggable targets. We have found that treatment with the small molecule inhibitor KPT-9274 inhibits growth of TNBC cells and eventually leads to cell death. KPT-9274 is a dual specific inhibitor of PAK4 and Nicotinamide Phosphoribosyltransferase (NAMPT). The PAK4 protein kinase is often highly expressed in TNBC cells and has important roles in cell growth, survival, and migration. Previously we have found that inhibition of PAK4 leads to growth inhibition of TNBC cells both in vitro and in vivo. Likewise, NAMPT has been shown to be dysregulated in cancer due to its role in cell metabolism. In order to understand better how treating cells with KPT-9274 abrogates TNBC cell growth, we carried out an RNA sequencing of TNBC cells treated with KPT-9274. As a result, we identified Rictor as an important target that is inhibited in the KPT-9274 treated cells. Conversely, we found that Rictor is predicted to be activated when PAK4 is overexpressed in cells, which suggests a role for PAK4 in the regulation of Rictor. Rictor is a component of mTORC2, one of the complexes formed by the serine/threonine kinase mTOR. mTOR is important for the control of cell growth and metabolism. Our results suggest a new mechanism by which the KPT-9274 compound may block the growth of breast cancer cells, which is via inhibition of mTORC2 signaling. Consistent with this, sequencing analysis of PAK4 overexpressing cells indicates that PAK4 has a role in activation of the mTOR pathway.
Collapse
Affiliation(s)
- Emma Cordover
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - Janet Wei
- Department of Biochemistry and Molecular Biology , Rutgers-Robert Wood Johnson Medical School , 683 Hoes Lane , Piscataway , New Jersey 08854 , United States
| | - Chadni Patel
- Department of Biochemistry and Molecular Biology , Rutgers-Robert Wood Johnson Medical School , 683 Hoes Lane , Piscataway , New Jersey 08854 , United States
| | - Naing Lin Shan
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - John Gionco
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - Li Cai
- Department of Biomedical Engineering , Rutgers, The State University of New Jersey , 599 Taylor Road , Piscataway , New Jersey 08854 , United States
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology , Rutgers-Robert Wood Johnson Medical School , 683 Hoes Lane , Piscataway , New Jersey 08854 , United States
| | - Audrey Minden
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
49
|
Kowalsky AH, Namkoong S, Mettetal E, Park HW, Kazyken D, Fingar DC, Lee JH. The GATOR2-mTORC2 axis mediates Sestrin2-induced AKT Ser/Thr kinase activation. J Biol Chem 2020; 295:1769-1780. [PMID: 31915252 DOI: 10.1074/jbc.ra119.010857] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
Sestrins represent a family of stress-inducible proteins that prevent the progression of many age- and obesity-associated disorders. Endogenous Sestrins maintain insulin-dependent AKT Ser/Thr kinase (AKT) activation during high-fat diet-induced obesity, and overexpressed Sestrins activate AKT in various cell types, including liver and skeletal muscle cells. Although Sestrin-mediated AKT activation improves metabolic parameters, the mechanistic details underlying such improvement remain elusive. Here, we investigated how Sestrin2, the Sestrin homolog highly expressed in liver, induces strong AKT activation. We found that two known targets of Sestrin2, mTOR complex (mTORC) 1 and AMP-activated protein kinase, are not required for Sestrin2-induced AKT activation. Rather, phosphoinositol 3-kinase and mTORC2, kinases upstream of AKT, were essential for Sestrin2-induced AKT activation. Among these kinases, mTORC2 catalytic activity was strongly up-regulated upon Sestrin2 overexpression in an in vitro kinase assay, indicating that mTORC2 may represent the major link between Sestrin2 and AKT. As reported previously, Sestrin2 interacted with mTORC2; however, we found here that this interaction occurs indirectly through GATOR2, a pentameric protein complex that directly interacts with Sestrin2. Deleting or silencing WDR24 (WD repeat domain 24), the GATOR2 component essential for the Sestrin2-GATOR2 interaction, or WDR59, the GATOR2 component essential for the GATOR2-mTORC2 interaction, completely ablated Sestrin2-induced AKT activation. We also noted that Sestrin2 also directly binds to the pleckstrin homology domain of AKT and induces AKT translocation to the plasma membrane. These results uncover a signaling mechanism whereby Sestrin2 activates AKT through GATOR2 and mTORC2.
Collapse
Affiliation(s)
- Allison Ho Kowalsky
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Sim Namkoong
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109; Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Eric Mettetal
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Hwan-Woo Park
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109; Department of Cell Biology, Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Dubek Kazyken
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Diane C Fingar
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Jun Hee Lee
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109.
| |
Collapse
|
50
|
Magaway C, Kim E, Jacinto E. Targeting mTOR and Metabolism in Cancer: Lessons and Innovations. Cells 2019; 8:cells8121584. [PMID: 31817676 PMCID: PMC6952948 DOI: 10.3390/cells8121584] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer cells support their growth and proliferation by reprogramming their metabolism in order to gain access to nutrients. Despite the heterogeneity in genetic mutations that lead to tumorigenesis, a common alteration in tumors occurs in pathways that upregulate nutrient acquisition. A central signaling pathway that controls metabolic processes is the mTOR pathway. The elucidation of the regulation and functions of mTOR can be traced to the discovery of the natural compound, rapamycin. Studies using rapamycin have unraveled the role of mTOR in the control of cell growth and metabolism. By sensing the intracellular nutrient status, mTOR orchestrates metabolic reprogramming by controlling nutrient uptake and flux through various metabolic pathways. The central role of mTOR in metabolic rewiring makes it a promising target for cancer therapy. Numerous clinical trials are ongoing to evaluate the efficacy of mTOR inhibition for cancer treatment. Rapamycin analogs have been approved to treat specific types of cancer. Since rapamycin does not fully inhibit mTOR activity, new compounds have been engineered to inhibit the catalytic activity of mTOR to more potently block its functions. Despite highly promising pre-clinical studies, early clinical trial results of these second generation mTOR inhibitors revealed increased toxicity and modest antitumor activity. The plasticity of metabolic processes and seemingly enormous capacity of malignant cells to salvage nutrients through various mechanisms make cancer therapy extremely challenging. Therefore, identifying metabolic vulnerabilities in different types of tumors would present opportunities for rational therapeutic strategies. Understanding how the different sources of nutrients are metabolized not just by the growing tumor but also by other cells from the microenvironment, in particular, immune cells, will also facilitate the design of more sophisticated and effective therapeutic regimen. In this review, we discuss the functions of mTOR in cancer metabolism that have been illuminated from pre-clinical studies. We then review key findings from clinical trials that target mTOR and the lessons we have learned from both pre-clinical and clinical studies that could provide insights on innovative therapeutic strategies, including immunotherapy to target mTOR signaling and the metabolic network in cancer.
Collapse
|