1
|
Rismanchi H, Malek Mohammadi M, Mafi A, Khalilzadeh P, Farahani N, Mirzaei S, Khorramdelazad H, Mahmoodieh B, Rahimzadeh P, Alimohammadi M, Makvandi P. The role of curcumin in modulating circular RNAs and long non-coding RNAs in cancer. Clin Transl Oncol 2025; 27:2416-2436. [PMID: 39623194 DOI: 10.1007/s12094-024-03782-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/30/2024] [Indexed: 05/17/2025]
Abstract
Cancer is one of the primary causes of human disease and death, with high morbidity and mortality rates. Chemotherapy, one of the most common therapeutic techniques, functions through a variety of mechanisms, including the production of apoptosis and the prevention of tumor development. Herbal medicine has been the subject of numerous investigations due to its potential as a valuable source of innovative anti-cancer products that target multiple protein targets and cancer cell genomes. Curcumin, a polyphenol that is the major bioactive ingredient of turmeric, exhibits pharmacological and biological efficacy with antioxidant, anti-inflammatory, anticancer, cardioprotective, neuroprotective, and hypoglycemic activity in humans and animals. Recent research suggests that curcumin changes noncoding RNA (ncRNA), such as long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), in various types of cancers. Both circRNAs and lncRNAs are ncRNAs that can epigenetically modulate the expression of multiple genes via post-transcriptional regulation. In this study, we outline curcumin's activities in modulating signaling pathways and ncRNAs in various malignancies. We also described curcumin's regulatory function, which involves blocking carcinogenic lncRNAs and circRNAs while increasing tumor-suppressive ones. Furthermore, we intend to demonstrate how ncRNAs and signaling pathways interact with each other across regulatory boundaries to gain a better understanding of how curcumin fights cancer and create a framework for its potential future therapeutic uses.
Collapse
Affiliation(s)
- Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa Khalilzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India.
| |
Collapse
|
2
|
Lin J, Huang J, Tan C, Wu S, Lu X, Pu J. LncRNA MEG3 suppresses hepatocellular carcinoma by stimulating macrophage M1 polarization and modulating immune system via inhibiting CSF-1 in vivo/vitro studies. Int J Biol Macromol 2024; 281:136459. [PMID: 39396590 DOI: 10.1016/j.ijbiomac.2024.136459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Hepatocellular carcinoma (HCC) is characterized by a complex tumor microenvironment (TME), and long non-coding RNAs (lncRNAs) MEG3 emerged as regulators of macrophage polarization with a negative relationship with colony-stimulating factor 1 (CSF-1). Few studies are on the interplay among MEG3, CSF-1, T helper cells (Th), and the programmed cell death protein 1 and its ligands (PD-1/PD-Ls) in TME of HCC.MEG3 expression in THP-1 macrophages, monitored polarization, and PD-1/PD-Ls expression were through flow cytometry, WB, and RT-qPCR. In co-cultures, the interaction of MEG3, macrophage, and HCC was assayed by ELISA. The invasive and migratory of HCC were assessed through experiments such as CCK-8, clonogenic assay, wound healing, and Transwell. A xenograft mouse model of HCC was established, administered with MEG3 overexpression (OE) or knockdown (KD) constructs, and monitored tumor growth. In vitro, MEG3 OE induced a robust M1 macrophage phenotype, evidenced by elevated expression of M1 markers and a significant increase in Th1 cytokines, with a concomitant decrease in Th2 cytokines. This was paralleled by reduced CSF-1 and PD-1/PD-Ls expression. In contrast, MEG3 KD promoted an M2 phenotype with increased CSF-1 and PD-1/PD-Ls expression, and an upregulation of Th2 cytokines. MEG3 OE inhibited the growth, invasion, and migration of HCC, while the opposite was observed when MEG3 was downregulated. In vivo, MEG3 OE resulted in significantly reduced tumor growth, with decreased PD-1/PD-Ls expression on macrophages and enhanced Th1 response. Conversely, MEG3 KD promoted tumor growth with increased PD-1/PD-Ls and a Th2-skewed immune response. MEG3 modulates the TME by affecting TAMs through CSF-1, thereby influencing the balance of Th1/Th2 cells and altering the expression of PD-1/PD-L1s. This study demonstrates that targeting MEG3 is an effective therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Jiajie Lin
- The First Clinical Medical College of Jinan University, Guangdong 530632, China; Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, Guangxi 533000,China
| | - Junling Huang
- The First Clinical Medical College of Jinan University, Guangdong 530632, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan 2nd Road, Baise, 533000, Guangxi Province, China
| | - Chuan Tan
- The First Clinical Medical College of Jinan University, Guangdong 530632, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Siyang Wu
- Respiratory Intensive Care Unit, Affiliated Hospital of YoujiangMedical University for Nationalities, Baise, Guangxi 533000, China
| | - Xianzhe Lu
- The First Clinical Medical College of Jinan University, Guangdong 530632, China; Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, Guangxi 533000,China.
| | - Jian Pu
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| |
Collapse
|
3
|
Yu H, Zhao Y, Cheng R, Wang M, Hu X, Zhang X, Teng X, He H, Han Z, Han X, Wang Z, Liu B, Zhang Y, Wu Q. Silencing of maternally expressed RNAs in Dlk1-Dio3 domain causes fatal vascular injury in the fetal liver. Cell Mol Life Sci 2024; 81:429. [PMID: 39382697 PMCID: PMC11465015 DOI: 10.1007/s00018-024-05462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
The mammalian imprinted Dlk1-Dio3 domain contains multiple lncRNAs, mRNAs, the largest miRNA cluster in the genome and four differentially methylated regions (DMRs), and deletion of maternally expressed RNA within this locus results in embryonic lethality, but the mechanism by which this occurs is not clear. Here, we optimized the model of maternally expressed RNAs transcription termination in the domain and found that the cause of embryonic death was apoptosis in the embryo, particularly in the liver. We generated a mouse model of maternally expressed RNAs silencing in the Dlk1-Dio3 domain by inserting a 3 × polyA termination sequence into the Gtl2 locus. By analyzing RNA-seq data of mouse embryos combined with histological analysis, we found that silencing of maternally expressed RNAs in the domain activated apoptosis, causing vascular rupture of the fetal liver, resulting in hemorrhage and injury. Mechanistically, termination of Gtl2 transcription results in the silencing of maternally expressed RNAs and activation of paternally expressed genes in the interval, and it is the gene itself rather than the IG-DMR and Gtl2-DMR that causes the aforementioned phenotypes. In conclusion, these findings illuminate a novel mechanism by which the silencing of maternally expressed RNAs within Dlk1-Dio3 domain leads to hepatic hemorrhage and embryonic death through the activation of apoptosis.
Collapse
Affiliation(s)
- Haoran Yu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Yue Zhao
- Department of Urology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361000, China
| | - Rui Cheng
- State Key Laboratory for Conservation and Utilization of Bio-Resource and School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Mengyun Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Hu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Ximeijia Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiangqi Teng
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Hongjuan He
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhengbin Han
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiao Han
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Ziwen Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Bingjing Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Yan Zhang
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
4
|
Teng X, He H, Yu H, Zhang X, Xing J, Shen J, Li C, Wang M, Shao L, Wang Z, Yang H, Zhang Y, Wu Q. LncRNAs in the Dlk1-Dio3 Domain Are Essential for Mid-Embryonic Heart Development. Int J Mol Sci 2024; 25:8184. [PMID: 39125754 PMCID: PMC11311489 DOI: 10.3390/ijms25158184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The Dlk1-Dio3 domain is important for normal embryonic growth and development. The heart is the earliest developing and functioning organ of the embryo. In this study, we constructed a transcriptional termination model by inserting termination sequences and clarified that the lack of long non-coding RNA (lncRNA) expression in the Dlk1-Dio3 domain caused the death of maternal insertion mutant (MKI) and homozygous mutant (HOMO) mice starting from E13.5. Parental insertion mutants (PKI) can be born and grow normally. Macroscopically, dying MKI and HOMO embryos showed phenomena such as embryonic edema and reduced heart rate. Hematoxylin and eosin (H.E.) staining showed thinning of the myocardium in MKI and HOMO embryos. In situ hybridization (IHC) and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) showed downregulation of lncGtl2, Rian, and Mirg expression in MKI and HOMO hearts. The results of single-cell RNA sequencing (scRNA-Seq) analysis indicated that the lack of lncRNA expression in the Dlk1-Dio3 domain led to reduced proliferation of epicardial cells and may be an important cause of cardiac dysplasia. In conclusion, this study demonstrates that Dlk1-Dio3 domain lncRNAs play an integral role in ventricular development.
Collapse
Affiliation(s)
- Xiangqi Teng
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Hongjuan He
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Haoran Yu
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Ximeijia Zhang
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Jie Xing
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Jiwei Shen
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Chenghao Li
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Mengyun Wang
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Lan Shao
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Ziwen Wang
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Haopeng Yang
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Yan Zhang
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Qiong Wu
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
5
|
Morgenstern E, Molthof C, Schwartz U, Graf J, Bruckmann A, Hombach S, Kretz M. lncRNA LINC00941 modulates MTA2/NuRD occupancy to suppress premature human epidermal differentiation. Life Sci Alliance 2024; 7:e202302475. [PMID: 38649186 PMCID: PMC11035861 DOI: 10.26508/lsa.202302475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Numerous long non-coding RNAs (lncRNAs) were shown to have a functional impact on cellular processes such as human epidermal homeostasis. However, the mechanism of action for many lncRNAs remains unclear to date. Here, we report that lncRNA LINC00941 regulates keratinocyte differentiation on an epigenetic level through association with the NuRD complex, one of the major chromatin remodelers in cells. We find that LINC00941 interacts with NuRD-associated MTA2 and CHD4 in human primary keratinocytes. LINC00941 perturbation changes MTA2/NuRD occupancy at bivalent chromatin domains in close proximity to transcriptional regulator genes, including the EGR3 gene coding for a transcription factor regulating epidermal differentiation. Notably, LINC00941 depletion resulted in reduced NuRD occupancy at the EGR3 gene locus, increased EGR3 expression in human primary keratinocytes, and increased abundance of EGR3-regulated epidermal differentiation genes in cells and human organotypic epidermal tissues. Our results therefore indicate a role of LINC00941/NuRD in repressing EGR3 expression in non-differentiated keratinocytes, consequentially preventing premature differentiation of human epidermal tissues.
Collapse
Affiliation(s)
- Eva Morgenstern
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Carolin Molthof
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Center Biology and Pre-Clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Johannes Graf
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Astrid Bruckmann
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Sonja Hombach
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Markus Kretz
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
6
|
Moindrot B, Imaizumi Y, Feil R. Differential 3D genome architecture and imprinted gene expression: cause or consequence? Biochem Soc Trans 2024; 52:973-986. [PMID: 38775198 PMCID: PMC11346452 DOI: 10.1042/bst20230143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
Imprinted genes provide an attractive paradigm to unravel links between transcription and genome architecture. The parental allele-specific expression of these essential genes - which are clustered in chromosomal domains - is mediated by parental methylation imprints at key regulatory DNA sequences. Recent chromatin conformation capture (3C)-based studies show differential organization of topologically associating domains between the parental chromosomes at imprinted domains, in embryonic stem and differentiated cells. At several imprinted domains, differentially methylated regions show allelic binding of the insulator protein CTCF, and linked focal retention of cohesin, at the non-methylated allele only. This generates differential patterns of chromatin looping between the parental chromosomes, already in the early embryo, and thereby facilitates the allelic gene expression. Recent research evokes also the opposite scenario, in which allelic transcription contributes to the differential genome organization, similarly as reported for imprinted X chromosome inactivation. This may occur through epigenetic effects on CTCF binding, through structural effects of RNA Polymerase II, or through imprinted long non-coding RNAs that have chromatin repressive functions. The emerging picture is that epigenetically-controlled differential genome architecture precedes and facilitates imprinted gene expression during development, and that at some domains, conversely, the mono-allelic gene expression also influences genome architecture.
Collapse
Affiliation(s)
- Benoit Moindrot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Yui Imaizumi
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
7
|
Farhadova S, Ghousein A, Charon F, Surcis C, Gomez-Velazques M, Roidor C, Di Michele F, Borensztein M, De Sario A, Esnault C, Noordermeer D, Moindrot B, Feil R. The long non-coding RNA Meg3 mediates imprinted gene expression during stem cell differentiation. Nucleic Acids Res 2024; 52:6183-6200. [PMID: 38613389 PMCID: PMC11194098 DOI: 10.1093/nar/gkae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The imprinted Dlk1-Dio3 domain comprises the developmental genes Dlk1 and Rtl1, which are silenced on the maternal chromosome in different cell types. On this parental chromosome, the domain's imprinting control region activates a polycistron that produces the lncRNA Meg3 and many miRNAs (Mirg) and C/D-box snoRNAs (Rian). Although Meg3 lncRNA is nuclear and associates with the maternal chromosome, it is unknown whether it controls gene repression in cis. We created mouse embryonic stem cells (mESCs) that carry an ectopic poly(A) signal, reducing RNA levels along the polycistron, and generated Rian-/- mESCs as well. Upon ESC differentiation, we found that Meg3 lncRNA (but not Rian) is required for Dlk1 repression on the maternal chromosome. Biallelic Meg3 expression acquired through CRISPR-mediated demethylation of the paternal Meg3 promoter led to biallelic Dlk1 repression, and to loss of Rtl1 expression. lncRNA expression also correlated with DNA hypomethylation and CTCF binding at the 5'-side of Meg3. Using Capture Hi-C, we found that this creates a Topologically Associating Domain (TAD) organization that brings Meg3 close to Dlk1 on the maternal chromosome. The requirement of Meg3 for gene repression and TAD structure may explain how aberrant MEG3 expression at the human DLK1-DIO3 locus associates with imprinting disorders.
Collapse
Affiliation(s)
- Sabina Farhadova
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
- Genetic Resources Research Institute, Azerbaijan National Academy of Sciences (ANAS), AZ1106 Baku, Azerbaijan
| | - Amani Ghousein
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - François Charon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Caroline Surcis
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
| | - Melisa Gomez-Velazques
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Clara Roidor
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Flavio Di Michele
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Maud Borensztein
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Albertina De Sario
- University of Montpellier, 34090 Montpellier, France
- PhyMedExp, Institut National de la Santé et de la Recherche Médicale (INSERM), CNRS, 34295 Montpellier, France
| | - Cyril Esnault
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Benoit Moindrot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| |
Collapse
|
8
|
Lu S, Jolly AJ, Dubner AM, Strand KA, Mutryn MF, Hinthorn T, Noble T, Nemenoff RA, Moulton KS, Majesky MW, Weiser-Evans MC. KLF4 in smooth muscle cell-derived progenitor cells is essential for angiotensin II-induced cardiac inflammation and fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597485. [PMID: 38895472 PMCID: PMC11185732 DOI: 10.1101/2024.06.04.597485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Cardiac fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) material resulting in cardiac tissue scarring and dysfunction. While it is commonly accepted that myofibroblasts are the major contributors to ECM deposition in cardiac fibrosis, their origin remains debated. By combining lineage tracing and RNA sequencing, our group made the paradigm-shifting discovery that a subpopulation of resident vascular stem cells residing within the aortic, carotid artery, and femoral aartery adventitia (termed AdvSca1-SM cells) originate from mature vascular smooth muscle cells (SMCs) through an in situ reprogramming process. SMC-to-AdvSca1-SM reprogramming and AdvSca1-SM cell maintenance is dependent on induction and activity of the transcription factor, KLF4. However, the molecular mechanism whereby KLF4 regulates AdvSca1-SM phenotype remains unclear. In the current study, leveraging a highly specific AdvSca1-SM cell reporter system, single-cell RNA-sequencing (scRNA-seq), and spatial transcriptomic approaches, we demonstrate the profibrotic differentiation trajectory of coronary artery-associated AdvSca1-SM cells in the setting of Angiotensin II (AngII)-induced cardiac fibrosis. Differentiation was characterized by loss of stemness-related genes, including Klf4 , but gain of expression of a profibrotic phenotype. Importantly, these changes were recapitulated in human cardiac hypertrophic tissue, supporting the translational significance of profibrotic transition of AdvSca1-SM-like cells in human cardiomyopathy. Surprisingly and paradoxically, AdvSca1-SM-specific genetic knockout of Klf4 prior to AngII treatment protected against cardiac inflammation and fibrosis, indicating that Klf4 is essential for the profibrotic response of AdvSca1-SM cells. Overall, our data reveal the contribution of AdvSca1-SM cells to myofibroblasts in the setting of AngII-induced cardiac fibrosis. KLF4 not only maintains the stemness of AdvSca1-SM cells, but also orchestrates their response to profibrotic stimuli, and may serve as a therapeutic target in cardiac fibrosis.
Collapse
|
9
|
Zhang X, He H, Yu H, Teng X, Wang Z, Li C, Li J, Yang H, Shen J, Wu T, Zhang F, Zhang Y, Wu Q. Maternal RNA transcription in Dlk1-Dio3 domain is critical for proper development of the mouse placental vasculature. Commun Biol 2024; 7:363. [PMID: 38521877 PMCID: PMC10960817 DOI: 10.1038/s42003-024-06038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
The placenta is a unique organ for ensuring normal embryonic growth in the uterine. Here, we found that maternal RNA transcription in Dlk1-Dio3 imprinted domain is essential for placentation. PolyA signals were inserted into Gtl2 to establish a mouse model to prevent the expression of maternal RNAs in the domain. The maternal allele knock-in (MKI) and homozygous (HOMO) placentas showed an expanded junctional zone, reduced labyrinth and poor vasculature impacting both fetal and maternal blood spaces. The MKI and HOMO models displayed dysregulated gene expression in the Dlk1-Dio3 domain. In situ hybridization detected Dlk1, Gtl2, Rtl1, miR-127 and Rian dysregulated in the labyrinth vasculature. MKI and HOMO induced Dlk1 to lose imprinting, and DNA methylation changes of IG-DMR and Gtl2-DMR, leading to abnormal gene expression, while the above changes didn't occur in paternal allele knock-in placentas. These findings demonstrate that maternal RNAs in the Dlk1-Dio3 domain are involved in placental vasculature, regulating gene expression, imprinting status and DNA methylation.
Collapse
Affiliation(s)
- Ximeijia Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Hongjuan He
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Haoran Yu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Xiangqi Teng
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Ziwen Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Chenghao Li
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Jiahang Li
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Haopeng Yang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Jiwei Shen
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Tong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Fengwei Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Yan Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China.
| |
Collapse
|
10
|
Zhang Z, Jin F, Huang J, Mandal SD, Zeng L, Zafar J, Xu X. MicroRNA Targets PAP1 to Mediate Melanization in Plutella xylostella (Linnaeus) Infected by Metarhizium anisopliae. Int J Mol Sci 2024; 25:1140. [PMID: 38256210 PMCID: PMC10816858 DOI: 10.3390/ijms25021140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
MicroRNAs (miRNAs) play a pivotal role in important biological processes by regulating post-transcriptional gene expression and exhibit differential expression patterns during development, immune responses, and stress challenges. The diamondback moth causes significant economic damage to crops worldwide. Despite substantial advancements in understanding the molecular biology of this pest, our knowledge regarding the role of miRNAs in regulating key immunity-related genes remains limited. In this study, we leveraged whole transcriptome resequencing data from Plutella xylostella infected with Metarhizium anisopliae to identify specific miRNAs targeting the prophenoloxidase-activating protease1 (PAP1) gene and regulate phenoloxidase (PO) cascade during melanization. Seven miRNAs (pxy-miR-375-5p, pxy-miR-4448-3p, pxy-miR-279a-3p, pxy-miR-3286-3p, pxy-miR-965-5p, pxy-miR-8799-3p, and pxy-miR-14b-5p) were screened. Luciferase reporter assays confirmed that pxy-miR-279a-3p binds to the open reading frame (ORF) and pxy-miR-965-5p to the 3' untranslated region (3' UTR) of PAP1. Our experiments demonstrated that a pxy-miR-965-5p mimic significantly reduced PAP1 expression in P. xylostella larvae, suppressed PO activity, and increased larval mortality rate. Conversely, the injection of pxy-miR-965-5p inhibitor could increase PAP1 expression and PO activity while decreasing larval mortality rate. Furthermore, we identified four LncRNAs (MSTRG.32910.1, MSTRG.7100.1, MSTRG.6802.1, and MSTRG.22113.1) that potentially interact with pxy-miR-965-5p. Interference assays using antisense oligonucleotides (ASOs) revealed that silencing MSTRG.7100.1 and MSTRG.22113.1 increased the expression of pxy-miR-965-5p. These findings shed light on the potential role of pxy-miR-965-5p in the immune response of P. xylostella to M. anisopliae infection and provide a theoretical basis for biological control strategies targeting the immune system of this pest.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoxia Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (F.J.); (J.H.); (S.D.M.); (L.Z.); (J.Z.)
| |
Collapse
|
11
|
Kilich G, Hassey K, Behrens EM, Falk M, Vanderver A, Rader DJ, Cahill PJ, Raper A, Zhang Z, Westerfer D, Jadhav T, Conlin L, Izumi K, Rajagopalan R, Sullivan KE. Kagami Ogata syndrome: a small deletion refines critical region for imprinting. NPJ Genom Med 2024; 9:5. [PMID: 38212313 PMCID: PMC10784583 DOI: 10.1038/s41525-023-00389-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Kagami-Ogata syndrome is a rare imprinting disorder and its phenotypic overlap with multiple different etiologies hampers diagnosis. Genetic etiologies include paternal uniparental isodisomy (upd(14)pat), maternal allele deletions of differentially methylated regions (DMR) in 14q32.2 or pure primary epimutations. We report a patient with Kagami-Ogata syndrome and an atypical diagnostic odyssey with several negative standard-of-care genetic tests followed by epigenetic testing using methylation microarray and a targeted analysis of whole-genome sequencing to reveal a 203 bp deletion involving the MEG3 transcript and MEG3:TSS-DMR. Long-read sequencing enabled the simultaneous detection of the deletion, phasing, and biallelic hypermethylation of the MEG3:TSS-DMR region in a single assay. This case highlights the challenges in the sequential genetic testing paradigm, the utility of long-read sequencing as a single comprehensive diagnostic assay, and the smallest reported deletion causing Kagami-Ogata syndrome allowing important insights into the mechanism of imprinting effects at this locus.
Collapse
Affiliation(s)
- Gonench Kilich
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kelly Hassey
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Edward M Behrens
- Division of Rheumatology, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marni Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Adeline Vanderver
- Division of Neurology, Children's Hospital of Philadelphia and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Departments of Medicine, Pediatrics and Genetics, Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patrick J Cahill
- Division of Orthopedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anna Raper
- Division of Translational Medicine and Human Genetics, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Zhe Zhang
- The Center for Biomedical Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dawn Westerfer
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tanaya Jadhav
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura Conlin
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kosuke Izumi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Genetics and Metabolism, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, USA
| | - Ramakrishnan Rajagopalan
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, and Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Weinberg-Shukron A, Youngson NA, Ferguson-Smith AC, Edwards CA. Epigenetic control and genomic imprinting dynamics of the Dlk1-Dio3 domain. Front Cell Dev Biol 2023; 11:1328806. [PMID: 38155837 PMCID: PMC10754522 DOI: 10.3389/fcell.2023.1328806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Genomic imprinting is an epigenetic process whereby genes are monoallelically expressed in a parent-of-origin-specific manner. Imprinted genes are frequently found clustered in the genome, likely illustrating their need for both shared regulatory control and functional inter-dependence. The Dlk1-Dio3 domain is one of the largest imprinted clusters. Genes in this region are involved in development, behavior, and postnatal metabolism: failure to correctly regulate the domain leads to Kagami-Ogata or Temple syndromes in humans. The region contains many of the hallmarks of other imprinted domains, such as long non-coding RNAs and parental origin-specific CTCF binding. Recent studies have shown that the Dlk1-Dio3 domain is exquisitely regulated via a bipartite imprinting control region (ICR) which functions differently on the two parental chromosomes to establish monoallelic expression. Furthermore, the Dlk1 gene displays a selective absence of imprinting in the neurogenic niche, illustrating the need for precise dosage modulation of this domain in different tissues. Here, we discuss the following: how differential epigenetic marks laid down in the gametes cause a cascade of events that leads to imprinting in the region, how this mechanism is selectively switched off in the neurogenic niche, and why studying this imprinted region has added a layer of sophistication to how we think about the hierarchical epigenetic control of genome function.
Collapse
Affiliation(s)
| | - Neil A. Youngson
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | | | - Carol A. Edwards
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Di Michele F, Chillón I, Feil R. Imprinted Long Non-Coding RNAs in Mammalian Development and Disease. Int J Mol Sci 2023; 24:13647. [PMID: 37686455 PMCID: PMC10487962 DOI: 10.3390/ijms241713647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Imprinted genes play diverse roles in mammalian development, homeostasis, and disease. Most imprinted chromosomal domains express one or more long non-coding RNAs (lncRNAs). Several of these lncRNAs are strictly nuclear and their mono-allelic expression controls in cis the expression of protein-coding genes, often developmentally regulated. Some imprinted lncRNAs act in trans as well, controlling target gene expression elsewhere in the genome. The regulation of imprinted gene expression-including that of imprinted lncRNAs-is susceptible to stochastic and environmentally triggered epigenetic changes in the early embryo. These aberrant changes persist during subsequent development and have long-term phenotypic consequences. This review focuses on the expression and the cis- and trans-regulatory roles of imprinted lncRNAs and describes human disease syndromes associated with their perturbed expression.
Collapse
Affiliation(s)
- Flavio Di Michele
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| | - Isabel Chillón
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
14
|
Loftus D, Bae B, Whilden CM, Whipple AJ. Allelic chromatin structure precedes imprinted expression of Kcnk9 during neurogenesis. Genes Dev 2023; 37:829-843. [PMID: 37821107 PMCID: PMC10620047 DOI: 10.1101/gad.350896.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Differences in chromatin state inherited from the parental gametes influence the regulation of maternal and paternal alleles in offspring. This phenomenon, known as genomic imprinting, results in genes preferentially transcribed from one parental allele. While local epigenetic factors such as DNA methylation are known to be important for the establishment of imprinted gene expression, less is known about the mechanisms by which differentially methylated regions (DMRs) lead to differences in allelic expression across broad stretches of chromatin. Allele-specific higher-order chromatin structure has been observed at multiple imprinted loci, consistent with the observation of allelic binding of the chromatin-organizing factor CTCF at multiple DMRs. However, whether allelic chromatin structure impacts allelic gene expression is not known for most imprinted loci. Here we characterize the mechanisms underlying brain-specific imprinted expression of the Peg13-Kcnk9 locus, an imprinted region associated with intellectual disability. We performed region capture Hi-C on mouse brains from reciprocal hybrid crosses and found imprinted higher-order chromatin structure caused by the allelic binding of CTCF to the Peg13 DMR. Using an in vitro neuron differentiation system, we showed that imprinted chromatin structure precedes imprinted expression at the locus. Additionally, activation of a distal enhancer induced imprinted expression of Kcnk9 in an allelic chromatin structure-dependent manner. This work provides a high-resolution map of imprinted chromatin structure and demonstrates that chromatin state established in early development can promote imprinted expression upon differentiation.
Collapse
Affiliation(s)
- Daniel Loftus
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Bongmin Bae
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Courtney M Whilden
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Amanda J Whipple
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
15
|
Esnault C, Magat T, Zine El Aabidine A, Garcia-Oliver E, Cucchiarini A, Bouchouika S, Lleres D, Goerke L, Luo Y, Verga D, Lacroix L, Feil R, Spicuglia S, Mergny JL, Andrau JC. G4access identifies G-quadruplexes and their associations with open chromatin and imprinting control regions. Nat Genet 2023; 55:1359-1369. [PMID: 37400615 DOI: 10.1038/s41588-023-01437-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/31/2023] [Indexed: 07/05/2023]
Abstract
Metazoan promoters are enriched in secondary DNA structure-forming motifs, such as G-quadruplexes (G4s). Here we describe 'G4access', an approach to isolate and sequence G4s associated with open chromatin via nuclease digestion. G4access is antibody- and crosslinking-independent and enriches for computationally predicted G4s (pG4s), most of which are confirmed in vitro. Using G4access in human and mouse cells, we identify cell-type-specific G4 enrichment correlated with nucleosome exclusion and promoter transcription. G4access allows measurement of variations in G4 repertoire usage following G4 ligand treatment, HDAC and G4 helicases inhibitors. Applying G4access to cells from reciprocal hybrid mouse crosses suggests a role for G4s in the control of active imprinting regions. Consistently, we also observed that G4access peaks are unmethylated, while methylation at pG4s correlates with nucleosome repositioning on DNA. Overall, our study provides a new tool for studying G4s in cellular dynamics and highlights their association with open chromatin, transcription and their antagonism to DNA methylation.
Collapse
Affiliation(s)
- Cyril Esnault
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier, France
| | - Talha Magat
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier, France
| | - Amal Zine El Aabidine
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier, France
| | - Encar Garcia-Oliver
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier, France
| | - Anne Cucchiarini
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, Palaiseau, France
| | - Soumya Bouchouika
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier, France
| | - David Lleres
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier, France
| | - Lutz Goerke
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier, France
| | - Yu Luo
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, Palaiseau, France
- Université Paris-Saclay, Institut Curie, Orsay, France
| | - Daniela Verga
- Université Paris-Saclay, Institut Curie, Orsay, France
| | - Laurent Lacroix
- Institut de Biologie de l'École Normale Supérieure, ENS, CNRS UMR8197, Inserm U1024, Paris, France
| | - Robert Feil
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier, France
| | - Salvatore Spicuglia
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France
- Equipe Labellisée Ligue Contre le Cancer, Marseille, France
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, Palaiseau, France
| | - Jean-Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier, France.
| |
Collapse
|
16
|
Loftus D, Bae B, Whilden CM, Whipple AJ. Allelic chromatin structure primes imprinted expression of Kcnk9 during neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544389. [PMID: 37333073 PMCID: PMC10274912 DOI: 10.1101/2023.06.09.544389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Differences in chromatin state inherited from the parental gametes influence the regulation of maternal and paternal alleles in offspring. This phenomenon, known as genomic imprinting, results in genes preferentially transcribed from one parental allele. While local epigenetic factors such as DNA methylation are known to be important for the establishment of imprinted gene expression, less is known about the mechanisms by which differentially methylated regions (DMRs) lead to differences in allelic expression across broad stretches of chromatin. Allele-specific higher-order chromatin structure has been observed at multiple imprinted loci, consistent with the observation of allelic binding of the chromatin-organizing factor CTCF at multiple DMRs. However, whether allelic chromatin structure impacts allelic gene expression is not known for most imprinted loci. Here we characterize the mechanisms underlying brain-specific imprinted expression of the Peg13-Kcnk9 locus, an imprinted region associated with intellectual disability. We performed region capture Hi-C on mouse brain from reciprocal hybrid crosses and found imprinted higher-order chromatin structure caused by the allelic binding of CTCF to the Peg13 DMR. Using an in vitro neuron differentiation system, we show that on the maternal allele enhancer-promoter contacts formed early in development prime the brain-specific potassium leak channel Kcnk9 for maternal expression prior to neurogenesis. In contrast, these enhancer-promoter contacts are blocked by CTCF on the paternal allele, preventing paternal Kcnk9 activation. This work provides a high-resolution map of imprinted chromatin structure and demonstrates that chromatin state established in early development can promote imprinted expression upon differentiation.
Collapse
Affiliation(s)
- Daniel Loftus
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 USA
| | - Bongmin Bae
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 USA
| | - Courtney M. Whilden
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 USA
| | - Amanda J. Whipple
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138 USA
| |
Collapse
|
17
|
Shabna A, Bindhya S, Sidhanth C, Garg M, Ganesan TS. Long non-coding RNAs: Fundamental regulators and emerging targets of cancer stem cells. Biochim Biophys Acta Rev Cancer 2023; 1878:188899. [PMID: 37105414 DOI: 10.1016/j.bbcan.2023.188899] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Cancer is one of the leading causes of death worldwide, primarily due to the dearth of efficient therapies that result in long-lasting remission. This is especially true in cases of metastatic cancer where drug resistance causes the disease to recur after treatment. One of the factors contributing to drug resistance, metastasis, and aggressiveness of the cancer is cancer stem cells (CSCs) or tumor-initiating cells. As a result, CSCs have emerged as a potential target for drug development. In the present review, we have examined and highlighted the lncRNAs with their regulatory functions specific to CSCs. Moreover, we have discussed the difficulties and various methods involved in identifying lncRNAs that can play a particular role in regulating and maintaining CSCs. Interestingly, this review only focuses on those lncRNAs with strong functional evidence for CSC specificity and the mechanistic role that allows them to be CSC regulators and be the focus of CSC-specific drug development.
Collapse
Affiliation(s)
- Aboo Shabna
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai 600020, India; Laboratory for Cancer Biology, Department of Medical Oncology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 610016, India; Department of Endocrinology, Indian Council of Medical Research - National Institute of Nutrtion, Tarnaka, Hyderabad 50007, India
| | - Sadanadhan Bindhya
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai 600020, India
| | - Chirukandath Sidhanth
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai 600020, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Sector-125, Noida 201301, India
| | - Trivadi S Ganesan
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai 600020, India; Laboratory for Cancer Biology, Department of Medical Oncology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 610016, India.
| |
Collapse
|
18
|
Dupont C, Chahar D, Trullo A, Gostan T, Surcis C, Grimaud C, Fisher D, Feil R, Llères D. Evidence for low nanocompaction of heterochromatin in living embryonic stem cells. EMBO J 2023:e110286. [PMID: 37082862 DOI: 10.15252/embj.2021110286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
Despite advances in the identification of chromatin regulators and genome interactions, the principles of higher-order chromatin structure have remained elusive. Here, we applied FLIM-FRET microscopy to analyse, in living cells, the spatial organisation of nanometre range proximity between nucleosomes, which we called "nanocompaction." Both in naive embryonic stem cells (ESCs) and in ESC-derived epiblast-like cells (EpiLCs), we find that, contrary to expectations, constitutive heterochromatin is much less compacted than bulk chromatin. The opposite was observed in fixed cells. HP1α knockdown increased nanocompaction in living ESCs, but this was overridden by loss of HP1β, indicating the existence of a dynamic HP1-dependent low compaction state in pluripotent cells. Depletion of H4K20me2/3 abrogated nanocompaction, while increased H4K20me3 levels accompanied the nuclear reorganisation during EpiLCs induction. Finally, the knockout of the nuclear cellular-proliferation marker Ki-67 strongly reduced both interphase and mitotic heterochromatin nanocompaction in ESCs. Our data indicate that, contrary to prevailing models, heterochromatin is not highly compacted at the nanoscale but resides in a dynamic low nanocompaction state that depends on H4K20me2/3, the balance between HP1 isoforms, and Ki-67.
Collapse
Affiliation(s)
- Claire Dupont
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| | - Dhanvantri Chahar
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| | - Antonio Trullo
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| | - Thierry Gostan
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| | - Caroline Surcis
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| | - Charlotte Grimaud
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, Montpellier, France
| | - Daniel Fisher
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| | - David Llères
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
19
|
Zhang C, Yi X, Hou M, Li Q, Li X, Lu L, Qi E, Wu M, Qi L, Jian H, Qi Z, Lv Y, Kong X, Bi M, Feng S, Zhou H. The landscape of m 1A modification and its posttranscriptional regulatory functions in primary neurons. eLife 2023; 12:85324. [PMID: 36880874 PMCID: PMC9991057 DOI: 10.7554/elife.85324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Cerebral ischaemia‒reperfusion injury (IRI), during which neurons undergo oxygen-glucose deprivation/reoxygenation (OGD/R), is a notable pathological process in many neurological diseases. N1-methyladenosine (m1A) is an RNA modification that can affect gene expression and RNA stability. The m1A landscape and potential functions of m1A modification in neurons remain poorly understood. We explored RNA (mRNA, lncRNA, and circRNA) m1A modification in normal and OGD/R-treated mouse neurons and the effect of m1A on diverse RNAs. We investigated the m1A landscape in primary neurons, identified m1A-modified RNAs, and found that OGD/R increased the number of m1A RNAs. m1A modification might also affect the regulatory mechanisms of noncoding RNAs, e.g., lncRNA-RNA binding proteins (RBPs) interactions and circRNA translation. We showed that m1A modification mediates the circRNA/lncRNA‒miRNA-mRNA competing endogenous RNA (ceRNA) mechanism and that 3' untranslated region (3'UTR) modification of mRNAs can hinder miRNA-mRNA binding. Three modification patterns were identified, and genes with different patterns had intrinsic mechanisms with potential m1A-regulatory specificity. Systematic analysis of the m1A landscape in normal and OGD/R neurons lays a critical foundation for understanding RNA modification and provides new perspectives and a theoretical basis for treating and developing drugs for OGD/R pathology-related diseases.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Xianfu Yi
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical UniversityTianjinChina
| | - Mengfan Hou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal CordTianjinChina
| | - Qingyang Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Xueying Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal CordTianjinChina
| | - Enlin Qi
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Mingxin Wu
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal CordTianjinChina
| | - Lin Qi
- Department of Orthopedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Huan Jian
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal CordTianjinChina
| | - Zhangyang Qi
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Yigang Lv
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal CordTianjinChina
| | - Xiaohong Kong
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Mingjun Bi
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong UniversityJinanChina
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal CordTianjinChina
| | - Hengxing Zhou
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong UniversityJinanChina
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal CordTianjinChina
| |
Collapse
|
20
|
Hofmeister RJ, Rubinacci S, Ribeiro DM, Buil A, Kutalik Z, Delaneau O. Parent-of-Origin inference for biobanks. Nat Commun 2022; 13:6668. [PMID: 36335127 PMCID: PMC9637181 DOI: 10.1038/s41467-022-34383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Identical genetic variations can have different phenotypic effects depending on their parent of origin. Yet, studies focusing on parent-of-origin effects have been limited in terms of sample size due to the lack of parental genomes or known genealogies. We propose a probabilistic approach to infer the parent-of-origin of individual alleles that does not require parental genomes nor prior knowledge of genealogy. Our model uses Identity-By-Descent sharing with second- and third-degree relatives to assign alleles to parental groups and leverages chromosome X data in males to distinguish maternal from paternal groups. We combine this with robust haplotype inference and haploid imputation to infer the parent-of-origin for 26,393 UK Biobank individuals. We screen 99 phenotypes for parent-of-origin effects and replicate the discoveries of 6 GWAS studies, confirming signals on body mass index, type 2 diabetes, standing height and multiple blood biomarkers, including the known maternal effect at the MEG3/DLK1 locus on platelet phenotypes. We also report a novel maternal effect at the TERT gene on telomere length, thereby providing new insights on the heritability of this phenotype. All our summary statistics are publicly available to help the community to better characterize the molecular mechanisms leading to parent-of-origin effects and their implications for human health.
Collapse
Affiliation(s)
- Robin J Hofmeister
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Simone Rubinacci
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Diogo M Ribeiro
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Alfonso Buil
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark.,Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Olivier Delaneau
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland. .,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
21
|
Wagner NR, Sinha A, Siththanandan V, Kowalchuk AM, MacDonald JL, Tharin S. miR-409-3p represses Cited2 to refine neocortical layer V projection neuron identity. Front Neurosci 2022; 16:931333. [PMID: 36248641 PMCID: PMC9558290 DOI: 10.3389/fnins.2022.931333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022] Open
Abstract
The evolutionary emergence of the corticospinal tract and corpus callosum are thought to underpin the expansion of complex motor and cognitive abilities in mammals. Molecular mechanisms regulating development of the neurons whose axons comprise these tracts, the corticospinal and callosal projection neurons, remain incompletely understood. Our previous work identified a genomic cluster of microRNAs (miRNAs), Mirg/12qF1, that is unique to placental mammals and specifically expressed by corticospinal neurons, and excluded from callosal projection neurons, during development. We found that one of these, miR-409-3p, can convert layer V callosal into corticospinal projection neurons, acting in part through repression of the transcriptional regulator Lmo4. Here we show that miR-409-3p also directly represses the transcriptional co-regulator Cited2, which is highly expressed by callosal projection neurons from the earliest stages of neurogenesis. Cited2 is highly expressed by intermediate progenitor cells (IPCs) in the embryonic neocortex while Mirg, which encodes miR-409-3p, is excluded from these progenitors. miR-409-3p gain-of-function (GOF) in IPCs results in a phenocopy of established Cited2 loss-of-function (LOF). At later developmental stages, both miR-409-3p GOF and Cited2 LOF promote the expression of corticospinal at the expense of callosal projection neuron markers in layer V. Taken together, this work identifies previously undescribed roles for miR-409-3p in controlling IPC numbers and for Cited2 in controlling callosal fate. Thus, miR-409-3p, possibly in cooperation with other Mirg/12qF1 miRNAs, represses Cited2 as part of the multifaceted regulation of the refinement of neuronal cell fate within layer V, combining molecular regulation at multiple levels in both progenitors and post-mitotic neurons.
Collapse
Affiliation(s)
- Nikolaus R. Wagner
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States
| | - Ashis Sinha
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States
| | - Verl Siththanandan
- Department of Neurosurgery, Stanford University Medical Center, Center for Academic Medicine, Palo Alto, CA, United States
| | - Angelica M. Kowalchuk
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States
| | - Jessica L. MacDonald
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States,*Correspondence: Jessica L. MacDonald,
| | - Suzanne Tharin
- Department of Neurosurgery, Stanford University Medical Center, Center for Academic Medicine, Palo Alto, CA, United States,Division of Neurosurgery, Palo Alto Veterans Affairs Health Care System, Palo Alto, CA, United States,Suzanne Tharin,
| |
Collapse
|
22
|
Li J, Yu D, Wang J, Li C, Wang Q, Wang J, Du W, Zhao S, Pang Y, Hao H, Zhao X, Zhu H, Li S, Zou H. Identification of the porcine IG-DMR and abnormal imprinting of DLK1-DIO3 in cloned pigs. Front Cell Dev Biol 2022; 10:964045. [PMID: 36036009 PMCID: PMC9400927 DOI: 10.3389/fcell.2022.964045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
Correct reprogramming of the DLK1-DIO3 imprinted region is critical for the development of cloned animals. However, in pigs, the imprinting and regulation of the DLK1-DIO3 region has not been systematically analyzed. The objective of this study was to investigate the imprinting status and methylation regulation of the DLK1-DIO3 region in wild-type and cloned neonatal pigs. We mapped the imprinting control region, IG-DMR, by homologous alignment and validated it in sperm, oocytes, fibroblasts, and parthenogenetic embryos. Subsequently, single nucleotide polymorphism-based sequencing and bisulfite sequencing polymerase chain reaction were conducted to analyze imprinting and methylation in different types of fibroblasts, as well as wild-type and cloned neonatal pigs. The results showed that Somatic cell nuclear transfer (SCNT) resulted in hypermethylation of the IG-DMR and aberrant gene expression in the DLK1-DIO3 region. Similar to wild-type pigs, imprinted expression and methylation were observed in the surviving cloned pigs, whereas in dead cloned pigs, the IG-DMR was hypermethylated and the expression of GTL2 was nearly undetectable. Our study reveals that abnormal imprinting of the DLK1-DIO3 region occurs in cloned pigs, which provides a theoretical basis for improving the cloning efficiency by gene editing to correct abnormal imprinting.
Collapse
Affiliation(s)
- Junliang Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Dawei Yu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Germplasm Center of Domestic Animal Resources, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Dawei Yu, ; Huabin Zhu, ; Shijie Li, ; Huiying Zou,
| | - Jing Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chongyang Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qingwei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Department of Human Genetics David Geffen School of Medicine University of California Los Angeles, Los Angeles, CA, United States
| | - Weihua Du
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanjiang Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunwei Pang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haisheng Hao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueming Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huabin Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Dawei Yu, ; Huabin Zhu, ; Shijie Li, ; Huiying Zou,
| | - Shijie Li
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- *Correspondence: Dawei Yu, ; Huabin Zhu, ; Shijie Li, ; Huiying Zou,
| | - Huiying Zou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Dawei Yu, ; Huabin Zhu, ; Shijie Li, ; Huiying Zou,
| |
Collapse
|
23
|
Van de Pette M, Dimond A, Galvão AM, Millership SJ, To W, Prodani C, McNamara G, Bruno L, Sardini A, Webster Z, McGinty J, French PMW, Uren AG, Castillo-Fernandez J, Watkinson W, Ferguson-Smith AC, Merkenschlager M, John RM, Kelsey G, Fisher AG. Epigenetic changes induced by in utero dietary challenge result in phenotypic variability in successive generations of mice. Nat Commun 2022; 13:2464. [PMID: 35513363 PMCID: PMC9072353 DOI: 10.1038/s41467-022-30022-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/13/2022] [Indexed: 11/22/2022] Open
Abstract
Transmission of epigenetic information between generations occurs in nematodes, flies and plants, mediated by specialised small RNA pathways, modified histones and DNA methylation. Similar processes in mammals can also affect phenotype through intergenerational or trans-generational mechanisms. Here we generate a luciferase knock-in reporter mouse for the imprinted Dlk1 locus to visualise and track epigenetic fidelity across generations. Exposure to high-fat diet in pregnancy provokes sustained re-expression of the normally silent maternal Dlk1 in offspring (loss of imprinting) and increased DNA methylation at the somatic differentially methylated region (sDMR). In the next generation heterogeneous Dlk1 mis-expression is seen exclusively among animals born to F1-exposed females. Oocytes from these females show altered gene and microRNA expression without changes in DNA methylation, and correct imprinting is restored in subsequent generations. Our results illustrate how diet impacts the foetal epigenome, disturbing canonical and non-canonical imprinting mechanisms to modulate the properties of successive generations of offspring.
Collapse
Affiliation(s)
- Mathew Van de Pette
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Andrew Dimond
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - António M Galvão
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Steven J Millership
- Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Wilson To
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Chiara Prodani
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Gráinne McNamara
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Ludovica Bruno
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Alessandro Sardini
- Whole Animal Physiology and Imaging, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Zoe Webster
- Transgenics and Embryonic Stem Cell Laboratory, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - James McGinty
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Paul M W French
- Photonics Group, Department of Physics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Anthony G Uren
- Cancer Genomics Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | | | - William Watkinson
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Matthias Merkenschlager
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Rosalind M John
- Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge, CB2 0QQ, UK
| | - Amanda G Fisher
- Lymphocyte Development & Epigenetic Memory Groups, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
24
|
From genotype to phenotype: genetics of mammalian long non-coding RNAs in vivo. Nat Rev Genet 2022; 23:229-243. [PMID: 34837040 DOI: 10.1038/s41576-021-00427-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 12/14/2022]
Abstract
Genome-wide sequencing has led to the discovery of thousands of long non-coding RNA (lncRNA) loci in the human genome, but evidence of functional significance has remained controversial for many lncRNAs. Genetically engineered model organisms are considered the gold standard for linking genotype to phenotype. Recent advances in CRISPR-Cas genome editing have led to a rapid increase in the use of mouse models to more readily survey lncRNAs for functional significance. Here, we review strategies to investigate the physiological relevance of lncRNA loci by highlighting studies that have used genetic mouse models to reveal key in vivo roles for lncRNAs, from fertility to brain development. We illustrate how an investigative approach, starting with whole-gene deletion followed by transcription termination and/or transgene rescue strategies, can provide definitive evidence for the in vivo function of mammalian lncRNAs.
Collapse
|
25
|
Aronson BE, Scourzic L, Shah V, Swanzey E, Kloetgen A, Polyzos A, Sinha A, Azziz A, Caspi I, Li J, Pelham-Webb B, Glenn RA, Vierbuchen T, Wichterle H, Tsirigos A, Dawlaty MM, Stadtfeld M, Apostolou E. A bipartite element with allele-specific functions safeguards DNA methylation imprints at the Dlk1-Dio3 locus. Dev Cell 2021; 56:3052-3065.e5. [PMID: 34710357 PMCID: PMC8628258 DOI: 10.1016/j.devcel.2021.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022]
Abstract
Loss of imprinting (LOI) results in severe developmental defects, but the mechanisms preventing LOI remain incompletely understood. Here, we dissect the functional components of the imprinting control region of the essential Dlk1-Dio3 locus (called IG-DMR) in pluripotent stem cells. We demonstrate that the IG-DMR consists of two antagonistic elements: a paternally methylated CpG island that prevents recruitment of TET dioxygenases and a maternally unmethylated non-canonical enhancer that ensures expression of the Gtl2 lncRNA by counteracting de novo DNA methyltransferases. Genetic or epigenetic editing of these elements leads to distinct LOI phenotypes with characteristic alternations of allele-specific gene expression, DNA methylation, and 3D chromatin topology. Although repression of the Gtl2 promoter results in dysregulated imprinting, the stability of LOI phenotypes depends on the IG-DMR, suggesting a functional hierarchy. These findings establish the IG-DMR as a bipartite control element that maintains imprinting by allele-specific restriction of the DNA (de)methylation machinery.
Collapse
Affiliation(s)
- Boaz E Aronson
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA
| | - Laurianne Scourzic
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA
| | - Veevek Shah
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA
| | - Emily Swanzey
- Sanford I Weill Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jackson Laboratory, Bar Harbor, ME, USA
| | - Andreas Kloetgen
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Alexander Polyzos
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA
| | - Abhishek Sinha
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Annabel Azziz
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Inbal Caspi
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jiexi Li
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA
| | - Bobbie Pelham-Webb
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD program, New York, NY, USA
| | - Rachel A Glenn
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas Vierbuchen
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, Neuroscience and Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, Center for Motor Neuron Biology and Disease and Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Institute for Computational Medicine and Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY 10016, USA
| | - Meelad M Dawlaty
- Ruth L and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY 10461, USA; Department of Genetics, Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Matthias Stadtfeld
- Sanford I Weill Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Effie Apostolou
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
26
|
Wang T, Li J, Yang L, Wu M, Ma Q. The Role of Long Non-coding RNAs in Human Imprinting Disorders: Prospective Therapeutic Targets. Front Cell Dev Biol 2021; 9:730014. [PMID: 34760887 PMCID: PMC8573313 DOI: 10.3389/fcell.2021.730014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
Genomic imprinting is a term used for an intergenerational epigenetic inheritance and involves a subset of genes expressed in a parent-of-origin-dependent way. Imprinted genes are expressed preferentially from either the paternally or maternally inherited allele. Long non-coding RNAs play essential roles in regulating this allele-specific expression. In several well-studied imprinting clusters, long non-coding RNAs have been found to be essential in regulating temporal- and spatial-specific establishment and maintenance of imprinting patterns. Furthermore, recent insights into the epigenetic pathological mechanisms underlying human genomic imprinting disorders suggest that allele-specific expressed imprinted long non-coding RNAs serve as an upstream regulator of the expression of other protein-coding or non-coding imprinted genes in the same cluster. Aberrantly expressed long non-coding RNAs result in bi-allelic expression or silencing of neighboring imprinted genes. Here, we review the emerging roles of long non-coding RNAs in regulating the expression of imprinted genes, especially in human imprinting disorders, and discuss three strategies targeting the central long non-coding RNA UBE3A-ATS for the purpose of developing therapies for the imprinting disorders Prader-Willi syndrome and Angelman syndrome. In summary, a better understanding of long non-coding RNA-related mechanisms is key to the development of potential therapeutic targets for human imprinting disorders.
Collapse
Affiliation(s)
- Tingxuan Wang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianjian Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liuyi Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Manyin Wu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qing Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
27
|
Trotman JB, Braceros KCA, Cherney RE, Murvin MM, Calabrese JM. The control of polycomb repressive complexes by long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1657. [PMID: 33861025 PMCID: PMC8500928 DOI: 10.1002/wrna.1657] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
The polycomb repressive complexes 1 and 2 (PRCs; PRC1 and PRC2) are conserved histone-modifying enzymes that often function cooperatively to repress gene expression. The PRCs are regulated by long noncoding RNAs (lncRNAs) in complex ways. On the one hand, specific lncRNAs cause the PRCs to engage with chromatin and repress gene expression over genomic regions that can span megabases. On the other hand, the PRCs bind RNA with seemingly little sequence specificity, and at least in the case of PRC2, direct RNA-binding has the effect of inhibiting the enzyme. Thus, some RNAs appear to promote PRC activity, while others may inhibit it. The reasons behind this apparent dichotomy are unclear. The most potent PRC-activating lncRNAs associate with chromatin and are predominantly unspliced or harbor unusually long exons. Emerging data imply that these lncRNAs promote PRC activity through internal RNA sequence elements that arise and disappear rapidly in evolutionary time. These sequence elements may function by interacting with common subsets of RNA-binding proteins that recruit or stabilize PRCs on chromatin. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jackson B. Trotman
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Keean C. A. Braceros
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachel E. Cherney
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - McKenzie M. Murvin
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J. Mauro Calabrese
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
28
|
Zhao F, Xing Y, Jiang P, Hu L, Deng S. LncRNA MEG3 inhibits the proliferation of neural stem cells after ischemic stroke via the miR-493-5P/MIF axis. Biochem Biophys Res Commun 2021; 568:186-192. [PMID: 34273844 DOI: 10.1016/j.bbrc.2021.06.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The proliferation of neural stem cells (NSCs1), or lack thereof, can have profound effects on brain tissue remodeling for ischemic stroke (IS2). In this study, we aimed to reveal the influence of the lncRNA MEG3/miR-493-5p/MIF axis on NSC proliferation after IS. METHODS We established an oxygen glucose-deprivation/reoxygenation (OGD/R3) in vitro model of IS in NSCs. We evaluated NSC isolation efficiency and proliferation by NESTIN, SOX2, and PCNA immunofluorescence staining. MEG3 and miR-493-5P levels were assessed by quantitative real-time polymerase chain reaction (qRT-PCR4). Changes in MIF protein expression levels were analyzed using Western blotting. We then evaluated the role of MEG3 and miR-493-5p by transfection of si-MEG3, a miR-493-5p mimic, or miR-493-5p inhibitor. NSC proliferation was quantified using Cell Counting Kit-8 analysis. RESULTS NESTIN and SOX2 were co-expressed in endogenous NSCs. Following OGD/R, MEG3 and miR-493-5P were significantly upregulated in NSCs, while MIF levels decreased and proliferation was inhibited. Knockdown of MEG3 inhibited miR-493-5p and rescued expression of MIF and PCNA, restoring cellular proliferation levels. In NSCs transfected with a miR-493-5p mimic or inhibitor, MIF levels were down- or upregulated, respectively. Consistently, transfection of a miR-493-5p mimic reduced NSC proliferation, while transfection with a miR-493-5p inhibitor or si-MEG3 rescued the inhibitory effect of OGD/R on NSC proliferation. After co-transfection of si-MEG3 and a miR-493-5p mimic of OGD/R-induced NSCs, levels of PCNA, an indicator of cellular proliferation, were significantly reduced. Conclusion MEG3 inhibits NSC proliferation of after IS via positive regulation of miR-493-5p and potential subsequent downregulation of MIF.
Collapse
Affiliation(s)
- Fan Zhao
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Yu Xing
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Pu Jiang
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Lai Hu
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Shixiong Deng
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China.
| |
Collapse
|
29
|
Exploring chromatin structural roles of non-coding RNAs at imprinted domains. Biochem Soc Trans 2021; 49:1867-1879. [PMID: 34338292 PMCID: PMC8421051 DOI: 10.1042/bst20210758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Different classes of non-coding RNA (ncRNA) influence the organization of chromatin. Imprinted gene domains constitute a paradigm for exploring functional long ncRNAs (lncRNAs). Almost all express an lncRNA in a parent-of-origin dependent manner. The mono-allelic expression of these lncRNAs represses close by and distant protein-coding genes, through diverse mechanisms. Some control genes on other chromosomes as well. Interestingly, several imprinted chromosomal domains show a developmentally regulated, chromatin-based mechanism of imprinting with apparent similarities to X-chromosome inactivation. At these domains, the mono-allelic lncRNAs show a relatively stable, focal accumulation in cis. This facilitates the recruitment of Polycomb repressive complexes, lysine methyltranferases and other nuclear proteins — in part through direct RNA–protein interactions. Recent chromosome conformation capture and microscopy studies indicate that the focal aggregation of lncRNA and interacting proteins could play an architectural role as well, and correlates with close positioning of target genes. Higher-order chromatin structure is strongly influenced by CTCF/cohesin complexes, whose allelic association patterns and actions may be influenced by lncRNAs as well. Here, we review the gene-repressive roles of imprinted non-coding RNAs, particularly of lncRNAs, and discuss emerging links with chromatin architecture.
Collapse
|
30
|
Zfp57 inactivation illustrates the role of ICR methylation in imprinted gene expression during neural differentiation of mouse ESCs. Sci Rep 2021; 11:13802. [PMID: 34226608 PMCID: PMC8257706 DOI: 10.1038/s41598-021-93297-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/23/2021] [Indexed: 12/05/2022] Open
Abstract
ZFP57 is required to maintain the germline-marked differential methylation at imprinting control regions (ICRs) in mouse embryonic stem cells (ESCs). Although DNA methylation has a key role in genomic imprinting, several imprinted genes are controlled by different mechanisms, and a comprehensive study of the relationship between DMR methylation and imprinted gene expression is lacking. To address the latter issue, we differentiated wild-type and Zfp57-/- hybrid mouse ESCs into neural precursor cells (NPCs) and evaluated allelic expression of imprinted genes. In mutant NPCs, we observed a reduction of allelic bias of all the 32 genes that were imprinted in wild-type cells, demonstrating that ZFP57-dependent methylation is required for maintaining or acquiring imprinted gene expression during differentiation. Analysis of expression levels showed that imprinted genes expressed from the non-methylated chromosome were generally up-regulated, and those expressed from the methylated chromosome were down-regulated in mutant cells. However, expression levels of several imprinted genes acquiring biallelic expression were not affected, suggesting the existence of compensatory mechanisms that control their RNA level. Since neural differentiation was partially impaired in Zfp57-mutant cells, this study also indicates that imprinted genes and/or non-imprinted ZFP57-target genes are required for proper neurogenesis in cultured ESCs.
Collapse
|
31
|
Liu J, Liu S, Han L, Sheng Y, Zhang Y, Kim IM, Wan J, Yang L. LncRNA HBL1 is required for genome-wide PRC2 occupancy and function in cardiogenesis from human pluripotent stem cells. Development 2021; 148:268341. [PMID: 34027990 PMCID: PMC8276986 DOI: 10.1242/dev.199628] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Polycomb repressive complex 2 (PRC2) deposits H3K27me3 on chromatin to silence transcription. PRC2 broadly interacts with RNAs. Currently, the role of the RNA-PRC2 interaction in human cardiogenesis remains elusive. Here, we found that human-specific heart brake lncRNA 1 (HBL1) interacted with two PRC2 subunits, JARID2 and EED, in human pluripotent stem cells (hPSCs). Loss of JARID2, EED or HBL1 significantly enhanced cardiac differentiation from hPSCs. HBL1 depletion disrupted genome-wide PRC2 occupancy and H3K27me3 chromatin modification on essential cardiogenic genes, and broadly enhanced cardiogenic gene transcription in undifferentiated hPSCs and later-on differentiation. In addition, ChIP-seq revealed reduced EED occupancy on 62 overlapped cardiogenic genes in HBL1−/− and JARID2−/− hPSCs, indicating that the epigenetic state of cardiogenic genes was determined by HBL1 and JARID2 at pluripotency stage. Furthermore, after cardiac development occurs, the cytosolic and nuclear fractions of HBL1 could crosstalk via a conserved ‘microRNA-1-JARID2’ axis to modulate cardiogenic gene transcription. Overall, our findings delineate the indispensable role of HBL1 in guiding PRC2 function during early human cardiogenesis, and expand the mechanistic scope of lncRNA(s) that cytosolic and nuclear portions of HBL1 could coordinate to orchestrate human cardiogenesis. Summary: This study reveals the indispensable role of the lncRNA HBL1 in guiding PRC2 function during early human cardiogenesis, and uncovers the crosstalk of the cytosolic and nuclear regions of HBL1 to orchestrate human cardiac development.
Collapse
Affiliation(s)
- Juli Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lei Han
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yi Sheng
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yucheng Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Il-Man Kim
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lei Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
32
|
Loss of Selenoprotein Iodothyronine Deiodinase 3 Expression Correlates with Progression of Complete Hydatidiform Mole to Gestational Trophoblastic Neoplasia. Reprod Sci 2021; 28:3200-3211. [PMID: 34129219 DOI: 10.1007/s43032-021-00634-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
To investigate if differences in imprinting at tropho-microRNA (miRNA) genomic clusters can distinguish between pre-gestational trophoblastic neoplasia cases (pre-GTN) and benign complete hydatidiform mole (CHM) cases at the time of initial uterine evacuation. miRNA sequencing was performed on frozen tissue from 39 CHM cases including 9 GTN cases. DIO3, DLK1, RTL1, and MEG 3 mRNA levels were assessed by qRT-PCR. Protein abundance was assessed by Western blot for DIO3, DLK1, and RTL1. qRT-PCR and Western blot were performed for selenoproteins and markers of oxidative stress. Immunohistochemistry (IHC) was performed for DIO3 on an independent validation set of clinical samples (n = 42) and compared to normal placenta controls across gestational ages. Relative expression of the 14q32 miRNA cluster was lower in pre-GTN cases. There were no differences in protein abundance of DLK1 or RTL1. Notably, there was lower protein expression of DIO3 in pre-GTN cases (5-fold, p < 0.03). There were no differences in mRNA levels of DIO3, DLK1, RTL1 or MEG 3. mRNA levels were higher in all CHM cases compared to normal placenta. IHC showed syncytiotrophoblast-specific DIO3 immunostaining in benign CHM cases and normal placenta, while pre-GTN cases of CHM lacked DIO3 expression. We describe two new biomarkers of pre-GTN CHM cases: decreased 14q32 miRNA expression and loss of DIO3 expression by IHC. Differences in imprinting between benign CHM and pre-GTN cases may provide insight into the fundamental development of CHM.
Collapse
|
33
|
Chen J, Li X, Yang L, Zhang J. Long Non-coding RNA LINC01969 Promotes Ovarian Cancer by Regulating the miR-144-5p/LARP1 Axis as a Competing Endogenous RNA. Front Cell Dev Biol 2021; 8:625730. [PMID: 33614632 PMCID: PMC7889973 DOI: 10.3389/fcell.2020.625730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence has shown that long non-coding RNAs (lncRNAs) can be used as biological markers and treatment targets in cancer and play various roles in cancer-related biological processes. However, the lncRNA expression profiles and their roles and action mechanisms in ovarian cancer (OC) are largely unknown. Here, we assessed the lncRNA expression profiles in OC tissues from The Cancer Genome Atlas (TCGA) database, and one upregulated lncRNA, LINC01969, was selected for further study. LINC01969 expression levels in 41 patients were verified using quantitative real-time polymerase chain reaction (qRT-PCR). The in vitro effects of LINC01969 on OC cell migration, invasion, and proliferation were determined by the CCK-8, ethynyl-2-deoxyuridine (EdU), wound healing, and Transwell assays. Epithelial–mesenchymal transition (EMT) was evaluated using qRT-PCR and Western blotting. The molecular mechanisms of LINC01969 in OC were assessed through bioinformatics analysis, RNA-binding protein immunoprecipitation (RIP), dual luciferase reporter gene assays, and a rescue experiment. Finally, in vivo experiments were conducted to evaluate the functions of LINC01969. The results of the current study showed that LINC01969 was dramatically upregulated in OC, and patients with lower LINC01969 expression levels tended to have better overall survival. Further experiments demonstrated that LINC01969 promoted the migration, invasion, and proliferation of OC cells in vitro and sped up tumor growth in vivo. Additionally, LINC01969, which primarily exists in the cytoplasm, boosted LARP1 expression by sponging miR-144-5p and promoted the malignant phenotypes of OC cells. In conclusion, the LINC01969/miR-144-5p/LARP1 axis is a newly identified regulatory signaling pathway involved in OC progression.
Collapse
Affiliation(s)
- Jinxin Chen
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiaocen Li
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Lu Yang
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jingru Zhang
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Abstract
Genomic imprinting is a parent-of-origin dependent phenomenon that restricts transcription to predominantly one parental allele. Since the discovery of the first long noncoding RNA (lncRNA), which notably was an imprinted lncRNA, a body of knowledge has demonstrated pivotal roles for imprinted lncRNAs in regulating parental-specific expression of neighboring imprinted genes. In this Review, we will discuss the multiple functionalities attributed to lncRNAs and how they regulate imprinted gene expression. We also raise unresolved questions about imprinted lncRNA function, which may lead to new avenues of investigation. This Review is dedicated to the memory of Denise Barlow, a giant in the field of genomic imprinting and functional lncRNAs. With her passion for understanding the inner workings of science, her indominable spirit and her consummate curiosity, Denise blazed a path of scientific investigation that made many seminal contributions to genomic imprinting and the wider field of epigenetic regulation, in addition to inspiring future generations of scientists.
Collapse
Affiliation(s)
- William A. MacDonald
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Rangos Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mellissa R. W. Mann
- Department of Obstetrics, Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
35
|
Bian Q, Cheng YH, Wilson JP, Su EY, Kim DW, Wang H, Yoo S, Blackshaw S, Cahan P. A single cell transcriptional atlas of early synovial joint development. Development 2020; 147:dev185777. [PMID: 32580935 PMCID: PMC7390639 DOI: 10.1242/dev.185777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Synovial joint development begins with the formation of the interzone, a region of condensed mesenchymal cells at the site of the prospective joint. Recently, lineage-tracing strategies have revealed that Gdf5-lineage cells native to and from outside the interzone contribute to most, if not all, of the major joint components. However, there is limited knowledge of the specific transcriptional and signaling programs that regulate interzone formation and fate diversification of synovial joint constituents. To address this, we have performed single cell RNA-Seq analysis of 7329 synovial joint progenitor cells from the developing murine knee joint from E12.5 to E15.5. By using a combination of computational analytics, in situ hybridization and in vitro characterization of prospectively isolated populations, we have identified the transcriptional profiles of the major developmental paths for joint progenitors. Our freely available single cell transcriptional atlas will serve as a resource for the community to uncover transcriptional programs and cell interactions that regulate synovial joint development.
Collapse
Affiliation(s)
- Qin Bian
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Yu-Hao Cheng
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Jordan P Wilson
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Emily Y Su
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Hong Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Sooyeon Yoo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Seth Blackshaw
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Patrick Cahan
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| |
Collapse
|
36
|
Ye M, Xie L, Zhang J, Liu B, Liu X, He J, Ma D, Dong K. Determination of long non-coding RNAs associated with EZH2 in neuroblastoma by RIP-seq, RNA-seq and ChIP-seq. Oncol Lett 2020; 20:1. [PMID: 32774475 PMCID: PMC7405546 DOI: 10.3892/ol.2020.11862] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma (NB) is the most common type of extracranial solid tumor found in children. Despite several treatment options, patients with advanced stage disease have a poor prognosis. Previous studies have reported that enhancer of zeste homolog 2 (EZH2) and long non-coding RNAs (lncRNAs) have abnormal expression levels in NB and participate in tumorigenesis and NB development. However, the association between EZH2 and lncRNAs remain unclear. In the present study, RNA immunoprecipitation-sequencing (RIP-seq) was used to analyze the lncRNAs binding to EZH2. Following EZH2 knockdown via short hairpin RNA, RNA-seq was performed in shEZH2 and control groups in SH-SY5Y cells. Chromatin IP (ChIP)-seq was used to determine the genes that may be regulated by EZH2. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to identify the signaling pathways involved in NB. The results from RIP-seq identified 94 lncRNAs, including SNHG7, SNHG22, KTN-AS1 and Linc00843. Furthermore, results from RNA-seq demonstrated that, following EZH2 knockdown, 448 genes were up- and 571 genes were downregulated, with 32 lncRNAs up- and 35 downregulated and differentially expressed compared with control groups. Certain lncRNAs, including MALAT1, H19, Linc01021 and SNHG5, were differentially expressed in EZH2-knockdown group compared with the control group. ChIP-seq identified EZH2 located in the promoter region of 138 lncRNAs including CASC16, CASC15, LINC00694 and TBX5-AS1. In summary, the present study demonstrated that certain lncRNAs directly bound EZH2 and regulated EZH2 expression levels. A number of these lncRNAs that are associated with EZH2 may participate in NB tumorigenesis.
Collapse
Affiliation(s)
- Mujie Ye
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, P.R. China
| | - Lulu Xie
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, P.R. China
| | - Jingjing Zhang
- Department of Medical Imaging, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Baihui Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, P.R. China
| | - Xiangqi Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, P.R. China
| | - Jiajun He
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, P.R. China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China.,Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, P.R. China
| |
Collapse
|
37
|
Budkova Z, Sigurdardottir AK, Briem E, Bergthorsson JT, Sigurdsson S, Magnusson MK, Traustadottir GA, Gudjonsson T, Hilmarsdottir B. Expression of ncRNAs on the DLK1-DIO3 Locus Is Associated With Basal and Mesenchymal Phenotype in Breast Epithelial Progenitor Cells. Front Cell Dev Biol 2020; 8:461. [PMID: 32612992 PMCID: PMC7308478 DOI: 10.3389/fcell.2020.00461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) and its reversed process mesenchymal-to-epithelial transition (MET) play a critical role in epithelial plasticity during development and cancer progression. Among important regulators of these cellular processes are non-coding RNAs (ncRNAs). The imprinted DLK1-DIO3 locus, containing numerous maternally expressed ncRNAs including the lncRNA maternally expressed gene 3 (MEG3) and a cluster of over 50 miRNAs, has been shown to be a modulator of stemness in embryonic stem cells and in cancer progression, potentially through the tumor suppressor role of MEG3. In this study we analyzed the expression pattern and functional role of ncRNAs from the DLK1-DIO3 locus in epithelial plasticity of the breast. We studied their expression in various cell types of breast tissue and revisit the role of the locus in EMT/MET using a breast epithelial progenitor cell line (D492) and its isogenic mesenchymal derivative (D492M). Marked upregulation of ncRNAs from the DLK1-DIO3 locus was seen after EMT induction in two cell line models of EMT. In addition, the expression of MEG3 and the maternally expressed ncRNAs was higher in stromal cells compared to epithelial cell types in primary breast tissue. We also show that expression of MEG3 is concomitant with the expression of the ncRNAs from the DLK1-DIO3 locus and its expression is therefore likely indicative of activation of all ncRNAs at the locus. MEG3 expression is correlated with stromal markers in normal tissue and breast cancer tissue and negatively correlated with the survival of breast cancer patients in two different cohorts. Overexpression of MEG3 using CRISPR activation in a breast epithelial cell line induced partial EMT and enriched for a basal-like phenotype. Conversely, knock down of MEG3 using CRISPR inhibition in a mesenchymal cell line reduced the mesenchymal and basal-like phenotype of the cell line. In summary our study shows that maternally expressed ncRNAs are markers of EMT and suggests that MEG3 is a novel regulator of EMT/MET in breast tissue. Nevertheless, further studies are needed to fully dissect the molecular pathways influenced by non-coding RNAs at the DLK1-DIO3 locus in breast tissue.
Collapse
Affiliation(s)
- Zuzana Budkova
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Anna Karen Sigurdardottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Eirikur Briem
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Jon Thor Bergthorsson
- Department of Laboratory Hematology, Landspitali - University Hospital, Reykjavik, Iceland
| | - Snævar Sigurdsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Magnus Karl Magnusson
- Department of Pharmacology and Toxicology, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gunnhildur Asta Traustadottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology, Landspitali - University Hospital, Reykjavik, Iceland
| | - Bylgja Hilmarsdottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Pathology, Landspitali - University Hospital, Reykjavik, Iceland
| |
Collapse
|
38
|
Noordermeer D, Feil R. Differential 3D chromatin organization and gene activity in genomic imprinting. Curr Opin Genet Dev 2020; 61:17-24. [PMID: 32299027 DOI: 10.1016/j.gde.2020.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/08/2023]
Abstract
Genomic imprinting gives rise to parent-of-origin dependent allelic gene expression. Most imprinted genes cluster in domains where differentially methylated regions (DMRs)-carrying CpG methylation on one parental allele-regulate their activity. Several imprinted DMRs bind CTCF on the non-methylated allele. CTCF structures TADs ('Topologically Associating Domains'), which are structural units of transcriptional regulation. Recent investigations show that imprinted domains are embedded within TADs that are similar on both parental chromosomes. Within these TADs, however, allelic subdomains are structured by combinations of mono-allelic and bi-allelic CTCF binding that guide imprinted expression. This emerging view indicates that imprinted chromosomal domains should be considered at the overarching TAD level, and questions how CTCF integrates with other regulatory proteins and lncRNAs to achieve imprinted transcriptional programs.
Collapse
Affiliation(s)
- Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
39
|
Qin T, Li J, Zhang KQ. Structure, Regulation, and Function of Linear and Circular Long Non-Coding RNAs. Front Genet 2020; 11:150. [PMID: 32194627 PMCID: PMC7063684 DOI: 10.3389/fgene.2020.00150] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/10/2020] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), including linear lncRNAs and circular RNAs (circRNAs), exhibit a surprising range of structures. Linear lncRNAs and circRNAs are generated by different pathways. Linear lncRNAs perform functions that depend on their specific sequences, transcription, and DNA elements of their gene loci. In some cases, linear lncRNAs contain a short open reading frame encoding a peptide. circRNAs are covalently closed RNAs with tissue-specific and cell-specific expression patterns that have recently been extensively investigated. Pioneering work focusing on their biogenesis and functional characterization indicates that circRNAs regulate cell development via multiple mechanisms and play critical roles in the immune system. Furthermore, circRNAs in exosomes function on target cells. As with linear lncRNAs, specific circRNAs can also be translated. In this review, we summarize current understanding and highlight the diverse structure, regulation, and function of linear lncRNAs and circRNAs.
Collapse
Affiliation(s)
- Tao Qin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Juan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
40
|
Loss of TSC complex enhances gluconeogenesis via upregulation of Dlk1-Dio3 locus miRNAs. Proc Natl Acad Sci U S A 2020; 117:1524-1532. [PMID: 31919282 DOI: 10.1073/pnas.1918931117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Loss of the tumor suppressor tuberous sclerosis complex 1 (Tsc1) in the liver promotes gluconeogenesis and glucose intolerance. We asked whether this could be attributed to aberrant expression of small RNAs. We performed small-RNA sequencing on liver of Tsc1-knockout mice, and found that miRNAs of the delta-like homolog 1 (Dlk1)-deiodinase iodothyronine type III (Dio3) locus are up-regulated in an mTORC1-dependent manner. Sustained mTORC1 signaling during development prevented CpG methylation and silencing of the Dlk1-Dio3 locus, thereby increasing miRNA transcription. Deletion of miRNAs encoded by the Dlk1-Dio3 locus reduced gluconeogenesis, glucose intolerance, and fasting blood glucose levels. Thus, miRNAs contribute to the metabolic effects observed upon loss of TSC1 and hyperactivation of mTORC1 in the liver. Furthermore, we show that miRNA is a downstream effector of hyperactive mTORC1 signaling.
Collapse
|
41
|
Llères D, Moindrot B, Pathak R, Piras V, Matelot M, Pignard B, Marchand A, Poncelet M, Perrin A, Tellier V, Feil R, Noordermeer D. CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains. Genome Biol 2019; 20:272. [PMID: 31831055 PMCID: PMC6909504 DOI: 10.1186/s13059-019-1896-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Genomic imprinting is essential for mammalian development and provides a unique paradigm to explore intra-cellular differences in chromatin configuration. So far, the detailed allele-specific chromatin organization of imprinted gene domains has mostly been lacking. Here, we explored the chromatin structure of the two conserved imprinted domains controlled by paternal DNA methylation imprints-the Igf2-H19 and Dlk1-Dio3 domains-and assessed the involvement of the insulator protein CTCF in mouse cells. RESULTS Both imprinted domains are located within overarching topologically associating domains (TADs) that are similar on both parental chromosomes. At each domain, a single differentially methylated region is bound by CTCF on the maternal chromosome only, in addition to multiple instances of bi-allelic CTCF binding. Combinations of allelic 4C-seq and DNA-FISH revealed that bi-allelic CTCF binding alone, on the paternal chromosome, correlates with a first level of sub-TAD structure. On the maternal chromosome, additional CTCF binding at the differentially methylated region adds a further layer of sub-TAD organization, which essentially hijacks the existing paternal-specific sub-TAD organization. Perturbation of maternal-specific CTCF binding site at the Dlk1-Dio3 locus, using genome editing, results in perturbed sub-TAD organization and bi-allelic Dlk1 activation during differentiation. CONCLUSIONS Maternal allele-specific CTCF binding at the imprinted Igf2-H19 and the Dlk1-Dio3 domains adds an additional layer of sub-TAD organization, on top of an existing three-dimensional configuration and prior to imprinted activation of protein-coding genes. We speculate that this allele-specific sub-TAD organization provides an instructive or permissive context for imprinted gene activation during development.
Collapse
Affiliation(s)
- David Llères
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Benoît Moindrot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France
| | - Rakesh Pathak
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Vincent Piras
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France
| | - Mélody Matelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France
| | - Benoît Pignard
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Alice Marchand
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Mallory Poncelet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France
| | - Aurélien Perrin
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Virgile Tellier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France.
| | - Daan Noordermeer
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
42
|
Farhadova S, Gomez-Velazquez M, Feil R. Stability and Lability of Parental Methylation Imprints in Development and Disease. Genes (Basel) 2019; 10:genes10120999. [PMID: 31810366 PMCID: PMC6947649 DOI: 10.3390/genes10120999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
DNA methylation plays essential roles in mammals. Of particular interest are parental methylation marks that originate from the oocyte or the sperm, and bring about mono-allelic gene expression at defined chromosomal regions. The remarkable somatic stability of these parental imprints in the pre-implantation embryo—where they resist global waves of DNA demethylation—is not fully understood despite the importance of this phenomenon. After implantation, some methylation imprints persist in the placenta only, a tissue in which many genes are imprinted. Again here, the underlying epigenetic mechanisms are not clear. Mouse studies have pinpointed the involvement of transcription factors, covalent histone modifications, and histone variants. These and other features linked to the stability of methylation imprints are instructive as concerns their conservation in humans, in which different congenital disorders are caused by perturbed parental imprints. Here, we discuss DNA and histone methylation imprints, and why unravelling maintenance mechanisms is important for understanding imprinting disorders in humans.
Collapse
|
43
|
Smith KN, Miller SC, Varani G, Calabrese JM, Magnuson T. Multimodal Long Noncoding RNA Interaction Networks: Control Panels for Cell Fate Specification. Genetics 2019; 213:1093-1110. [PMID: 31796550 PMCID: PMC6893379 DOI: 10.1534/genetics.119.302661] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
Lineage specification in early development is the basis for the exquisitely precise body plan of multicellular organisms. It is therefore critical to understand cell fate decisions in early development. Moreover, for regenerative medicine, the accurate specification of cell types to replace damaged/diseased tissue is strongly dependent on identifying determinants of cell identity. Long noncoding RNAs (lncRNAs) have been shown to regulate cellular plasticity, including pluripotency establishment and maintenance, differentiation and development, yet broad phenotypic analysis and the mechanistic basis of their function remains lacking. As components of molecular condensates, lncRNAs interact with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and microRNAs. With functions ranging from controlling alternative splicing of mRNAs, to providing scaffolding upon which chromatin modifiers are assembled, it is clear that at least a subset of lncRNAs are far from the transcriptional noise they were once deemed. This review highlights the diversity of lncRNA interactions in the context of cell fate specification, and provides examples of each type of interaction in relevant developmental contexts. Also highlighted are experimental and computational approaches to study lncRNAs.
Collapse
Affiliation(s)
- Keriayn N Smith
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Sarah C Miller
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington 98195
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Terry Magnuson
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
44
|
Zhu W, Botticelli EM, Kery RE, Mao Y, Wang X, Yang A, Wang X, Zhou J, Zhang X, Soberman RJ, Klibanski A, Zhou Y. Meg3-DMR, not the Meg3 gene, regulates imprinting of the Dlk1-Dio3 locus. Dev Biol 2019; 455:10-18. [PMID: 31301299 PMCID: PMC6754764 DOI: 10.1016/j.ydbio.2019.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
Abstract
The imprinted delta like 1 homolog (DLK1) - thyroxine deiodinase type III (DIO3) locus regulates development and growth. Its imprinting regulation involves two differentially methylated regions (DMRs), intergenic-DMR (IG-DMR) and maternally expressed gene 3-DMR (Meg3-DMR). In mice, a maternal deletion of the IG-DMR leads to LOI in the locus, proving that the IG-DMR is a cis-acting imprinting control region of the locus. However, the Meg3-DMR overlaps with the promoter, exon 1 and intron 1 of the Meg3 gene. Because deletion of the Meg3-DMR inactivates the Meg3 gene, their roles in imprinting regulation of Meg3-DMR mice is unknown. Therefore, we generated two mouse models: Meg3Δ(1-4) and Meg3Δ(2-4), respectively targeting exons 1-4 and exons 2-4 of the Meg3 gene. A maternal deletion of Meg3Δ(1-4) caused embryonic death and LOI in both embryos and placentas, but did not affect methylation status of the IG-DMR. In contrast, mice carrying a maternal deletion of Meg3Δ(2-4) were born normally and did not have LOI. These data indicate that it is the Meg3-DMR, not the Meg3 gene, which regulates imprinting of the Dlk1-Dio3 locus.
Collapse
Affiliation(s)
- Wende Zhu
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA
| | - Erin M Botticelli
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA
| | - Rachel E Kery
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA
| | - Yanfei Mao
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA
| | - Xin Wang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA
| | - Anli Yang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA
| | - Xianling Wang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA
| | - Jie Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA
| | - Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA
| | - Roy J Soberman
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA
| | - Yunli Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical Shcool, Boston, MA 02114, USA.
| |
Collapse
|
45
|
Wang Y, Xie Y, Li L, He Y, Zheng D, Yu P, Yu L, Tang L, Wang Y, Wang Z. EZH2 RIP-seq Identifies Tissue-specific Long Non-coding RNAs. Curr Gene Ther 2019; 18:275-285. [PMID: 30295189 PMCID: PMC6249712 DOI: 10.2174/1566523218666181008125010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/24/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
Background: Polycomb Repressive Complex 2 (PRC2) catalyzes histone methylation at H3 Lys27, and plays crucial roles during development and diseases in numerous systems. Its catalytic sub-unit EZH2 represents a key nuclear target for long non-coding RNAs (lncRNAs) that emerging to be a novel class of epigenetic regulator and participate in diverse cellular processes. LncRNAs are character-ized by high tissue-specificity; however, little is known about the tissue profile of the EZH2-interacting lncRNAs. Objective: Here we performed a global screening for EZH2-binding lncRNAs in tissues including brain, lung, heart, liver, kidney, intestine, spleen, testis, muscle and blood by combining RNA immuno-precipitation and RNA sequencing. We identified 1328 EZH2-binding lncRNAs, among which 470 were shared in at least two tissues while 858 were only detected in single tissue. An RNA motif with specific secondary structure was identified in a number of lncRNAs, albeit not in all EZH2-binding lncRNAs. The EZH2-binding lncRNAs fell into four categories including intergenic lncRNA, antisense lncRNA, intron-related lncRNA and promoter-related lncRNA, suggesting diverse regulations of both cis and trans-mechanisms. A promoter-related lncRNA Hnf1aos1 bound to EZH2 specifically in the liver, a feature same as its paired coding gene Hnf1a, further confirming the validity of our study. In ad-dition to the well known EZH2-binding lncRNAs like Kcnq1ot1, Gas5, Meg3, Hotair and Malat1, ma-jority of the lncRNAs were firstly reported to be associated with EZH2. Conclusion: Our findings provide a profiling view of the EZH2-interacting lncRNAs across different tissues, and suggest critical roles of lncRNAs during cell differentiation and maturation
Collapse
Affiliation(s)
- Yan Wang
- Department of Cardiovascular Medicine, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Yinping Xie
- Department of Cardiology, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Lili Li
- Department of Cardiology, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Yuan He
- Department of Cardiology, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Di Zheng
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Pengcheng Yu
- Department of Cardiology, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Ling Yu
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Lixu Tang
- Wushu College, Wuhan Sports University, Wuhan, Hubei 430079, China
| | - Yibin Wang
- Departments of Anesthesiology, Division of Molecular Medicine, Physiology and Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Zhihua Wang
- Department of Cardiology, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan 430060, China
| |
Collapse
|
46
|
Zheng J, Song Y, Li Z, Tang A, Fei Y, He W. The implication of lncRNA expression pattern and potential function of lncRNA RP4-576H24.2 in acute myeloid leukemia. Cancer Med 2019; 8:7143-7160. [PMID: 31568697 PMCID: PMC6885877 DOI: 10.1002/cam4.2518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recent studies have revealed that long noncoding RNAs (lncRNAs) may hold crucial triggers of the pathogenesis of hematological malignancies, while the studies evaluating the expression pattern of lncRNA in acute myeloid leukemia (AML) are few. Thus, this study aimed to investigate the implication of lncRNA expression pattern in AML development and progression. METHODS Bone marrow samples from four AML patients and four controls were subjected to lncRNA sequencing. Then, bone marrow samples from 110 AML patients and 40 controls were proposed to real-time quantitative polymerase chain reaction (RT-qPCR) validation for 10 candidate lncRNAs. Clinical data and survival profiles were recorded in AML patients. Furthermore, lncRNA RP4-576H24.2 expression in AML cell lines and its effect on AML cell proliferation and apoptosis were detected. RESULTS LncRNA expression pattern by sequencing clearly distinguished AML patients from controls, and 630 upregulated and 621 downregulated lncRNAs were identified in AML patients compared to controls, which were mainly enriched in AML oncogene-related biological process and pathways (such as neutrophil degranulation, leukocyte transendothelial migration, and hematopoietic cell lineage). RT-qPCR validation observed that six lncRNAs correlated with AML risk, one lncRNA associated with risk stratification, and three lncRNAs correlated with survivals, among which lncRNA RP4-576H24.2 was the only one correlated with AML susceptibility, risk stratification, and survivals. Further in vitro experiments showed that lncRNA RP4-576H24.2 was upregulated in AML cell lines compared to normal bone marrow mononuclear cells (BMMCs), and promoted proliferation while inhibited apoptosis in HL-60 and KG-1 cells. CONCLUSIONS LncRNA expression pattern is closely involved in the development and progression of AML, and several specific lncRNAs exhibit potential to be biomarkers for AML risk and prognosis. Besides, lncRNA RP4-576H24.2 might be a potential oncogene in AML pathogenesis.
Collapse
Affiliation(s)
- Jifu Zheng
- Key Laboratory of Hematology of Jiangxi Province, Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuan Song
- Key Laboratory of Hematology of Jiangxi Province, Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenjiang Li
- Key Laboratory of Hematology of Jiangxi Province, Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Aiping Tang
- Key Laboratory of Hematology of Jiangxi Province, Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Fei
- Key Laboratory of Hematology of Jiangxi Province, Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenfeng He
- Key Laboratory of Molecular Medicine of Jiangxi, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
47
|
LncRNAs and PRC2: Coupled Partners in Embryonic Stem Cells. EPIGENOMES 2019; 3:epigenomes3030014. [PMID: 34968226 PMCID: PMC8594682 DOI: 10.3390/epigenomes3030014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023] Open
Abstract
The power of embryonic stem cells (ESCs) lies in their ability to self-renew and differentiate. Behind these two unique capabilities is a fine-tuned molecular network that shapes the genetic, epigenetic, and epitranscriptomic ESC plasticity. Although RNA has been shown to be functionally important in only a small minority of long non-coding RNA genes, a growing body of evidence has highlighted the pivotal and intricate role of lncRNAs in chromatin remodeling. Due to their multifaceted nature, lncRNAs interact with DNA, RNA, and proteins, and are emerging as new modulators of extensive gene expression programs through their participation in ESC-specific regulatory circuitries. Here, we review the tight cooperation between lncRNAs and Polycomb repressive complex 2 (PRC2), which is intimately involved in determining and maintaining the ESC epigenetic landscape. The lncRNA-PRC2 partnership is fundamental in securing the fully pluripotent state of ESCs, which must be primed to differentiate properly. We also reflect on the advantages brought to this field of research by the advent of single-cell analysis.
Collapse
|
48
|
Andergassen D, Muckenhuber M, Bammer PC, Kulinski TM, Theussl HC, Shimizu T, Penninger JM, Pauler FM, Hudson QJ. The Airn lncRNA does not require any DNA elements within its locus to silence distant imprinted genes. PLoS Genet 2019; 15:e1008268. [PMID: 31329595 PMCID: PMC6675118 DOI: 10.1371/journal.pgen.1008268] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/01/2019] [Accepted: 06/23/2019] [Indexed: 01/08/2023] Open
Abstract
Long non-coding (lnc) RNAs are numerous and found throughout the mammalian genome, and many are thought to be involved in the regulation of gene expression. However, the majority remain relatively uncharacterised and of uncertain function making the use of model systems to uncover their mode of action valuable. Imprinted lncRNAs target and recruit epigenetic silencing factors to a cluster of imprinted genes on the same chromosome, making them one of the best characterized lncRNAs for silencing distant genes in cis. In this study we examined silencing of the distant imprinted gene Slc22a3 by the lncRNA Airn in the Igf2r imprinted cluster in mouse. Previously we proposed that imprinted lncRNAs may silence distant imprinted genes by disrupting promoter-enhancer interactions by being transcribed through the enhancer, which we called the enhancer interference hypothesis. Here we tested this hypothesis by first using allele-specific chromosome conformation capture (3C) to detect interactions between the Slc22a3 promoter and the locus of the Airn lncRNA that silences it on the paternal chromosome. In agreement with the model, we found interactions enriched on the maternal allele across the entire Airn gene consistent with multiple enhancer-promoter interactions. Therefore, to test the enhancer interference hypothesis we devised an approach to delete the entire Airn gene. However, the deletion showed that there are no essential enhancers for Slc22a2, Pde10a and Slc22a3 within the Airn gene, strongly indicating that the Airn RNA rather than its transcription is responsible for silencing distant imprinted genes. Furthermore, we found that silent imprinted genes were covered with large blocks of H3K27me3 on the repressed paternal allele. Therefore we propose an alternative hypothesis whereby the chromosome interactions may initially guide the lncRNA to target imprinted promoters and recruit repressive chromatin, and that these interactions are lost once silencing is established. Long non-coding (lnc) RNAs are numerous in the mammalian genome and many have been implicated in gene regulation. However, the vast majority are uncharacterised and of uncertain function making known functional lncRNAs valuable models for understanding their mechanism of action. One mode of lncRNA action is to recruit epigenetic silencing to target distant genes on the same chromosome. A well-characterized group of lncRNAs that act in this way to silence genes are imprinted lncRNAs. In this study we examined how the imprinted lncRNA Airn silences genes in the Igf2r imprinted cluster, focusing primarily on silencing of the distant imprinted gene Slc22a3. We found that Airn expression blocks chromosome interactions between the Slc22a3 promoter and the Airn gene locus. By making a large genomic deletion including the Airn gene we showed that these interactions are not essential enhancer/promoter interactions, but may help to guide the Airn RNA to target genes to recruit epigenetic silencing. Our study adds to the understanding of how lncRNAs may act to silence distant genes.
Collapse
Affiliation(s)
- Daniel Andergassen
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Markus Muckenhuber
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Philipp C. Bammer
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tomasz M. Kulinski
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Takahiko Shimizu
- National Center for Geriatrics and Gerontology, Obu Aichi, Japan
| | - Josef M. Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Florian M. Pauler
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- * E-mail: (QJH); (FMP)
| | - Quanah J. Hudson
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
- * E-mail: (QJH); (FMP)
| |
Collapse
|
49
|
Liu W, Luo M, Zou L, Liu X, Wang R, Tao H, Wu D, Zhang W, Luo Q, Zhao Y. uNK cell-derived TGF-β1 regulates the long noncoding RNA MEG3 to control vascular smooth muscle cell migration and apoptosis in spiral artery remodeling. J Cell Biochem 2019; 120:15997-16007. [PMID: 31099432 DOI: 10.1002/jcb.28878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/21/2022]
Abstract
Successful pregnancy depends on correct spiral artery (SpA) remodeling, and thus, on normal patterns of the vascular smooth muscle cell (VSMC) apoptosis and migration. Uterine natural killer (uNK) cells-derived transforming growth factor β1 (TGF-β1) is known to mediate the separation of VSMC layers via as yet unknown mechanisms. Likewise, the long noncoding RNA maternally expressed gene 3 (MEG3) is a tumor suppressor that has been shown to regulate cancer cell apoptosis and migration; however, its role in VSMC loss is unclear. Thus, the aim of the present study was to assess the effects of uNK-derived TGF-β1 and MEG3 on VSMC function during SpA. Analyses were conducted to assess the effects of downregulating MEG3 expression, and/or administering treatments to increase or block TGF-β1 signaling on VSMC survival and behavior. The results of these analyses showed that treating the VSMC with uNK cell-derived supernatant or recombinant human TGF-β1 promoted MEG3 and matrix metalloprotease 2 expression and VSMC apoptosis and migration, and suppressed VSMC proliferation. Conversely, MEG3 silencing promoted VSMC proliferation and inhibited VSMC apoptosis and migration. Notably, TGF-β1 signaling induction had no significant effect on the proliferation, apoptosis, nor migration of the MEG3-silenced VSMC. Together, these findings suggest that MEG3 is regulated by uNK-derived TGF-β1, and itself mediates VSMC apoptosis and migration; thus, it may be an important positive regulator of VSMCs separation during maternal SpA remodeling.
Collapse
Affiliation(s)
- Weifang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglian Luo
- Department of Obstetrics and Gynecology, Wuhan First Hospital, Wuhan, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongli Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Tao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Luo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
50
|
Zhang L, Xue Z, Yan J, Wang J, Liu Q, Jiang H. LncRNA Riken-201 and Riken-203 modulates neural development by regulating the Sox6 through sequestering miRNAs. Cell Prolif 2019; 52:e12573. [PMID: 30667104 PMCID: PMC6536386 DOI: 10.1111/cpr.12573] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
Objectives Long non‐coding RNAs (LncRNAs) play important roles in epigenetic regulatory function during the development processes. In this study, we found that through alternative splicing, LncRNA C130071C03Riken variants Riken‐201 (Riken‐201) and Riken‐203 (Riken‐203) are both expressed highly in brain, and increase gradually during neural differentiation. However, the function of Rik‐201 and Rik‐203 is unknown. Materials and methods Embryonic stem cells (ESCs); RNA sequencing; gene expression of mRNAs, LncRNAs and miRNAs; over‐expression and RNA interference of genes; flow cytometry; real‐time quantity PCR; and Western blot were used in the studies. RNA pull‐down assay and PCR were employed to detect any miRNA that attached to Rik‐201 and Rik‐203. The binding of miRNA with mRNA of Sox6 was presented by the luciferase assay. Results Repression of Rik‐201 and Rik‐203 inhibited neural differentiation from mouse embryonic stem cells. Moreover, Rik‐201 and Rik‐203 functioned as the competing endogenous RNA (ceRNA) to repress the function of miR‐96 and miR‐467a‐3p, respectively, and modulate the expression of Sox6 to further regulate neural differentiation. Knockout of the Rik‐203 and Rik‐201 induced high ratio of brain developmental retardation. Further we found that C/EBPβ might potentially activated the transcription of Rik‐201 and Rik‐203. Conclusions These findings identify the functional role of Rik‐201 and Rik‐203 in facilitating neural differentiation and further brain development, and elucidate the underlying miRNAs‐Sox6‐associated molecular mechanisms.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Zhenyu Xue
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Jie Wang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Qidong Liu
- Anesthesia and Brain Function Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| |
Collapse
|