1
|
Rahman R, Selth LA. Cyclin-dependent kinases as mediators of aberrant transcription in prostate cancer. Transl Oncol 2025; 55:102378. [PMID: 40163908 PMCID: PMC11995790 DOI: 10.1016/j.tranon.2025.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
Transcriptional control of gene expression is fundamental to all cellular processes. Conversely, transcriptional dysregulation is a hallmark of cancer. While this hallmark is a key driver of all malignancy-related process, it also represents a vulnerability that can be exploited therapeutically. Prostate cancer is a prime example of this phenomenon: it is characterised by aberrant transcription and treated with drugs that influence transcriptional pathways. Indeed, the primary oncogenic driver and therapeutic target of prostate cancer, the androgen receptor (AR), is a transcription factor. Moreover, a plethora of other transcriptional regulators, including transcriptional cyclin-dependent kinases (CDK7, CDK8 and CDK9), MYC and Bromodomain-containing protein 4 (BRD4), play prominent roles in disease progression. In this review, we focus on the roles of transcriptional CDKs in prostate cancer growth, metastasis and therapy resistance and discuss their interplay with AR, MYC and BRD4. Additionally, we explore recent advances in the therapeutic targeting of transcriptional CDKs and propose how these strategies could be effectively harnessed for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Razia Rahman
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia
| | - Luke A Selth
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia; Flinders University, Freemasons Centre for Male Health and Wellbeing, Adelaide, South Australia; Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
2
|
Tsakoumagkos IA, Pasquer QTL, Guillod C, Rossion C, Bagka M, Torche S, Sakata‐Kato T, Chen JK, Hoogendoorn S. Evaluation of Benzo[cd]indol-2(1H)-ones as Downstream Hedgehog Pathway Inhibitors. ChemistryOpen 2025; 14:e202500119. [PMID: 40227130 PMCID: PMC12075100 DOI: 10.1002/open.202500119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Indexed: 04/15/2025] Open
Abstract
Epigenetic targeting of the Hedgehog (HH) signaling pathway has emerged as a possible strategy to combat HH pathway-driven cancers. In this study, we report on benzo[cd]indol-2(1H)-ones as downstream Hedgehog pathway inhibitors. We find that benzo[cd]indol-2(1H)-one 1 has sub-micromolar potency in a variety of Hedgehog pathway cell models, including those with constitutive activity through loss of Suppressor of Fused. Compound 1 furthermore reduces cellular and ciliary GLI levels, and, like the BET bromodomain inhibitor HPI-1, increases the cellular levels of BRD2. To directly assess the ability of compound 1 to bind to BET bromodomains in cells without the need of synthetic modifications, we develop a competition assay against degrader HPP-9, the action of which was dose-dependently outcompeted by compound 1. Indeed, compound 1 reduces the viability of GLI-driven lung cancer cells and medulloblastoma spheroids, with a potency similar to its inhibitory effect on the HH pathway. Taken together, our studies highlight the potential of the benzo[cd]indol-2(1H)-one scaffold for epigenetic targeting of the HH pathway.
Collapse
Affiliation(s)
| | - Quentin T. L. Pasquer
- Department of Organic ChemistryUniversity of Geneva30 quai Ernest-AnsermetGenevaSwitzerland
| | | | - Charlotte Rossion
- Department of Organic ChemistryUniversity of Geneva30 quai Ernest-AnsermetGenevaSwitzerland
| | - Meropi Bagka
- Department of Organic ChemistryUniversity of Geneva30 quai Ernest-AnsermetGenevaSwitzerland
| | - Sonya Torche
- Department of Organic ChemistryUniversity of Geneva30 quai Ernest-AnsermetGenevaSwitzerland
| | - Tomoyo Sakata‐Kato
- Department of Chemical and Systems BiologyStanford University269 Campus Dr., CCSR 3155StanfordCA94305USA
- Present address: Department of ProtozoologyInstitute of Tropical MedicineNagasaki University1-12-4 SakamotoNagasaki852-8523Japan
| | - James K. Chen
- Department of Chemical and Systems BiologyStanford University269 Campus Dr., CCSR 3155StanfordCA94305USA
- Department of Developmental BiologyStanford University269 Campus Dr., CCSR 3155StanfordCA94305USA
- Department of ChemistryStanford University269 Campus Dr., CCSR 3155StanfordCA94305USA
| | - Sascha Hoogendoorn
- Department of Organic ChemistryUniversity of Geneva30 quai Ernest-AnsermetGenevaSwitzerland
| |
Collapse
|
3
|
Zhang S, Wu N, Geng Y, Guan L, Niu MM, Li J, Zhu L. A combinatorial screening protocol for identifying novel and highly potent dual-target inhibitor of BRD4 and STAT3 for kidney cancer therapy. Front Pharmacol 2025; 16:1560559. [PMID: 40078291 PMCID: PMC11897524 DOI: 10.3389/fphar.2025.1560559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Concurrent inhibition of bromodomain-containing protein 4 (BRD4) and signal transductor and activator of transcription 3 (STAT3) could potentially be an effective strategy against renal cell carcinoma (RCC). Here, we successfully identified five dual-targeted BRD4/STAT3 inhibitors (BSTs 1-5) using a combinatorial screening protocol. Particularly, BST-4 was the most potent inhibitor simultaneously targeting BRD4 (IC50 = 2.45 ± 0.11 nM) and STAT3 (IC50 = 8.07 ± 0.51 nM). MD simulation indicated that BST-4 stably bound to the active sites of BRD4 and STAT3. The cytotoxicity assays exhibited that BST-4 had a significant antiproliferative activity against RCC cell lines, especially CAKI-2 cells (IC50 = 0.76 ± 0.05 μM). Moreover, in vivo experiments revealed that BST-4 more effectively inhibited the growth of xenograft tumors compared with positive controls RVX-208 and CJ-1383. Overall, these data indicated that BST-4 could be a promising candidate compound for RCC therapy.
Collapse
Affiliation(s)
- Shizhu Zhang
- Department of Nephrology, Huai’an Cancer Hospital, Huai’an, China
| | - Nan Wu
- Department of Nephrology, Huai’an Cancer Hospital, Huai’an, China
| | - Yifei Geng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Lixia Guan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Jindong Li
- Department of Pharmacy, Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Lusha Zhu
- Department of Pharmacy, Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
4
|
Lyu K, Ren Y, Mou J, Yang Y, Pan Y, Zhang H, Li Y, Cao D, Chen L, Chen D, Guo D, Xiong B. Structure-Based Rational Design and Evaluation of BET-Aurora Kinase Dual-Inhibitors for Treatment of Cancers. J Med Chem 2025; 68:1344-1364. [PMID: 39844725 DOI: 10.1021/acs.jmedchem.4c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Simultaneous inhibition of the bromodomain and extra-terminal domain and Aurora kinases is a promising anticancer therapeutic strategy. Based on our previous study on BET-kinase dual inhibitors, we employed the molecular docking approach to design novel dual BET-Aurora kinase A inhibitors. Through several rounds of optimization and with the guidance of the solved cocrystal structure of BRD4 bound to inhibitor 27, we finally obtained a series of highly potent dual BET-Aurora kinase A inhibitors. Compound 38 exhibited strong affinity toward both BRD4 and Aurora kinase A. It also showed good antiproliferative activities on diverse cancer cell lines, good pharmacokinetic profiles, and favorable antitumor efficacy in renal cell cancer and colon cancer xenograft models with TGI of 45.99% and 53.06%, respectively. The development of compound 38 reinforces the concept that a rational design may achieve dual inhibitors targeting specific kinases and bromodomain proteins.
Collapse
Affiliation(s)
- Kaikai Lyu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ying Ren
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Jie Mou
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Yunfang Yang
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Yaoyao Pan
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Huijie Zhang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yanlian Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Danyan Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Lin Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Danqi Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
5
|
Zhong G, Chang X, Xie W, Zhou X. Targeted protein degradation: advances in drug discovery and clinical practice. Signal Transduct Target Ther 2024; 9:308. [PMID: 39500878 PMCID: PMC11539257 DOI: 10.1038/s41392-024-02004-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024] Open
Abstract
Targeted protein degradation (TPD) represents a revolutionary therapeutic strategy in disease management, providing a stark contrast to traditional therapeutic approaches like small molecule inhibitors that primarily focus on inhibiting protein function. This advanced technology capitalizes on the cell's intrinsic proteolytic systems, including the proteasome and lysosomal pathways, to selectively eliminate disease-causing proteins. TPD not only enhances the efficacy of treatments but also expands the scope of protein degradation applications. Despite its considerable potential, TPD faces challenges related to the properties of the drugs and their rational design. This review thoroughly explores the mechanisms and clinical advancements of TPD, from its initial conceptualization to practical implementation, with a particular focus on proteolysis-targeting chimeras and molecular glues. In addition, the review delves into emerging technologies and methodologies aimed at addressing these challenges and enhancing therapeutic efficacy. We also discuss the significant clinical trials and highlight the promising therapeutic outcomes associated with TPD drugs, illustrating their potential to transform the treatment landscape. Furthermore, the review considers the benefits of combining TPD with other therapies to enhance overall treatment effectiveness and overcome drug resistance. The future directions of TPD applications are also explored, presenting an optimistic perspective on further innovations. By offering a comprehensive overview of the current innovations and the challenges faced, this review assesses the transformative potential of TPD in revolutionizing drug development and disease management, setting the stage for a new era in medical therapy.
Collapse
Affiliation(s)
- Guangcai Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiaoyu Chang
- School of Pharmaceutical Sciences, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
6
|
Chandrashekar DS, Afaq F, Karthikeyan SK, Athar M, Shrestha S, Singh R, Manne U, Varambally S. Bromodomain inhibitor treatment leads to overexpression of multiple kinases in cancer cells. Neoplasia 2024; 57:101046. [PMID: 39241280 PMCID: PMC11408867 DOI: 10.1016/j.neo.2024.101046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
The bromodomain and extraterminal (BET) family of proteins show altered expression across various cancers. The members of the bromodomain (BRD) family contain epigenetic reader domains that bind to acetylated lysine residues in both histone and non-histone proteins. Since BRD proteins are involved in cancer initiation and progression, therapeutic targeting of these proteins has recently been an area of interest. In experimental settings, JQ1, a commonly used BRD inhibitor, is the first known inhibitor to target BRD-containing protein 4 (BRD4), a ubiquitously expressed BRD and extraterminal family protein. BRD4 is necessary for a normal cell cycle, and its aberrant expression activates pro-inflammatory cytokines, leading to tumor initiation and progression. Various BRD4 inhibitors have been developed recently and tested in preclinical settings and are now in clinical trials. However, as with many targeted therapies, BRD inhibitor treatment can lead to resistance to treatment. Here, we investigated the kinases up-regulated on JQ1 treatment that may serve as target for combination therapy along with BRD inhibitors. To identify kinase targets, we performed a comparative analysis of gene expression data using RNA from BRD inhibitor-treated cells or BRD-modulated cells and identified overexpression of several kinases, including FYN, NEK9, and ADCK5. We further validated, by immunoblotting, the overexpression of FYN tyrosine kinase; NEK9 serine/threonine kinase and ADCK5, an atypical kinase, to confirm their overexpression after BRD inhibitor treatment. Importantly, our studies show that targeting FYN or NEK9 along with BRD inhibitor effectively reduces proliferation of cancer cells. Therefore, our research emphasizes a potential approach of utilizing inhibitors targeting some of the overexpressed kinases in conjunction with BRD inhibitors to enhance therapeutic effectiveness.
Collapse
Affiliation(s)
| | - Farrukh Afaq
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sadeep Shrestha
- Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | | | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Rahman R, Rahaman MH, Hanson AR, Choo N, Xie J, Townley SL, Shrestha R, Hassankhani R, Islam S, Ramm S, Simpson KJ, Risbridger GP, Best G, Centenera MM, Balk SP, Kichenadasse G, Taylor RA, Butler LM, Tilley WD, Conn SJ, Lawrence MG, Wang S, Selth LA. CDK9 inhibition inhibits multiple oncogenic transcriptional and epigenetic pathways in prostate cancer. Br J Cancer 2024; 131:1092-1105. [PMID: 39117800 PMCID: PMC11405875 DOI: 10.1038/s41416-024-02810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Cyclin-dependent kinase 9 (CDK9) stimulates oncogenic transcriptional pathways in cancer and CDK9 inhibitors have emerged as promising therapeutic candidates. METHODS The activity of an orally bioavailable CDK9 inhibitor, CDKI-73, was evaluated in prostate cancer cell lines, a xenograft mouse model, and patient-derived tumor explants and organoids. Expression of CDK9 was evaluated in clinical specimens by mining public datasets and immunohistochemistry. Effects of CDKI-73 on prostate cancer cells were determined by cell-based assays, molecular profiling and transcriptomic/epigenomic approaches. RESULTS CDKI-73 inhibited proliferation and enhanced cell death in diverse in vitro and in vivo models of androgen receptor (AR)-driven and AR-independent models. Mechanistically, CDKI-73-mediated inhibition of RNA polymerase II serine 2 phosphorylation resulted in reduced expression of BCL-2 anti-apoptotic factors and transcriptional defects. Transcriptomic and epigenomic approaches revealed that CDKI-73 suppressed signaling pathways regulated by AR, MYC, and BRD4, key drivers of dysregulated transcription in prostate cancer, and reprogrammed cancer-associated super-enhancers. These latter findings prompted the evaluation of CDKI-73 with the BRD4 inhibitor AZD5153, a combination that was synergistic in patient-derived organoids and in vivo. CONCLUSION Our work demonstrates that CDK9 inhibition disrupts multiple oncogenic pathways and positions CDKI-73 as a promising therapeutic agent for prostate cancer, particularly aggressive, therapy-resistant subtypes.
Collapse
Affiliation(s)
- Razia Rahman
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Muhammed H Rahaman
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Adrienne R Hanson
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Nicholas Choo
- Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Jianling Xie
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Scott L Townley
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Raj Shrestha
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
- Flinders University, Freemasons Centre for Male Health and Wellbeing, Bedford Park, SA, Australia
| | - Ramin Hassankhani
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Saiful Islam
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Susanne Ramm
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Gail P Risbridger
- Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, Melbourne, VIC, Australia
- Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Giles Best
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Margaret M Centenera
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Steven P Balk
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ganessan Kichenadasse
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
- Department of Medical Oncology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, South Australia
| | - Renea A Taylor
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, Melbourne, VIC, Australia
- Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Biomedicine Discovery Institute Cancer Program, Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Lisa M Butler
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Wayne D Tilley
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Simon J Conn
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia
| | - Mitchell G Lawrence
- Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, Melbourne, VIC, Australia
- Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Shudong Wang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Luke A Selth
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, Australia.
- Flinders University, Freemasons Centre for Male Health and Wellbeing, Bedford Park, SA, Australia.
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
8
|
Zhang Y, Fong KW, Mao F, Wang R, Allison DB, Napier D, He D, Liu J, Zhang Y, Chen J, Kong Y, Li C, Li G, Liu J, Li Z, Zhu H, Wang C, Liu X. Elevating PLK1 overcomes BETi resistance in prostate cancer via triggering BRD4 phosphorylation-dependent degradation in mitosis. Cell Rep 2024; 43:114431. [PMID: 38968071 PMCID: PMC11334074 DOI: 10.1016/j.celrep.2024.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/20/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024] Open
Abstract
Bromodomain-containing protein 4 (BRD4) has emerged as a promising therapeutic target in prostate cancer (PCa). Understanding the mechanisms of BRD4 stability could enhance the clinical response to BRD4-targeted therapy. In this study, we report that BRD4 protein levels are significantly decreased during mitosis in a PLK1-dependent manner. Mechanistically, we show that BRD4 is primarily phosphorylated at T1186 by the CDK1/cyclin B complex, recruiting PLK1 to phosphorylate BRD4 at S24/S1100, which are recognized by the APC/CCdh1 complex for proteasome pathway degradation. We find that PLK1 overexpression lowers SPOP mutation-stabilized BRD4, consequently rendering PCa cells re-sensitized to BRD4 inhibitors. Intriguingly, we report that sequential treatment of docetaxel and JQ1 resulted in significant inhibition of PCa. Collectively, the results support that PLK1-phosphorylated BRD4 triggers its degradation at M phase. Sequential treatment of docetaxel and JQ1 overcomes BRD4 accumulation-associated bromodomain and extra-terminal inhibitor (BETi) resistance, which may shed light on the development of strategies to treat PCa.
Collapse
Affiliation(s)
- Yanquan Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| | - Ka-Wing Fong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Fengyi Mao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Ruixin Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Derek B Allison
- Pathology & Laboratory Medicine, University of Kentucky, Lexington, KY 40508, USA
| | - Dana Napier
- Biospecimen Procurement & Translational Pathology Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA
| | - Daheng He
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jinpeng Liu
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Yeqing Zhang
- Department of Biology, College of Arts & Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Yifan Kong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Chaohao Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Guangbing Li
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Jinghui Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
9
|
Marr AR, Halpin M, Corbin DL, Asemelash Y, Sher S, Gordon BK, Whipp EC, Mitchell S, Harrington BK, Orwick S, Benrashid S, Goettl VM, Yildiz V, Mitchell AD, Cahn O, Mims AS, Larkin KTM, Long M, Blachly J, Woyach JA, Lapalombella R, Grieselhuber NR. The multi-CDK inhibitor dinaciclib reverses bromo- and extra-terminal domain (BET) inhibitor resistance in acute myeloid leukemia via inhibition of Wnt/β-catenin signaling. Exp Hematol Oncol 2024; 13:27. [PMID: 38438856 PMCID: PMC10913666 DOI: 10.1186/s40164-024-00483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024] Open
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematologic cancer with poor survival across a broad range of molecular subtypes. Development of efficacious and well-tolerable therapies encompassing the range of mutations that can arise in AML remains an unmet need. The bromo- and extra-terminal domain (BET) family of proteins represents an attractive therapeutic target in AML due to their crucial roles in many cellular functions, regardless of any specific mutation. Many BET inhibitors (BETi) are currently in pre-clinical and early clinical development, but acquisition of resistance continues to remain an obstacle for the drug class. Novel methods to circumvent this development of resistance could be instrumental for the future use of BET inhibitors in AML, both as monotherapy and in combination. To date, many investigations into possible drug combinations of BETi with CDK inhibitors have focused on CDK9, which has a known physical and functional interaction with the BET protein BRD4. Therefore, we wished to investigate possible synergy and additive effects between inhibitors of these targets in AML. Here, we describe combination therapy with the multi-CDK inhibitor dinaciclib and the BETi PLX51107 in pre-clinical models of AML. Dinaciclib and PLX51107 demonstrate additive effects in AML cell lines, primary AML samples, and in vivo. Further, we demonstrate novel activity of dinaciclib through inhibition of the canonical/β-catenin dependent Wnt signaling pathway, a known resistance mechanism to BETi in AML. We show dinaciclib inhibits Wnt signaling at multiple levels, including downregulation of β-catenin, the Wnt co-receptor LRP6, as well as many Wnt pathway components and targets. Moreover, dinaciclib sensitivity remains unaffected in a setting of BET resistance, demonstrating similar inhibitory effects on Wnt signaling when compared to BET-sensitive cells. Ultimately, our results demonstrate rationale for combination CDKi and BETi in AML. In addition, our novel finding of Wnt signaling inhibition could have potential implications in other cancers where Wnt signaling is dysregulated and demonstrates one possible approach to circumvent development of BET resistance in AML.
Collapse
Affiliation(s)
- Alexander R Marr
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Madeline Halpin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Dominique L Corbin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Yerdanos Asemelash
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Steven Sher
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Britten K Gordon
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Ethan C Whipp
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | | | | | - Shelley Orwick
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Samon Benrashid
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Virginia M Goettl
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Vedat Yildiz
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Andrew D Mitchell
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Olivia Cahn
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Alice S Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Karilyn T M Larkin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Meixao Long
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - James Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Nicole R Grieselhuber
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
10
|
Wang ZQ, Zhang ZC, Wu YY, Pi YN, Lou SH, Liu TB, Lou G, Yang C. Bromodomain and extraterminal (BET) proteins: biological functions, diseases, and targeted therapy. Signal Transduct Target Ther 2023; 8:420. [PMID: 37926722 PMCID: PMC10625992 DOI: 10.1038/s41392-023-01647-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
BET proteins, which influence gene expression and contribute to the development of cancer, are epigenetic interpreters. Thus, BET inhibitors represent a novel form of epigenetic anticancer treatment. Although preliminary clinical trials have shown the anticancer potential of BET inhibitors, it appears that these drugs have limited effectiveness when used alone. Therefore, given the limited monotherapeutic activity of BET inhibitors, their use in combination with other drugs warrants attention, including the meaningful variations in pharmacodynamic activity among chosen drug combinations. In this paper, we review the function of BET proteins, the preclinical justification for BET protein targeting in cancer, recent advances in small-molecule BET inhibitors, and preliminary clinical trial findings. We elucidate BET inhibitor resistance mechanisms, shed light on the associated adverse events, investigate the potential of combining these inhibitors with diverse therapeutic agents, present a comprehensive compilation of synergistic treatments involving BET inhibitors, and provide an outlook on their future prospects as potent antitumor agents. We conclude by suggesting that combining BET inhibitors with other anticancer drugs and innovative next-generation agents holds great potential for advancing the effective targeting of BET proteins as a promising anticancer strategy.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Yu-Yang Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya-Nan Pi
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Sheng-Han Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tian-Bo Liu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| | - Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| |
Collapse
|
11
|
Divakaran A, Harki DA, Pomerantz WC. Recent progress and structural analyses of domain-selective BET inhibitors. Med Res Rev 2023; 43:972-1018. [PMID: 36971240 PMCID: PMC10520981 DOI: 10.1002/med.21942] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 12/21/2022] [Accepted: 02/26/2023] [Indexed: 03/29/2023]
Abstract
Epigenetic mechanisms for controlling gene expression through heritable modifications to DNA, RNA, and proteins, are essential processes in maintaining cellular homeostasis. As a result of their central role in human diseases, the proteins responsible for adding, removing, or recognizing epigenetic modifications have emerged as viable drug targets. In the case of lysine-ε-N-acetylation (Kac ), bromodomains serve as recognition modules ("readers") of this activating epigenetic mark and competition of the bromodomain-Kac interaction with small-molecule inhibitors is an attractive strategy to control aberrant bromodomain-mediated gene expression. The bromodomain and extra-terminal (BET) family proteins contain eight similar bromodomains. These BET bromodomains are among the more commonly studied bromodomain classes with numerous pan-BET inhibitors showing promising anticancer and anti-inflammatory efficacy. However, these results have yet to translate into Food and Drug Administration-approved drugs, in part due to a high degree of on-target toxicities associated with pan-BET inhibition. Improved selectivity within the BET-family has been proposed to alleviate these concerns. In this review, we analyze the reported BET-domain selective inhibitors from a structural perspective. We highlight three essential characteristics of the reported molecules in generating domain selectivity, binding affinity, and mimicking Kac molecular recognition. In several cases, we provide insight into the design of molecules with improved specificity for individual BET-bromodomains. This review provides a perspective on the current state of the field as this exciting class of inhibitors continue to be evaluated in the clinic.
Collapse
Affiliation(s)
- Anand Divakaran
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th St SE, Minneapolis, MN 55455, United States
| | - Daniel A. Harki
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th St SE, Minneapolis, MN 55455, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN55455, United States
| | - William C.K. Pomerantz
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th St SE, Minneapolis, MN 55455, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN55455, United States
| |
Collapse
|
12
|
Nature-Derived Compounds as Potential Bioactive Leads against CDK9-Induced Cancer: Computational and Network Pharmacology Approaches. Processes (Basel) 2022. [DOI: 10.3390/pr10122512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Given the importance of cyclin-dependent kinases (CDKs) in the maintenance of cell development, gene transcription, and other essential biological operations, CDK blockers have been generated to manage a variety of disorders resulting from CDK irregularities. Furthermore, CDK9 has a crucial role in transcription by regulating short-lived anti-apoptotic genes necessary for cancer cell persistence. Addressing CDK9 with blockers has consequently emerged as a promising treatment for cancer. This study scrutinizes the effectiveness of nature-derived compounds (geniposidic acid, quercetin, geniposide, curcumin, and withanolide C) against CDK9 through computational approaches. A molecular docking study was performed after preparing the protein and the ligands. The selected blockers of the CDK9 exerted reliable binding affinities (−8.114 kcal/mol to −13.908 kcal/mol) against the selected protein, resulting in promising candidates compared to the co-crystallized ligand (LCI). The binding affinity of geniposidic acid (−13.908 kcal/mol) to CDK9 is higher than quercetin (−10.775 kcal/mol), geniposide (−9.969 kcal/mol), curcumin (−9.898 kcal/mol), withanolide C (−8.114 kcal/mol), and the co-crystallized ligand LCI (−11.425 kcal/mol). Therefore, geniposidic acid is a promising inhibitor of CDK9. Moreover, the molecular dynamics studies assessed the structure–function relationships and protein–ligand interactions. The network pharmacology study for the selected ligands demonstrated the auspicious compound–target–pathway signaling pathways vital in developing tumor, tumor cell growth, differentiation, and promoting tumor cell progression. Moreover, this study concluded by analyzing the computational approaches the natural-derived compounds that have potential interacting activities against CDK9 and, therefore, can be considered promising candidates for CKD9-induced cancer. To substantiate this study’s outcomes, in vivo research is recommended.
Collapse
|
13
|
van der Noord VE, van de Water B, Le Dévédec SE. Targeting the Heterogeneous Genomic Landscape in Triple-Negative Breast Cancer through Inhibitors of the Transcriptional Machinery. Cancers (Basel) 2022; 14:4353. [PMID: 36139513 PMCID: PMC9496798 DOI: 10.3390/cancers14184353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer defined by lack of the estrogen, progesterone and human epidermal growth factor receptor 2. Although TNBC tumors contain a wide variety of oncogenic mutations and copy number alterations, the direct targeting of these alterations has failed to substantially improve therapeutic efficacy. This efficacy is strongly limited by interpatient and intratumor heterogeneity, and thereby a lack in uniformity of targetable drivers. Most of these genetic abnormalities eventually drive specific transcriptional programs, which may be a general underlying vulnerability. Currently, there are multiple selective inhibitors, which target the transcriptional machinery through transcriptional cyclin-dependent kinases (CDKs) 7, 8, 9, 12 and 13 and bromodomain extra-terminal motif (BET) proteins, including BRD4. In this review, we discuss how inhibitors of the transcriptional machinery can effectively target genetic abnormalities in TNBC, and how these abnormalities can influence sensitivity to these inhibitors. These inhibitors target the genomic landscape in TNBC by specifically suppressing MYC-driven transcription, inducing further DNA damage, improving anti-cancer immunity, and preventing drug resistance against MAPK and PI3K-targeted therapies. Because the transcriptional machinery enables transcription and propagation of multiple cancer drivers, it may be a promising target for (combination) treatment, especially of heterogeneous malignancies, including TNBC.
Collapse
Affiliation(s)
| | | | - Sylvia E. Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
14
|
Zhou XR, Li X, Liao LP, Han J, Huang J, Li JC, Tao HR, Fan SJ, Chen ZF, Li Q, Chen SJ, Ding H, Yang YX, Zhou B, Jiang HL, Chen KX, Zhang YY, Huang CX, Luo C. P300/CBP inhibition sensitizes mantle cell lymphoma to PI3Kδ inhibitor idelalisib. Acta Pharmacol Sin 2022; 43:457-469. [PMID: 33850273 PMCID: PMC8791947 DOI: 10.1038/s41401-021-00643-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/08/2021] [Indexed: 02/03/2023]
Abstract
Mantle cell lymphoma (MCL) is a lymphoproliferative disorder lacking reliable therapies. PI3K pathway contributes to the pathogenesis of MCL, serving as a potential target. However, idelalisib, an FDA-approved drug targeting PI3Kδ, has shown intrinsic resistance in MCL treatment. Here we report that a p300/CBP inhibitor, A-485, could overcome resistance to idelalisib in MCL cells in vitro and in vivo. A-485 was discovered in a combinational drug screening from an epigenetic compound library containing 45 small molecule modulators. We found that A-485, the highly selective catalytic inhibitor of p300 and CBP, was the most potent compound that enhanced the sensitivity of MCL cell line Z-138 to idelalisib. Combination of A-485 and idelalisib remarkably decreased the viability of three MCL cell lines tested. Co-treatment with A-485 and idelalisib in Maver-1 and Z-138 MCL cell xenograft mice for 3 weeks dramatically suppressed the tumor growth by reversing the unsustained inhibition in PI3K downstream signaling. We further demonstrated that p300/CBP inhibition decreased histone acetylation at RTKs gene promoters and reduced transcriptional upregulation of RTKs, thereby inhibiting the downstream persistent activation of MAPK/ERK signaling, which also contributed to the pathogenesis of MCL. Therefore, additional inhibition of p300/CBP blocked MAPK/ERK signaling, which rendered maintaining activation to PI3K-mTOR downstream signals p-S6 and p-4E-BP1, thus leading to suppression of cell growth and tumor progression and eliminating the intrinsic resistance to idelalisib ultimately. Our results provide a promising combination therapy for MCL and highlight the potential use of epigenetic inhibitors targeting p300/CBP to reverse drug resistance in tumor.
Collapse
Affiliation(s)
- Xiao-ru Zhou
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031 China
| | - Xiao Li
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Li-ping Liao
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jie Han
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Jing Huang
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jia-cheng Li
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hong-ru Tao
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shi-jie Fan
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhi-feng Chen
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Qi Li
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Shi-jie Chen
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Hong Ding
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Ya-xi Yang
- grid.9227.e0000000119573309Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Bing Zhou
- grid.9227.e0000000119573309Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Hua-liang Jiang
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Kai-xian Chen
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031 China
| | - Yuan-yuan Zhang
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chuan-xin Huang
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Cheng Luo
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031 China
| |
Collapse
|
15
|
Harris AE, Metzler VM, Lothion-Roy J, Varun D, Woodcock CL, Haigh DB, Endeley C, Haque M, Toss MS, Alsaleem M, Persson JL, Gudas LJ, Rakha E, Robinson BD, Khani F, Martin LM, Moyer JE, Brownlie J, Madhusudan S, Allegrucci C, James VH, Rutland CS, Fray RG, Ntekim A, de Brot S, Mongan NP, Jeyapalan JN. Exploring anti-androgen therapies in hormone dependent prostate cancer and new therapeutic routes for castration resistant prostate cancer. Front Endocrinol (Lausanne) 2022; 13:1006101. [PMID: 36263323 PMCID: PMC9575553 DOI: 10.3389/fendo.2022.1006101] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Androgen deprivation therapies (ADTs) are important treatments which inhibit androgen-induced prostate cancer (PCa) progression by either preventing androgen biosynthesis (e.g. abiraterone) or by antagonizing androgen receptor (AR) function (e.g. bicalutamide, enzalutamide, darolutamide). A major limitation of current ADTs is they often remain effective for limited durations after which patients commonly progress to a lethal and incurable form of PCa, called castration-resistant prostate cancer (CRPC) where the AR continues to orchestrate pro-oncogenic signalling. Indeed, the increasing numbers of ADT-related treatment-emergent neuroendocrine-like prostate cancers (NePC), which lack AR and are thus insensitive to ADT, represents a major therapeutic challenge. There is therefore an urgent need to better understand the mechanisms of AR action in hormone dependent disease and the progression to CRPC, to enable the development of new approaches to prevent, reverse or delay ADT-resistance. Interestingly the AR regulates distinct transcriptional networks in hormone dependent and CRPC, and this appears to be related to the aberrant function of key AR-epigenetic coregulator enzymes including the lysine demethylase 1 (LSD1/KDM1A). In this review we summarize the current best status of anti-androgen clinical trials, the potential for novel combination therapies and we explore recent advances in the development of novel epigenetic targeted therapies that may be relevant to prevent or reverse disease progression in patients with advanced CRPC.
Collapse
Affiliation(s)
- Anna E. Harris
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Veronika M. Metzler
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Jennifer Lothion-Roy
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Dhruvika Varun
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Corinne L. Woodcock
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Daisy B. Haigh
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Chantelle Endeley
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Maria Haque
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Michael S. Toss
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Mansour Alsaleem
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
- Department of Applied Medical Science, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Jenny L. Persson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Department of Biomedical Sciences, Malmö Universitet, Malmö, Sweden
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Emad Rakha
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Brian D. Robinson
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
| | - Francesca Khani
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
| | - Laura M. Martin
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Jenna E. Moyer
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Juliette Brownlie
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Cinzia Allegrucci
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Victoria H. James
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Catrin S. Rutland
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Rupert G. Fray
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Atara Ntekim
- Department of Oncology, University Hospital Ibadan, Ibadan, Nigeria
- *Correspondence: Jennie N. Jeyapalan, ; Nigel P. Mongan, ; ; Atara Ntekim,
| | - Simone de Brot
- Comparative Pathology Platform (COMPATH), Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Nigel P. Mongan
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Jennie N. Jeyapalan, ; Nigel P. Mongan, ; ; Atara Ntekim,
| | - Jennie N. Jeyapalan
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
- *Correspondence: Jennie N. Jeyapalan, ; Nigel P. Mongan, ; ; Atara Ntekim,
| |
Collapse
|
16
|
Alsfouk A. Small molecule inhibitors of cyclin-dependent kinase 9 for cancer therapy. J Enzyme Inhib Med Chem 2021; 36:693-706. [PMID: 33632038 PMCID: PMC7919902 DOI: 10.1080/14756366.2021.1890726] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 01/23/2023] Open
Abstract
Cyclin-dependent kinase 9 (CDK9) plays a vital role in transcription through regulation of short-lived anti-apoptotic genes required for cancer cell survival. Therefore, targeting CDK9 with small molecule inhibitors has emerged as a potential cancer therapy. This article reviews the most recent CDK9 patent literature (2012-2020) related to small molecule inhibitors in cancer along with their selectivity profile and biological results in preclinical studies.
Collapse
Affiliation(s)
- Aisha Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
BET Proteins as Attractive Targets for Cancer Therapeutics. Int J Mol Sci 2021; 22:ijms222011102. [PMID: 34681760 PMCID: PMC8538173 DOI: 10.3390/ijms222011102] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Transcriptional dysregulation is a hallmark of cancer and can be an essential driver of cancer initiation and progression. Loss of transcriptional control can cause cancer cells to become dependent on certain regulators of gene expression. Bromodomain and extraterminal domain (BET) proteins are epigenetic readers that regulate the expression of multiple genes involved in carcinogenesis. BET inhibitors (BETis) disrupt BET protein binding to acetylated lysine residues of chromatin and suppress the transcription of various genes, including oncogenic transcription factors. Phase I and II clinical trials demonstrated BETis’ potential as anticancer drugs against solid tumours and haematological malignancies; however, their clinical success was limited as monotherapies. Emerging treatment-associated toxicities, drug resistance and a lack of predictive biomarkers limited BETis’ clinical progress. The preclinical evaluation demonstrated that BETis synergised with different classes of compounds, including DNA repair inhibitors, thus supporting further clinical development of BETis. The combination of BET and PARP inhibitors triggered synthetic lethality in cells with proficient homologous recombination. Mechanistic studies revealed that BETis targeted multiple essential homologous recombination pathway proteins, including RAD51, BRCA1 and CtIP. The exact mechanism of BETis’ anticancer action remains poorly understood; nevertheless, these agents provide a novel approach to epigenome and transcriptome anticancer therapy.
Collapse
|
18
|
Enríquez P, Krajewski K, Strahl BD, Rothbart SB, Dowen RH, Rose RB. Binding specificity and function of the SWI/SNF subunit SMARCA4 bromodomain interaction with acetylated histone H3K14. J Biol Chem 2021; 297:101145. [PMID: 34473995 PMCID: PMC8506967 DOI: 10.1016/j.jbc.2021.101145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Bromodomains (BD) are conserved reader modules that bind acetylated lysine residues on histones. Although much has been learned regarding the in vitro properties of these domains, less is known about their function within chromatin complexes. SWI/SNF chromatin-remodeling complexes modulate transcription and contribute to DNA damage repair. Mutations in SWI/SNF subunits have been implicated in many cancers. Here we demonstrate that the BD of Caenorhabditis elegans SMARCA4/BRG1, a core SWI/SNF subunit, recognizes acetylated lysine 14 of histone H3 (H3K14ac), similar to its Homo sapiens ortholog. We identify the interactions of SMARCA4 with the acetylated histone peptide from a 1.29 Å-resolution crystal structure of the CeSMARCA4 BD-H3K14ac complex. Significantly, most of the SMARCA4 BD residues in contact with the histone peptide are conserved with other proteins containing family VIII bromodomains. Based on the premise that binding specificity is conserved among bromodomain orthologs, we propose that loop residues outside of the binding pocket position contact residues to recognize the H3K14ac sequence. CRISPR-Cas9-mediated mutations in the SMARCA4 BD that abolish H3K14ac binding in vitro had little or no effect on C. elegans viability or physiological function in vivo. However, combining SMARCA4 BD mutations with knockdown of the SWI/SNF accessory subunit PBRM-1 resulted in severe developmental defects in animals. In conclusion, we demonstrated an essential function for the SWI/SNF bromodomain in vivo and detected potential redundancy in epigenetic readers in regulating chromatin remodeling. These findings have implications for the development of small-molecule BD inhibitors to treat cancers and other diseases.
Collapse
Affiliation(s)
- Paul Enríquez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Robert H Dowen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robert B Rose
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
19
|
Zboril E, Yoo H, Chen L, Liu Z. Dynamic Interactions of Transcription Factors and Enhancer Reprogramming in Cancer Progression. Front Oncol 2021; 11:753051. [PMID: 34616687 PMCID: PMC8488287 DOI: 10.3389/fonc.2021.753051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/03/2021] [Indexed: 01/01/2023] Open
Abstract
While improved tumor treatment has significantly reduced the overall mortality rates, invasive progression including recurrence, therapy resistance and metastasis contributes to the majority of deaths caused by cancer. Enhancers are essential distal DNA regulatory elements that control temporal- or spatial-specific gene expression patterns during development and other biological processes. Genome-wide sequencing has revealed frequent alterations of enhancers in cancers and reprogramming of distal enhancers has emerged as one of the important features for tumors. In this review, we will discuss tumor progression-associated enhancer dynamics, its transcription factor (TF) drivers and how enhancer reprogramming modulates gene expression during cancer invasive progression. Additionally, we will explore recent advancements in contemporary technology including single-cell sequencing, spatial transcriptomics and CUT&RUN, which have permitted integrated studies of enhancer reprogramming in vivo. Given the essential roles of enhancer dynamics and its drivers in controlling cancer progression and treatment outcome, understanding these changes will be paramount in mitigating invasive events and discovering novel therapeutic targets.
Collapse
Affiliation(s)
- Emily Zboril
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Hannah Yoo
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Lizhen Chen
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Cell Systems and Anatomy, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Zhijie Liu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
20
|
Bowry A, Kelly RDW, Petermann E. Hypertranscription and replication stress in cancer. Trends Cancer 2021; 7:863-877. [PMID: 34052137 DOI: 10.1016/j.trecan.2021.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Replication stress results from obstacles to replication fork progression, including ongoing transcription, which can cause transcription-replication conflicts. Oncogenic signaling can promote global increases in transcription activity, also termed hypertranscription. Despite the widely accepted importance of oncogene-induced hypertranscription, its study remains neglected compared with other causes of replication stress and genomic instability in cancer. A growing number of recent studies are reporting that oncogenes, such as RAS, and targeted cancer treatments, such as bromodomain and extraterminal motif (BET) bromodomain inhibitors, increase global transcription, leading to R-loop accumulation, transcription-replication conflicts, and the activation of replication stress responses. Here we discuss our mechanistic understanding of hypertranscription-induced replication stress and the resulting cellular responses, in the context of oncogenes and targeted cancer therapies.
Collapse
Affiliation(s)
- Akhil Bowry
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Richard D W Kelly
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
21
|
Stromal induction of BRD4 phosphorylation Results in Chromatin Remodeling and BET inhibitor Resistance in Colorectal Cancer. Nat Commun 2021; 12:4441. [PMID: 34290255 PMCID: PMC8295257 DOI: 10.1038/s41467-021-24687-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022] Open
Abstract
BRD4, a Bromodomain and Extraterminal (BET) protein family member, is a promising anti-cancer drug target. However, resistance to BET inhibitors targeting BRD4 is common in solid tumors. Here, we show that cancer-associated fibroblast (CAF)-activated stromal signaling, interleukin-6/8-JAK2, induces BRD4 phosphorylation at tyrosine 97/98 in colorectal cancer, resulting in BRD4 stabilization due to interaction with the deubiquitinase UCHL3. BRD4 phosphorylation at tyrosine 97/98 also displays increased binding to chromatin but reduced binding to BET inhibitors, resulting in resistance to BET inhibitors. We further show that BRD4 phosphorylation promotes interaction with STAT3 to induce chromatin remodeling through concurrent binding to enhancers and super-enhancers, supporting a tumor-promoting transcriptional program. Inhibition of IL6/IL8-JAK2 signaling abolishes BRD4 phosphorylation and sensitizes BET inhibitors in vitro and in vivo. Our study reveals a stromal mechanism for BRD4 activation and BET inhibitor resistance, which provides a rationale for developing strategies to treat CRC more effectively. BRD4 has a pro-tumorigenic role but non-cell-autonomous mechanisms of BRD4 activation need to be elucidated. Here the authors unravel a mechanism by which CAFs activate BRD4 and induce resistance to BET inhibitors in cancer cells through IL6/IL8 signaling.
Collapse
|
22
|
Labrecque MP, Alumkal JJ, Coleman IM, Nelson PS, Morrissey C. The heterogeneity of prostate cancers lacking AR activity will require diverse treatment approaches. Endocr Relat Cancer 2021; 28:T51-T66. [PMID: 33792558 PMCID: PMC8292199 DOI: 10.1530/erc-21-0002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022]
Abstract
The use of androgen deprivation therapy and second-line anti-androgens in prostate cancer has led to the emergence of tumors employing multiple androgen receptor (AR)-dependent and AR-independent mechanisms to resist AR-targeted therapies in castration-resistant prostate cancer (CRPC). While the AR signaling axis remains the cornerstone for therapeutic development in CRPC, a clearer understanding of the heterogeneous biology of CRPC tumors is needed for innovative treatment strategies. In this review, we discuss the characteristics of CRPC tumors that lack AR activity and the temporal and spatial considerations for the conversion of an AR-dependent to an AR-independent tumor type. We describe the more prevalent treatment-emergent phenotypes arising in the CRPC disease continuum, including amphicrine, AR-low, double-negative, neuroendocrine and small cell phenotypes. We discuss the association between the loss of AR activity and tumor plasticity with a focus on the roles of transcription factors like SOX2, DNA methylation, alternative splicing, and the activity of epigenetic modifiers like EZH2, BRD4, LSD1, and the nBAF complex in conversion to a neuroendocrine or small cell phenotype in CRPC. We hypothesize that only a subset of CRPC tumors have the propensity for tumor plasticity and conversion to the neuroendocrine phenotype and outline how we might target these plastic and emergent phenotypes in CRPC. In conclusion, we assess the current and future avenues for treatment and determine that the heterogeneity of CRPCs lacking AR activity will require diverse treatment approaches.
Collapse
Affiliation(s)
- Mark P. Labrecque
- Department of Urology, University of Washington School of
Medicine, Seattle, Washington, United States of America
| | - Joshi J. Alumkal
- Department of Internal Medicine, Rogel Cancer Center,
University of Michigan, Ann Arbor, MI USA
| | - Ilsa M. Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research
Center, Seattle, Washington, United States of America
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research
Center, Seattle, Washington, United States of America
- Division of Public Health Sciences, Fred Hutchinson Cancer
Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington School of
Medicine, Seattle, Washington, United States of America
| | - Colm Morrissey
- Department of Urology, University of Washington School of
Medicine, Seattle, Washington, United States of America
- Corresponding author Telephone: 206-543-1461, Fax:
206-543-1146,
| |
Collapse
|
23
|
Giardina SF, Valdambrini E, Warren JD, Barany F. PROTACs: Promising Approaches for Epigenetic Strategies to Overcome Drug Resistance. Curr Cancer Drug Targets 2021; 21:306-325. [PMID: 33535953 DOI: 10.2174/1568009621666210203110857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/26/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
Epigenetic modulation of gene expression is essential for tissue-specific development and maintenance in mammalian cells. Disruption of epigenetic processes, and the subsequent alteration of gene functions, can result in inappropriate activation or inhibition of various cellular signaling pathways, leading to cancer. Recent advancements in the understanding of the role of epigenetics in cancer initiation and progression have uncovered functions for DNA methylation, histone modifications, nucleosome positioning, and non-coding RNAs. Epigenetic therapies have shown some promise for hematological malignancies, and a wide range of epigenetic-based drugs are undergoing clinical trials. However, in a dynamic survival strategy, cancer cells exploit their heterogeneous population which frequently results in the rapid acquisition of therapy resistance. Here, we describe novel approaches in drug discovery targeting the epigenome, highlighting recent advances the selective degradation of target proteins using Proteolysis Targeting Chimera (PROTAC) to address drug resistance.
Collapse
Affiliation(s)
- Sarah F Giardina
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Ave, Box 62, New York, NY, United States
| | - Elena Valdambrini
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Ave, Box 62, New York, NY, United States
| | - J David Warren
- Department of Biochemistry, Weill Cornell Medicine, 1300 York Ave, Box 63, New York, NY, 10065, United States
| | - Francis Barany
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Ave, Box 62, New York, NY, United States
| |
Collapse
|
24
|
Gao X, Liang J, Wang L, Zhang Z, Yuan P, Wang J, Gao Y, Ma F, Calagua C, Ye H, Voznesensky O, Wang S, Wang T, Liu J, Chen S, Liu X. Phosphorylation of the androgen receptor at Ser81 is co-sustained by CDK1 and CDK9 and leads to AR-mediated transactivation in prostate cancer. Mol Oncol 2021; 15:1901-1920. [PMID: 33932081 PMCID: PMC8253089 DOI: 10.1002/1878-0261.12968] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/05/2021] [Accepted: 04/13/2021] [Indexed: 11/27/2022] Open
Abstract
Androgen receptor (AR) is the principal molecule in prostate cancer (PCa) etiology and therapy. AR re‐activation still remains a major challenge during treatment of castration‐resistant prostate cancer (CRPC) tumors that relapse after castration therapies. Recent reports have indicated the enrichment of Ser81‐phosphorylated AR (pS81) in the nucleus of CRPC cells, and CDK1 and CDK9 as the kinases phosphorylating AR at S81. In the current study we showed that pS81 is preferentially localized in the nucleus in both rapid biopsy metastatic CRPC samples and PCa xenografts, and nuclear pS81 localization is correlated with AR transactivation in tumor xenografts. Chromatin immunoprecipitation (ChIP) analysis demonstrated an alignment of S81 phosphorylation and AR‐mediated transactivation with the chromatin locus openness. Moreover, pS81‐specific ChIP‐Seq showed a disproportional occupancy of pS81 on AR‐activated promoters, while 3C‐ChIP assays further indicated an enrichment of pS81 at the PSA enhancer‐promoter loop, a known AR activating hub. In the latter, CDK9 was shown to modulate the transactivation of the AR and RNA Pol II. Indeed, ChIP and re‐ChIP assays also confirmed that AR‐dependent activation of the PSA enhancer and promoter mediated by pS81 was coupled with activation of Pol II and the pTEFb complex. Mechanistically, we determined that CDK1 and CDK9 sustained the pS81 AR modification in the soluble and chromatin‐bound fractions of PCa cells, respectively. Finally, we demonstrated that CDK1 activity was maintained throughout the cell cycle, and that CDK1 inhibitors restored androgen sensitivity in CRPC tumor cells. Based on these findings, CDK1 and CDK9 could be targeted as pS81 kinases in patients with CRPC, either alone or in conjunction with direct AR antagonists.
Collapse
Affiliation(s)
- XinTao Gao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqian Liang
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - LiYang Wang
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Zhaoyang Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Penghui Yuan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanfei Gao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, China
| | - Fen Ma
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Carla Calagua
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Huihui Ye
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of Pathology, University of California Los Angeles, CA, USA
| | - Olga Voznesensky
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoyong Chen
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Li KC, Girardi E, Kartnig F, Grosche S, Pemovska T, Bigenzahn JW, Goldmann U, Sedlyarov V, Bensimon A, Schick S, Lin JMG, Gürtl B, Reil D, Klavins K, Kubicek S, Sdelci S, Superti-Furga G. Cell-surface SLC nucleoside transporters and purine levels modulate BRD4-dependent chromatin states. Nat Metab 2021; 3:651-664. [PMID: 33972798 PMCID: PMC7612075 DOI: 10.1038/s42255-021-00386-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023]
Abstract
Metabolism negotiates cell-endogenous requirements of energy, nutrients and building blocks with the immediate environment to enable various processes, including growth and differentiation. While there is an increasing number of examples of crosstalk between metabolism and chromatin, few involve uptake of exogenous metabolites. Solute carriers (SLCs) represent the largest group of transporters in the human genome and are responsible for the transport of a wide variety of substrates, including nutrients and metabolites. We aimed to investigate the possible involvement of SLC-mediated solutes uptake and cellular metabolism in regulating cellular epigenetic states. Here, we perform a CRISPR-Cas9 transporter-focused genetic screen and a metabolic compound library screen for the regulation of BRD4-dependent chromatin states in human myeloid leukaemia cells. Intersection of the two orthogonal approaches reveal that loss of transporters involved with purine transport or inhibition of de novo purine synthesis lead to dysfunction of BRD4-dependent transcriptional regulation. Through mechanistic characterization of the metabolic circuitry, we elucidate the convergence of SLC-mediated purine uptake and de novo purine synthesis on BRD4-chromatin occupancy. Moreover, adenine-related metabolite supplementation effectively restores BRD4 functionality on purine impairment. Our study highlights the specific role of purine/adenine metabolism in modulating BRD4-dependent epigenetic states.
Collapse
Affiliation(s)
- Kai-Chun Li
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Enrico Girardi
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Felix Kartnig
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sarah Grosche
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tea Pemovska
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes W Bigenzahn
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ulrich Goldmann
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vitaly Sedlyarov
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sandra Schick
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jung-Ming G Lin
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bettina Gürtl
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniela Reil
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kristaps Klavins
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefan Kubicek
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Christian Doppler Laboratory for Chemical Epigenetics and Antiinfectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sara Sdelci
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Giulio Superti-Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Synthesis and biological evaluation of seliciclib derivatives as potent and selective CDK9 inhibitors for prostate cancer therapy. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-020-02727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Jones K, Zhang Y, Kong Y, Farah E, Wang R, Li C, Wang X, Zhang Z, Wang J, Mao F, Liu X, Liu J. Epigenetics in prostate cancer treatment. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2021; 5:341-356. [PMID: 35372800 PMCID: PMC8974353 DOI: 10.20517/jtgg.2021.19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignancy among men, and the progression of this disease results in fewer treatment options available to clinical patients. It highlights the vital necessity for discovering novel therapeutic approaches and expanding the current understanding of molecular mechanisms. Epigenetic alternations such as DNA methylation models and histone modifications have been associated as key drivers in the development and advancement of PCa. Several studies have been conducted and demonstrated that targeting these epigenetic enzymes or regulatory proteins has been strongly associated with the regulation of cancer cell growth. Due to the success rate of these therapeutic routes in pre-clinical settings, many drugs have now advanced to clinical testing, where efficacy will be measured. This review will discuss the role of epigenetic modifications in PCa development and its function in the progression of the disease to resistant forms and introduce therapeutic strategies that have demonstrated successful results as PCa treatment.
Collapse
Affiliation(s)
- Katelyn Jones
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Yanquan Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Yifan Kong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Elia Farah
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ruixin Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Chaohao Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Xinyi Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - ZhuangZhuang Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Jianlin Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Fengyi Mao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jinghui Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
28
|
Chen NC, Borthakur G, Pemmaraju N. Bromodomain and extra-terminal (BET) inhibitors in treating myeloid neoplasms. Leuk Lymphoma 2020; 62:528-537. [DOI: 10.1080/10428194.2020.1842399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Natalie Cheng Chen
- Department of Internal Medicine, The University of Texas School of Health Sciences at Houston, Houston, TX, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
29
|
Controlled Delivery of BET-PROTACs: In Vitro Evaluation of MZ1-Loaded Polymeric Antibody Conjugated Nanoparticles in Breast Cancer. Pharmaceutics 2020; 12:pharmaceutics12100986. [PMID: 33086530 PMCID: PMC7589709 DOI: 10.3390/pharmaceutics12100986] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
Bromo and extraterminal domain (BET) inhibitors-PROteolysis TArgeting Chimera (BETi-PROTAC) is a new family of compounds that induce proteasomal degradation through the ubiquitination of the tagged to BET inhibitors Bromodomain proteins, BRD2 and BRD. The encapsulation and controlled release of BET-PROTACs through their vectorization with antibodies, like trastuzumab, could facilitate their pharmacokinetic and efficacy profile. Antibody conjugated nanoparticles (ACNPs) using PROTACs have not been designed and evaluated. In this pioneer approach, the commercial MZ1 PROTAC was encapsulated into the FDA-approved polymeric nanoparticles. The nanoparticles were conjugated with trastuzumab to guide the delivery of MZ1 to breast tumoral cells that overexpress HER2. These ACNPs were characterized by means of size, polydispersity index, and Z-potential. Morphology of the nanoparticles, along with stability and release studies, completed the characterization. MZ1-loaded ACNPs showed a significant cytotoxic effect maintaining its mechanism of action and improving its therapeutic properties.
Collapse
|
30
|
Andrikopoulou A, Liontos M, Koutsoukos K, Dimopoulos MA, Zagouri F. The emerging role of BET inhibitors in breast cancer. Breast 2020; 53:152-163. [PMID: 32827765 PMCID: PMC7451423 DOI: 10.1016/j.breast.2020.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/13/2020] [Accepted: 08/10/2020] [Indexed: 01/10/2023] Open
Abstract
Bromodomain and extraterminal domain (BET) proteins are epigenetic molecules that regulate the expression of multiple genes involved in carcinogenesis. Breast cancer is an heterogenous disease emerging from aberrant gene expression and epigenetic alteration patterns. Amplification or overexpression of BET proteins has been identified in breast tumors highlighting their clinical significance. Development of BET inhibitors that disrupt BET protein binding to acetylated lysine residues of chromatin and suppress transcription of various oncogenes has shown promising results in breast cancer cells and xenograft models. Currently, Phase I/II clinical trials explore safety and efficacy of BET inhibitors in solid tumors and breast cancer. Treatment-emergent toxicities have been reported, including thrombocytopenia and gastrointestinal disorders. Preliminary results demonstrated greater response rates to BET inhibitors in combination with already approved anticancer agents. Consistently, BET inhibition sensitized breast tumors to chemotherapy drugs, hormone therapy and PI3K inhibitors in vitro. This article aims to review all existing preclinical and clinical evidence regarding BET inhibitors in breast cancer.
Collapse
Affiliation(s)
- Angeliki Andrikopoulou
- Oncology Unit, Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Michalis Liontos
- Oncology Unit, Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Konstantinos Koutsoukos
- Oncology Unit, Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Meletios-Athanasios Dimopoulos
- Oncology Unit, Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Flora Zagouri
- Oncology Unit, Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| |
Collapse
|
31
|
Lin X, Xiang H, Luo G. Targeting estrogen receptor α for degradation with PROTACs: A promising approach to overcome endocrine resistance. Eur J Med Chem 2020; 206:112689. [PMID: 32829249 DOI: 10.1016/j.ejmech.2020.112689] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Estrogen receptor alfa (ERα) is expressed in approximate 70% of breast cancer (BC) which is the most common malignancy in women worldwide. To date, the foremost intervention in the treatment of ER positive (ER+) BC is still the endocrine therapy. However, resistance to endocrine therapies remains a major hurdle in the long-term management of ER + BC. Although the mechanisms underlying endocrine resistance are complex, cumulative evidence revealed that ERα still plays a critical role in driving BC tumor cells to grow in resistance state. Fulvestrant, a selective estrogen receptor degrader (SERD), has moved to first line therapy for metastatic ER + BC, suggesting that removing ERα would be a useful strategy to overcome endocrine resistance. Proteolysis-Targeting Chimera (PROTAC) technology, an emerging paradigm for protein degradation, has the potential to eliminate both wild type and mutant ERα in breast cancer cells. Excitingly, ARV-471, an ERα-targeted PROTAC developed by Arvinas, has been in phase 1 clinical trials. In this review, we will summarize recent progress of ER-targeting PROTACs from publications and patents along with their therapeutic opportunities for the treatment of endocrine-resistant BC.
Collapse
Affiliation(s)
- Xin Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
32
|
Venkadakrishnan VB, Ben-Salem S, Heemers HV. AR-dependent phosphorylation and phospho-proteome targets in prostate cancer. Endocr Relat Cancer 2020; 27:R193-R210. [PMID: 32276264 PMCID: PMC7583603 DOI: 10.1530/erc-20-0048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
Prostate cancer (CaP) is the second leading cause of cancer-related deaths in Western men. Because androgens drive CaP by activating the androgen receptor (AR), blocking AR's ligand activation, known as androgen deprivation therapy (ADT), is the default treatment for metastatic CaP. Despite an initial remission, CaP eventually develops resistance to ADT and progresses to castration-recurrent CaP (CRPC). CRPC continues to rely on aberrantly activated AR that is no longer inhibited effectively by available therapeutics. Interference with signaling pathways downstream of activated AR that mediate aggressive CRPC behavior may lead to alternative CaP treatments. Developing such therapeutic strategies requires a thorough mechanistic understanding of the most clinically relevant and druggable AR-dependent signaling events. Recent proteomics analyses of CRPC clinical specimens indicate a shift in the phosphoproteome during CaP progression. Kinases and phosphatases represent druggable entities, for which clinically tested inhibitors are available, some of which are incorporated already in treatment plans for other human malignancies. Here, we reviewed the AR-associated transcriptome and translational regulon, and AR interactome involved in CaP phosphorylation events. Novel and for the most part mutually exclusive AR-dependent transcriptional and post-transcriptional control over kinase and phosphatase expression was found, with yet other phospho-regulators interacting with AR. The multiple mechanisms by which AR can shape and fine-tune the CaP phosphoproteome were reflected in diverse aspects of CaP biology such as cell cycle progression and cell migration. Furthermore, we examined the potential, limitations and challenges of interfering with AR-mediated phosphorylation events as alternative strategy to block AR function during CaP progression.
Collapse
Affiliation(s)
- Varadha Balaji Venkadakrishnan
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, USA
| | - Salma Ben-Salem
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
33
|
Xu J, Qiu Y. Current opinion and mechanistic interpretation of combination therapy for castration-resistant prostate cancer. Asian J Androl 2020; 21:270-278. [PMID: 30924449 PMCID: PMC6498727 DOI: 10.4103/aja.aja_10_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent advances in genomics technology have led to the massive discovery of new drug targets for prostate cancer; however, none of the currently available therapeutics is curative. One of the greatest challenges is drug resistance. Combinations of therapies with distinct mechanisms of action represent a promising strategy that has received renewed attention in recent years. Combination therapies exert cancer killing functions through either concomitant targeting of multiple pro-cancer factors or more effective inhibition of a single pathway. Theoretically, the combination therapy can improve efficacy and efficiency compared with monotherapy. Although increasing numbers of drug combinations are currently being tested in clinical trials, the mechanisms by which these combinations can overcome drug resistance have yet to be fully understood. The purpose of this review is to summarize recent work on therapeutic combinations in the treatment of castration-resistant prostate cancer and discuss emerging mechanisms underlying drug resistance. In addition, we provide an overview of the current preclinical mechanistic studies on potential therapeutic combinations to overcome drug resistance.
Collapse
Affiliation(s)
- Jin Xu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yun Qiu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
34
|
Wang X, Cairns MJ, Yan J. Super-enhancers in transcriptional regulation and genome organization. Nucleic Acids Res 2020; 47:11481-11496. [PMID: 31724731 PMCID: PMC7145697 DOI: 10.1093/nar/gkz1038] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Gene expression is precisely controlled in a stage and cell-type-specific manner, largely through the interaction between cis-regulatory elements and their associated trans-acting factors. Where these components aggregate in promoters and enhancers, they are able to cooperate to modulate chromatin structure and support the engagement in long-range 3D superstructures that shape the dynamics of a cell's genomic architecture. Recently, the term 'super-enhancer' has been introduced to describe a hyper-active regulatory domain comprising a complex array of sequence elements that work together to control the key gene networks involved in cell identity. Here, we survey the unique characteristics of super-enhancers compared to other enhancer types and summarize the recent advances in our understanding of their biological role in gene regulation. In particular, we discuss their capacity to attract the formation of phase-separated condensates, and capacity to generate three-dimensional genome structures that precisely activate their target genes. We also propose a multi-stage transition model to explain the evolutionary pressure driving the development of super-enhancers in complex organisms, and highlight the potential for involvement in tumorigenesis. Finally, we discuss more broadly the role of super-enhancers in human health disorders and related potential in therapeutic interventions.
Collapse
Affiliation(s)
- Xi Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education / School of Life Sciences, Northwest University, Xi'an 710069, China.,Division of Theoretical Systems Biology, Germany Cancer Research Center, Heidelberg 69115, Germany.,School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.,Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; and Hunter Medical Research Institute
| | - Jian Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education / School of Life Sciences, Northwest University, Xi'an 710069, China.,Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong S.A.R., China
| |
Collapse
|
35
|
Yu J, Zhou P, Du W, Xu R, Yan G, Deng Y, Li X, Chen Y. Metabolically stable diphenylamine derivatives suppress androgen receptor and BET protein in prostate cancer. Biochem Pharmacol 2020; 177:113946. [PMID: 32247852 DOI: 10.1016/j.bcp.2020.113946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/31/2020] [Indexed: 02/05/2023]
Abstract
Androgen receptor (AR) is a crucial driver of prostate cancer (PC). AR-relevant resistance remains a major challenge in castration-resistant prostate cancer (CRPC). Bromodomain and extra-terminal domain (BET) family are critical AR coregulators. Here, we developed several diphenylamine derivatives and identified compound 7d that disrupted the functions of AR and BET family in prostate cancer and exhibited favorable metabolic stability in vitro and high drug exposure in vivo. We showed 7d not only bound to AR, suppressed transactivation of wild-type AR (wt-AR) and the mutant that mediates Enzalutamide resistance, but also reduced c-Myc protein expression through BET inhibition. In addition, 7d inhibited the proliferation of AR-positive PC cells with favorable selectivity and suppressed AR-V7-expressing VCaP and 22Rv1 xenografts growth in vivo. Collectively, these results indicate the potential of lead compound 7d as an orally available AR and BET inhibitor to treat CRPC and overcome antiandrogen resistance.
Collapse
Affiliation(s)
- Jiang Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Peiting Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Wu Du
- Hinova Pharmaceuticals Inc., 4th Floor, Building RongYao A, No. 5, Keyuan South Road, Chengdu 610041, China
| | - Ruixue Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Guoyi Yan
- Department of Hepatobiliary Pancreatic Surgery, Henan Province People's Hospital, Zhengzhou 450003, China
| | - Yufang Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xinghai Li
- Hinova Pharmaceuticals Inc., 4th Floor, Building RongYao A, No. 5, Keyuan South Road, Chengdu 610041, China
| | - Yuanwei Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; Hinova Pharmaceuticals Inc., 4th Floor, Building RongYao A, No. 5, Keyuan South Road, Chengdu 610041, China.
| |
Collapse
|
36
|
Wang J, Li GL, Ming SL, Wang CF, Shi LJ, Su BQ, Wu HT, Zeng L, Han YQ, Liu ZH, Jiang DW, Du YK, Li XD, Zhang GP, Yang GY, Chu BB. BRD4 inhibition exerts anti-viral activity through DNA damage-dependent innate immune responses. PLoS Pathog 2020; 16:e1008429. [PMID: 32208449 PMCID: PMC7122826 DOI: 10.1371/journal.ppat.1008429] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/03/2020] [Accepted: 02/23/2020] [Indexed: 12/25/2022] Open
Abstract
Chromatin dynamics regulated by epigenetic modification is crucial in genome stability and gene expression. Various epigenetic mechanisms have been identified in the pathogenesis of human diseases. Here, we examined the effects of ten epigenetic agents on pseudorabies virus (PRV) infection by using GFP-reporter assays. Inhibitors of bromodomain protein 4 (BRD4), which receives much more attention in cancer than viral infection, was found to exhibit substantial anti-viral activity against PRV as well as a range of DNA and RNA viruses. We further demonstrated that BRD4 inhibition boosted a robust innate immune response. BRD4 inhibition also de-compacted chromatin structure and induced the DNA damage response, thereby triggering the activation of cGAS-mediated innate immunity and increasing host resistance to viral infection both in vitro and in vivo. Mechanistically, the inhibitory effect of BRD4 inhibition on viral infection was mainly attributed to the attenuation of viral attachment. Our findings reveal a unique mechanism through which BRD4 inhibition restrains viral infection and points to its potent therapeutic value for viral infectious diseases. BRD4 has been well investigated in tumorigenesis for its contribution to chromatin remodeling and gene transcription. BRD4 inhibitors are used as promising chemotherapeutic drugs for cancer therapy. Here, we show a unique mechanism through which BRD4 inhibition broadly inhibits attachment of DNA and RNA viruses through DNA damage-dependent antiviral innate immune activation via the cGAS-STING pathway, in both cell culture and an animal model. STING-associated innate immune signaling has been considered to be a new possibility for cancer therapy, and STING agonists have been tested in early clinical trials. Our data identify BRD4 inhibitors as a potent therapy not only for viral infection but also for cancer immunotherapy.
Collapse
Affiliation(s)
- Jiang Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Guo-Li Li
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Sheng-Li Ming
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Chun-Feng Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Li-Juan Shi
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Bing-Qian Su
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Hong-Tao Wu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Lei Zeng
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Ying-Qian Han
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Zhong-Hu Liu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Da-Wei Jiang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Yong-Kun Du
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Xiang-Dong Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Jiangsu Province, P.R. China
| | - Gai-Ping Zhang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
| | - Guo-Yu Yang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
- * E-mail: (GYY); (BBC)
| | - Bei-Bei Chu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, P.R. China
- * E-mail: (GYY); (BBC)
| |
Collapse
|
37
|
Sun N, Ren C, Kong Y, Zhong H, Chen J, Li Y, Zhang J, Zhou Y, Qiu X, Lin H, Song X, Yang X, Jiang B. Development of a Brigatinib degrader (SIAIS117) as a potential treatment for ALK positive cancer resistance. Eur J Med Chem 2020; 193:112190. [PMID: 32179332 DOI: 10.1016/j.ejmech.2020.112190] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 11/30/2022]
Abstract
EML4-ALK and NPM-ALK fusion proteins possess constitutively activated ALK (anaplastic lymphoma kinase) activity, which in turn leads to the development of non-small cell lung cancer and anaplastic large-cell lymphomas (ALCLs). FDA-approved ALK inhibitor drugs cause significant cancer regression. However, drug resistance eventually occurs and it becomes a big obstacle in clinic. Novel proteolysis targeting chimera (PROTAC) technology platform provides a potential therapeutic strategy for drug resistance. Herein, we designed and synthesized a series of ALK PROTACs based on Brigatinib and VHL-1 conjunction, and screened SIAIS117 as the best degrader which not only blocked the growth of SR and H2228 cancer cell lines, but also degraded ALK protein. In addition, SIAIS117 also showed much better growth inhibition effect than Brigatinib on 293T cell line that exogenously expressed G1202R-resistant ALK proteins. Furthermore, it also degraded G1202R mutant ALK protein in vitro. At last, it has the potentially anti-proliferation ability of small cell lung cancer. Thus, we have successfully generated the degrader SIAIS117 that can potentially overcome resistance in cancer targeted therapy.
Collapse
Affiliation(s)
- Ning Sun
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Chaowei Ren
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Ying Kong
- Jing Medicine Technology (Shanghai), Ltd., Y building, 230 Haike Road, Shanghai, 201210, China
| | - Hui Zhong
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China; Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Jinju Chen
- Jing Medicine Technology (Shanghai), Ltd., Y building, 230 Haike Road, Shanghai, 201210, China
| | - Yan Li
- Jing Medicine Technology (Shanghai), Ltd., Y building, 230 Haike Road, Shanghai, 201210, China
| | - Jianshui Zhang
- Jing Medicine Technology (Shanghai), Ltd., Y building, 230 Haike Road, Shanghai, 201210, China
| | - Yuedong Zhou
- Jing Medicine Technology (Shanghai), Ltd., Y building, 230 Haike Road, Shanghai, 201210, China
| | - Xing Qiu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Haifan Lin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China; Yale Stem Cell Center, Yale University, New Haven, CT, 06511, USA.
| | - Xiaoling Song
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| | - Xiaobao Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China; CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
38
|
Chou J, Quigley DA, Robinson TM, Feng FY, Ashworth A. Transcription-Associated Cyclin-Dependent Kinases as Targets and Biomarkers for Cancer Therapy. Cancer Discov 2020; 10:351-370. [DOI: 10.1158/2159-8290.cd-19-0528] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/29/2019] [Accepted: 11/04/2019] [Indexed: 11/16/2022]
|
39
|
H.S. Richter G, Hensel T, Schmidt O, Saratov V, von Heyking K, Becker-Dettling F, Prexler C, Yen HY, Steiger K, Fulda S, Dirksen U, Weichert W, Wang S, Burdach S, Schäfer BW. Combined Inhibition of Epigenetic Readers and Transcription Initiation Targets the EWS-ETS Transcriptional Program in Ewing Sarcoma. Cancers (Basel) 2020; 12:cancers12020304. [PMID: 32012890 PMCID: PMC7072515 DOI: 10.3390/cancers12020304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Previously, we used inhibitors blocking BET bromodomain binding proteins (BRDs) in Ewing sarcoma (EwS) and observed that long term treatment resulted in the development of resistance. Here, we analyze the possible interaction of BRD4 with cyclin-dependent kinase (CDK) 9. Methods: Co-immunoprecipitation experiments (CoIP) to characterize BRD4 interaction and functional consequences of inhibiting transcriptional elongation were assessed using drugs targeting of BRD4 or CDK9, either alone or in combination. Results: CoIP revealed an interaction of BRD4 with EWS-FLI1 and CDK9 in EwS. Treatment of EwS cells with CDKI-73, a specific CDK9 inhibitor (CDK9i), induced a rapid downregulation of EWS-FLI1 expression and block of contact-dependent growth. CDKI-73 induced apoptosis in EwS, as depicted by cleavage of Caspase 7 (CASP7), PARP and increased CASP3 activity, similar to JQ1. Microarray analysis following CDKI-73 treatment uncovered a transcriptional program that was only partially comparable to BRD inhibition. Strikingly, combined treatment of EwS with BRD- and CDK9-inhibitors re-sensitized cells, and was overall more effective than individual drugs not only in vitro but also in a preclinical mouse model in vivo. Conclusion: Treatment with BRD inhibitors in combination with CDK9i offers a new treatment option that significantly blocks the pathognomonic EWS-ETS transcriptional program and malignant phenotype of EwS.
Collapse
Affiliation(s)
- Günther H.S. Richter
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
- Division of Oncology and Hematology, Department of Pediatrics, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
- Correspondence:
| | - Tim Hensel
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
| | - Oxana Schmidt
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
| | - Vadim Saratov
- Department of Oncology and Children’s Research Center, University Children’s Hospital, 8032 Zurich, Switzerland; (V.S.); (B.W.S.)
| | - Kristina von Heyking
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
| | - Fiona Becker-Dettling
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
| | - Carolin Prexler
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
| | - Hsi-Yu Yen
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
- Institute of Pathology, Technical University of Munich and Comparative Experimental Pathology (CEP), Technical University of Munich, 81675 Munich, Germany;
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich and Comparative Experimental Pathology (CEP), Technical University of Munich, 81675 Munich, Germany;
| | - Simone Fulda
- Institute for Experimental Cancer Research in Paediatrics, Goethe-University Frankfurt, 60528 Frankfurt/Main, Germany;
| | - Uta Dirksen
- Pediatrics III, West German Cancer Centre, University Hospital of Essen, 45147 Essen, Germany;
- German Cancer Research Center (DKFZ), partner site Essen, 45147 Essen, Germany
| | - Wilko Weichert
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
- Institute of Pathology, Technical University of Munich and Comparative Experimental Pathology (CEP), Technical University of Munich, 81675 Munich, Germany;
| | - Shudong Wang
- Centre for Drug Discovery and Development and School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, South Australia 5001, Australia;
| | - Stefan Burdach
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
| | - Beat W. Schäfer
- Department of Oncology and Children’s Research Center, University Children’s Hospital, 8032 Zurich, Switzerland; (V.S.); (B.W.S.)
| |
Collapse
|
40
|
Palit SAL, Vis D, Stelloo S, Lieftink C, Prekovic S, Bekers E, Hofland I, Šuštić T, Wolters L, Beijersbergen R, Bergman AM, Győrffy B, Wessels LFA, Zwart W, van der Heijden MS. TLE3 loss confers AR inhibitor resistance by facilitating GR-mediated human prostate cancer cell growth. eLife 2019; 8:e47430. [PMID: 31855178 PMCID: PMC6968917 DOI: 10.7554/elife.47430] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Androgen receptor (AR) inhibitors represent the mainstay of prostate cancer treatment. In a genome-wide CRISPR-Cas9 screen using LNCaP prostate cancer cells, loss of co-repressor TLE3 conferred resistance to AR antagonists apalutamide and enzalutamide. Genes differentially expressed upon TLE3 loss share AR as the top transcriptional regulator, and TLE3 loss rescued the expression of a subset of androgen-responsive genes upon enzalutamide treatment. GR expression was strongly upregulated upon AR inhibition in a TLE3-negative background. This was consistent with binding of TLE3 and AR at the GR locus. Furthermore, GR binding was observed proximal to TLE3/AR-shared genes. GR inhibition resensitized TLE3KO cells to enzalutamide. Analyses of patient samples revealed an association between TLE3 and GR levels that reflected our findings in LNCaP cells, of which the clinical relevance is yet to be determined. Together, our findings reveal a mechanistic link between TLE3 and GR-mediated resistance to AR inhibitors in human prostate cancer.
Collapse
Affiliation(s)
- Sander AL Palit
- Division of Molecular CarcinogenesisNetherlands Cancer InstituteAmsterdamNetherlands
| | - Daniel Vis
- Division of Molecular CarcinogenesisNetherlands Cancer InstituteAmsterdamNetherlands
- Division of Molecular Carcinogenesis, Oncode InstituteNetherlands Cancer InstituteAmsterdamNetherlands
| | - Suzan Stelloo
- Division of Oncogenomics, Oncode InstituteNetherlands Cancer InstituteAmsterdamNetherlands
| | - Cor Lieftink
- Division of Molecular CarcinogenesisNetherlands Cancer InstituteAmsterdamNetherlands
| | - Stefan Prekovic
- Division of Oncogenomics, Oncode InstituteNetherlands Cancer InstituteAmsterdamNetherlands
| | - Elise Bekers
- Division of PathologyNetherlands Cancer InstituteAmsterdamNetherlands
| | - Ingrid Hofland
- Core Facility Molecular Pathology & BiobankingNetherlands Cancer InstituteAmsterdamNetherlands
| | - Tonći Šuštić
- Division of Molecular CarcinogenesisNetherlands Cancer InstituteAmsterdamNetherlands
- Division of Molecular Carcinogenesis, Oncode InstituteNetherlands Cancer InstituteAmsterdamNetherlands
| | - Liesanne Wolters
- Division of Molecular CarcinogenesisNetherlands Cancer InstituteAmsterdamNetherlands
| | | | - Andries M Bergman
- Department of Medical OncologyNetherlands Cancer InstituteAmsterdamNetherlands
| | - Balázs Győrffy
- Department of BioinformaticsSemmelweis UniversityBudapestHungary
- TTK Cancer Biomarker Research GroupInstitute of EnzymologyBudapestHungary
- Department of PediatricsSemmelweis UniversityBudapestHungary
| | - Lodewyk FA Wessels
- Division of Molecular CarcinogenesisNetherlands Cancer InstituteAmsterdamNetherlands
- Division of Molecular Carcinogenesis, Oncode InstituteNetherlands Cancer InstituteAmsterdamNetherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode InstituteNetherlands Cancer InstituteAmsterdamNetherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenNetherlands
| | - Michiel S van der Heijden
- Division of Molecular CarcinogenesisNetherlands Cancer InstituteAmsterdamNetherlands
- Department of Medical OncologyNetherlands Cancer InstituteAmsterdamNetherlands
| |
Collapse
|
41
|
Bowry A, Piberger AL, Rojas P, Saponaro M, Petermann E. BET Inhibition Induces HEXIM1- and RAD51-Dependent Conflicts between Transcription and Replication. Cell Rep 2019; 25:2061-2069.e4. [PMID: 30463005 PMCID: PMC6280123 DOI: 10.1016/j.celrep.2018.10.079] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
BET bromodomain proteins are required for oncogenic transcription activities, and BET inhibitors have been rapidly advanced into clinical trials. Understanding the effects of BET inhibition on processes such as DNA replication will be important for future clinical applications. Here, we show that BET inhibition, and specifically inhibition of BRD4, causes replication stress through a rapid overall increase in RNA synthesis. We provide evidence that BET inhibition acts by releasing P-TEFb from its inhibitor HEXIM1, promoting interference between transcription and replication. Unusually, these transcription-replication conflicts do not activate the ATM/ATR-dependent DNA damage response but recruit the homologous recombination factor RAD51. Both HEXIM1 and RAD51 promote BET inhibitor-induced fork slowing but also prevent a DNA damage response. Our data suggest that BET inhibitors slow replication through concerted action of transcription and recombination machineries and shed light on the importance of replication stress in the action of this class of experimental cancer drugs.
Collapse
Affiliation(s)
- Akhil Bowry
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ann Liza Piberger
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Patricia Rojas
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Marco Saponaro
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
42
|
Abstract
Cancer drug resistance has become the major problem facing current clinical treatment via different kinds of therapies. Proteolysis targeting chimeras (PROTACs) as a novel and powerful strategy have attracted a great deal of attention both from academia and from industry for their sensitivity to drug-resistant targets relying on their unique characteristics compared to those of traditional inhibitors. PROTACs exert their function by degrading the target protein instead of inhibiting targets. Thus, different kinds of resistance could be conquered by PROTACs such as target mutation or overexpression. Various resistant targets have been overcome by PROTACs, including AR, ER, BTK, BET, and BCR-ABL. Though PROTACs have achieved some significant advances in combating drug resistance, more cases are needed to prove the efficiency of PROTACs in addressing the hurdle of resistance in the near future.
Collapse
Affiliation(s)
- Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , P. R. China.,Tsinghua-Peking Center for Life Sciences , Beijing 100084 , P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology , Tsinghua University , Beijing 100084 , P. R. China
| |
Collapse
|
43
|
Letson C, Padron E. Non-canonical transcriptional consequences of BET inhibition in cancer. Pharmacol Res 2019; 150:104508. [PMID: 31698067 DOI: 10.1016/j.phrs.2019.104508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/12/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
Abstract
Inhibition of the bromo and extra-terminal domain (BET) protein family in preclinical studies has demonstrated that BET proteins are critical for cancer progression and important therapeutic targets. Downregulation of the MYC oncogene, CDK6, BCL2 and FOSL1 are just a few examples of the effects of BET inhibitors that can lead to cell cycle arrest and apoptosis in cancer cells. However, BET inhibitors have had little success in the clinic as a single agent, and there are an increasing number of reports of resistance to BET inhibition emerging after sustained treatment of cancer cells in vitro. Here we summarize the non-canonical consequences of BET inhibition in cancer, and discuss how these may both lead to resistance and inform rational combinations that could greatly enhance the clinical application of these inhibitors.
Collapse
Affiliation(s)
- Christopher Letson
- Moffitt Cancer Center: 12902 USF Magnolia Drive, Tampa, FL 33612, United States.
| | - Eric Padron
- Moffitt Cancer Center: 12902 USF Magnolia Drive, Tampa, FL 33612, United States.
| |
Collapse
|
44
|
Rasool RU, Natesan R, Deng Q, Aras S, Lal P, Sander Effron S, Mitchell-Velasquez E, Posimo JM, Carskadon S, Baca SC, Pomerantz MM, Siddiqui J, Schwartz LE, Lee DJ, Palanisamy N, Narla G, Den RB, Freedman ML, Brady DC, Asangani IA. CDK7 Inhibition Suppresses Castration-Resistant Prostate Cancer through MED1 Inactivation. Cancer Discov 2019; 9:1538-1555. [PMID: 31466944 PMCID: PMC7202356 DOI: 10.1158/2159-8290.cd-19-0189] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/09/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Metastatic castration-resistant prostate cancer (CRPC) is a fatal disease, primarily resulting from the transcriptional addiction driven by androgen receptor (AR). First-line CRPC treatments typically target AR signaling, but are rapidly bypassed, resulting in only a modest survival benefit with antiandrogens. Therapeutic approaches that more effectively block the AR-transcriptional axis are urgently needed. Here, we investigated the molecular mechanism underlying the association between the transcriptional coactivator MED1 and AR as a vulnerability in AR-driven CRPC. MED1 undergoes CDK7-dependent phosphorylation at T1457 and physically engages AR at superenhancer sites, and is essential for AR-mediated transcription. In addition, a CDK7-specific inhibitor, THZ1, blunts AR-dependent neoplastic growth by blocking AR/MED1 corecruitment genome-wide, as well as reverses the hyperphosphorylated MED1-associated enzalutamide-resistant phenotype. In vivo, THZ1 induces tumor regression of AR-amplified human CRPC in a xenograft mouse model. Together, we demonstrate that CDK7 inhibition selectively targets MED1-mediated, AR-dependent oncogenic transcriptional amplification, thus representing a potential new approach for the treatment of CRPC. SIGNIFICANCE: Potent inhibition of AR signaling is critical to treat CRPC. This study uncovers a driver role for CDK7 in regulating AR-mediated transcription through phosphorylation of MED1, thus revealing a therapeutically targetable potential vulnerability in AR-addicted CRPC.See related commentary by Russo et al., p. 1490.This article is highlighted in the In This Issue feature, p. 1469.
Collapse
Affiliation(s)
- Reyaz Ur Rasool
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ramakrishnan Natesan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qu Deng
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shweta Aras
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Priti Lal
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samuel Sander Effron
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erick Mitchell-Velasquez
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jessica M Posimo
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shannon Carskadon
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
| | - Sylvan C Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mark M Pomerantz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Javed Siddiqui
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Lauren E Schwartz
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel J Lee
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nallasivam Palanisamy
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Robert B Den
- Department of Radiation Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Donita C Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Irfan A Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Morel D, Jeffery D, Aspeslagh S, Almouzni G, Postel-Vinay S. Combining epigenetic drugs with other therapies for solid tumours - past lessons and future promise. Nat Rev Clin Oncol 2019; 17:91-107. [PMID: 31570827 DOI: 10.1038/s41571-019-0267-4] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/16/2022]
Abstract
Epigenetic dysregulation has long been recognized as a key factor contributing to tumorigenesis and tumour maintenance that can influence all of the recognized hallmarks of cancer. Despite regulatory approvals for the treatment of certain haematological malignancies, the efficacy of the first generation of epigenetic drugs (epi-drugs) in patients with solid tumours has been disappointing; however, successes have now been achieved in selected solid tumour subtypes, thanks to the development of novel compounds and a better understanding of cancer biology that have enabled precision medicine approaches. Several lines of evidence support that, beyond their potential as monotherapies, epigenetic drugs could have important roles in synergy with other anticancer therapies or in reversing acquired therapy resistance. Herein, we review the mechanisms by which epi-drugs can modulate the sensitivity of cancer cells to other forms of anticancer therapy, including chemotherapy, radiation therapy, hormone therapy, molecularly targeted therapy and immunotherapy. We provide a critical appraisal of the preclinical rationale, completed clinical studies and ongoing clinical trials relating to combination therapies incorporating epi-drugs. Finally, we propose and discuss rational clinical trial designs and drug development strategies, considering key factors including patient selection, tumour biomarker evaluation, drug scheduling and response assessment and study end points, with the aim of optimizing the development of such combinations.
Collapse
Affiliation(s)
- Daphné Morel
- ATIP-Avenir Group, UMR981, INSERM (French National Institute of Health and Medical Research), Gustave Roussy Cancer Campus, Villejuif, France
| | - Daniel Jeffery
- Nuclear Dynamics Unit - UMR3664, National Centre for Scientific Research, Institut Curie, Paris, France
| | | | - Geneviève Almouzni
- Nuclear Dynamics Unit - UMR3664, National Centre for Scientific Research, Institut Curie, Paris, France.
| | - Sophie Postel-Vinay
- ATIP-Avenir Group, UMR981, INSERM (French National Institute of Health and Medical Research), Gustave Roussy Cancer Campus, Villejuif, France. .,Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France.
| |
Collapse
|
46
|
Vázquez R, Civenni G, Kokanovic A, Shinde D, Cantergiani J, Marchetti M, Zoppi G, Ruggeri B, Liu PCC, Carbone GM, Catapano CV. Efficacy of Novel Bromodomain and Extraterminal Inhibitors in Combination with Chemotherapy for Castration-Resistant Prostate Cancer. Eur Urol Oncol 2019; 4:437-446. [PMID: 31402217 DOI: 10.1016/j.euo.2019.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/26/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Chemotherapy is the treatment of choice for metastatic castration-resistant prostate cancer (mCRPC) nonresponsive to androgen receptor-targeted therapies. Nevertheless, the impact of chemotherapy on patient survival is limited and clinical outcome remain dismal. Bromodomain and extraterminal inhibitors (BETis) are attractive therapeutic agents and currently in clinical trials to be tested for their efficacy in prostate cancer patients. OBJECTIVE In this study, we evaluated the activity of two clinical stage BETis, INCB054329 and INCB057643, alone and in combination with chemotherapeutics used for the treatment of mCRPC. DESIGN, SETTING, AND PARTICIPANTS Drug activity was evaluated in vitro by MTT, clonogenic, prostato-sphere, and flow cytometry assays. The activity in vivo was evaluated in mice bearing prostate tumor (22Rv1) xenografts. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Cell growth data were analyzed to determine the maximum effect and the concentration that reduces by 50%. For concomitant treatments, the combination index was determined according to the Chou-Talalay method. For in vivo activity, changes in tumor size (T/Ci%), weight (T/Cd%), doubling time, and mouse body weight were monitored. Statistical significance was determined by one-way analysis of variance followed by a Student-Newman-Keuls or Turkey a posteriori test. RESULTS AND LIMITATIONS INCB054329 and INCB057643 had significant activity as single agents in human prostate cancer cell lines and 22Rv1 tumor xenografts. Combined treatment with INCB057643 and any of docetaxel, olaparib, or carboplatin was synergistic/additive in vitro. Notably, INCB057643, given with a low-intensity dosing schedule, greatly enhanced the anti-tumor activity of docetaxel, carboplatin, and olaparib in 22Rv1 tumor xenografts. CONCLUSIONS Collectively, these results provide the first evidence of the therapeutic benefit obtainable by combining BETis with non-androgen receptor-targeted therapies for the treatment of mCRPC. PATIENT SUMMARY Chemotherapy has limited efficacy in patients with metastatic castration-resistant prostate cancer. This study provides evidence of enhanced efficacy of clinically used chemotherapeutics when given in combination with the bromodomain and extraterminal inhibitor INCB057643, expanding the horizon of the current options for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Ramiro Vázquez
- Institute of Oncology Research (IOR), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Gianluca Civenni
- Institute of Oncology Research (IOR), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Aleksandra Kokanovic
- Institute of Oncology Research (IOR), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Dheeraj Shinde
- Institute of Oncology Research (IOR), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Jasmine Cantergiani
- Institute of Oncology Research (IOR), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Martina Marchetti
- Institute of Oncology Research (IOR), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Giada Zoppi
- Institute of Oncology Research (IOR), Università della Svizzera Italiana, Bellinzona, Switzerland
| | | | | | - Giuseppina M Carbone
- Institute of Oncology Research (IOR), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Carlo V Catapano
- Institute of Oncology Research (IOR), Università della Svizzera Italiana, Bellinzona, Switzerland.
| |
Collapse
|
47
|
Testa U, Castelli G, Pelosi E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E82. [PMID: 31366128 PMCID: PMC6789661 DOI: 10.3390/medicines6030082] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent nonskin cancer and second most common cause of cancer-related deaths in man. Prostate cancer is a clinically heterogeneous disease with many patients exhibiting an aggressive disease with progression, metastasis, and other patients showing an indolent disease with low tendency to progression. Three stages of development of human prostate tumors have been identified: intraepithelial neoplasia, adenocarcinoma androgen-dependent, and adenocarcinoma androgen-independent or castration-resistant. Advances in molecular technologies have provided a very rapid progress in our understanding of the genomic events responsible for the initial development and progression of prostate cancer. These studies have shown that prostate cancer genome displays a relatively low mutation rate compared with other cancers and few chromosomal loss or gains. The ensemble of these molecular studies has led to suggest the existence of two main molecular groups of prostate cancers: one characterized by the presence of ERG rearrangements (~50% of prostate cancers harbor recurrent gene fusions involving ETS transcription factors, fusing the 5' untranslated region of the androgen-regulated gene TMPRSS2 to nearly the coding sequence of the ETS family transcription factor ERG) and features of chemoplexy (complex gene rearrangements developing from a coordinated and simultaneous molecular event), and a second one characterized by the absence of ERG rearrangements and by the frequent mutations in the E3 ubiquitin ligase adapter SPOP and/or deletion of CDH1, a chromatin remodeling factor, and interchromosomal rearrangements and SPOP mutations are early events during prostate cancer development. During disease progression, genomic and epigenomic abnormalities accrued and converged on prostate cancer pathways, leading to a highly heterogeneous transcriptomic landscape, characterized by a hyperactive androgen receptor signaling axis.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
48
|
Khoueiry P, Ward Gahlawat A, Petretich M, Michon AM, Simola D, Lam E, Furlong EE, Benes V, Dawson MA, Prinjha RK, Drewes G, Grandi P. BRD4 bimodal binding at promoters and drug-induced displacement at Pol II pause sites associates with I-BET sensitivity. Epigenetics Chromatin 2019; 12:39. [PMID: 31266503 PMCID: PMC6604197 DOI: 10.1186/s13072-019-0286-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background Deregulated transcription is a major driver of diseases such as cancer. Bromodomain and extra-terminal (BET) proteins (BRD2, BRD3, BRD4 and BRDT) are chromatin readers essential for maintaining proper gene transcription by specifically binding acetylated lysine residues. Targeted displacement of BET proteins from chromatin, using BET inhibitors (I-BETs), is a promising therapy, especially for acute myeloid leukemia (AML), and evaluation of resistance mechanisms is necessary to optimize the clinical efficacy of these drugs. Results To uncover mechanisms of intrinsic I-BET resistance, we quantified chromatin binding and displacement for BRD2, BRD3 and BRD4 after dose response treatment with I-BET151, in sensitive and resistant in vitro models of leukemia, and mapped BET proteins/I-BET interactions genome wide using antibody- and compound-affinity capture methods followed by deep sequencing. The genome-wide map of BET proteins sensitivity to I-BET revealed a bimodal pattern of binding flanking transcription start sites (TSSs), in which drug-mediated displacement from chromatin primarily affects BRD4 downstream of the TSS and prolongs the pausing of RNA Pol II. Correlation of BRD4 binding and drug-mediated displacement at RNA Pol II pause sites with gene expression revealed a differential behavior of sensitive and resistant tumor cells to I-BET and identified a BRD4 signature at promoters of sensitive coding and non-coding genes. Conclusions We provide evidence that I-BET-induced shift of Pol II pausing at promoters via displacement of BRD4 is a determinant of intrinsic I-BET sensitivity. This finding may guide pharmacological treatment to enhance the clinical utility of such targeted therapies in AML and potentially other BET proteins-driven diseases. Electronic supplementary material The online version of this article (10.1186/s13072-019-0286-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Khoueiry
- Cellzome GmbH, a GSK Company, Heidelberg, Germany. .,Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | | | - M Petretich
- Cellzome GmbH, a GSK Company, Heidelberg, Germany
| | - A M Michon
- Cellzome GmbH, a GSK Company, Heidelberg, Germany
| | - D Simola
- Target Science Computational Biology, GSK Medicines Research Centre, Upper Providence, USA
| | - E Lam
- Peter MacCallum Cancer Center, Melbourne, Australia
| | - E E Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - V Benes
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany
| | - M A Dawson
- Peter MacCallum Cancer Center, Melbourne, Australia
| | - R K Prinjha
- Epigenetics DPU, GSK Medicines Research Centre, Stevenage, UK
| | - G Drewes
- Cellzome GmbH, a GSK Company, Heidelberg, Germany
| | - P Grandi
- Cellzome GmbH, a GSK Company, Heidelberg, Germany.
| |
Collapse
|
49
|
Targeting translation initiation by synthetic rocaglates for treating MYC-driven lymphomas. Leukemia 2019; 34:138-150. [PMID: 31171817 PMCID: PMC6895415 DOI: 10.1038/s41375-019-0503-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/30/2019] [Accepted: 04/17/2019] [Indexed: 01/24/2023]
Abstract
MYC-driven lymphomas, especially those with concurrent MYC and BCL2 dysregulation, are currently a challenge in clinical practice due to rapid disease progression, resistance to standard chemotherapy and high risk of refractory disease. MYC plays a central role by coordinating hyperactive protein synthesis with upregulated transcription in order to support rapid proliferation of tumor cells. Translation initiation inhibitor rocaglates have been identified as the most potent drugs in MYC-driven lymphomas as they efficiently inhibit MYC expression and tumor cell viability. We found that this class of compounds can overcome eIF4A abundance by stabilizing target mRNA-eIF4A interaction that directly prevents translation. Proteome-wide quantification demonstrated selective repression of multiple critical oncoproteins in addition to MYC in B cell lymphoma including NEK2, MCL1, AURKA, PLK1, and several transcription factors that are generally considered undruggable. Finally, (−)-SDS-1–021, the most promising synthetic rocaglate, was confirmed to be highly potent as a single agent, and displayed significant synergy with the BCL2 inhibitor ABT199 in inhibiting tumor growth and survival in primary lymphoma cells in vitro and in patient-derived xenograft mouse models. Overall, our findings support the strategy of using rocaglates to target oncoprotein synthesis in MYC-driven lymphomas.
Collapse
|
50
|
Hamdan FH, Johnsen SA. Perturbing Enhancer Activity in Cancer Therapy. Cancers (Basel) 2019; 11:cancers11050634. [PMID: 31067678 PMCID: PMC6563029 DOI: 10.3390/cancers11050634] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/26/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023] Open
Abstract
Tight regulation of gene transcription is essential for normal development, tissue homeostasis, and disease-free survival. Enhancers are distal regulatory elements in the genome that provide specificity to gene expression programs and are frequently misregulated in cancer. Recent studies examined various enhancer-driven malignant dependencies and identified different approaches to specifically target these programs. In this review, we describe numerous features that make enhancers good transcriptional targets in cancer therapy and discuss different approaches to overcome enhancer perturbation. Interestingly, a number of approved therapeutic agents, such as cyclosporine, steroid hormones, and thiazolidinediones, actually function by affecting enhancer landscapes by directly targeting very specific transcription factor programs. More recently, a broader approach to targeting deregulated enhancer programs has been achieved via Bromodomain and Extraterminal (BET) inhibition or perturbation of transcription-related cyclin-dependent kinases (CDK). One challenge to enhancer-targeted therapy is proper patient stratification. We suggest that monitoring of enhancer RNA (eRNA) expression may serve as a unique biomarker of enhancer activity that can help to predict and monitor responsiveness to enhancer-targeted therapies. A more thorough investigation of cancer-specific enhancers and the underlying mechanisms of deregulation will pave the road for an effective utilization of enhancer modulators in a precision oncology approach to cancer treatment.
Collapse
Affiliation(s)
- Feda H Hamdan
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Steven A Johnsen
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|