1
|
Wei K, Li R, Zhao X, Xie B, Xie T, Sun Q, Chen Y, Wei P, Xu W, Guo X, Zhao Z, Feng H, Ni L, Dong C. TRIM28 is an essential regulator of three-dimensional chromatin state underpinning CD8 + T cell activation. Nat Commun 2025; 16:750. [PMID: 39820353 PMCID: PMC11739657 DOI: 10.1038/s41467-025-56029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 01/04/2025] [Indexed: 01/19/2025] Open
Abstract
T cell activation is accompanied by extensive changes in epigenome. However, the high-ordered chromatin organization underpinning CD8+ T cell activation is not fully known. Here, we show extensive changes in the three-dimensional genome during CD8+ T cell activation, associated with changes in gene transcription. We show that CD8+ T-cell-specific deletion of Trim28 in mice disrupts autocrine IL-2 production and leads to impaired CD8+ T cell activation in vitro and in vivo. Mechanistically, TRIM28 binds to regulatory regions of genes associated with the formation of chromosomal loops during activation. At the loop anchor regions, TRIM28-occupancy overlaps with that of CTCF, a factor known for defining the boundaries of topologically associating domains and for forming of the loop anchors. In the absence of Trim28, RNA Pol II and cohesin binding to these regions diminishes, and the chromosomal structure required for the active state is disrupted. These results thus identify a critical role for TRIM28-dependent chromatin topology in gene transcription in activated CD8+ T cells.
Collapse
Affiliation(s)
- Kun Wei
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Ruifeng Li
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaohong Zhao
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Bowen Xie
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tian Xie
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Qinli Sun
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Yongzhen Chen
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Peng Wei
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Xu
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinyi Guo
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zixuan Zhao
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Han Feng
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Ling Ni
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Chen Dong
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine- Affiliated Renji Hospital, Shanghai, 200127, China.
- Research Unit of Immune Regulation and Immune Diseases of Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, 200127, China.
- Westlake University School of Medicine, Hangzhou, Zhejiang, 310030, China.
| |
Collapse
|
2
|
Zhao Y, Xu X, Cai H, Wu W, Wang Y, Huang C, Qin H, Mo S. Identification of potential biomarkers from amino acid transporter in the activation of hepatic stellate cells via bioinformatics. Front Genet 2024; 15:1499915. [PMID: 39698464 PMCID: PMC11652522 DOI: 10.3389/fgene.2024.1499915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The etiopathogenesis of hepatic stellate cells (HSC) activation has yet to be completely comprehended, and there has been broad concern about the interplay between amino acid transporter and cell proliferation. This study proposed exploring the molecular mechanism from amino acid transport-related genes in HSC activation by bioinformatic methods, seeking to identify the potentially crucial biomarkers. METHODS GSE68000, the mRNA expression profile dataset of activated HSC, was applied as the training dataset, and GSE67664 as the validation dataset. Differently expressed amino acid transport-related genes (DEAATGs), GO, DO, and KEGG analyses were utilized. We applied the protein-protein interaction analysis and machine learning of LASSO and random forests to identify the target genes. Moreover, single-gene GESA was executed to investigate the potential functions of target genes via the KEGG pathway terms. Then, a ceRNA network and a drug-gene interaction network were constructed. Ultimately, correlation analysis was explored between target genes and collagen alpha I (COL1A), alpha-smooth muscle actin (α-SMA), and immune checkpoints. RESULTS We identified 15 DEAATGs, whose enrichment analyses indicated that they were primarily enriched in the transport and metabolic process of amino acids. Moreover, two target genes (SLC7A5 and SLC1A5) were recognized from the PPI network and machine learning, confirmed through the validation dataset. Then single-gene GESA analysis revealed that SLC7A5 and SLC1A5 had a significant positive correlation to ECM-receptor interaction, cell cycle, and TGF-β signaling pathway and negative association with retinol metabolism conversely. Furthermore, the mRNA expression of target genes was closely correlated with the COL1A and α-SMA, as well as immune checkpoints. Additionally, 12 potential therapeutic drugs were in the drug-gene interaction network, and the ceRNA network was constructed and visualized. CONCLUSION SLC7A5 and SLC1A5, with their relevant molecules, could be potentially vital biomarkers for the activation of HSC.
Collapse
Affiliation(s)
- Yingying Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xueqing Xu
- Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Huaiyang Cai
- Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Wenhong Wu
- Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Yingwei Wang
- Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Cheng Huang
- Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Heping Qin
- Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Shuangyang Mo
- Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| |
Collapse
|
3
|
Hattori K, Tanaka S, Hashiba D, Tamura J, Etori K, Kageyama T, Ito T, Meguro K, Iwata A, Suto A, Suzuki K, Nakamura J, Ohtori S, Ziegler SF, Nakajima H. Synovial regulatory T cells expressing ST2 deteriorate joint inflammation through the suppression of immunoregulatory eosinophils. J Autoimmun 2024; 149:103333. [PMID: 39509740 DOI: 10.1016/j.jaut.2024.103333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic polyarthritis. It is well-established that helper T cells play crucial roles in the development and deterioration of RA. Recent studies also revealed the significant roles of regulatory T (Treg) cells in this context. Although Treg cells distributed in peripheral tissues exhibit various functions, the characteristics of synovial Treg cells remain unknown. In this study, we demonstrate that synovial Treg cells exacerbate synovial inflammation by reducing the number of immunoregulatory eosinophils through competitive consumption of IL-33. Synovial Treg cells expressed ST2 in a murine arthritis model, and surprisingly, Treg-specific ST2 knockout (ST2ΔTreg) mice exhibited attenuated arthritis. In ST2ΔTreg mice, an increase in immunoregulatory synovial eosinophils was observed. Additionally, immunoregulatory eosinophils were found to express ST2, and ST2-expressing Treg cells controlled the abundance of immunoregulatory eosinophils, possibly by consuming IL-33. Our results highlight that a subset of synovial Treg cells possesses the machinery to worsen arthritis by suppressing eosinophils. In the future landscape where Treg cell-based therapies are employed for autoimmune diseases, it is important to comprehend the characteristics of disease-related Treg cells. Understanding these aspects is crucial for ensuring safer treatment modalities that do not inadvertently worsen the diseases.
Collapse
MESH Headings
- Animals
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Eosinophils/immunology
- Eosinophils/metabolism
- Mice
- Interleukin-1 Receptor-Like 1 Protein/metabolism
- Interleukin-1 Receptor-Like 1 Protein/genetics
- Mice, Knockout
- Interleukin-33/metabolism
- Interleukin-33/immunology
- Interleukin-33/genetics
- Synovial Membrane/immunology
- Synovial Membrane/pathology
- Synovial Membrane/metabolism
- Disease Models, Animal
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Humans
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Koto Hattori
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Daisuke Hashiba
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan; Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Jun Tamura
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Keishi Etori
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Takahiro Kageyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Takashi Ito
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Kazuyuki Meguro
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Akira Suto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Junichi Nakamura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Seiji Ohtori
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Steven F Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101-2795, USA.
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| |
Collapse
|
4
|
Li K, Wang H, Jiang B, Jin X. TRIM28 in cancer and cancer therapy. Front Genet 2024; 15:1431564. [PMID: 39100077 PMCID: PMC11294089 DOI: 10.3389/fgene.2024.1431564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
TRIM28 (tripartite motif protein 28) was initially believed to be a transcription inhibitor that plays an important role in DNA damage repair (DDR) and in maintaining cancer cellular stemness. As research has continued to deepen, several studies have found that TRIM28 not only has ubiquitin E3 ligase activity to promote degradation of substrates, but also can promote SUMOylation of substrates. Although TRIM28 is highly expressed in various cancer tissues and has oncogenic effects, there are still a few studies indicating that TRIM28 has certain anticancer effects. Additionally, TRIM28 is subject to complex upstream regulation. In this review, we have elaborated on the structure and regulation of TRIM28. At the same time, highlighting the functional role of TRIM28 in tumor development and emphasizing its impact on cancer treatment provides a new direction for future clinical antitumor treatment.
Collapse
Affiliation(s)
- Kailang Li
- Department of Oncology and Hematology, Beilun District People’s Hospital, Ningbo, China
| | - Haifeng Wang
- Department of Oncology and Hematology, Beilun District People’s Hospital, Ningbo, China
| | - Bitao Jiang
- Department of Oncology and Hematology, Beilun District People’s Hospital, Ningbo, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Hyder U, Challa A, Thornton M, Nandu T, Kraus WL, D'Orso I. KAP1 negatively regulates RNA polymerase II elongation kinetics to activate signal-induced transcription. Nat Commun 2024; 15:5859. [PMID: 38997286 PMCID: PMC11245487 DOI: 10.1038/s41467-024-49905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Signal-induced transcriptional programs regulate critical biological processes through the precise spatiotemporal activation of Immediate Early Genes (IEGs); however, the mechanisms of transcription induction remain poorly understood. By combining an acute depletion system with several genomics approaches to interrogate synchronized, temporal transcription, we reveal that KAP1/TRIM28 is a first responder that fulfills the temporal and heightened transcriptional demand of IEGs. Acute KAP1 loss triggers an increase in RNA polymerase II elongation kinetics during early stimulation time points. This elongation defect derails the normal progression through the transcriptional cycle during late stimulation time points, ultimately leading to decreased recruitment of the transcription apparatus for re-initiation thereby dampening IEGs transcriptional output. Collectively, KAP1 plays a counterintuitive role by negatively regulating transcription elongation to support full activation across multiple transcription cycles of genes critical for cell physiology and organismal functions.
Collapse
Affiliation(s)
- Usman Hyder
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ashwini Challa
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Micah Thornton
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
6
|
Hyder U, Challa A, Thornton M, Nandu T, Kraus WL, D’Orso I. KAP1 negatively regulates RNA polymerase II elongation kinetics to activate signal-induced transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592422. [PMID: 38746145 PMCID: PMC11092767 DOI: 10.1101/2024.05.05.592422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Signal-induced transcriptional programs regulate critical biological processes through the precise spatiotemporal activation of Immediate Early Genes (IEGs); however, the mechanisms of transcription induction remain poorly understood. By combining an acute depletion system with high resolution genomics approaches to interrogate synchronized, temporal transcription, we reveal that KAP1/TRIM28 is a first responder that fulfills the temporal and heightened transcriptional demand of IEGs. Unexpectedly, acute KAP1 loss triggers an increase in RNA polymerase II elongation kinetics during early stimulation time points. This elongation defect derails the normal progression through the transcriptional cycle during late stimulation time points, ultimately leading to decreased recruitment of the transcription apparatus for re-initiation thereby dampening IEGs transcriptional output. Collectively, KAP1 plays a counterintuitive role by negatively regulating transcription elongation to support full activation across multiple transcription cycles of genes critical for cell physiology and organismal functions.
Collapse
Affiliation(s)
- Usman Hyder
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashwini Challa
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Micah Thornton
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Iván D’Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Randolph K, Hyder U, Challa A, Perez E, D’Orso I. Functional Analysis of KAP1/TRIM28 Requirements for HIV-1 Transcription Activation. Viruses 2024; 16:116. [PMID: 38257816 PMCID: PMC10819576 DOI: 10.3390/v16010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
HIV-1 latency maintenance and reactivation are regulated by several viral and host factors. One such factor is Krüppel-associated box (KRAB)-associated protein 1 (KAP1: also named TRIM28 or TIF1β). While initial studies have revealed KAP1 to be a positive regulator of latency reversal in transformed and primary CD4+ T cells, subsequent studies have proposed KAP1 to be a repressor required for latency maintenance. Given this discrepancy, in this study, we re-examine KAP1 transcription regulatory functions using a chemical genetics strategy to acutely deplete KAP1 expression to avoid the accumulation of indirect effects. Notably, KAP1 acute loss partially decreased HIV-1 promoter activity in response to activating signals, a function that can be restored upon complementation with exogenous KAP1, thus revealing that KAP1-mediated activation is on target. By combining comprehensive KAP1 domain deletion and mutagenesis in a cell-based reporter assay, we genetically defined the RING finger domain and an Intrinsically Disordered Region as key activating features. Together, our study solidifies the notion that KAP1 activates HIV-1 transcription by exploiting its multi-domain protein arrangement via previously unknown domains and functions.
Collapse
Affiliation(s)
| | | | | | | | - Iván D’Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (K.R.); (U.H.)
| |
Collapse
|
8
|
Stone TW, Williams RO. Interactions of IDO and the Kynurenine Pathway with Cell Transduction Systems and Metabolism at the Inflammation-Cancer Interface. Cancers (Basel) 2023; 15:cancers15112895. [PMID: 37296860 DOI: 10.3390/cancers15112895] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
The mechanisms underlying a relationship between inflammation and cancer are unclear, but much emphasis has been placed on the role of tryptophan metabolism to kynurenine and downstream metabolites, as these make a substantial contribution to the regulation of immune tolerance and susceptibility to cancer. The proposed link is supported by the induction of tryptophan metabolism by indoleamine-2,3-dioxygenase (IDO) or tryptophan-2,3-dioxygenase (TDO), in response to injury, infection or stress. This review will summarize the kynurenine pathway and will then focus on the bi-directional interactions with other transduction pathways and cancer-related factors. The kynurenine pathway can interact with and modify activity in many other transduction systems, potentially generating an extended web of effects other than the direct effects of kynurenine and its metabolites. Conversely, the pharmacological targeting of those other systems could greatly enhance the efficacy of changes in the kynurenine pathway. Indeed, manipulating those interacting pathways could affect inflammatory status and tumor development indirectly via the kynurenine pathway, while pharmacological modulation of the kynurenine pathway could indirectly influence anti-cancer protection. While current efforts are progressing to account for the failure of selective IDO1 inhibitors to inhibit tumor growth and to devise means of circumventing the issue, it is clear that there are wider factors involving the relationship between kynurenines and cancer that merit detailed consideration as alternative drug targets.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| |
Collapse
|
9
|
Suga K, Suto A, Tanaka S, Sugawara Y, Kageyama T, Ishikawa J, Sanayama Y, Ikeda K, Furuta S, Kagami SI, Iwata A, Hirose K, Suzuki K, Ohara O, Nakajima H. TAp63, a methotrexate target in CD4+ T cells, suppresses Foxp3 expression and exacerbates autoimmune arthritis. JCI Insight 2023; 8:164778. [PMID: 37212280 PMCID: PMC10322677 DOI: 10.1172/jci.insight.164778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/07/2023] [Indexed: 05/23/2023] Open
Abstract
Methotrexate (MTX) is a standard, first-line therapy for rheumatoid arthritis (RA); however, its precise mechanisms of action other than antifolate activity are largely unknown. We performed DNA microarray analyses of CD4+ T cells in patients with RA before and after MTX treatment and found that TP63 was the most significantly downregulated gene after MTX treatment. TAp63, an isoform of TP63, was highly expressed in human IL-17-producing Th (Th17) cells and was suppressed by MTX in vitro. Murine TAp63 was expressed at high levels in Th cells and at lower levels in thymus-derived Treg cells. Importantly, TAp63 knockdown in murine Th17 cells ameliorated the adoptive transfer arthritis model. RNA-Seq analyses of human Th17 cells overexpressing TAp63 and those with TAp63 knockdown identified FOXP3 as a possible TAp63 target gene. TAp63 knockdown in CD4+ T cells cultured under Th17 conditions with low-dose IL-6 increased Foxp3 expression, suggesting that TAp63 balances Th17 cells and Treg cells. Mechanistically, TAp63 knockdown in murine induced Treg (iTreg) cells promoted hypomethylation of conserved noncoding sequence 2 (CNS2) of the Foxp3 gene and enhanced the suppressive function of iTreg cells. Reporter analyses revealed that TAp63 suppressed the activation of the Foxp3 CNS2 enhancer. Collectively, TAp63 suppresses Foxp3 expression and exacerbates autoimmune arthritis.
Collapse
Affiliation(s)
- Kensuke Suga
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Akira Suto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Yutaka Sugawara
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Takahiro Kageyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Junichi Ishikawa
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Yoshie Sanayama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Kei Ikeda
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Shunsuke Furuta
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Shin-Ichiro Kagami
- Research Center for Allergy and Clinical Immunology, Asahi General Hospital, Asahi, Chiba, Japan
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| |
Collapse
|
10
|
Epithelial cell-derived cytokine TSLP activates regulatory T cells by enhancing fatty acid uptake. Sci Rep 2023; 13:1653. [PMID: 36717741 PMCID: PMC9887060 DOI: 10.1038/s41598-023-28987-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Epithelial cells control a variety of immune cells by secreting cytokines to maintain tissue homeostasis on mucosal surfaces. Regulatory T (Treg) cells are essential for immune homeostasis and for preventing tissue inflammation; however, the precise molecular mechanisms by which epithelial cell-derived cytokines function on Treg cells in the epithelial tissues are not well understood. Here, we show that peripheral Treg cells preferentially respond to thymic stromal lymphoprotein (TSLP). Although TSLP does not affect thymic Treg differentiation, TSLP receptor-deficient induced Treg cells derived from naïve CD4+ T cells are less activated in an adoptive transfer model of colitis. Mechanistically, TSLP activates induced Treg cells partially through mTORC1 activation and fatty acid uptake. Thus, TSLP modulates the activation status of induced Treg through the enhanced uptake of fatty acids to maintain homeostasis in the large intestine.
Collapse
|
11
|
Randolph K, Hyder U, D’Orso I. KAP1/TRIM28: Transcriptional Activator and/or Repressor of Viral and Cellular Programs? Front Cell Infect Microbiol 2022; 12:834636. [PMID: 35281453 PMCID: PMC8904932 DOI: 10.3389/fcimb.2022.834636] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 01/01/2023] Open
Abstract
Several transcriptional and epigenetic regulators have been functionally linked to the control of viral and cellular gene expression programs. One such regulator is Krüppel-associated box (KRAB)-associated protein 1 (KAP1: also named TRIM28 or TIF1β), which has been extensively studied in the past three decades. Here we offer an up-to date review of its various functions in a diversity of contexts. We first summarize the discovery of KAP1 repression of endogenous retroviruses during development. We then deliberate evidence in the literature suggesting KAP1 is both an activator and repressor of HIV-1 transcription and discuss experimental differences and limitations of previous studies. Finally, we discuss KAP1 regulation of DNA and RNA viruses, and then expand on KAP1 control of cellular responses and immune functions. While KAP1 positive and negative regulation of viral and cellular transcriptional programs is vastly documented, our mechanistic understanding remains narrow. We thus propose that precision genetic tools to reveal direct KAP1 functions in gene regulation will be required to not only illuminate new biology but also provide the foundation to translate the basic discoveries from the bench to the clinics.
Collapse
|
12
|
Li Q, Qin Y, Wang W, Jia M, Zhao W, Zhao C. KAP1-Mediated Epigenetic Suppression in Anti-RNA Viral Responses by Direct Targeting RIG-I and MDA5. THE JOURNAL OF IMMUNOLOGY 2021; 207:1903-1910. [PMID: 34497149 DOI: 10.4049/jimmunol.2100342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022]
Abstract
Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), including RIG-I (encoded by Ddx58) and melanoma differentiation-associated gene 5 (MDA5) (encoded by Ifih1), are crucial for initiating antiviral responses. Endogenous retroviral elements (ERVs) are transposable elements derived from exogenous retroviruses that are integrated into the genome. KRAB-associated protein 1 (KAP1) is a key epigenetic suppressor of ERVs that protects cells from detrimental genome instability. Increased ERV transcripts are sensed by RLRs and trigger innate immune signaling. However, whether KAP1 directly controls RLRs activity remains unclear. In this study, we show that KAP1 attenuates RNA viral infection-induced type I IFNs and facilitates viral replication by inhibiting RIG-I/MDA5 expression in primary peritoneal macrophages (PMs) of C57BL/6J mice. Kap1 deficiency increases IFN-β expression and inhibits vesicular stomatitis virus replication in C57BL/6J mice in vivo. Mechanistically, KAP1 binds to the promoter regions of Ddx58 and Ifih1 and promotes the establishment of repressive histone marks in primary PMs of C57BL/6J mice. Concordantly, KAP1 suppresses the expression of RIG-I and MDA5 at the transcriptional level in primary PMs of C57BL/6J mice. Our results establish that KAP1 epigenetically suppresses host antiviral responses by directly targeting RIG-1 and MDA5, thus facilitating the immune escape of RNA viruses.
Collapse
Affiliation(s)
- Qi Li
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; and
| | - Ying Qin
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; and
| | - Wenwen Wang
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; and
| | - Mutian Jia
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; and
| | - Wei Zhao
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; and
| | - Chunyuan Zhao
- Department of Cell Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
13
|
Qin Y, Li Q, Liang W, Yan R, Tong L, Jia M, Zhao C, Zhao W. TRIM28 SUMOylates and stabilizes NLRP3 to facilitate inflammasome activation. Nat Commun 2021; 12:4794. [PMID: 34373456 PMCID: PMC8352945 DOI: 10.1038/s41467-021-25033-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/14/2021] [Indexed: 11/14/2022] Open
Abstract
The cellular NLRP3 protein level is crucial for assembly and activation of the NLRP3 inflammasome. Various posttranslational modifications (PTMs), including phosphorylation and ubiquitination, control NLRP3 protein degradation and inflammasome activation; however, the function of small ubiquitin-like modifier (SUMO) modification (called SUMOylation) in controlling NLRP3 stability and subsequent inflammasome activation is unclear. Here, we show that the E3 SUMO ligase tripartite motif-containing protein 28 (TRIM28) is an enhancer of NLRP3 inflammasome activation by facilitating NLRP3 expression. TRIM28 binds NLRP3, promotes SUMO1, SUMO2 and SUMO3 modification of NLRP3, and thereby inhibits NLRP3 ubiquitination and proteasomal degradation. Concordantly, Trim28 deficiency attenuates NLRP3 inflammasome activation both in vitro and in vivo. These data identify a mechanism by which SUMOylation controls the cellular NLRP3 level and inflammasome activation, and reveal correlations and interactions of NLRP3 SUMOylation and ubiquitination during inflammasome activation. Post-translational modifications are important regulators of NLRP3 inflammasome activity. Here the authors show that the E3 ligase TRIM28 can SUMOylate NLRP3, thereby limiting its proteasomal degradation and increasing NLRP3 inflammasome activity.
Collapse
Affiliation(s)
- Ying Qin
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qi Li
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenbo Liang
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Rongzhen Yan
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Li Tong
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mutian Jia
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chunyuan Zhao
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Cell Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Zhao
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
14
|
Disruption of RING and PHD Domains of TRIM28 Evokes Differentiation in Human iPSCs. Cells 2021; 10:cells10081933. [PMID: 34440702 PMCID: PMC8394524 DOI: 10.3390/cells10081933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
TRIM28, a multi-domain protein, is crucial in the development of mouse embryos and the maintenance of embryonic stem cells’ (ESC) self-renewal potential. As the epigenetic factor modulating chromatin structure, TRIM28 regulates the expression of numerous genes and is associated with progression and poor prognosis in many types of cancer. Because of many similarities between highly dedifferentiated cancer cells and normal pluripotent stem cells, we applied human induced pluripotent stem cells (hiPSC) as a model for stemness studies. For the first time in hiPSC, we analyzed the function of individual TRIM28 domains. Here we demonstrate the essential role of a really interesting new gene (RING) domain and plant homeodomain (PHD) in regulating pluripotency maintenance and self-renewal capacity of hiPSC. Our data indicate that mutation within the RING or PHD domain leads to the loss of stem cell phenotypes and downregulation of the FGF signaling. Moreover, impairment of RING or PHD domain results in decreased proliferation and impedes embryoid body formation. In opposition to previous data indicating the impact of phosphorylation on TRIM28 function, our data suggest that TRIM28 phosphorylation does not significantly affect the pluripotency and self-renewal maintenance of hiPSC. Of note, iPSC with disrupted RING and PHD functions display downregulation of genes associated with tumor metastasis, which are considered important targets in cancer treatment. Our data suggest the potential use of RING and PHD domains of TRIM28 as targets in cancer therapy.
Collapse
|
15
|
Cook L, Reid KT, Häkkinen E, de Bie B, Tanaka S, Smyth DJ, White MP, Wong MQ, Huang Q, Gillies JK, Ziegler SF, Maizels RM, Levings MK. Induction of stable human FOXP3 + Tregs by a parasite-derived TGF-β mimic. Immunol Cell Biol 2021; 99:833-847. [PMID: 33929751 PMCID: PMC8453874 DOI: 10.1111/imcb.12475] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Immune homeostasis in the intestine is tightly controlled by FOXP3+ regulatory T cells (Tregs), defects of which are linked to the development of chronic conditions, such as inflammatory bowel disease (IBD). As a mechanism of immune evasion, several species of intestinal parasites boost Treg activity. The parasite Heligmosomoides polygyrus is known to secrete a molecule (Hp-TGM) that mimics the ability of TGF-β to induce FOXP3 expression in CD4+ T cells. The study aimed to investigate whether Hp-TGM could induce human FOXP3+ Tregs as a potential therapeutic approach for inflammatory diseases. CD4+ T cells from healthy volunteers were expanded in the presence of Hp-TGM or TGF-β. Treg induction was measured by flow cytometric detection of FOXP3 and other Treg markers, such as CD25 and CTLA-4. Epigenetic changes were detected using ChIP-Seq and pyrosequencing of FOXP3. Treg phenotype stability was assessed following inflammatory cytokine challenge and Treg function was evaluated by cellular co-culture suppression assays and cytometric bead arrays for secreted cytokines. Hp-TGM efficiently induced FOXP3 expression (> 60%), in addition to CD25 and CTLA-4, and caused epigenetic modification of the FOXP3 locus to a greater extent than TGF-β. Hp-TGM-induced Tregs had superior suppressive function compared with TGF-β-induced Tregs, and retained their phenotype following exposure to inflammatory cytokines. Furthermore, Hp-TGM induced a Treg-like phenotype in in vivo differentiated Th1 and Th17 cells, indicating its potential to re-program memory cells to enhance immune tolerance. These data indicate Hp-TGM has potential to be used to generate stable human FOXP3+ Tregs to treat IBD and other inflammatory diseases.
Collapse
Affiliation(s)
- Laura Cook
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Kyle T Reid
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Elmeri Häkkinen
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Brett de Bie
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Shigeru Tanaka
- Department of Translational Research, Benaroya Research Institute, Virginia Mason, Seattle, WA, USA
| | - Danielle J Smyth
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Madeleine Pj White
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - May Q Wong
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Qing Huang
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Jana K Gillies
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Steven F Ziegler
- Department of Translational Research, Benaroya Research Institute, Virginia Mason, Seattle, WA, USA
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Megan K Levings
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Chikuma S, Yamanaka S, Nakagawa S, Ueda MT, Hayabuchi H, Tokifuji Y, Kanayama M, Okamura T, Arase H, Yoshimura A. TRIM28 Expression on Dendritic Cells Prevents Excessive T Cell Priming by Silencing Endogenous Retrovirus. THE JOURNAL OF IMMUNOLOGY 2021; 206:1528-1539. [PMID: 33619215 DOI: 10.4049/jimmunol.2001003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/12/2021] [Indexed: 11/19/2022]
Abstract
Acquired immune reaction is initiated by dendritic cells (DCs), which present Ags to a few naive Ag-specific T cells. Deregulation of gene expression in DCs may alter the outcome of the immune response toward immunodeficiency and/or autoimmune diseases. Expression of TRIM28, a nuclear protein that mediates gene silencing through heterochromatin, decreased in DCs from old mice, suggesting alteration of gene regulation. Mice specifically lacking TRIM28 in DCs show increased DC population in the spleen and enhanced T cell priming toward inflammatory effector T cells, leading to acceleration and exacerbation in experimental autoimmune encephalomyelitis. TRIM28-deficient DCs were found to ectopically transcribe endogenous retrovirus (ERV) elements. Combined genome-wide analysis revealed a strong colocalization among the decreased repressive histone mark H3K9me3-transcribed ERV elements and the derepressed host genes that were related to inflammation in TRIM28-deficient DCs. This suggests that TRIM28 occupancy of ERV elements critically represses expression of proximal inflammatory genes on the genome. We propose that gene silencing through repressive histone modification by TRIM28 plays a role in maintaining the integrity of precise gene regulation in DCs, which prevents aberrant T cell priming to inflammatory effector T cells.
Collapse
Affiliation(s)
- Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Soichiro Yamanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Mahoko Takahashi Ueda
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 259-1193, Japan.,Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hodaka Hayabuchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yukiko Tokifuji
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masashi Kanayama
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan.,Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Disease, Osaka University, Osaka 565-0871, Japan; and.,Laboratory of Immunochemistry, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
17
|
Di Giorgio E, Wang L, Xiong Y, Akimova T, Christensen LM, Han R, Samanta A, Trevisanut M, Bhatti TR, Beier UH, Hancock WW. MEF2D sustains activation of effector Foxp3+ Tregs during transplant survival and anticancer immunity. J Clin Invest 2021; 130:6242-6260. [PMID: 32790649 DOI: 10.1172/jci135486] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
The transcription factor MEF2D is important in the regulation of differentiation and adaptive responses in many cell types. We found that among T cells, MEF2D gained new functions in Foxp3+ T regulatory (Treg) cells due to its interactions with the transcription factor Foxp3 and its release from canonical partners, like histone/protein deacetylases. Though not necessary for the generation and maintenance of Tregs, MEF2D was required for the expression of IL-10, CTLA4, and Icos, and for the acquisition of an effector Treg phenotype. At these loci, MEF2D acted both synergistically and additively to Foxp3, and downstream of Blimp1. Mice with the conditional deletion in Tregs of the gene encoding MEF2D were unable to maintain long-term allograft survival despite costimulation blockade, had enhanced antitumor immunity in syngeneic models, but displayed only minor evidence of autoimmunity when maintained under normal conditions. The role played by MEF2D in sustaining effector Foxp3+ Treg functions without abrogating their basal actions suggests its suitability for drug discovery efforts in cancer therapy.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yan Xiong
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute of Hepatobiliary Diseases of Wuhan University, Transplant Centre of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lanette M Christensen
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rongxiang Han
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arabinda Samanta
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matteo Trevisanut
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Tricia R Bhatti
- Division of Anatomical Pathology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ulf H Beier
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
TRIM28 is a distinct prognostic biomarker that worsens the tumor immune microenvironment in lung adenocarcinoma. Aging (Albany NY) 2020; 12:20308-20331. [PMID: 33091876 PMCID: PMC7655206 DOI: 10.18632/aging.103804] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/09/2020] [Indexed: 12/26/2022]
Abstract
The tumor immune microenvironment (TIME) is an important determinant of cancer prognosis and treatment efficacy. To identify immune-related prognostic biomarkers of lung adenocarcinoma, we used the ESTIMATE algorithm to calculate the immune and stromal scores of 517 lung adenocarcinoma patients from The Cancer Genome Atlas (TCGA). We detected 985 differentially expressed genes (DEGs) between patients with high and low immune and stromal scores, and we analyzed their functions and protein-protein interactions. TRIM28 was upregulated in lung adenocarcinoma patients with low immune and stromal scores, and was associated with a poor prognosis. The TISIDB and TIMER databases indicated that TRIM28 expression correlated negatively with immune infiltration. We then explored genes that were co-expressed with TRIM28 in TCGA, and investigated DEGs based on TRIM28 expression in GSE43580 and GSE7670. The 429 common DEGs from these analyses were functionally analyzed. We also performed a Gene Set Enrichment Analysis using TCGA data, and predicted substrates of TRIM28 using UbiBrowser. The results indicated that TRIM28 may negatively regulate the TIME by increasing the SUMOylation of IRF5 and IRF8. Correlation analyses and validations in two lung adenocarcinoma cell lines (PC9 and H1299) confirmed these findings. Thus, TRIM28 may worsen the TIME and prognosis of lung adenocarcinoma.
Collapse
|
19
|
Epigenome-metabolome-microbiome axis in health and IBD. Curr Opin Microbiol 2020; 56:97-108. [PMID: 32920333 DOI: 10.1016/j.mib.2020.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Environmental triggers in the context of genetic susceptibility drive phenotypes of complex immune disorders such as Inflammatory bowel disease (IBD). One such trigger of IBD is perturbations in enteric commensal bacteria, fungi or viruses that shape both immune and neuronal state. The epigenome acts as an interface between microbiota and context-specific gene expression and is thus emerging as a third key contributor to IBD. Here we review evidence that the host epigenome plays a significant role in orchestrating the bidirectional crosstalk between mammals and their commensal microorganisms. We discuss disruption of chromatin regulatory regions and epigenetic enzyme mutants as a causative factor in IBD patients and mouse models of intestinal inflammation and consider the possible translation of this knowledge. Furthermore, we present emerging insights into the intricate connection between the microbiome and epigenetic enzyme activity via host or bacterial metabolites and how these interactions fine-tune the microorganism-host relationship.
Collapse
|
20
|
Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer 2020; 19:116. [PMID: 32680511 PMCID: PMC7367382 DOI: 10.1186/s12943-020-01234-1] [Citation(s) in RCA: 527] [Impact Index Per Article: 105.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) characterized by the expression of the master transcription factor forkhead box protein p3 (Foxp3) suppress anticancer immunity, thereby hindering protective immunosurveillance of tumours and hampering effective antitumour immune responses in tumour-bearing hosts, constitute a current research hotspot in the field. However, Tregs are also essential for the maintenance of the immune tolerance of the body and share many molecular signalling pathways with conventional T cells, including cytotoxic T cells, the primary mediators of tumour immunity. Hence, the inability to specifically target and neutralize Tregs in the tumour microenvironment without globally compromising self-tolerance poses a significant challenge. Here, we review recent advances in characterizing tumour-infiltrating Tregs with a focus on the functional roles of costimulatory and inhibitory receptors in Tregs, evaluate their potential as clinical targets, and systematically summarize their roles in potential treatment strategies. Also, we propose modalities to integrate our increasing knowledge on Tregs phenotype and function for the rational design of checkpoint inhibitor-based combination therapies. Finally, we propose possible treatment strategies that can be used to develop Treg-targeted therapies.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
21
|
Bacon CW, Challa A, Hyder U, Shukla A, Borkar AN, Bayo J, Liu J, Wu SY, Chiang CM, Kutateladze TG, D'Orso I. KAP1 Is a Chromatin Reader that Couples Steps of RNA Polymerase II Transcription to Sustain Oncogenic Programs. Mol Cell 2020; 78:1133-1151.e14. [PMID: 32402252 PMCID: PMC7305985 DOI: 10.1016/j.molcel.2020.04.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 04/17/2020] [Indexed: 01/08/2023]
Abstract
Precise control of the RNA polymerase II (RNA Pol II) cycle, including pausing and pause release, maintains transcriptional homeostasis and organismal functions. Despite previous work to understand individual transcription steps, we reveal a mechanism that integrates RNA Pol II cycle transitions. Surprisingly, KAP1/TRIM28 uses a previously uncharacterized chromatin reader cassette to bind hypo-acetylated histone 4 tails at promoters, guaranteeing continuous progression of RNA Pol II entry to and exit from the pause state. Upon chromatin docking, KAP1 first associates with RNA Pol II and then recruits a pathway-specific transcription factor (SMAD2) in response to cognate ligands, enabling gene-selective CDK9-dependent pause release. This coupling mechanism is exploited by tumor cells to aberrantly sustain transcriptional programs commonly dysregulated in cancer patients. The discovery of a factor integrating transcription steps expands the functional repertoire by which chromatin readers operate and provides mechanistic understanding of transcription regulation, offering alternative therapeutic opportunities to target transcriptional dysregulation.
Collapse
Affiliation(s)
- Curtis W Bacon
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Biological Chemistry Graduate Program, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashwini Challa
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Usman Hyder
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashutosh Shukla
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aditi N Borkar
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Juan Bayo
- Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET, Universidad Austral, Derqui-Pilar, Buenos Aires 1629, Argentina
| | - Jiuyang Liu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shwu-Yuan Wu
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng-Ming Chiang
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
22
|
Abstract
Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease with non-suppurative destruction of the intrahepatic bile ducts. The interplay of genetics and environmental triggers contributes to the onset of the disease and subsequently results in cholestasis and progressive fibrosis. Recently, genome-wide association studies (GWAS) have identified multiple genes influencing the susceptibility to PBC in HLA and non-HLA loci. However, it is estimated that the known risk variants merely account for no more than 20% of the heritability of PBC and causes of the remaining heritability remain uncertain. Increasing evidence suggests that the presence of epigenetic abnormalities may explain the "missing heritability" that cannot be captured by GWAS. Among these epigenetic mechanisms, DNA methylation, histone modification, and noncoding RNAs (i.e. miRNA and lncRNA) are involved in the pathogenesis of PBC. Additionally, telomere dysregulation in biliary epithelial cells (BECs) may play a role in disease onset, whereas a deficiency in sex chromosome and skewed gene expression in the X chromosome may to some extent explain the female dominance in PBC.
Collapse
|
23
|
Kumar J, Kaur G, Ren R, Lu Y, Lin K, Li J, Huang Y, Patel A, Barton MC, Macfarlan T, Zhang X, Cheng X. KRAB domain of ZFP568 disrupts TRIM28-mediated abnormal interactions in cancer cells. NAR Cancer 2020; 2:zcaa007. [PMID: 32743551 PMCID: PMC7380489 DOI: 10.1093/narcan/zcaa007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 01/31/2023] Open
Abstract
Interactions of KRAB (Krüppel-associated box)-associated protein KAP1 [also known as TRIM28 (tripartite motif containing protein 28)] with DNA-binding KRAB zinc finger (KRAB-ZF) proteins silence many transposable elements during embryogenesis. However, in some cancers, TRIM28 is upregulated and interacts with different partners, many of which are transcription regulators such as EZH2 in MCF7 cells, to form abnormal repressive or activating complexes that lead to misregulation of genes. We ask whether a KRAB domain-the TRIM28 interaction domain present in native binding partners of TRIM28 that mediate repression of transposable elements-could be used as a tool molecule to disrupt aberrant TRIM28 complexes. Expression of KRAB domain containing fragments from a KRAB-ZF protein (ZFP568) in MCF7 cells, without the DNA-binding zinc fingers, inhibited TRIM28-EZH2 interactions and caused degradation of both TRIM28 and EZH2 proteins as well as other components of the EZH2-associated polycomb repressor 2 complex. In consequence, the product of EZH2 enzymatic activity, trimethylation of histone H3 lysine 27 level, was significantly reduced. The expression of a synthetic KRAB domain significantly inhibits the growth of breast cancer cells (MCF7) but has no effect on normal (immortalized) human mammary epithelial cells (MCF10a). Further, we found that TRIM28 is a positive regulator of TRIM24 protein levels, as observed previously in prostate cancer cells, and expression of the KRAB domain also lowered TRIM24 protein. Importantly, reduction of TRIM24 levels, by treatment with either the KRAB domain or a small-molecule degrader targeted to TRIM24, is accompanied by an elevated level of tumor suppressor p53. Taken together, this study reveals a novel mechanism for a TRIM28-associated protein stability network and establishes TRIM28 as a potential therapeutic target in cancers where TRIM28 is elevated. Finally, we discuss a potential mechanism of KRAB-ZF gene expression controlled by a regulatory feedback loop of TRIM28-KRAB.
Collapse
Affiliation(s)
- Janani Kumar
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gundeep Kaur
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jia Li
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Michelle C Barton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Todd Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
24
|
Koizumi SI, Ishikawa H. Transcriptional Regulation of Differentiation and Functions of Effector T Regulatory Cells. Cells 2019; 8:E939. [PMID: 31434282 PMCID: PMC6721668 DOI: 10.3390/cells8080939] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Foxp3-expressing regulatory T (Treg) cells can suppress the activity of various types of immune cells and play key roles in the maintenance of self-tolerance and in the regulation of immune responses against pathogens and tumor cells. Treg cells consist of heterogeneous subsets that have distinct phenotypes and functions. Upon antigen stimulation, naïve-like thymus-derived Treg cells, which circulate in secondary lymphoid organs, can differentiate into effector Treg (eTreg) cells and migrate to and control immune homeostasis of peripheral tissues. eTreg cells are heterogeneous in terms of their ability to localize to specific tissues and suppress particular types of immune responses. Differentiation and function of diverse eTreg subsets are regulated by a variety of transcription factors that are activated by antigens and cytokines. In this article, we review the current understanding of the transcriptional regulation of differentiation and function of eTreg cells.
Collapse
Affiliation(s)
- Shin-Ichi Koizumi
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Hiroki Ishikawa
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
25
|
Shafabakhsh R, Pourhanifeh MH, Mirzaei HR, Sahebkar A, Asemi Z, Mirzaei H. Targeting regulatory T cells by curcumin: A potential for cancer immunotherapy. Pharmacol Res 2019; 147:104353. [PMID: 31306775 DOI: 10.1016/j.phrs.2019.104353] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
Abstract
Immune system has critical roles in fighting against several diseases like cancer. Cancer cells evolve several ways to escape from the immune system to remain alive and trigger new phases of cancer progression. Regulatory T cells are one of the key components in tumor immune tolerance and contribute to the evasion of cancer cells from the immune system. Targeting regulatory T cells could provide new horizons in designing and development of effective therapeutic platforms for the treatment of various malignancies. Curcumin is the bioactive pigment of turmeric and a well-known phytochemical with a wide range of pharmacological activities. A growing body of evidence has demonstrated that curcumin affects manifold molecular pathways that are implicated in tumorigenesis and cancer metastasis. In this regard, some studies have indicated that this phytochemical could target regulatory T cells and convert them into T helper 1 cells, which possess anti-tumor effects. On the contrary, curcumin is able to increase the number of regulatory T cells in other conditions such as inflammatory bowel disease. Herein, we describe the anti-cancer roles of curcumin via targeting regulatory T cells. Moreover, we summarize the effects of curcumin on regulatory T cell population in other diseases.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
26
|
Venkateswaran S, Denson LA, Jurickova I, Dodd A, Zwick ME, Cutler DJ, Kugathasan S, Okou DT. Neutrophil GM-CSF signaling in inflammatory bowel disease patients is influenced by non-coding genetic variants. Sci Rep 2019; 9:9168. [PMID: 31235766 PMCID: PMC6591305 DOI: 10.1038/s41598-019-45701-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/06/2019] [Indexed: 11/25/2022] Open
Abstract
Neutrophil dysfunction and GM-CSF auto-antibodies are observed in pediatric and adult patients with Crohn’s disease (CD). We associated damaging coding variants with low GM-CSF induced STAT5 stimulation index (GMSI) in pediatric CD patients and implicated variation of neutrophil GM-CSF signaling in cell function and disease complications. Because many CD patients with low GMSI do not carry damaging coding mutations, we sought to test the hypothesis that non-coding variants contribute to this phenotype. We enrolled, performed whole genome sequencing, and measured the GMSI in 77 CD and ulcerative colitis (UC) patients (24 low and 53 normal GMSI). We identified 4 non-coding variants (rs3808851, rs10974787, rs10974788 and rs10974789) in RCL1 significantly associated with variation of GMSI level (p < 0.011). They were validated in two independent cohorts with: RNAseq data (n = 50) and blood eQTL dataset (n = 31,684). These variants are in LD and affect expression of JAK2 (p 0.005 to 0.013), RCL1 (p 8.17E-13 to 2.98E-11) and AK3 (p 2.00E-68 to 3.03E-55) genes. Additionally, they influence proteins involved in differentiation of gut epithelium, inflammation, and immune system regulation. In summary, our study outlines the contribution of non-coding variants in neutrophil GM-CSF signaling and the potential importance of RCL1 and AK3 in CD pathogenesis.
Collapse
Affiliation(s)
| | - Lee A Denson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ingrid Jurickova
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anne Dodd
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael E Zwick
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Subra Kugathasan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - David T Okou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
27
|
Essential Kinases and Transcriptional Regulators and Their Roles in Autoimmunity. Biomolecules 2019; 9:biom9040145. [PMID: 30974919 PMCID: PMC6523499 DOI: 10.3390/biom9040145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
Kinases and transcriptional regulators are fundamental components of cell signaling that are expressed on many types of immune cells which are involved in secretion of cytokines, cell proliferation, differentiation, and apoptosis. Both play important roles in biological responses in health as well as in illnesses such as the autoimmune diseases which comprise at least 80 disorders. These diseases are caused by complex genetic and environmental interactions that lead to a breakage of immunologic tolerance and a disruption of the balance between self-reactive cells and regulatory cells. Kinases or transcriptional regulatory factors often have an abnormal expression in the autoimmune cells that participate in the pathogenesis of autoimmune disease. These abnormally expressed kinases or transcriptional regulators can over-activate the function of self-reactive cells to produce inflammatory cytokines or down-regulate the activity of regulatory cells, thus causing autoimmune diseases. In this review we introduce five kinds of kinase and transcriptional regulator related to autoimmune diseases, namely, members of the Janus kinase (JAK) family (JAK3 and/or tyrosine kinase 2 (TYK2)), fork head box protein 3 (Foxp3), the retinoic acid-related orphan receptor gamma t (RORγt), and T-box expressed in T cells (T-bet) factors. We also provide a mechanistic insight into how these kinases and transcriptional regulators affect the function of the immune cells related to autoimmune diseases, as well as a description of a current drug design targeting these kinases and transcriptional regulators. Understanding their exact role helps offer new therapies for control of the inflammatory responses that could lead to clinical improvement of the autoimmune diseases.
Collapse
|
28
|
Najafi M, Farhood B, Mortezaee K. Contribution of regulatory T cells to cancer: A review. J Cell Physiol 2018; 234:7983-7993. [PMID: 30317612 DOI: 10.1002/jcp.27553] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Abstract
Regulatory T cells (Tregs) represent a low number of T-cell population under normal conditions, and they play key roles for maintaining immune system in homeostasis. The number of these cells is extensively increased in nearly all cancers, which is for dampening responses from immune system against cancer cells, metastasis, tumor recurrence, and treatment resistance. The interesting point is that apoptotic Tregs are stronger than their live counterparts for suppressing responses from immune system. Tregs within the tumor microenvironment have extensive positive cross-talks with other immunosuppressive cells including cancer-associated fibroblasts, cancer cells, macrophage type 2 cells, and myeloid-derived suppressor cells, and they have negative interactions with immunostimulatory cells including cytotoxic T lymphocytes (CTL) and natural killer cells. A wide variety of markers are expressed in Tregs, among them forkhead box P3 (FOXP3) is the most specific marker and the master regulator of these cells. Multiple signals are activated by Tregs including transforming growth factor-β, signal transducer and activator of transcription, and mTORC1. Treg reprogramming from an immunosuppressive to immunostimulatory proinflammatory phenotype is critical for increasing the efficacy of immunotherapy. This would be applicable through selective suppression of tumor-bearing receptors in Tregs, including FOXP3, programmed death-1, T-cell immunoglobulin mucin-3, and CTL-associated antigen-4, among others. Intratumoral Tregs can also be targeted by increasing the ratio for CTL/Treg.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|