1
|
Lindquist KA, Mecklenburg JM, Hovhannisyan AH, Ruparel SB, Akopian AN. Investigating Mechanically Activated Currents from Trigeminal Neurons of Nonhuman Primates. eNeuro 2025; 12:ENEURO.0054-25.2025. [PMID: 40280765 PMCID: PMC12071337 DOI: 10.1523/eneuro.0054-25.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/21/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Pain sensation often involves mechanical modalities. Mechanically activated (MA) ion channels on sensory neurons underly responsiveness to mechanical stimuli. MA current properties have mainly been derived from rodent sensory neurons. This study aimed to address gaps in knowledge regarding MA current properties in trigeminal (TG) neurons of a higher-order species, common marmoset nonhuman primates (NHP). MA currents triggered by a piezoactuator were recorded in patch-clamp configuration. MA responses were associated with action potential (AP) properties, such as width, dV/dt on the falling phase, and presence/absence of AP firing in NHP TG neurons. According to responsiveness to mechanical stimuli and AP properties, marmoset TG neurons were clustered into four S-type and five M-type groups. S-type TG neurons had broader AP with two dV/dt peaks on the AP falling phase. Only one S-type group of NHP TG neurons produced small MA currents. M-type TG neurons had narrow AP without two dV/dt peaks on the AP falling phase. M-type NHP TG neurons, except for one group, showed MA currents. We additionally used immunohistochemistry to confirm the presence of known sensory neuronal types such as unmyelinated peptidergic CGRP+/trpV1+, unmyelinated nonpeptidergic MrgprD+ and CGRP-/trpV1+, and myelinated peptidergic CGRP+/trpV1- and nonpeptidergic CGRP- and PV+ NHP TG neurons. Overall, marmoset TG neurons and associated MA currents have many similarities compared with reported data from mouse sensory neurons. However, there are notable differences such as lower percentage of small NHP TG neurons responding to mechanical stimuli and absence of fast inactivating MA currents.
Collapse
Affiliation(s)
- Karen A Lindquist
- Department of Pharmacology and Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Integrated Biomedical Sciences (IBMS) Program, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Jennifer M Mecklenburg
- Center for Pain Therapeutics and Addiction Research, School of Dentistry, University of Texas Health San Antonio, San Antonio, Texas 78229
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, Texas 78229
| | - Anahit H Hovhannisyan
- Center for Pain Therapeutics and Addiction Research, School of Dentistry, University of Texas Health San Antonio, San Antonio, Texas 78229
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, Texas 78229
| | - Shivani B Ruparel
- Department of Pharmacology and Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Integrated Biomedical Sciences (IBMS) Program, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Center for Pain Therapeutics and Addiction Research, School of Dentistry, University of Texas Health San Antonio, San Antonio, Texas 78229
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, Texas 78229
| | - Armen N Akopian
- Department of Pharmacology and Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Integrated Biomedical Sciences (IBMS) Program, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Center for Pain Therapeutics and Addiction Research, School of Dentistry, University of Texas Health San Antonio, San Antonio, Texas 78229
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, Texas 78229
| |
Collapse
|
2
|
Cui Z, Qiu J, Lin J, Fu Y, Lin L. Discovering genetically-supported drug targets for multisite chronic pain through multi-omics Mendelian randomization and single-cell RNA-sequencing. Neuroscience 2025; 572:254-268. [PMID: 39993665 DOI: 10.1016/j.neuroscience.2025.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/14/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Multisite chronic pain (MCP) is a highly prevalent disorder with substantial unmet therapeutic needs.We conducted multi-omics Mendelian randomization and Bayesian colocalization to identify potential therapeutic targets for MCP. Summary-level data of gene expressions and protein abundance levels were obtained from corresponding quantitative trait loci studies, respectively. Summary-level data for MCP was leveraged from the UK Biobank. The transcriptome-wide association study (TWAS), Mendelian randomization, and Bayesian colocalization approaches were applied to investigate the potential causal effects of gene expressions and protein levels on MCP in both blood and brain tissues. Phenome-wide Mendelian randomization analysis (MR-PheWAS), single-cell sequencing data, protein-protein interaction (PPI), and reaction pathway analysis were further conducted to digging the underlying mechanisms. Our analysis identified and validated two plasma targets for MCP, namely KLC1 and LANCL1, at both gene expression levels and protein levels across multi-methodologies. Moreover, MR-PheWAS observed additional benefits associated with these two targets. Through analyses based on single-cell sequencing data, we identified critical cell types for KLC1, primarily megakaryocytes, and neurons, notably linked to the axon guidance pathway, while LANCL1 showed associations with B lymphocytes, neurons, and the electron transport pathway. In dorsal root ganglions, we identified enrichments of both LANCL1 and KLC1 in putative silent nociceptors. The effects are possibly mediated through axonal transport and the activation of NMDARs, supported by PPI and reaction pathway analysis. Our multi-dimensional analysis suggests that genetically determined KLC1 and LANCL1 are causally linked to MCP risk, holding promise as appealing drug targets for MCP.
Collapse
Affiliation(s)
- Ziyang Cui
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.
| | - Junxiong Qiu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jianwei Lin
- Big Data Laboratory, Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China.
| | - Yanni Fu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Liling Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Joshi O, Cooper A, Powell R, Martin MK, Rodriguez R, Kuechle JB, Bhattacharjee A. Localization of AP2α2, TRPV1 and PIEZO2 to the Large Dense Core Vesicles of Human Dorsal Root Ganglion Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646357. [PMID: 40236095 PMCID: PMC11996434 DOI: 10.1101/2025.03.31.646357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Dorsal Root Ganglia (DRG) consist of both peptidergic and non-peptidergic nociceptive neurons. CGRP, an inflammatory neuropeptide, is a classical marker of peptidergic nociceptors and CGRP is stored within the large dense core vesicles (LDCVs) of these neurons. In addition to storing large peptide neurotransmitters, LDCVs might also serve to transport key membrane proteins to the peripheral terminals. This immunohistochemical study investigated the localization of different membrane proteins to the LDCVs of human DRG neurons. Previously validated antibodies against the endocytotic subunit AP2α2, the heat-activated channel TRPV1 and the mechanosensitive channel PIEZO2 were used in conjunction with an antibody against CGRP on sections of intact human DRG isolated from de-identified human subjects. Immunohistochemical studies were also performed on human synovial tissue to examine peripheral terminals. High magnification confocal microscopy was used to determine the co-localization signal of these membrane proteins with CGRP. We observed a strong co-localization of AP2α2 with the CGRP containing LDCVs signifying its role in membrane recycling. Moreover, we also observed a strong colocalization of TRPV1 and PIEZO2 with CGRP suggesting that LDCV release controls the trafficking of these channels to the membrane. It is likely that during injury, bulk exocytosis of CGRP will concomitantly increase the surface expression of TRPV1 and PIEZO2 channels enhancing the responsiveness of these neurons to painful stimuli. This model suggests that neurons that co-localize TRPV1 and PIEZO2 to CGRP containing LDCVs are likely silent nociceptors.
Collapse
|
4
|
Mwirigi JM, Sankaranarayanan I, Tavares-Ferreira D, Gabriel KA, Palomino S, Li Y, Uhelski ML, Shiers S, Franco-Enzástiga Ú, Wangzhou A, Lesnak JB, Bandaru S, Shrivastava A, Inturi N, Albrecht PJ, Dockum M, Cervantes AM, Horton P, Funk G, North RY, Tatsui CE, Corrales G, Yousuf MS, Curatolo M, Gereau RW, Patwardhan A, Dussor G, Dougherty PM, Rice FL, Price TJ. Expansion of OSMR expression and signaling in the human dorsal root ganglion links OSM to neuropathic pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645611. [PMID: 40236060 PMCID: PMC11996445 DOI: 10.1101/2025.03.26.645611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
RNA sequencing studies on human dorsal root ganglion (hDRG) from patients suffering from neuropathic pain show upregulation of OSM, linking this IL-6 family cytokine to pain disorders. In mice, however, OSM signaling causes itch behaviors through a direct effect on its cognate receptor expressed uniquely by pruriceptive sensory neurons. We hypothesized that an expansion in function of OSM-OSM receptor (OSMR) in sensory disorders in humans could be explained by species differences in receptor expression and signaling. Our in situ hybridization and immunohistochemical findings demonstrate broad expression of OSMR in DRG nociceptors and afferent fibers innervating the superficial and deep skin of humans. In patch-clamp electrophysiology, OSM directly activates human sensory neurons engaging MAPK signaling to promote action potential firing. Using CRISPR editing we show that OSM activation of MAPK signaling is dependent on OSMR and not LIFR in hDRG. Bulk, single-nuclei, and single-cell RNA-seq of OSM-treated hDRG cultures reveal expansive similarities in the transcriptomic signature observed in pain DRGs from neuropathic patients, indicating that OSM alone can orchestrate transcriptomic signatures associated with pain. We conclude that OSM-OSMR signaling via MAPKs is a critical signaling factor for DRG plasticity that may underlie neuropathic pain in patients.
Collapse
|
5
|
Goodwin GL, Marin AC, Walker JV, Hobbs C, Denk F. Using in vivo calcium imaging to examine joint neuron spontaneous activity and home cage analysis to monitor activity changes in mouse models of arthritis. Arthritis Res Ther 2025; 27:67. [PMID: 40148904 PMCID: PMC11948904 DOI: 10.1186/s13075-025-03515-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Studying pain in rodent models of arthritis is challenging. For example, assessing functional changes in joint neurons is challenging due to their relative scarcity amongst all sensory neurons. Additionally, studying pain behaviors in rodent models of arthritis poses its own set of difficulties. Commonly used tests, such as static weight-bearing, often require restraint, which can induce stress and consequently alter nociception. The aim of this study was to evaluate two emerging techniques for investigating joint pain in mouse models of rheumatoid- and osteo-arthritis: In vivo calcium imaging to monitor joint afferent activity and group-housed home cage monitoring to assess pain-like behaviors. Specifically, we examined whether there was increased spontaneous activity in joint afferents and reduced locomotor activity following induction of arthritis. METHODS Antigen induced arthritis (AIA) was used to model rheumatoid arthritis and partial medial meniscectomy (PMX) was used to model osteoarthritis. Group-housed home cage monitoring was used to assess locomotor behavior in all mice, and weight bearing was assessed in PMX mice. In vivo calcium imaging with GCaMP6s was used to monitor spontaneous activity in L4 ganglion joint neurons retrogradely labelled with fast blue 2 days following AIA and 13-15 weeks following PMX model induction. Cartilage degradation was assessed in knee joint sections stained with Safranin O and fast green in PMX mice. RESULTS Antigen induced arthritis produced knee joint swelling and PMX caused degeneration of articular cartilage in the knee. In the first 46 h following AIA, mice travelled less distance and were less mobile compared to their control cage mates. In contrast, no such differences were found between PMX and sham mice when measured between 4-12 weeks post-surgery. A larger fraction of joint neurons showed spontaneous activity in AIA but not PMX mice. Spontaneous activity was mostly displayed by medium-sized neurons in AIA mice and was not correlated with any of the home cage behaviors. CONCLUSION Group-housed home cage monitoring revealed locomotor changes in AIA mice, but not PMX mice (with n = 10/group). In vivo calcium imaging can be used to assess activity in multiple retrogradely labelled joint afferents and revealed increased spontaneous activity in AIA but not PMX mice.
Collapse
Affiliation(s)
- George L Goodwin
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), King's College London, SE1 1UL, London, UK.
| | - Alina-Cristina Marin
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), King's College London, SE1 1UL, London, UK
| | - Julia Vlachaki Walker
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), King's College London, SE1 1UL, London, UK
| | - Carl Hobbs
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), King's College London, SE1 1UL, London, UK
| | - Franziska Denk
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), King's College London, SE1 1UL, London, UK
| |
Collapse
|
6
|
Adamczyk NS, Ishihara S, Obeidat AM, Ren D, Miller RJ, Malfait AM, Miller RE. FM-dye inhibition of Piezo2 relieves acute inflammatory and osteoarthritis knee pain in mice of both sexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643683. [PMID: 40166233 PMCID: PMC11956942 DOI: 10.1101/2025.03.17.643683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Musculoskeletal pain is a significant burden affecting billions of people with little progress in the development of pharmaceutical pain relief options. The mechanically-activated ion channel Piezo2 has been shown to play a role in mechanical sensitization; however there has been little progress in examining therapeutics that target this molecule. The goal of this study was to assess the effect of two FM-dyes, FM1-43 or FM4-64, in reducing acute inflammatory and osteoarthritis knee joint pain in mice of both sexes. In our acute model of Complete Freund's adjuvant (CFA)-induced joint pain, mice intra-articularly injected with FM1-43 exhibited an attenuation of knee hyperalgesia 90 minutes following injection. In vivo calcium imaging of the dorsal root ganglion (DRG) also demonstrated a reduction in nociceptor responses to mechanical forces applied to the knee joint of CFA mice following FM-dye injection. Male and female WT mice subjected to partial medial meniscectomy (PMX) surgery as a model of osteoarthritis developed more severe knee hyperalgesia than nociceptor-specific Piezo2 conditional knock-out mice. Intra-articular injection of FM1-43 reduced both knee hyperalgesia and weight-bearing asymmetry in this model and had no effect in Piezo2 conditional knock-out mice. Finally, in mice with spontaneous osteoarthritis associated with aging, intra-articular injection of FM-dyes also reduced knee hyperalgesia. In conclusion, inhibiting Piezo2 genetically or pharmacologically was effective in reducing pain-related behaviors in mice of both sexes in the setting of inflammatory and osteoarthritis knee pain. These studies provide evidence of the therapeutic potential of targeting Piezo2 in musculoskeletal pain conditions.
Collapse
Affiliation(s)
- Natalie S. Adamczyk
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL USA
| | - Shingo Ishihara
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL USA
| | - Alia M. Obeidat
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL USA
| | - Dongjun Ren
- Chicago Center on Musculoskeletal Pain, Chicago, IL USA
- Northwestern University, Department of Pharmacology, Chicago, IL USA
| | - Richard J. Miller
- Chicago Center on Musculoskeletal Pain, Chicago, IL USA
- Northwestern University, Department of Pharmacology, Chicago, IL USA
| | - Anne-Marie Malfait
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL USA
| | - Rachel E. Miller
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL USA
| |
Collapse
|
7
|
Adamczyk K, Zuzda K, Jankowski M, Świerczyński R, Chudziński K, Czapski B, Szułdrzyński K. Effects of Opioids in Cancer Pain: An Interplay Among Genetic Factors, Immune Response, and Clinical Outcomes-A Scoping Review. Cancers (Basel) 2025; 17:863. [PMID: 40075716 PMCID: PMC11899605 DOI: 10.3390/cancers17050863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/10/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Managing cancer-related pain presents complex challenges involving the interplay between analgesic efficacy, immune system responses, and patient outcomes. Methods: Following the Scale for the Assessment of Narrative Review Articles (SANRA) criteria, we conducted a comprehensive literature search in Medline, Scopus, and Web of Science databases. The review synthesized evidence regarding opioid pain management modalities, genetic variations affecting pain perception, and associated drug metabolism. Results: The literature reveals significant associations between opioid administration and immune function, with potential implications for cancer progression and survival. Genetic polymorphisms in key genes influence individual responses to pain opioid metabolism and, finally, pain management strategies. The immunosuppressive effects of opioids emerge as a critical consideration in cancer pain management, potentially influencing disease progression and treatment outcomes. Conclusions: Genetic variants influence analgesic efficacy, while the interaction between opioid-induced immunosuppression and genetic factors impacts both pain control and survival outcomes. This emphasizes the need for personalized treatment approaches considering individual genetic profiles and immune function.
Collapse
Affiliation(s)
- Kamil Adamczyk
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Konrad Zuzda
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Miłosz Jankowski
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Rafał Świerczyński
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Kamil Chudziński
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Bartosz Czapski
- Department of Neurosurgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Konstanty Szułdrzyński
- Department of Anesthesiology and Intensive Care, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| |
Collapse
|
8
|
Beignon F, Notais M, Diochot S, Baron A, Fajloun Z, Tricoire-Leignel H, Lenaers G, Mattei C. Neurotoxins Acting on TRPV1-Building a Molecular Template for the Study of Pain and Thermal Dysfunctions. Toxins (Basel) 2025; 17:64. [PMID: 39998081 PMCID: PMC11861614 DOI: 10.3390/toxins17020064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Transient Receptor Potential (TRP) channels are ubiquitous proteins involved in a wide range of physiological functions. Some of them are expressed in nociceptors and play a major role in the transduction of painful stimuli of mechanical, thermal, or chemical origin. They have been described in both human and rodent systems. Among them, TRPV1 is a polymodal channel permeable to cations, with a highly conserved sequence throughout species and a homotetrameric structure. It is sensitive to temperature above 43 °C and to pH below 6 and involved in various functions such as thermoregulation, metabolism, and inflammatory pain. Several TRPV1 mutations have been associated with human channelopathies related to pain sensitivity or thermoregulation. TRPV1 is expressed in a large part of the peripheral and central nervous system, most notably in sensory C and Aδ fibers innervating the skin and internal organs. In this review, we discuss how the transduction of nociceptive messages is activated or impaired by natural compounds and peptides targeting TRPV1. From a pharmacological point of view, capsaicin-the spicy ingredient of chilli pepper-was the first agonist described to activate TRPV1, followed by numerous other natural molecules such as neurotoxins present in plants, microorganisms, and venomous animals. Paralleling their adaptive protective benefit and allowing venomous species to cause acute pain to repel or neutralize opponents, these toxins are very useful for characterizing sensory functions. They also provide crucial tools for understanding TRPV1 functions from a structural and pharmacological point of view as this channel has emerged as a potential therapeutic target in pain management. Therefore, the pharmacological characterization of TRPV1 using natural toxins is of key importance in the field of pain physiology and thermal regulation.
Collapse
Affiliation(s)
- Florian Beignon
- University of Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France; (F.B.); (M.N.); (H.T.-L.); (G.L.)
| | - Margaux Notais
- University of Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France; (F.B.); (M.N.); (H.T.-L.); (G.L.)
| | - Sylvie Diochot
- Université Côte d’Azur, CNRS U7275, INSERM U1323, IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), 660 Route des Lucioles, Sophia-Antipolis, F-06560 Nice, France; (S.D.); (A.B.)
| | - Anne Baron
- Université Côte d’Azur, CNRS U7275, INSERM U1323, IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), 660 Route des Lucioles, Sophia-Antipolis, F-06560 Nice, France; (S.D.); (A.B.)
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
| | - Hélène Tricoire-Leignel
- University of Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France; (F.B.); (M.N.); (H.T.-L.); (G.L.)
| | - Guy Lenaers
- University of Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France; (F.B.); (M.N.); (H.T.-L.); (G.L.)
- Service de Neurologie, CHU d’Angers, F-49000 Angers, France
| | - César Mattei
- University of Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France; (F.B.); (M.N.); (H.T.-L.); (G.L.)
| |
Collapse
|
9
|
Zeitzschel N, Lechner SG. The activation thresholds and inactivation kinetics of poking-evoked PIEZO1 and PIEZO2 currents are sensitive to subtle variations in mechanical stimulation parameters. Channels (Austin) 2024; 18:2355123. [PMID: 38754025 PMCID: PMC11734767 DOI: 10.1080/19336950.2024.2355123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
PIEZO1 and PIEZO2 are mechanically activated ion channels that confer mechanosensitivity to various cell types. PIEZO channels are commonly examined using the so-called poking technique, where currents are recorded in the whole-cell configuration of the patch-clamp technique, while the cell surface is mechanically stimulated with a small fire-polished patch pipette. Currently, there is no gold standard for mechanical stimulation, and therefore, stimulation protocols differ significantly between laboratories with regard to stimulation velocity, angle, and size of the stimulation probe. Here, we systematically examined the impact of variations in these three stimulation parameters on the outcomes of patch-clamp recordings of PIEZO1 and PIEZO2. We show that the inactivation kinetics of PIEZO1 and, to a lesser extent, of PIEZO2 change with the angle at which the probe that is used for mechanical stimulation is positioned and, even more prominently, with the size of its tip. Moreover, we found that the mechanical activation threshold of PIEZO2, but not PIEZO1, decreased with increasing stimulation speeds. Thus, our data show that two key outcome parameters of PIEZO-related patch-clamp studies are significantly affected by common variations in the mechanical stimulation protocols, which calls for caution when comparing data from different laboratories and highlights the need to establish a gold standard for mechanical stimulation to improve comparability and reproducibility of data obtained with the poking technique.
Collapse
Affiliation(s)
- Nadja Zeitzschel
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan G. Lechner
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Velasco E, Flores-Cortés M, Guerra-Armas J, Flix-Díez L, Gurdiel-Álvarez F, Donado-Bermejo A, van den Broeke EN, Pérez-Cervera L, Delicado-Miralles M. Is chronic pain caused by central sensitization? A review and critical point of view. Neurosci Biobehav Rev 2024; 167:105886. [PMID: 39278607 DOI: 10.1016/j.neubiorev.2024.105886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Chronic pain causes disability and loss of health worldwide. Yet, a mechanistic explanation for it is still missing. Frequently, neural phenomena, and among them, Central Sensitization (CS), is presented as causing chronic pain. This narrative review explores the evidence substantiating the relationship between CS and chronic pain: four expert researchers were divided in two independent teams that reviewed the available evidence. Three criteria were established for a study to demonstrate a causal relationship: (1) confirm presence of CS, (2) study chronic pain, and (3) test sufficiency or necessity of CS over chronic pain symptoms. No study met those criteria, failing to demonstrate that CS can cause chronic pain. Also, no evidence reporting the occurrence of CS in humans was found. Worryingly, pain assessments are often confounded with CS measures in the literature, omitting that the latter is a neurophysiological and not a perceptual phenomenon. Future research should avoid this misconception to directly interrogate what is the causal contribution of CS to chronic pain to better comprehend this problematic condition.
Collapse
Affiliation(s)
- Enrique Velasco
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium. Department of Cellular and Molecular Medicine, KU Leuven, Belgium; Neuroscience in Physiotherapy (NiP), independent research group, Elche, Spain.
| | - Mar Flores-Cortés
- International Doctorate School, Faculty of Health Sciences, University of Málaga, Málaga 29071, Spain
| | - Javier Guerra-Armas
- International Doctorate School, Faculty of Health Sciences, University of Málaga, Málaga 29071, Spain
| | - Laura Flix-Díez
- Department of Otorrinolaryngology, Clínica Universidad de Navarra, University of Navarra, Madrid, Spain
| | - Francisco Gurdiel-Álvarez
- International Doctorate School, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain. Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid 28032, Spain
| | - Aser Donado-Bermejo
- International Doctorate School, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain. Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid 28032, Spain
| | | | - Laura Pérez-Cervera
- Neuroscience in Physiotherapy (NiP), independent research group, Elche, Spain
| | - Miguel Delicado-Miralles
- Neuroscience in Physiotherapy (NiP), independent research group, Elche, Spain; Department of Pathology and Surgery. Physiotherapy Area. Faculty of Medicine, Miguel Hernandez University, Alicante, Spain
| |
Collapse
|
11
|
Pacifico P, Menichella DM. Molecular mechanisms of neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:279-309. [PMID: 39580215 DOI: 10.1016/bs.irn.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Peripheral neuropathic pain, which occurs after a lesion or disease affecting the peripheral somatosensory nervous system, is a complex and challenging condition to treat. This chapter will cover molecular mechanisms underlying the pathophysiology of peripheral neuropathic pain, focusing on (1) sensitization of nociceptors, (2) neuro-immune crosstalk, and (3) axonal degeneration and regeneration. The chapter will also emphasize the importance of identifying novel therapeutic targets in non-neuronal cells. A comprehensive understanding of how changes at both neuronal and non-neuronal levels contribute to peripheral neuropathic pain may significantly improve pain management and treatment options, expanding to topical application that bypass the side effects associated with systemic administration.
Collapse
Affiliation(s)
- Paola Pacifico
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Daniela M Menichella
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
12
|
Morales-Soto W, Thomasi B, Gulbransen BD. Endocannabinoids regulate enteric neuron-glia networks and visceral hypersensitivity following inflammation through a glial-dependent mechanism. Glia 2024; 72:2095-2114. [PMID: 39132860 PMCID: PMC11563875 DOI: 10.1002/glia.24599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Abstract
Acute gastrointestinal (GI) inflammation induces neuroplasticity that produces long-lasting changes in gut motor function and pain. The endocannabinoid system is an attractive target to correct pain and dysmotility, but how inflammation changes endocannabinoid control over cellular communication in enteric neurocircuits is not understood. Enteric glia modulate gut neurons that control motility and pain and express monoacylglycerol lipase (MAGL) which controls endocannabinoid availability. We used a combination of in situ calcium imaging, chemogenetics, and selective drugs to study how endocannabinoid mechanisms affect glial responses and subsequent enteric neuron activity in health and following colitis in Wnt1Cre;GCaMP5g-tdT;GFAP::hM3Dq mice. Trpv1Cre;GCaMP5gtdT mice were used to study nociceptor sensitivity and Sox10CreERT2;Mgllf/f mice were used to test the role of glial MAGL in visceral pain. The data show that endocannabinoid signaling regulates neuro-glial signaling in gut neurocircuits in a sexually dimorphic manner. Inhibiting MAGL in healthy samples decreased glial responsiveness but this effect was lost in females following colitis and converted to an excitatory effect in males. Manipulating CB1 and CB2 receptors revealed further sex differences amongst neuro-glia signaling that were impacted following inflammation. Inflammation increased gut nociceptor sensitivity in both sexes but only females exhibited visceral hypersensitivity in vivo. Blocking MAGL normalized nociceptor responses in vitro and deleting glial Mgll in vivo rescued visceral hypersensitivity in females. These results show that sex and inflammation impact endocannabinoid mechanisms that regulate intercellular enteric glia-neuron communication. Further, targeting glial MAGL could provide therapeutic benefits for visceral nociception in a sex-dependent manner.
Collapse
Affiliation(s)
- Wilmarie Morales-Soto
- Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Beatriz Thomasi
- Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Brian D Gulbransen
- Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
13
|
Da Vitoria Lobo M, Hardowar L, Valentine T, Tomblin L, Guest C, Sharma D, Dickins B, Paul-Clark M, Hulse RP. Early-life cisplatin exposure induces neuroinflammation and chemotherapy-induced neuropathic pain. Dis Model Mech 2024; 17:dmm052062. [PMID: 39428813 PMCID: PMC11625889 DOI: 10.1242/dmm.052062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024] Open
Abstract
Chemotherapy-induced neuropathic pain (CINP) is a common adverse health-related comorbidity that manifests later in life in patients with paediatric cancer. Current analgesia is ineffective, aligning closely with our lack of understanding of CINP. The aim of this study was to investigate how cisplatin induces nerve growth factor (NGF)-mediated neuroinflammation and nociceptor sensitisation. In a rat model of cisplatin-induced survivorship pain, cisplatin induced a neuroinflammatory environment in the dorsal root ganglia (DRG), demonstrated by NGF-positive macrophages infiltrating into the DRG. Cisplatin-treated CD11b- and F4/80-positive macrophages expressed more NGF compared to those treated with vehicle control. Mouse primary DRG sensory neuronal cultures demonstrated enhanced NGF-dependent TRPV1-mediated nociceptor activity after cisplatin treatment. Increased nociceptor activity was also observed when cultured mouse DRG neurons were treated with conditioned medium from cisplatin-activated macrophages. Elevated nociceptor activity was inhibited in a dose-dependent manner by an NGF-neutralising antibody. Intraperitoneal administration of the NGF-neutralising antibody reduced cisplatin-induced mechanical hypersensitivity and aberrant nociceptor intraepidermal nerve fibre density. These findings identify that a monocyte- or macrophage-driven NGF-TrkA pathway is a novel analgesic target for adult survivors of childhood cancer.
Collapse
Affiliation(s)
- Marlene Da Vitoria Lobo
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Lydia Hardowar
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Tameille Valentine
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Lucy Tomblin
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Charlotte Guest
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Dhyana Sharma
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Benjamin Dickins
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Mark Paul-Clark
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Richard Philip Hulse
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
14
|
Rutter-Locher Z, Kirkham BW, Bannister K, Bennett DL, Buckley CD, Taams LS, Denk F. An interdisciplinary perspective on peripheral drivers of pain in rheumatoid arthritis. Nat Rev Rheumatol 2024; 20:671-682. [PMID: 39242949 DOI: 10.1038/s41584-024-01155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/09/2024]
Abstract
Pain is one of the most debilitating symptoms of rheumatoid arthritis (RA), and yet remains poorly understood, especially when pain occurs in the absence of synovitis. Without active inflammation, experts most often attribute joint pain to central nervous system dysfunction. However, advances in the past 5 years in both immunology and neuroscience research suggest that chronic pain in RA is also driven by a variety of abnormal interactions between peripheral neurons and mediators produced by resident cells in the local joint environment. In this Review, we discuss these novel insights from an interdisciplinary neuro-immune perspective. We outline a potential working model for the peripheral drivers of pain in RA, which includes autoantibodies, resident immune and mesenchymal cells and their interactions with different subtypes of peripheral sensory neurons. We also offer suggestions for how future collaborative research could be designed to accelerate analgesic drug development.
Collapse
Affiliation(s)
- Zoe Rutter-Locher
- Department of Rheumatology, Guy's Hospital, London, UK
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | | | - Kirsty Bannister
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London, London, UK
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Leonie S Taams
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK.
| | - Franziska Denk
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London, London, UK.
| |
Collapse
|
15
|
Welch HF, Sankaranarayanan I, Hong VM, Mazhar K, Kolber BJ, Price TJ, Thorn CA. Lateralized nodose ganglia gene expression implicates cholecystokinin receptors in interoceptive reward signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621506. [PMID: 39554115 PMCID: PMC11565973 DOI: 10.1101/2024.11.01.621506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The vagus nerves are important carriers of sensory information from the viscera to the central nervous system. Emerging evidence suggests that sensory signaling through the right, but not the left, vagus nerve evokes striatal dopamine release and reinforces appetitive behaviors. However, the extent to which differential gene expression within vagal sensory neurons contributes to this asymmetric reward-related signaling remains unknown. Here, we use single-cell RNA sequencing to identify genes that are differentially expressed between the left and right nodose ganglia (NG) to identify candidate genes likely to contribute to vagus-mediated reward signaling. We find that a group of neurons expressing Chrna3 (nicotinic acetylcholine receptor subunit 3) and Cckar (cholecystokinin A receptor) is preferentially expressed in the right NG of both rats and mice. This result suggests that differential expression of gut-innervating nutrient sensors in NG neurons may contribute to asymmetric encoding of interoceptive rewards by the vagus nerves.
Collapse
|
16
|
Zebochin I, Denk F, Nochi Z. Modeling neuropathic pain in a dish. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:233-278. [PMID: 39580214 DOI: 10.1016/bs.irn.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
The study of pain mechanisms has advanced significantly with the development of innovative in vitro models. This chapter explores those already used in or potentially useful for neuropathic pain research, emphasizing the complementary roles of animal and human cellular models to enhance translational success. Traditional animal models have provided foundational insights into the neurobiology of pain and remain invaluable for understanding complex pain pathways. However, integrating human cellular models addresses the need for better replication of human nociceptors. The chapter details methodologies for culturing rodent and human primary sensory neurons, including isolation and culture techniques, advantages, and limitations. It highlights the application of these models in neuropathic pain research, such as identifying pain-associated receptors and ion channels. Recent advancements in using induced pluripotent stem cell (iPSC)-derived sensory neurons are also discussed. Finally, the chapter explores advanced in vitro models, including 2D co-cultures and 3D organoids, and their implications for studying neuropathic pain. These models offer significant advantages for drug screening and ethical research practices, providing a more accurate representation of human pain pathways and paving the way for innovative therapeutic strategies. Despite challenges such as limited access to viable human tissue and variability between samples, these in vitro models, alongside traditional animal models, are indispensable for advancing our understanding of neuropathic pain and developing effective treatments.
Collapse
Affiliation(s)
- Irene Zebochin
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London
| | - Franziska Denk
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London
| | - Zahra Nochi
- Danish Pain Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
17
|
Hall BE, Mazhar K, Macdonald E, Cassidy M, Doty M, Judkins C, Terse A, Shiers S, Tadros S, Yun S, Burton MD, Price TJ, Kulkarni AB. Transcriptome analysis of rheumatoid arthritis uncovers genes linked to inflammation-induced pain. Sci Rep 2024; 14:25893. [PMID: 39472517 PMCID: PMC11522505 DOI: 10.1038/s41598-024-77212-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Autoimmune diseases such as rheumatoid arthritis (RA) can promote states of chronic inflammation with accompanying tissue destruction and pain. RA can cause inflammatory synovitis in peripheral joints, particularly within the hands and feet, but can also sometimes trigger temporomandibular joint (TMJ) arthralgia. To better understand the effects of ongoing inflammation-induced pain signaling, dorsal root ganglia (DRGs) were acquired from individuals with RA for transcriptomic study. We conducted RNA sequencing from the L5 DRGs because it contains the soma of the sensory neurons that innervate the affected joints in the foot. DRGs from 5 RA patients were compared with 9 non-arthritic controls. RNA-seq of L5 DRGs identified 128 differentially expressed genes (DEGs) that were dysregulated in the RA subjects as compared to the non-arthritic controls. The DRG resides outside the blood brain barrier and, as such, our initial transcriptome analysis detected signs of an autoimmune disorder including the upregulated expression of immunoglobulins and other immunologically related genes within the DRGs of the RA donors. Additionally, we saw the upregulation in genes implicated in neurogenesis that could promote pain hypersensitivity. Overall, our DRG analysis suggests that there are upregulated inflammatory and pain signaling pathways that can contribute to chronic pain in RA.
Collapse
Affiliation(s)
- Bradford E Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
| | - Khadijah Mazhar
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Dallas, TX, 75080, USA
| | - Emma Macdonald
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- NIH Graduate Partnerships Program, Brown University, Providence, RI, 02912, USA
| | - Margaret Cassidy
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- U. Penn, Philadelphia, PA, 19104, USA
| | - Megan Doty
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- , Dartmouth, Hanover, NH, 03755, USA
| | - Christian Judkins
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- Millipore Sigma, Rockville, MD, 20850, USA
| | - Anita Terse
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Dallas, TX, 75080, USA
| | - Saber Tadros
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sijung Yun
- Predictiv Care, Inc, Mountain View, CA, 94040, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Dallas, TX, 75080, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Lindquist KA, Mecklenburg J, Hovhannisyan AH, Ruparel S, Akopian AN. Investigating Mechanically Activated Currents from Trigeminal Neurons of Non-Human Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616876. [PMID: 39416195 PMCID: PMC11482751 DOI: 10.1101/2024.10.06.616876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Introduction Pain sensation has predominantly mechanical modalities in many pain conditions. Mechanically activated (MA) ion channels on sensory neurons underly responsiveness to mechanical stimuli. The study aimed to address gaps in knowledge regarding MA current properties in higher order species such as non-human primates (NHP; common marmosets), and characterization of MA currents in trigeminal (TG) neuronal subtypes. Methods We employed patch clamp electrophysiology and immunohistochemistry (IHC) to associate MA current types to different marmoset TG neuronal groups. TG neurons were grouped according to presumed marker expression, action potential (AP) width, characteristic AP features, after-hyperpolarization parameters, presence/absence of AP trains and transient outward currents, and responses to mechanical stimuli. Results Marmoset TG were clustered into 5 C-fiber and 5 A-fiber neuronal groups. The C1 group likely represent non-peptidergic C-nociceptors, the C2-C4 groups resembles peptidergic C-nociceptors, while the C5 group could be either cold-nociceptors or C-low-threshold-mechanoreceptors (C-LTMR). Among C-fiber neurons only C4 were mechanically responsive. The A1 and A2 groups are likely A-nociceptors, while the A3-A5 groups probably denote different subtypes of A-low-threshold-mechanoreceptors (A-LTMRs). Among A-fiber neurons only A1 was mechanically unresponsive. IHC data was correlated with electrophysiology results and estimates that NHP TG has ∼25% peptidergic C-nociceptors, ∼20% non-peptidergic C-nociceptors, ∼30% A-nociceptors, ∼5% C-LTMR, and ∼20% A-LTMR. Conclusion Overall, marmoset TG neuronal subtypes and their associated MA currents have common and unique properties compared to previously reported data. Findings from this study could be the basis for investigation on MA current sensitizations and mechanical hypersensitivity during head and neck pain conditions.
Collapse
|
19
|
Solinski HJ, Schmelz M, Rukwied R. Sustained nerve growth factor-induced C-nociceptor sensitization to electrical sinusoidal stimulation in humans. Pain Rep 2024; 9:e1190. [PMID: 39315114 PMCID: PMC11419415 DOI: 10.1097/pr9.0000000000001190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/20/2024] [Accepted: 05/09/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Injection of recombinant human nerve growth factor (rhNGF) evokes acute heat and prolonged "polymodal" (mechanosensitive [CM]) and "silent" (mechanoinsensitive [CMi]) C-nociceptor sensitization. Both nociceptor classes can be activated differentially using slowly depolarizing electrical sinusoidal stimuli. Objectives To explore the temporal profile of nociceptor sensitization to heat and mechanical and electrical stimuli in humans after rhNGF. Methods Recombinant human nerve growth factor (1 µg) and NaCl (0.9%) was injected into human forearm skin (n = 9, 50 µL/injection). Pain ratings (numeric rating scale) to transcutaneous electrical stimuli (1 ms 20 Hz rectangular pulses, 500-ms half-period sine wave [1 Hz] and 4 Hz sine wave pulses [2.5 and 60 seconds]) were assessed at days 3, 21, and 49 after injection, in addition to heat pain thresholds (HPTs, 9 × 9 mm thermode) and mechanical impact pain (4 and 8 m/second). Results Suprathreshold sinusoidal stimulation for specific CM (1 Hz) and combined CM and CMi (4 Hz) activation resulted in enhanced pain from day 3 post rhNGF and lasted throughout 7 weeks. These temporal dynamics contrasted minimum HPTs at day 3 (normalized by day 49) or mechanical impact pain (developing slowly until day 21 before declining depending on stimulus intensity). Correlation analyses of electrical pain indicated diverging kinetics when assessed for CM with or without concomitant CMi activation at days 3 and 21, which converged 7 weeks post rhNGF. Conclusions Exceptionally long sensitization of CM and CMi nociceptors by rhNGF, uncovered by suprathreshold electrical sinusoidal stimulation, indicates a signal transduction-independent long-lasting hyperexcitability of C-nociceptors that clinically may contribute to rhNGF-maintained chronic inflammatory pain.
Collapse
Affiliation(s)
- Hans Jürgen Solinski
- Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Roman Rukwied
- Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Qi G, Jiang Z, Niu J, Jiang C, Zhang J, Pei J, Wang X, An S, Yu T, Wang X, Zhang Y, Ma T, Zhang X, Yuan G, Wang Z. SrHPO 4-coated Mg alloy implant attenuates postoperative pain by suppressing osteoclast-induced sensory innervation in osteoporotic fractures. Mater Today Bio 2024; 28:101227. [PMID: 39290467 PMCID: PMC11405936 DOI: 10.1016/j.mtbio.2024.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/17/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
Osteoporotic fractures have become a common public health problem and are usually accompanied by chronic pain. Mg and Mg-based alloys are considered the next-generation orthopedic implants for their excellent osteogenic inductivity, biocompatibility, and biodegradability. However, Mg-based alloy can initiate aberrant activation of osteoclasts and modulate sensory innervation into bone callus resulting in postoperative pain at the sequential stage of osteoporotic fracture healing. Its mechanism is going to be investigated. Strontium hydrogen phosphate (SrHPO4) coating to delay the Mg-based alloy degradation, can reduce the osteoclast formation and inhibit the growth of sensory nerves into bone callus, dorsal root ganglion hyperexcitability, and pain hypersensitivity at the early stage. Liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis of bone marrow-derived macrophages (BMMs) treated with SrHPO4-coated Mg alloy extracts shows the potential effect of increased metabolite levels of AICAR (an activator of the AMPK pathway). We demonstrate a possible modulated secretion of AICAR and osteoclast differentiation from BMMs, which inhibits sensory innervation and postoperative pain through the AMPK/mTORc1/S6K pathway. Importantly, supplementing with AICAR in Mg-activated osteoclasts attenuates postoperative pain. These results suggest that Mg-induced postoperative pain is related to the osteoclastogenesis and sensory innervation at the early stage in the osteoporotic fractures and the SrHPO4 coating on Mg-based alloys can reduce the pain by upregulating AICAR secretion from BMMs or preosteoclasts.
Collapse
Affiliation(s)
- Guobin Qi
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Zengxin Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Jialin Niu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chang Jiang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Zhang
- Shanghai Innovation Medical Technology Co., Ltd, 600 Xinyuan South Road, Lingang New Area, Pudong New District, Shanghai, 201306, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao Wang
- Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Senbo An
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Tao Yu
- Department of Spine Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xiuhui Wang
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated to Zhoupu Hospital, Shanghai, 201318, China
| | - Yueqi Zhang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Tianle Ma
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaotian Zhang
- Orthpaedic Trauma, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhe Wang
- Orthpaedic Trauma, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
21
|
Hamed YMF, Ghosh B, Marshall KL. PIEZO ion channels: force sensors of the interoceptive nervous system. J Physiol 2024; 602:4777-4788. [PMID: 38456626 PMCID: PMC11845038 DOI: 10.1113/jp284077] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
Many organs are designed to move: the heart pumps each second, the gastrointestinal tract squeezes and churns to digest food, and we contract and relax skeletal muscles to move our bodies. Sensory neurons of the peripheral nervous system detect signals from bodily tissues, including the forces generated by these movements, to control physiology. The processing of these internal signals is called interoception, but this is a broad term that includes a wide variety of both chemical and mechanical sensory processes. Mechanical senses are understudied, but rapid progress has been made in the last decade, thanks in part to the discovery of the mechanosensory PIEZO ion channels (Coste et al., 2010). The role of these mechanosensors within the interoceptive nervous system is the focus of this review. In defining the transduction molecules that govern mechanical interoception, we will have a better grasp of how these signals drive physiology.
Collapse
Affiliation(s)
- Yasmeen M. F. Hamed
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Britya Ghosh
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kara L. Marshall
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Lead contact
| |
Collapse
|
22
|
Butera KA, Chimenti RL, Alsouhibani AM, Berardi G, Booker SQ, Knox PJ, Post AA, Merriwether EN, Wilson AT, Simon CB. Through the Lens of Movement-Evoked Pain: A Theoretical Framework of the "Pain-Movement Interface" to Guide Research and Clinical Care for Musculoskeletal Pain Conditions. THE JOURNAL OF PAIN 2024; 25:104486. [PMID: 38316243 PMCID: PMC11180580 DOI: 10.1016/j.jpain.2024.01.351] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Over 120 million Americans report experiencing pain in the past 3 months. Among these individuals, 50 million report chronic pain and 17 million report pain that limits daily life or work activities on most days (ie, high-impact chronic pain). Musculoskeletal pain conditions in particular are a major contributor to global disability, health care costs, and poor quality of life. Movement-evoked pain (MEP) is an important and distinct component of the musculoskeletal pain experience and represents an emerging area of study in pain and rehabilitation fields. This focus article proposes the "Pain-Movement Interface" as a theoretical framework of MEP that highlights the interface between MEP, pain interference, and activity engagement. The goal of the framework is to expand knowledge about MEP by guiding scientific inquiry into MEP-specific pathways to disability, high-risk clinical phenotypes, and underlying individual influences that may serve as treatment targets. This framework reinforces the dynamic nature of MEP within the context of activity engagement, participation in life and social roles, and the broader pain experience. Recommendations for MEP evaluation, encompassing the spectrum from high standardization to high patient specificity, and MEP-targeted treatments are provided. Overall, the proposed framework and recommendations reflect the current state of science in this emerging area of study and are intended to support future efforts to optimize musculoskeletal pain management and enhance patient outcomes. PERSPECTIVE: Movement-evoked pain (MEP) is a distinct component of the musculoskeletal pain experience and emerging research area. This article introduces the "Pain-Movement Interface" as a theoretical framework of MEP, highlighting the interface between MEP, pain interference, and activity engagement. Evaluating and treating MEP could improve rehabilitation approaches and enhance patient outcomes.
Collapse
Affiliation(s)
- Katie A. Butera
- Department of Physical Therapy, University of Delaware, Newark, Delaware, USA
| | - Ruth L. Chimenti
- Department of Physical Therapy & Rehabilitation Science, University of Iowa, Iowa City, Iowa, USA
| | - Ali M. Alsouhibani
- Department of Physical Therapy, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Giovanni Berardi
- Department of Physical Therapy & Rehabilitation Science, University of Iowa, Iowa City, Iowa, USA
| | - Staja Q. Booker
- Department of Biobehavioral Nursing Science, University of Florida, Gainesville, Florida, USA
| | - Patrick J. Knox
- Department of Physical Therapy, University of Delaware, Newark, Delaware, USA
| | - Andrew A. Post
- Department of Physical Therapy & Rehabilitation Science, University of Iowa, Iowa City, Iowa, USA
| | - Ericka N. Merriwether
- Department of Physical Therapy, NYU Steinhardt School of Culture, Education, and Human Development, Department of Medicine, NYU Grossman School of Medicine, New York University, New York, New York, USA
| | - Abigail T. Wilson
- School of Kinesiology & Rehabilitation Sciences, University of Central Florida, Orlando, Florida, USA
| | - Corey B. Simon
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| |
Collapse
|
23
|
Yu J, Wang S, Chen SJ, Zheng MJ, Yuan CR, Lai WD, Wen JJ, You WT, Liu PQ, Khanna R, Jin Y. Sinomenine ameliorates fibroblast-like synoviocytes dysfunction by promoting phosphorylation and nuclear translocation of CRMP2. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117704. [PMID: 38176664 DOI: 10.1016/j.jep.2024.117704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and arthritic pain. Sinomenine (SIN), derived from the rhizome of Chinese medical herb Qing Teng (scientific name: Sinomenium acutum (Thunb.) Rehd. Et Wils), has a longstanding use in Chinese traditional medicine for treating rheumatoid arthritis. It has been shown to possess anti-inflammatory, analgesic, and immunosuppressive effects with minimal side-effects clinically. However, the mechanisms governing its effects in treatment of joint pathology, especially on fibroblast-like synoviocytes (FLSs) dysfunction, and arthritic pain remains unclear. AIM This study aimed to investigate the effect and underlying mechanism of SIN on arthritic joint inflammation and joint FLSs dysfunctions. MATERIALS AND METHODS Collagen-induced arthritis (CIA) was induced in rats and the therapeutic effects of SIN on joint pathology were evaluated histopathologically. Next, we conducted a series of experiments using LPS-induced FLSs, which were divided into five groups (Naïve, LPS, SIN 10, 20, 50 μg/ml). The expression of inflammatory factors was measured by qPCR and ELISA. The invasive ability of cells was detected by modified Transwell assay and qPCR. Transwell migration and cell scratch assays were used to assess the migration ability of cells. The distribution and content of relevant proteins were observed by immunofluorescence and laser confocal microscopy, as well as Western Blot and qPCR. FLSs were transfected with plasmids (CRMP2 T514A/D) to directly modulate the post-translational modification of CRMP2 protein and downstream effects on FLSs function was monitored. RESULTS SIN alleviated joint inflammation in rats with CIA, as evidenced by improvement of synovial hyperplasia, inflammatory cell infiltration and cartilage damage, as well as inhibition of pro-inflammatory cytokines release from FLSs induced by LPS. In vitro studies revealed a concentration-dependent suppression of SIN on the invasion and migration of FLSs induced by LPS. In addition, SIN downregulated the expression of cellular CRMP2 that was induced by LPS in FLSs, but increased its phosphorylation at residue T514. Moreover, regulation of pCRMP2 T514 by plasmids transfection (CRMP2 T514A/D) significantly influenced the migration and invasion of FLSs. Finally, SIN promoted nuclear translocation of pCRMP2 T514 in FLSs. CONCLUSIONS SIN may exert its anti-inflammatory and analgesic effects by modulating CRMP2 T514 phosphorylation and its nuclear translocation of FLSs, inhibiting pro-inflammatory cytokine release, and suppressing abnormal invasion and migration. Phosphorylation of CRMP2 at the T514 site in FLSs may present a new therapeutic target for treating inflammatory joint's destruction and arthritic pain in RA.
Collapse
Affiliation(s)
- Jie Yu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China; College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Song Wang
- College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Si-Jia Chen
- College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Meng-Jia Zheng
- College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Cun-Rui Yuan
- College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Wei-Dong Lai
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China; College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Jun-Jun Wen
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China; College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Wen-Ting You
- Department of Pharmacy, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, 317500, China
| | - Pu-Qing Liu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China
| | - Rajesh Khanna
- Department of Molecular Pathobiology, New York University, College of Dentistry, and NYU Pain Research Center, New York, 10010, USA.
| | - Yan Jin
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310053, China; College of Basic Medical Science, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Hall BE, Mazhar K, Macdonald E, Cassidy M, Doty M, Judkins C, Terse A, Shiers S, Tadros S, Yun S, Burton MD, Price TJ, Kulkarni A. Transcriptome Analysis of Rheumatoid Arthritis Uncovers Genes Linked to Inflammation-Induced Pain. RESEARCH SQUARE 2024:rs.3.rs-4218885. [PMID: 38712195 PMCID: PMC11071542 DOI: 10.21203/rs.3.rs-4218885/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Autoimmune diseases such as rheumatoid arthritis (RA) can promote states of chronic Inflammation with accompanying tissue destruction and pain. RA can cause inflammatory synovitis in peripheral joints, particularly within the hands and feet, but can also sometimes trigger temporomandibular joint (TMJ) arthralgia. To better understand the effects of ongoing Inflammation-induced pain signaling, dorsal root ganglia (DRGs) were acquired from individuals with RA for transcriptomic study. We conducted RNA sequencing from the L5 DRGs because it contains the soma of the sensory neurons that innervate the affected joints in the foot. DRGs from 5 RA patients were compared with 9 non-arthritic controls. RNA-seq of L5 DRGs identified 128 differentially expressed genes (DEGs) that were dysregulated in the RA subjects as compared to the non-arthritic controls. The DRG resides outside the blood brain barrier and, as such, our initial transcriptome analysis detected signs of an autoimmune disorder including the upregulated expression of immunoglobulins and other immunologically related genes within the DRGs of the RA donors. Additionally, we saw the upregulation in genes implicated in neurogenesis that could promote pain hypersensitivity. overall, our DRG analysis suggests that there are upregulated inflammatory and pain signaling pathways that can contribute to chronic pain in RA.
Collapse
Affiliation(s)
- Bradford E Hall
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| | | | - Emma Macdonald
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| | - Margaret Cassidy
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| | - Megan Doty
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| | - Christian Judkins
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| | - Anita Terse
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| | | | - Saber Tadros
- National Cancer Institute, National Institutes of Health
| | | | | | | | - Ashok Kulkarni
- National Institute of Dental and Craniofacial Research, National Institutes of Health
| |
Collapse
|
25
|
Yang W, Lin L, Hu S, Jiang B, Yang R, Yu W, Tang J, Zhao D, Gu Y, Jin M, Li J, Lu E. Expression patterns of mechanosensitive ion channel PIEZOs in irreversible pulpitis. BMC Oral Health 2024; 24:465. [PMID: 38627713 PMCID: PMC11022356 DOI: 10.1186/s12903-024-04209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/30/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Mechanosensitive ion channel PIEZOs have been widely reported to involve inflammation and pain. This study aimed to clarify expression patterns of PIEZOs and their potential relations to irreversible pulpitis. MATERIALS AND METHODS Normal pulp tissues (n = 29) from patients with impacted third molars and inflamed pulp tissues (n = 23) from patients with irreversible pulpitis were collected. Pain levels were assessed using a numerical rating scale. PIEZO expressions were measured using real-time PCR and then confirmed using GEO datasets GSE77459, immunoblot, and immunohistochemistry staining. Correlations of PIEZO mRNA expression with inflammatory markers, pain markers, or clinical pain levels were evaluated using Spearman's correlation analysis. Univariate analysis was conducted to analyze PIEZO expressions based on pain description and clinical examinations of cold test, percussion, palpation, and bite test. RESULTS Compared with normal pulp tissues, mRNA expression levels of PIEZO1 were significantly increased in inflamed pulp tissues, while PIEZO2 was significantly decreased, which was further confirmed in GSE77459 and on a protein and histological level. The positive correlation of the mRNA expression levels between PIEZO1 and inflammatory markers, as well as between PIEZO2 and pain markers, was verified. PIEZO2 expression was also positively correlated with pain levels. Besides, irreversible pulpitis patients who reported continuous pain and who detected a positive response to cold stimulus exhibited a higher expression level of PIEZO2 in the inflamed pulp tissues. By contrast, patients reporting pain duration of more than one week showed a higher expression level of PIEZO1. CONCLUSIONS This study demonstrated the upregulation of PIEZO1 and the downregulation of PIEZO2 in irreversible pulpitis and revealed the potential relation of PIEZO1 and PIEZO2 to inflammation and pain. These findings suggested that PIEZOs might play critical roles in the progression of irreversible pulpitis and paved the way for further investigations aimed at novel therapies of irreversible pulpitis by targeting PIEZOs.
Collapse
Affiliation(s)
- Wenying Yang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Lu Lin
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Shucheng Hu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Bin Jiang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Ruhan Yang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Weijun Yu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Jiaqi Tang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Dan Zhao
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Yuting Gu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| | - Min Jin
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| | - Jin Li
- Department of Ophthalmology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
26
|
Qi L, Iskols M, Shi D, Reddy P, Walker C, Lezgiyeva K, Voisin T, Pawlak M, Kuchroo VK, Chiu IM, Ginty DD, Sharma N. A mouse DRG genetic toolkit reveals morphological and physiological diversity of somatosensory neuron subtypes. Cell 2024; 187:1508-1526.e16. [PMID: 38442711 PMCID: PMC10947841 DOI: 10.1016/j.cell.2024.02.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/12/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Dorsal root ganglia (DRG) somatosensory neurons detect mechanical, thermal, and chemical stimuli acting on the body. Achieving a holistic view of how different DRG neuron subtypes relay neural signals from the periphery to the CNS has been challenging with existing tools. Here, we develop and curate a mouse genetic toolkit that allows for interrogating the properties and functions of distinct cutaneous targeting DRG neuron subtypes. These tools have enabled a broad morphological analysis, which revealed distinct cutaneous axon arborization areas and branching patterns of the transcriptionally distinct DRG neuron subtypes. Moreover, in vivo physiological analysis revealed that each subtype has a distinct threshold and range of responses to mechanical and/or thermal stimuli. These findings support a model in which morphologically and physiologically distinct cutaneous DRG sensory neuron subtypes tile mechanical and thermal stimulus space to collectively encode a wide range of natural stimuli.
Collapse
Affiliation(s)
- Lijun Qi
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David Shi
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Pranav Reddy
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Christopher Walker
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Karina Lezgiyeva
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Tiphaine Voisin
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Mathias Pawlak
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| | - Nikhil Sharma
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
27
|
Hwang CD, Hoftiezer YAJ, Raasveld FV, Gomez-Eslava B, van der Heijden EPA, Jayakar S, Black BJ, Johnston BR, Wainger BJ, Renthal W, Woolf CJ, Eberlin KR. Biology and pathophysiology of symptomatic neuromas. Pain 2024; 165:550-564. [PMID: 37851396 DOI: 10.1097/j.pain.0000000000003055] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/07/2023] [Indexed: 10/19/2023]
Abstract
ABSTRACT Neuromas are a substantial cause of morbidity and reduction in quality of life. This is not only caused by a disruption in motor and sensory function from the underlying nerve injury but also by the debilitating effects of neuropathic pain resulting from symptomatic neuromas. A wide range of surgical and therapeutic modalities have been introduced to mitigate this pain. Nevertheless, no single treatment option has been successful in completely resolving the associated constellation of symptoms. While certain novel surgical techniques have shown promising results in reducing neuroma-derived and phantom limb pain, their effectiveness and the exact mechanism behind their pain-relieving capacities have not yet been defined. Furthermore, surgery has inherent risks, may not be suitable for many patients, and may yet still fail to relieve pain. Therefore, there remains a great clinical need for additional therapeutic modalities to further improve treatment for patients with devastating injuries that lead to symptomatic neuromas. However, the molecular mechanisms and genetic contributions behind the regulatory programs that drive neuroma formation-as well as the resulting neuropathic pain-remain incompletely understood. Here, we review the histopathological features of symptomatic neuromas, our current understanding of the mechanisms that favor neuroma formation, and the putative contributory signals and regulatory programs that facilitate somatic pain, including neurotrophic factors, neuroinflammatory peptides, cytokines, along with transient receptor potential, and ionotropic channels that suggest possible approaches and innovations to identify novel clinical therapeutics.
Collapse
Affiliation(s)
- Charles D Hwang
- Division of Plastic and Reconstructive Surgery, Department of General Surgery, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Yannick Albert J Hoftiezer
- Hand and Arm Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, United States
- Department of Plastic, Reconstructive and Hand Surgery, Radboudumc, Nijmegen, the Netherlands
| | - Floris V Raasveld
- Hand and Arm Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, United States
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Barbara Gomez-Eslava
- Hand and Arm Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, United States
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - E P A van der Heijden
- Department of Plastic, Reconstructive and Hand Surgery, Radboudumc, Nijmegen, the Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Jeroen Bosch Ziekenhuis, Den Bosch, the Netherlands
| | - Selwyn Jayakar
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Bryan James Black
- Department of Biomedical Engineering, UMass Lowell, Lowell, MA, United States
| | - Benjamin R Johnston
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Brian J Wainger
- Departments of Anesthesia, Critical Care & Pain Medicine and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Kyle R Eberlin
- Division of Plastic and Reconstructive Surgery, Department of General Surgery, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| |
Collapse
|
28
|
Schwarzenauer M, Rukwied RM, Lampert A, Rolke R, Namer B. Electrical matrix stimulation suppresses acute itch independently of activation of sleeping nociceptors. Eur J Pain 2024; 28:285-296. [PMID: 37715607 DOI: 10.1002/ejp.2177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 08/19/2023] [Indexed: 09/17/2023]
Abstract
INTRODUCTION Itch can be reduced by pain. Activation of sleeping nociceptors (CMi) is a crucial mechanism for the peripheral component of intense and long-lasting pain. Thus, activation of CMi might be especially effective in itch reduction. Electrical stimulation using sinusoidal pulses activates CMi with tolerable pain intensity, whereas short rectangular pulses with low intensity do not. In humans, histaminergic itch is mediated by histamine-sensitive CMi, whereas other pruritogens activate polymodal nociceptors (CM). METHODS In a psychophysical approach in a balanced crossover repeated-measures design in healthy volunteers, we activated nociceptors by two different electrical stimulation paradigms via a matrix electrode: 4 Hz sinusoidal pulses that activate C-nociceptors including CMi or 4 Hz rectangular stimuli to activate nociceptors excluding CMi. After 5-min stimulation, itch was induced by either histamine iontophoresis or application of cowhage spicules. Itch ratings were assessed via a numerical rating scale (NRS). RESULTS Electrical 4 Hz sine wave stimulation (0.1 mA) with low pain ratings of 1.5 (NRS; 0-10) induced an axon reflex erythema (3 cm2 ), indicating activation of CMi, whereas rectangular 0.2 ms pulses (average 0.91 mA) with the same pain rating did not. Both electrical stimulation paradigms reduced itch magnitude over time evoked by either histamine or cowhage to a similar extent. Peak maximum itch evoked by histamine was reduced by both stimulation paradigms, but not cowhage maximum itch. DISCUSSION Since electrical stimulation with the rectangular pulse paradigm reduces itch to a similar extent as the sine wave stimulation paradigm, the input of CMi is not necessarily required for itch suppression. The input of A-fibres and polymodal nociceptors, similarly, as also achieved by scratching, seems to be sufficient for both forms of chemically evoked itch. SIGNIFICANCE Since activation of CMi does not provide additional benefit for itch suppression, spinal pain pathways transmitted via CM versus CMi have differential effects on itch-processing circuits. This is important knowledge for using electrical matrix stimulation as itch suppressor since activation of sleeping nociceptors either requires significantly painful stimulation paradigms or specialized stimulation paradigms as sinusoidal pulses. An alternative approach using half-sine wave pulses with low pain intensity activating specifically polymodal nociceptors to suppress itch via matrix electrode stimulation may be considered.
Collapse
Affiliation(s)
- M Schwarzenauer
- IZKF Research Group Neuroscience, Medical Faculty RWTH Aachen University, Aachen, Germany
- Department of Palliative Medicine, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - R M Rukwied
- Department of Experimental Pain Research, Mannheim Center for Translation Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - A Lampert
- Department for Neurophysiology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - R Rolke
- Department of Palliative Medicine, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - B Namer
- IZKF Research Group Neuroscience, Medical Faculty RWTH Aachen University, Aachen, Germany
- Department for Neurophysiology, Medical Faculty RWTH Aachen University, Aachen, Germany
| |
Collapse
|
29
|
Hovhannisyan AH, Lindquist KA, Belugin S, Mecklenburg J, Ibrahim T, Tram M, Corey TM, Salmon AB, Perez D, Ruparel S, Akopian AN. Sensory innervation of masseter, temporal and lateral pterygoid muscles in common marmosets. Sci Rep 2023; 13:23062. [PMID: 38155190 PMCID: PMC10754842 DOI: 10.1038/s41598-023-49882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023] Open
Abstract
Myogenous temporomandibular disorders is associated with an increased responsiveness of nerves innervating the masseter (MM), temporal (TM), and lateral pterygoid muscles (LPM). This study aimed to examine sensory nerve types innervating MM, TM and LPM of adult non-human primate-common marmosets. Sensory nerves were localized in specific regions of these muscles. Pgp9.5, marker for all nerves, and NFH, a marker for A-fibers, showed that masticatory muscles were primarily innervated with A-fibers. The proportion of C- to A-fibers was highest in LPM, and lowest in MM. All C-fibers (pgp9.5+/NFH-) observed in masticatory muscles were peptidergic (CGRP+) and lacked mrgprD and CHRNA3, a silent nociceptive marker. TrpV1 was register in 17% of LPM nerves. All fibers in masticatory muscles were labeled with GFAP+, a myelin sheath marker. There were substantially more peptidergic A-fibers (CGRP+/NFH+) in TM and LPM compared to MM. MM, TM and LPM NFH+ fibers contained different percentages of trkC+ and parvalbumin+, but not trkB+ fibers. Tyrosine hydroxylase antibodies, which did not label TG, highlighted sympathetic fibers around blood vessels of the masticatory muscles. Overall, masticatory muscle types of marmosets have similarities and differences in innervation patterns.
Collapse
Affiliation(s)
- Anahit H Hovhannisyan
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Karen A Lindquist
- Integrated Biomedical Sciences (IBMS) Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Sergei Belugin
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jennifer Mecklenburg
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Tarek Ibrahim
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Meilinn Tram
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
- Integrated Biomedical Sciences (IBMS) Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Tatiana M Corey
- Departments of Laboratory Animal Resources, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Adam B Salmon
- Departments of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, Geriatric Research Education and Clinical Center San Antonio, San Antonio, TX, 78229, USA
| | - Daniel Perez
- Oral and Maxillofacial Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Shivani Ruparel
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
- Integrated Biomedical Sciences (IBMS) Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Departments of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Armen N Akopian
- Departments of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
- Integrated Biomedical Sciences (IBMS) Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Departments of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
30
|
Maxion A, Kutafina E, Dohrn MF, Sacré P, Lampert A, Tigerholm J, Namer B. A modelling study to dissect the potential role of voltage-gated ion channels in activity-dependent conduction velocity changes as identified in small fiber neuropathy patients. Front Comput Neurosci 2023; 17:1265958. [PMID: 38156040 PMCID: PMC10752960 DOI: 10.3389/fncom.2023.1265958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/25/2023] [Indexed: 12/30/2023] Open
Abstract
Objective Patients with small fiber neuropathy (SFN) suffer from neuropathic pain, which is still a therapeutic problem. Changed activation patterns of mechano-insensitive peripheral nerve fibers (CMi) could cause neuropathic pain. However, there is sparse knowledge about mechanisms leading to CMi dysfunction since it is difficult to dissect specific molecular mechanisms in humans. We used an in-silico model to elucidate molecular causes of CMi dysfunction as observed in single nerve fiber recordings (microneurography) of SFN patients. Approach We analyzed microneurography data from 97 CMi-fibers from healthy individuals and 34 of SFN patients to identify activity-dependent changes in conduction velocity. Using the NEURON environment, we adapted a biophysical realistic preexisting CMi-fiber model with ion channels described by Hodgkin-Huxley dynamics for identifying molecular mechanisms leading to those changes. Via a grid search optimization, we assessed the interplay between different ion channels, Na-K-pump, and resting membrane potential. Main results Changing a single ion channel conductance, Na-K-pump or membrane potential individually is not sufficient to reproduce in-silico CMi-fiber dysfunction of unchanged activity-dependent conduction velocity slowing and quicker normalization of conduction velocity after stimulation as observed in microneurography. We identified the best combination of mechanisms: increased conductance of potassium delayed-rectifier and decreased conductance of Na-K-pump and depolarized membrane potential. When the membrane potential is unchanged, opposite changes in Na-K-pump and ion channels generate the same effect. Significance Our study suggests that not one single mechanism accounts for pain-relevant changes in CMi-fibers, but a combination of mechanisms. A depolarized membrane potential, as previously observed in patients with neuropathic pain, leads to changes in the contribution of ion channels and the Na-K-pump. Thus, when searching for targets for the treatment of neuropathic pain, combinations of several molecules in interplay with the membrane potential should be regarded.
Collapse
Affiliation(s)
- Anna Maxion
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research within the Faculty of Medicine at the RWTH Aachen University, Aachen, Germany
| | - Ekaterina Kutafina
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Maike F. Dohrn
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Pierre Sacré
- Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
| | - Angelika Lampert
- Institute of Neurophysiology, Uniklinik RWTH Aachen University Aachen, Aachen, Germany
| | - Jenny Tigerholm
- Joint Research Center for Computational Biomedicine, RWTH Aachen, Aachen, Germany
| | - Barbara Namer
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research within the Faculty of Medicine at the RWTH Aachen University, Aachen, Germany
- Institute of Neurophysiology, RWTH Aachen University, Aachen, Germany
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
31
|
Bouchatta O, Brodzki M, Manouze H, Carballo GB, Kindström E, de-Faria FM, Yu H, Kao AR, Thorell O, Liljencrantz J, Ng KKW, Frangos E, Ragnemalm B, Saade D, Bharucha-Goebel D, Szczot I, Moore W, Terejko K, Cole J, Bonnemann C, Luo W, Mahns DA, Larsson M, Gerling GJ, Marshall AG, Chesler AT, Olausson H, Nagi SS, Szczot M. PIEZO2-dependent rapid pain system in humans and mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569650. [PMID: 38168273 PMCID: PMC10760115 DOI: 10.1101/2023.12.01.569650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The PIEZO2 ion channel is critical for transducing light touch into neural signals but is not considered necessary for transducing acute pain in humans. Here, we discovered an exception - a form of mechanical pain evoked by hair pulling. Based on observations in a rare group of individuals with PIEZO2 deficiency syndrome, we demonstrated that hair-pull pain is dependent on PIEZO2 transduction. Studies in control participants showed that hair-pull pain triggered a distinct nocifensive response, including a nociceptive reflex. Observations in rare Aβ deafferented individuals and nerve conduction block studies in control participants revealed that hair-pull pain perception is dependent on Aβ input. Single-unit axonal recordings revealed that a class of cooling-responsive myelinated nociceptors in human skin is selectively tuned to painful hair-pull stimuli. Further, we pharmacologically mapped these nociceptors to a specific transcriptomic class. Finally, using functional imaging in mice, we demonstrated that in a homologous nociceptor, Piezo2 is necessary for high-sensitivity, robust activation by hair-pull stimuli. Together, we have demonstrated that hair-pulling evokes a distinct type of pain with conserved behavioral, neural, and molecular features across humans and mice.
Collapse
Affiliation(s)
- Otmane Bouchatta
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- These authors contributed equally
| | - Marek Brodzki
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- These authors contributed equally
| | - Houria Manouze
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Gabriela B. Carballo
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Emma Kindström
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Felipe M. de-Faria
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Huasheng Yu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Anika R. Kao
- School of Engineering and Applied Science, University of Virginia, Charlottesville, USA
| | - Oumie Thorell
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Jaquette Liljencrantz
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, USA
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Kevin K. W. Ng
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Eleni Frangos
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, USA
| | - Bengt Ragnemalm
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Dimah Saade
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, USA
| | - Diana Bharucha-Goebel
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, USA
| | - Ilona Szczot
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Warren Moore
- Institute of Life Course and Medical Sciences, University of Liverpool, UK
| | - Katarzyna Terejko
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- Biology of Astrocytes Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Jonathan Cole
- University Hospitals, Dorset, and University of Bournemouth, UK
| | - Carsten Bonnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, USA
| | - Wenquin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - David A. Mahns
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Max Larsson
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Gregory J. Gerling
- School of Engineering and Applied Science, University of Virginia, Charlottesville, USA
| | - Andrew G. Marshall
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- Institute of Life Course and Medical Sciences, University of Liverpool, UK
| | - Alexander T. Chesler
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, USA
| | - Håkan Olausson
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Saad S. Nagi
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- School of Medicine, Western Sydney University, Sydney, Australia
- Senior author
| | - Marcin Szczot
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- Senior author
| |
Collapse
|
32
|
Párraga JP, Castellanos A. A Manifesto in Defense of Pain Complexity: A Critical Review of Essential Insights in Pain Neuroscience. J Clin Med 2023; 12:7080. [PMID: 38002692 PMCID: PMC10672144 DOI: 10.3390/jcm12227080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic pain has increasingly become a significant health challenge, not just as a symptomatic manifestation but also as a pathological condition with profound socioeconomic implications. Despite the expansion of medical interventions, the prevalence of chronic pain remains remarkably persistent, prompting a turn towards non-pharmacological treatments, such as therapeutic education, exercise, and cognitive-behavioral therapy. With the advent of cognitive neuroscience, pain is often presented as a primary output derived from the brain, aligning with Engel's Biopsychosocial Model that views disease not solely from a biological perspective but also considering psychological and social factors. This paradigm shift brings forward potential misconceptions and over-simplifications. The current review delves into the intricacies of nociception and pain perception. It questions long-standing beliefs like the cerebral-centric view of pain, the forgotten role of the peripheral nervous system in pain chronification, misconceptions around central sensitization syndromes, the controversy about the existence of a dedicated pain neuromatrix, the consciousness of the pain experience, and the possible oversight of factors beyond the nervous system. In re-evaluating these aspects, the review emphasizes the critical need for understanding the complexity of pain, urging the scientific and clinical community to move beyond reductionist perspectives and consider the multifaceted nature of this phenomenon.
Collapse
Affiliation(s)
- Javier Picañol Párraga
- Laboratory of Neurophysiology, Biomedicine Department, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
| | | |
Collapse
|
33
|
Barry AM, Zhao N, Yang X, Bennett DL, Baskozos G. Deep RNA-seq of male and female murine sensory neuron subtypes after nerve injury. Pain 2023; 164:2196-2215. [PMID: 37318015 PMCID: PMC10502896 DOI: 10.1097/j.pain.0000000000002934] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 06/16/2023]
Abstract
ABSTRACT Dorsal root ganglia (DRG) neurons have been well described for their role in driving both acute and chronic pain. Although nerve injury is known to cause transcriptional dysregulation, how this differs across neuronal subtypes and the impact of sex is unclear. Here, we study the deep transcriptional profiles of multiple murine DRG populations in early and late pain states while considering sex. We have exploited currently available transgenics to label numerous subpopulations for fluorescent-activated cell sorting and subsequent transcriptomic analysis. Using bulk tissue samples, we are able to circumvent the issues of low transcript coverage and drop-outs seen with single-cell data sets. This increases our power to detect novel and even subtle changes in gene expression within neuronal subtypes and discuss sexual dimorphism at the neuronal subtype level. We have curated this resource into an accessible database for other researchers ( https://livedataoxford.shinyapps.io/drg-directory/ ). We see both stereotyped and unique subtype signatures in injured states after nerve injury at both an early and late timepoint. Although all populations contribute to a general injury signature, subtype enrichment changes can also be seen. Within populations, there is not a strong intersection of sex and injury, but previously unknown sex differences in naïve states-particularly in Aβ-RA + Aδ-low threshold mechanoreceptors-still contribute to differences in injured neurons.
Collapse
Affiliation(s)
- Allison M. Barry
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Na Zhao
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Xun Yang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Georgios Baskozos
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Lee PR, Kim J, Rossi HL, Chung S, Han SY, Kim J, Oh SB. Transcriptional profiling of dental sensory and proprioceptive trigeminal neurons using single-cell RNA sequencing. Int J Oral Sci 2023; 15:45. [PMID: 37749100 PMCID: PMC10519964 DOI: 10.1038/s41368-023-00246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023] Open
Abstract
Dental primary afferent (DPA) neurons and proprioceptive mesencephalic trigeminal nucleus (MTN) neurons, located in the trigeminal ganglion and the brainstem, respectively, are essential for controlling masticatory functions. Despite extensive transcriptomic studies on various somatosensory neurons, there is still a lack of knowledge about the molecular identities of these populations due to technical challenges in their circuit-validated isolation. Here, we employed high-depth single-cell RNA sequencing (scRNA-seq) in combination with retrograde tracing in mice to identify intrinsic transcriptional features of DPA and MTN neurons. Our transcriptome analysis revealed five major types of DPA neurons with cell type-specific gene enrichment, some of which exhibit unique mechano-nociceptive properties capable of transmitting nociception in response to innocuous mechanical stimuli in the teeth. Furthermore, we discovered cellular heterogeneity within MTN neurons that potentially contribute to their responsiveness to mechanical stretch in the masseter muscle spindles. Additionally, DPA and MTN neurons represented sensory compartments with distinct molecular profiles characterized by various ion channels, receptors, neuropeptides, and mechanoreceptors. Together, our study provides new biological insights regarding the highly specialized mechanosensory functions of DPA and MTN neurons in pain and proprioception.
Collapse
Affiliation(s)
- Pa Reum Lee
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jihoon Kim
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather Lynn Rossi
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sena Chung
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Seung Yub Han
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Junhyong Kim
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Liu L, Zhao Y, An W, Zhao M, Ding N, Liu H, Ge N, Wen J, Zhang X, Zu S, Sun W. Piezo2 Channel Upregulation is Involved in Mechanical Allodynia in CYP-Induced Cystitis Rats. Mol Neurobiol 2023; 60:5000-5012. [PMID: 37227654 PMCID: PMC10415424 DOI: 10.1007/s12035-023-03386-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023]
Abstract
Mechanical sensing Piezo2 channel in primary sensory neurons has been shown contribute to mechanical allodynia in somatic chronic pain conditions. Interstitial cystitis (IC)-associated pain is often triggered by bladder filling, a presentation that mimics the mechanical allodynia. In the present study, we aimed to examine the involvement of sensory Piezo2 channel in IC-associated mechanical allodynia using a commonly employed cyclophosphamide (CYP)-induced IC model rat. Piezo2 channels in dorsal root ganglia (DRGs) was knocked down by intrathecal injections of Piezo2 anti-sense oligodeoxynucleotides (ODNs) in CYP-induced cystitis rats, and mechanical stimulation-evoked referred bladder pain was measured in the lower abdomen overlying the bladder using von Frey filaments. Piezo2 expression at the mRNA, protein, and functional levels in DRG neurons innervating the bladder was detected by RNA-fluorescence in situ hybridization, western blotting, immunofluorescence, and Ca2+ imaging, respectively. We found that Piezo2 channels were expressed on most (> 90%) of the bladder primary afferents, including afferents that express CGRP, TRPV1 and stained with isolectin B4. CYP-induced cystitis was associated with Piezo2 upregulation in bladder afferent neurons at the mRNA, protein, and functional levels. Knockdown of Piezo2 expression in DRG neurons significantly suppressed mechanical stimulation-evoked referred bladder pain as well as bladder hyperactivity in CYP rats compared to CYP rats treated with mismatched ODNs. Our results suggest upregulation of Piezo2 channels is involved in the development of bladder mechanical allodynia and bladder hyperactivity in CYP-induced cystitis. Targeting Piezo2 might be an attractive therapeutic approach for IC-related bladder pain.
Collapse
Affiliation(s)
- Lei Liu
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China
| | - Yan Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
| | - Wenhan An
- Department of Rehabilitation, The Second Hospital of Shandong University, Jinan, Shandong, P. R. China
| | - Mengmeng Zhao
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China
| | - Ning Ding
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China
| | - Hanwen Liu
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China
| | - Nan Ge
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China
| | - Jiliang Wen
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China
| | - Shulu Zu
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China
| | - Wendong Sun
- Department of Urology, The Second Hospital of Shandong University, Jinan, Shandong, 250032, P. R. China.
| |
Collapse
|
36
|
Duan M, Jia Y, Huo L, Gao Y, Wang J, Zhang W, Jia Z. Potentiation of PIEZO2 mechanically-activated currents in sensory neurons mediates vincristine-induced mechanical hypersensitivity. Acta Pharm Sin B 2023; 13:3365-3381. [PMID: 37655331 PMCID: PMC10466006 DOI: 10.1016/j.apsb.2023.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 09/02/2023] Open
Abstract
Vincristine, a widely used chemotherapeutic agent for treating different cancer, often induces severe peripheral neuropathic pain. A common symptom of vincristine-induced peripheral neuropathic pain is mechanical allodynia and hyperalgesia. However, mechanisms underlying vincristine-induced mechanical allodynia and hyperalgesia are not well understood. In the present study, we show with behavioral assessment in rats that vincristine induces mechanical allodynia and hyperalgesia in a PIEZO2 channel-dependent manner since gene knockdown or pharmacological inhibition of PIEZO2 channels alleviates vincristine-induced mechanical hypersensitivity. Electrophysiological results show that vincristine potentiates PIEZO2 rapidly adapting (RA) mechanically-activated (MA) currents in rat dorsal root ganglion (DRG) neurons. We have found that vincristine-induced potentiation of PIEZO2 MA currents is due to the enhancement of static plasma membrane tension (SPMT) of these cells following vincristine treatment. Reducing SPMT of DRG neurons by cytochalasin D (CD), a disruptor of the actin filament, abolishes vincristine-induced potentiation of PIEZO2 MA currents, and suppresses vincristine-induced mechanical hypersensitivity in rats. Collectively, enhancing SPMT and subsequently potentiating PIEZO2 MA currents in primary afferent neurons may be an underlying mechanism responsible for vincristine-induced mechanical allodynia and hyperalgesia in rats. Targeting to inhibit PIEZO2 channels may be an effective analgesic method to attenuate vincristine-induced mechanical hypersensitivity.
Collapse
Affiliation(s)
- Mingli Duan
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
- Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China
- The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Shijiazhuang 050017, China
| | - Yurui Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
- Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China
- The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Shijiazhuang 050017, China
| | - Lifang Huo
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
- Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China
- The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Shijiazhuang 050017, China
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yiting Gao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
- Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China
- The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Shijiazhuang 050017, China
| | - Jia Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
- Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China
- The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Shijiazhuang 050017, China
| | - Wei Zhang
- Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhanfeng Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
- Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China
- The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Shijiazhuang 050017, China
| |
Collapse
|
37
|
Kupari J, Ernfors P. Molecular taxonomy of nociceptors and pruriceptors. Pain 2023; 164:1245-1257. [PMID: 36718807 PMCID: PMC10184562 DOI: 10.1097/j.pain.0000000000002831] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Jussi Kupari
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Wang L, Su X, Yan J, Wu Q, Xu X, Wang X, Liu X, Song X, Zhang Z, Hu W, Liu X, Zhang Y. Involvement of Mrgprd-expressing nociceptors-recruited spinal mechanisms in nerve injury-induced mechanical allodynia. iScience 2023; 26:106764. [PMID: 37250305 PMCID: PMC10214713 DOI: 10.1016/j.isci.2023.106764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/17/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Mechanical allodynia and hyperalgesia are intractable symptoms lacking effective clinical treatments in patients with neuropathic pain. However, whether and how mechanically responsive non-peptidergic nociceptors are involved remains elusive. Here, we showed that von Frey-evoked static allodynia and aversion, along with mechanical hyperalgesia after spared nerve injury (SNI) were reduced by ablation of MrgprdCreERT2-marked neurons. Electrophysiological recordings revealed that SNI-opened Aβ-fiber inputs to laminae I-IIo and vIIi, as well as C-fiber inputs to vIIi, were all attenuated in Mrgprd-ablated mice. In addition, priming chemogenetic or optogenetic activation of Mrgprd+ neurons drove mechanical allodynia and aversion to low-threshold mechanical stimuli, along with mechanical hyperalgesia. Mechanistically, gated Aβ and C inputs to vIIi were opened, potentially via central sensitization by dampening potassium currents. Altogether, we uncovered the involvement of Mrgprd+ nociceptors in nerve injury-induced mechanical pain and dissected the underlying spinal mechanisms, thus providing insights into potential therapeutic targets for pain management.
Collapse
Affiliation(s)
- Liangbiao Wang
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiaojing Su
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jinjin Yan
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Qiaofeng Wu
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiang Xu
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xinyue Wang
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiaoqing Liu
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Hu
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xinfeng Liu
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yan Zhang
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
39
|
Schaefer I, Verkest C, Vespermann L, Mair T, Voß H, Zeitzschel N, Lechner SG. Protein kinase A mediates modality-specific modulation of the mechanically-gated ion channel PIEZO2. J Biol Chem 2023:104782. [PMID: 37146970 DOI: 10.1016/j.jbc.2023.104782] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/07/2023] Open
Abstract
Protein kinase A is a downstream effector of many inflammatory mediators that induce pain hypersensitivity by increasing the mechanosensitivity of nociceptive sensory afferent. Here we examine the molecular mechanism underlying protein kinase-A-dependent modulation of the mechanically-activated ion channel PIEZO2, which confers mechanosensitivity to many nociceptors. Using phosphorylation site prediction algorithms, we identified multiple putative and highly conserved PKA phosphorylation sites located on intracellular intrinsically disordered regions of PIEZO2. Site-directed mutagenesis and patch-clamp recordings showed that substitution of one or multiple putative PKA sites within a single intracellular domain does not alter PKA-induced PIEZO2 sensitization, whereas mutation of a combination of nine putative sites located on four different intracellular regions completely abolishes PKA-dependent PIEZO2 modulation, though it remains unclear whether all or just some of these nine sites are required. By demonstrating that PIEZO1 is not modulated by PKA, our data also reveals a previously unrecognized functional difference between PIEZO1 and PIEZO2. Moreover, by demonstrating that PKA only modulates PIEZO2 currents evoked by focal mechanical indentation of the cell, but not currents evoked by pressure-induced membrane stretch, we provide evidence suggesting that PIEZO2 is a polymodal mechanosensor that engages different protein domains for detecting different types of mechanical stimuli.
Collapse
Affiliation(s)
- Irina Schaefer
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Clement Verkest
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Lucas Vespermann
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Thomas Mair
- Section for Mass-Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Hannah Voß
- Section for Mass-Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Nadja Zeitzschel
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Stefan G Lechner
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
40
|
Obeidat AM, Wood MJ, Adamczyk NS, Ishihara S, Li J, Wang L, Ren D, Bennett DA, Miller RJ, Malfait AM, Miller RE. Piezo2 expressing nociceptors mediate mechanical sensitization in experimental osteoarthritis. Nat Commun 2023; 14:2479. [PMID: 37120427 PMCID: PMC10148822 DOI: 10.1038/s41467-023-38241-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 04/17/2023] [Indexed: 05/01/2023] Open
Abstract
Non-opioid targets are needed for addressing osteoarthritis pain, which is mechanical in nature and associated with daily activities such as walking and climbing stairs. Piezo2 has been implicated in the development of mechanical pain, but the mechanisms by which this occurs remain poorly understood, including the role of nociceptors. Here we show that nociceptor-specific Piezo2 conditional knock-out mice were protected from mechanical sensitization associated with inflammatory joint pain in female mice, joint pain associated with osteoarthritis in male mice, as well as both knee swelling and joint pain associated with repeated intra-articular injection of nerve growth factor in male mice. Single cell RNA sequencing of mouse lumbar dorsal root ganglia and in situ hybridization of mouse and human lumbar dorsal root ganglia revealed that a subset of nociceptors co-express Piezo2 and Ntrk1 (the gene that encodes the nerve growth factor receptor TrkA). These results suggest that nerve growth factor-mediated sensitization of joint nociceptors, which is critical for osteoarthritic pain, is also dependent on Piezo2, and targeting Piezo2 may represent a therapeutic option for osteoarthritis pain control.
Collapse
Affiliation(s)
- Alia M Obeidat
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, USA
| | - Matthew J Wood
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, USA
| | - Natalie S Adamczyk
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, USA
| | - Shingo Ishihara
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, USA
| | - Jun Li
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, USA
| | - Lai Wang
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, USA
| | - Dongjun Ren
- Department of Pharmacology, Northwestern University, Chicago, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Richard J Miller
- Department of Pharmacology, Northwestern University, Chicago, USA
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, USA
| | - Rachel E Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, USA.
| |
Collapse
|
41
|
Hovhannisyan AH, Lindquist K, Belugin S, Mecklenburg J, Ibrahim T, Tram M, Corey T, Salmon A, Ruparel S, Ruparel S, Akopian A. Sensory innervation of masseter, temporal and lateral pterygoid muscles in common marmosets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528062. [PMID: 36798270 PMCID: PMC9934658 DOI: 10.1101/2023.02.10.528062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Myogenous temporomandibular disorders (TMDM) is associated with an increased responsiveness of nerves innervating the masseter (MM), temporal (TM), medial pterygoid (MPM) and lateral pterygoid muscles (LPM). This study aimed to examine sensory nerve types innervating MM, TM and LPM of adult non-human primate - common marmosets. Sensory nerves are localized in specific regions of these muscles. Pgp9.5, marker for all nerves, and NFH, a marker for A-fibers, showed that masticatory muscles were predominantly innervated with A-fibers. The proportion of C- to A-fibers was highest in LPM, and minimal (6-8%) in MM. All C-fibers (pgp9.5+/NFH-) observed in masticatory muscles were peptidergic (CGRP+) and lacked mrgprD, trpV1 and CHRNA3, a silent nociceptive marker. All fibers in masticatory muscles were labeled with GFAP+, a myelin sheath marker. There were substantially more peptidergic A-fibers (CGRP+/NFH+) in TM and LPM compared to MM. Almost all A-fibers in MM expressed trkC, with some of them having trkB and parvalbumin. In contrast, a lesser number of TM and LPM nerves expressed trkC, and lacked trkB. Tyrosine hydroxylase antibodies, which did not label TG, highlighted sympathetic fibers around blood vessels of the masticatory muscles. Overall, masticatory muscle types of marmosets have distinct and different innervation patterns.
Collapse
|
42
|
Qi L, Iskols M, Shi D, Reddy P, Walker C, Lezgiyeva K, Voisin T, Pawlak M, Kuchroo VK, Chiu I, Ginty DD, Sharma N. A DRG genetic toolkit reveals molecular, morphological, and functional diversity of somatosensory neuron subtypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537932. [PMID: 37131664 PMCID: PMC10153270 DOI: 10.1101/2023.04.22.537932] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mechanical and thermal stimuli acting on the skin are detected by morphologically and physiologically distinct sensory neurons of the dorsal root ganglia (DRG). Achieving a holistic view of how this diverse neuronal population relays sensory information from the skin to the central nervous system (CNS) has been challenging with existing tools. Here, we used transcriptomic datasets of the mouse DRG to guide development and curation of a genetic toolkit to interrogate transcriptionally defined DRG neuron subtypes. Morphological analysis revealed unique cutaneous axon arborization areas and branching patterns of each subtype. Physiological analysis showed that subtypes exhibit distinct thresholds and ranges of responses to mechanical and/or thermal stimuli. The somatosensory neuron toolbox thus enables comprehensive phenotyping of most principal sensory neuron subtypes. Moreover, our findings support a population coding scheme in which the activation thresholds of morphologically and physiologically distinct cutaneous DRG neuron subtypes tile multiple dimensions of stimulus space.
Collapse
Affiliation(s)
- Lijun Qi
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Michael Iskols
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - David Shi
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Pranav Reddy
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Christopher Walker
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| | - Karina Lezgiyeva
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Tiphaine Voisin
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Mathias Pawlak
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Isaac Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Nikhil Sharma
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Columbia University, New York, NY
| |
Collapse
|
43
|
Nees TA, Wang N, Adamek P, Zeitzschel N, Verkest C, La Porta C, Schaefer I, Virnich J, Balkaya S, Prato V, Morelli C, Begay V, Lee YJ, Tappe-Theodor A, Lewin GR, Heppenstall PA, Taberner FJ, Lechner SG. Role of TMEM100 in mechanically insensitive nociceptor un-silencing. Nat Commun 2023; 14:1899. [PMID: 37019973 PMCID: PMC10076432 DOI: 10.1038/s41467-023-37602-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Mechanically silent nociceptors are sensory afferents that are insensitive to noxious mechanical stimuli under normal conditions but become sensitized to such stimuli during inflammation. Using RNA-sequencing and quantitative RT-PCR we demonstrate that inflammation upregulates the expression of the transmembrane protein TMEM100 in silent nociceptors and electrophysiology revealed that over-expression of TMEM100 is required and sufficient to un-silence silent nociceptors in mice. Moreover, we show that mice lacking TMEM100 do not develop secondary mechanical hypersensitivity-i.e., pain hypersensitivity that spreads beyond the site of inflammation-during knee joint inflammation and that AAV-mediated overexpression of TMEM100 in articular afferents in the absence of inflammation is sufficient to induce mechanical hypersensitivity in remote skin regions without causing knee joint pain. Thus, our work identifies TMEM100 as a key regulator of silent nociceptor un-silencing and reveals a physiological role for this hitherto enigmatic afferent subclass in triggering spatially remote secondary mechanical hypersensitivity during inflammation.
Collapse
Affiliation(s)
- Timo A Nees
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Department for Orthopeadics, Heidelberg University Hospital, Heidelberg, Germany
| | - Na Wang
- Institute of Pathophysiology, Yan'an University, Yan'an, China
| | - Pavel Adamek
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nadja Zeitzschel
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clement Verkest
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carmen La Porta
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Irina Schaefer
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Julie Virnich
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Selin Balkaya
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vincenzo Prato
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Chiara Morelli
- SISSA: Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Valerie Begay
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Young Jae Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
| | | | - Gary R Lewin
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Paul A Heppenstall
- SISSA: Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Francisco J Taberner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Instituto de Neurosciencias de Alicante, Universidad Miguel Hernández - CSIC, Alicante, Spain
| | - Stefan G Lechner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
44
|
Ruiz-Cantero MC, Cortés-Montero E, Jain A, Montilla-García Á, Bravo-Caparrós I, Shim J, Sánchez-Blázquez P, Woolf CJ, Baeyens JM, Cobos EJ. The sigma-1 receptor curtails endogenous opioid analgesia during sensitization of TRPV1 nociceptors. Br J Pharmacol 2023; 180:1148-1167. [PMID: 36478100 DOI: 10.1111/bph.16003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Peripheral sensitization contributes to pathological pain. While prostaglandin E2 (PGE2) and nerve growth factor (NGF) sensitize peptidergic C-nociceptors (TRPV1+), glial cell line-derived neurotrophic factor (GDNF) sensitizes non-peptidergic C-neurons (IB4+). The sigma-1 receptor (sigma-1R) is a Ca2+ -sensing chaperone known to modulate opoid analgesia. This receptor binds both to TRPV1 and the μ opioid receptor, although the functional repercussions of these physical interactions in peripheral sensitization are unknown. EXPERIMENTAL APPROACH We tested the effects of sigma-1 antagonism on PGE2-, NGF-, and GDNF-induced mechanical and heat hyperalgesia in mice. We used immunohistochemistry to determine the presence of endomorphin-2, an endogenous μ receptor agonist, on dorsal root ganglion (DRG) neurons. Recombinant proteins were used to study the interactions between sigma-1R, μ- receptor, and TRPV1. We used calcium imaging to study the effects of sigma-1 antagonism on PGE2-induced sensitization of TRPV1+ nociceptors. KEY RESULTS Sigma1 antagonists reversed PGE2- and NGF-induced hyperalgesia but not GDNF-induced hyperalgesia. Endomorphin-2 was detected on TRPV1+ but not on IB4+ neurons. Peripheral opioid receptor antagonism by naloxone methiodide or administration of an anti-endomorphin-2 antibody to a sensitized paw reversed the antihyperalgesia induced by sigma-1 antagonists. Sigma-1 antagonism transfers sigma-1R from TRPV1 to μ receptors, suggesting that sigma-1R participate in TRPV1-μ receptor crosstalk. Moreover, sigma-1 antagonism reversed, in a naloxone-sensitive manner, PGE2-induced sensitization of DRG neurons to the calcium flux elicited by capsaicin, the prototypic TRPV1 agonist. CONCLUSION AND IMPLICATIONS Sigma-1 antagonism harnesses endogenous opioids produced by TRPV1+ neurons to reduce hyperalgesia by increasing μ receptor activity.
Collapse
Affiliation(s)
- M Carmen Ruiz-Cantero
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute ibs. GRANADA, Granada, Spain
| | - Elsa Cortés-Montero
- Department of Translational Neurosciences, Neuropharmacology, Cajal Institute, CSIC, Madrid, Spain
| | - Aakanksha Jain
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Ángeles Montilla-García
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
| | - Inmaculada Bravo-Caparrós
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
| | - Jaehoon Shim
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Pilar Sánchez-Blázquez
- Department of Translational Neurosciences, Neuropharmacology, Cajal Institute, CSIC, Madrid, Spain
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - José M Baeyens
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute ibs. GRANADA, Granada, Spain
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute ibs. GRANADA, Granada, Spain.,Teófilo Hernando Institute for Drug Discovery, Madrid, Spain
| |
Collapse
|
45
|
Xie Z, Feng J, Hibberd TJ, Chen BN, Zhao Y, Zang K, Hu X, Yang X, Chen L, Brookes SJ, Spencer NJ, Hu H. Piezo2 channels expressed by colon-innervating TRPV1-lineage neurons mediate visceral mechanical hypersensitivity. Neuron 2023; 111:526-538.e4. [PMID: 36563677 PMCID: PMC9957938 DOI: 10.1016/j.neuron.2022.11.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Inflammatory and functional gastrointestinal disorders such as irritable bowel syndrome (IBS) and obstructive bowel disorder (OBD) underlie the most prevalent forms of visceral pain. Although visceral pain can be generally provoked by mechanical distension/stretch, the mechanisms that underlie visceral mechanosensitivity in colon-innervating visceral afferents remain elusive. Here, we show that virally mediated ablation of colon-innervating TRPV1-expressing nociceptors markedly reduces colorectal distention (CRD)-evoked visceromotor response (VMR) in mice. Selective ablation of the stretch-activated Piezo2 channels from TRPV1 lineage neurons substantially reduces mechanically evoked visceral afferent action potential firing and CRD-induced VMR under physiological conditions, as well as in mouse models of zymosan-induced IBS and partial colon obstruction (PCO). Collectively, our results demonstrate that mechanosensitive Piezo2 channels expressed by TRPV1-lineage nociceptors powerfully contribute to visceral mechanosensitivity and nociception under physiological conditions and visceral hypersensitivity under pathological conditions in mice, uncovering potential therapeutic targets for the treatment of visceral pain.
Collapse
Affiliation(s)
- Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Timothy J Hibberd
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Bao Nan Chen
- Neurogastroenterology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Yonghui Zhao
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Kaikai Zang
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Xueming Hu
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Xingliang Yang
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Lvyi Chen
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA; School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, People's Republic of China
| | - Simon J Brookes
- Neurogastroenterology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Nick J Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
46
|
Brierley SM, Greenwood-Van Meerveld B, Sarnelli G, Sharkey KA, Storr M, Tack J. Targeting the endocannabinoid system for the treatment of abdominal pain in irritable bowel syndrome. Nat Rev Gastroenterol Hepatol 2023; 20:5-25. [PMID: 36168049 DOI: 10.1038/s41575-022-00682-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 12/27/2022]
Abstract
The management of visceral pain in patients with disorders of gut-brain interaction, notably irritable bowel syndrome, presents a considerable clinical challenge, with few available treatment options. Patients are increasingly using cannabis and cannabinoids to control abdominal pain. Cannabis acts on receptors of the endocannabinoid system, an endogenous system of lipid mediators that regulates gastrointestinal function and pain processing pathways in health and disease. The endocannabinoid system represents a logical molecular therapeutic target for the treatment of pain in irritable bowel syndrome. Here, we review the physiological and pathophysiological functions of the endocannabinoid system with a focus on the peripheral and central regulation of gastrointestinal function and visceral nociception. We address the use of cannabinoids in pain management, comparing them to other treatment modalities, including opioids and neuromodulators. Finally, we discuss emerging therapeutic candidates targeting the endocannabinoid system for the treatment of pain in irritable bowel syndrome.
Collapse
Affiliation(s)
- Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
| | | | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Martin Storr
- Department of Medicine, Ludwig-Maximilians University, Munich, Germany
- Zentrum für Endoskopie, Starnberg, Germany
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Morgan M, Thai J, Nencini S, Xu J, Ivanusic JJ. Stomatin-like protein 3 modulates the responses of Aδ, but not C fiber bone afferent neurons to noxious mechanical stimulation in an animal model of acute experimental bone pain. Mol Pain 2023; 19:17448069231222407. [PMID: 38073226 PMCID: PMC10734363 DOI: 10.1177/17448069231222407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
STOML3 is a membrane bound scaffolding protein that has been shown to facilitate the opening of mechanically sensitive ion channels and contribute to noxious mechanical sensation, allodynia and hyperalgesia. In this study, we aimed to determine the role of STOML3 in noxious mechanical sensitivity of bone afferent neurons and carrageenan-induced acute inflammation in the bone. An in vivo, electrophysiological bone-nerve preparation was used to make recordings of the activity and sensitivity of bone afferent neurons that innervate the tibial marrow cavity in anaesthetised rats, in response to noxious mechanical stimuli delivered to the marrow cavity, before and after injection of either the STOML3 oligomerisation inhibitor OB-1 or vehicle, in either naïve animals or animals with carrageenan-induced inflammation of the marrow cavity. A dynamic weight-bearing apparatus was used to measure weight bearing in response to inflammatory pain before and after injection of OB-1 or saline into the tibial marrow cavity in the presence of carrageenan-induced inflammation. Electrophysiological recordings revealed that Aδ, but not C bone afferent neurons have a reduced discharge frequency in response to mechanical stimulation, and that carrageenan-induced sensitisation of Aδ, but not C bone afferent neurons was attenuated by inhibition of STOML3 oligomerisation with OB-1. Animals treated with OB-1 spent a significantly greater amount of time on the limb injected with carrageenan than animals treated with saline. Our findings demonstrate that inhibition of STOML3 oligomerisation reduces inflammatory bone pain by reducing the sensitivity of Aδ bone afferent neurons to mechanical stimulation. Targeting STOML3 may be an effective approach to reduce pain from noxious pressure and/or painful inflammatory pathology in bone.
Collapse
Affiliation(s)
- Michael Morgan
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Jenny Thai
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Sara Nencini
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - James Xu
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Jason J Ivanusic
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
48
|
Khan S, Patra PH, Somerfield H, Benya-Aphikul H, Upadhya M, Zhang X. IQGAP1 promotes chronic pain by regulating the trafficking and sensitization of TRPA1 channels. Brain 2022:6881565. [PMID: 36477832 DOI: 10.1093/brain/awac462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
TRPA1 channels have been implicated in mechanical and cold hypersensitivity in chronic pain. But how TRPA1 mediates this process is unclear. Here we show that IQ-motif containing GTPase activating protein 1 (IQGAP1) is responsible using a combination of biochemical, molecular, Ca2+ imaging and behavioural approaches. TRPA1 and IQGAP1 bind to each other and are highly colocalised in sensory DRG neurons in mice. The expression of IQGAP1 but not TRPA1 is increased in chronic inflammatory and neuropathic pain. However, TRPA1 undergoes increased trafficking to the membrane of DRG neurons catalysed by the small GTPase Cdc42 associated with IQGAP1, leading to functional sensitization of the channel. Activation of PKA is also sufficient to evoke TRPA1 trafficking and sensitization. All these responses are, however, completely prevented in the absence of IQGAP1. Concordantly, deletion of IQGAP1 markedly reduces mechanical and cold hypersensitivity in chronic inflammatory and neuropathic pain in mice. IQGAP1 thus promotes chronic pain by coupling the trafficking and signalling machineries to TRPA1 channels.
Collapse
Affiliation(s)
- Shakil Khan
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Pabitra H Patra
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Hannah Somerfield
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | | | - Manoj Upadhya
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Xuming Zhang
- School of Health & Life Sciences, Aston University, Birmingham B4 7ET, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
49
|
Verkest C, Salinas M, Diochot S, Deval E, Lingueglia E, Baron A. Mechanisms of Action of the Peptide Toxins Targeting Human and Rodent Acid-Sensing Ion Channels and Relevance to Their In Vivo Analgesic Effects. Toxins (Basel) 2022; 14:toxins14100709. [PMID: 36287977 PMCID: PMC9612379 DOI: 10.3390/toxins14100709] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are voltage-independent H+-gated cation channels largely expressed in the nervous system of rodents and humans. At least six isoforms (ASIC1a, 1b, 2a, 2b, 3 and 4) associate into homotrimers or heterotrimers to form functional channels with highly pH-dependent gating properties. This review provides an update on the pharmacological profiles of animal peptide toxins targeting ASICs, including PcTx1 from tarantula and related spider toxins, APETx2 and APETx-like peptides from sea anemone, and mambalgin from snake, as well as the dimeric protein snake toxin MitTx that have all been instrumental to understanding the structure and the pH-dependent gating of rodent and human cloned ASICs and to study the physiological and pathological roles of native ASICs in vitro and in vivo. ASICs are expressed all along the pain pathways and the pharmacological data clearly support a role for these channels in pain. ASIC-targeting peptide toxins interfere with ASIC gating by complex and pH-dependent mechanisms sometimes leading to opposite effects. However, these dual pH-dependent effects of ASIC-inhibiting toxins (PcTx1, mambalgin and APETx2) are fully compatible with, and even support, their analgesic effects in vivo, both in the central and the peripheral nervous system, as well as potential effects in humans.
Collapse
Affiliation(s)
- Clément Verkest
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Miguel Salinas
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Sylvie Diochot
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Emmanuel Deval
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Eric Lingueglia
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Anne Baron
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
- Correspondence:
| |
Collapse
|
50
|
Yuan HP, Ding YY, Zheng YX, Zhang YJ, Liu X, Rui C, Wang CC, Xiao Y. [Research advances on the function of skin touch receptor Merkel cells]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2022; 38:887-892. [PMID: 36177597 DOI: 10.3760/cma.j.cn501120-20211209-00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The reconstruction of tactile function during the repair of skin damage caused by factors including burns is inseparable from the functional regeneration of tactile receptor Merkel cells. Merkel cells mainly exist in the basal layer of the epidermis and are closely connected with nerves to form Merkel cell-nerve complexes, which play an important role in biological organisms. A large number of studies have shown that Merkel cells conduct precise transmission of mechanical force stimuli through the mechanically gated ion channels PIEZO2, and perform the function of tactile receptors. In this paper, we discussed the characteristics of Merkel cells and analyzed the different subgroups that may possibly exist in this type of cells and their functions, at the same time, we investigated the animal model research of touch-related diseases and the clinical diseases related to touch, revealing the importance of Merkel cell function research.
Collapse
Affiliation(s)
- H P Yuan
- Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Y Y Ding
- Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Y X Zheng
- Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Y J Zhang
- Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - X Liu
- Centre for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China
| | - C Rui
- Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - C C Wang
- Union College of Edinburgh University, Zhejiang University, Haining 314400, China
| | - Y Xiao
- Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| |
Collapse
|