1
|
Zaręba P, Drabczyk AK, Wnorowski A, Maj M, Rurka P, Malarz K, Latacz G, Nędza K, Ciura K, Greber KE, Boguszewska-Czubara A, Śliwa P, Kuliś J. Long-Chain Cyclic Arylguanidines as Multifunctional Serotonin Receptor Ligands with Antiproliferative Activity. ACS OMEGA 2025; 10:6446-6469. [PMID: 40028084 PMCID: PMC11866022 DOI: 10.1021/acsomega.4c06456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025]
Abstract
Recent investigations have shown serotonin's stimulatory effect on several types of cancers and carcinoid tumors. Nowadays there has been a significant increase in interest in 5-HT7 and 5-HT5A receptors in the context of cancer treatment. The possible role of 5-HT6R in the pathogenesis and progression of glioma remains an interesting and relatively unexplored issue. We developed a new group of long-chain 2-aminoquinazoline sulfonamides as new multifunctional serotonin receptor ligands, focused on 5-HT6R. The chosen group was further evaluated for antiproliferative effects on 1321N1 astrocytoma cells, along with U87MG, U-251, and LN-229 glioblastoma cell lines. Certain compounds were subjected to in vitro absorption, distribution, metabolism, excretion, and toxicity (ADMET) testing, for assessing factors such as lipophilicity, plasma protein binding, phospholipid affinity, potential for drug-drug interactions (DDI), membrane permeability (PAMPA), metabolic stability, and hepatotoxicity. Additionally, in vivo testing was performed using the Danio rerio model. The developed group includes the selective 5-HT6R antagonist PP 15, dual ligand for 5-HT1AR/5-HT6R PP 13, and dual ligand for 5-HT5AR/5-HT6R PP 10. The use of multifunctional ligands was associated with high anticancer activity both against selected glioma cell lines and other cancers (IC50 < 25 μM).
Collapse
Affiliation(s)
- Przemysław Zaręba
- Faculty
of Chemical Engineering and Technology, Department of Chemical Technology
and Environmental Analytics, Cracow University
of Technology, 24 Warszawska Street, 31-155 Cracow, Poland
| | - Anna K. Drabczyk
- Faculty
of Chemical Engineering and Technology, Department of Organic Chemistry
and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland
| | - Artur Wnorowski
- Department
of Biopharmacy, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland
| | - Maciej Maj
- Department
of Biopharmacy, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland
| | - Patryk Rurka
- Institute
of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty Street, 41-500 Chorzow, Poland
| | - Katarzyna Malarz
- Institute
of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty Street, 41-500 Chorzow, Poland
- Department
of Systems Biology and Engineering, Silesian
University of Technology, 11 Akademicka Street, 44-100 Gliwice, Poland
| | - Gniewomir Latacz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Cracow, Poland
| | - Krystyna Nędza
- Department
of Medicinal Chemistry, Maj Institute of
Pharmacology − Polish Academy of Sciences, 12 Smętna Street, 31-343 Cracow, Poland
| | - Krzesimir Ciura
- Department
of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
- Laboratory
of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308 Gdansk, Poland
| | - Katarzyna Ewa Greber
- Department
of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Anna Boguszewska-Czubara
- Department
of Medical Chemistry, Medical University
of Lublin, 4a Chodźki
Street, 20-093 Lublin, Poland
| | - Paweł Śliwa
- Faculty
of Chemical Engineering and Technology, Department of Organic Chemistry
and Technology, Cracow University of Technology, 24 Warszawska Street, 31-155 Cracow, Poland
| | - Julia Kuliś
- Faculty
of Chemical Engineering and Technology, Department of Chemical Technology
and Environmental Analytics, Cracow University
of Technology, 24 Warszawska Street, 31-155 Cracow, Poland
| |
Collapse
|
2
|
Khan ZR, Welsby PJ, Stasik I, Hayes JM. Discovery of Potent Multikinase Type-II Inhibitors Targeting CDK5 in the DFG-out Inactive State with Promising Potential against Glioblastoma. J Med Chem 2024. [PMID: 38686637 DOI: 10.1021/acs.jmedchem.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Kinases have proven valuable targets in successful cancer drug discovery projects, but not yet for malignant brain tumors where type-II inhibition of cyclin-dependent kinase 5 (CDK5) stabilizing the DFG-out inactive state has potential for design of selective and clinically efficient drug candidates. In the absence of crystallographic evidence for a CDK5 DFG-out inactive state protein-ligand complex, for the first time, a model was designed using metadynamics/molecular dynamics simulations. Glide docking of the ZINC15 biogenic database identified [pyrimidin-2-yl]amino-furo[3,2-b]-furyl-urea/amide hit chemical scaffolds. For four selected analogues (4, 27, 36, and 42), potent effects on glioblastoma cell viability in U87-MG, T98G, and U251-MG cell lines and patient-derived cultures were generally observed (IC50s ∼ 10-40 μM at 72 h). Selectivity profiling against 11 homologous kinases revealed multikinase inhibition (CDK2, CDK5, CDK9, and GSK-3α/β), most potent for GSK-3α in the nanomolar range (IC50s ∼ 0.23-0.98 μM). These compounds may therefore have diverse anticancer mechanisms of action and are of considerable interest for lead optimization.
Collapse
Affiliation(s)
- Zahra R Khan
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Philip J Welsby
- Education Directorate, Royal College of Physicians, Liverpool L7 3FA, United Kingdom
| | - Izabela Stasik
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Joseph M Hayes
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
- Biomedical Evidence-Based Transdisciplinary (BEST) Health Research Institute, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| |
Collapse
|
3
|
Dinevska M, Widodo SS, Cook L, Stylli SS, Ramsay RG, Mantamadiotis T. CREB: A multifaceted transcriptional regulator of neural and immune function in CNS tumors. Brain Behav Immun 2024; 116:140-149. [PMID: 38070619 DOI: 10.1016/j.bbi.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/21/2024] Open
Abstract
Cancers of the central nervous system (CNS) are unique with respect to their tumor microenvironment. Such a status is due to immune-privilege and the cellular behaviors within a highly networked, neural-rich milieu. During tumor development in the CNS, neural, immune and cancer cells establish complex cell-to-cell communication networks which mimic physiological functions, including paracrine signaling and synapse-like formations. This crosstalk regulates diverse pathological functions contributing to tumor progression. In the CNS, regulation of physiological and pathological functions relies on various cell signaling and transcription programs. At the core of these events lies the cyclic adenosine monophosphate (cAMP) response element binding protein (CREB), a master transcriptional regulator in the CNS. CREB is a kinase inducible transcription factor which regulates many CNS functions, including neurogenesis, neuronal survival, neuronal activation and long-term memory. Here, we discuss how CREB-regulated mechanisms operating in diverse cell types, which control development and function of the CNS, are co-opted in CNS tumors.
Collapse
Affiliation(s)
- Marija Dinevska
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Samuel S Widodo
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Laura Cook
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Stanley S Stylli
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Robert G Ramsay
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology and the Department of Clinical Pathology, The University of Melbourne, Melbourne, Australia
| | - Theo Mantamadiotis
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia; Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Yao H, Zhang S, Xie H, Fan Y, Miao M, Zhu R, Yuan L, Gu M, You Y, You B. RCN2 promotes Nasopharyngeal carcinoma progression by curbing Calcium flow and Mitochondrial apoptosis. Cell Oncol (Dordr) 2023; 46:1031-1048. [PMID: 36952101 PMCID: PMC10356900 DOI: 10.1007/s13402-023-00796-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 03/24/2023] Open
Abstract
OBJECTIVE Evidence suggests that calcium release from the endoplasmic reticulum (ER) can be induced to cause calcium overload, which in turn can trigger mitochondrial-dependent apoptosis. Dysregulation of systemic calcium homeostasis and changing levels of calcium-binding proteins have been shown to be associated with the malignant behavior of tumors. However, the precise molecular mechanism underlying Nasopharyngeal carcinoma (NPC) remains uncertain. METHODS Reticulocalbin (RCN2) expression in NPC was assessed using GEO database, western blot analysis and qRT-PCR. Apoptosis was assessed using flow cytometric analysis and the expression levels of apoptosis-related proteins were determined using western blot analysis. Intracellular calcium ion concentrations were measured using fluorescence imaging. The findings from these analyses were validated in vitro using nude mice models. Luciferase and ChIP assays were used to measure transcriptional regulation. Clinical significance was evaluated using tissue microarray analysis (n=150). RESULTS Our results showed that RCN2 promotes malignancy by causing Ca2+ flow imbalance, which leads to the initiation of the stress-mediated mitochondrial apoptosis pathway. We demonstrate that calreticulin (CALR) resides primarily in the endoplasmic reticulum and interacts with RCN2. Moreover, the transcription factors YY1 and homeobox protein goosecoid (GSC) both contribute to the initiation of RCN2 transcription by directly binding to the predicted promoter region of RCN2. Finally, high expression of RCN2 combined with high expression of GSC and YY1 may serve as an important clinical biomarker of poor prognosis in patients with NPC. CONCLUSION YY1 and GSC are upstream regulators of RCN2, involved in mitochondrial calcium overload and stress-induced mitochondrial apoptosis. Thus, they can play significant role in the malignant development of NPCs.
Collapse
Affiliation(s)
- Hui Yao
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
- Changhai Hospital of Shanghai, No. 168 Changhai Road, Shanghai, 200433, China
| | - Siyu Zhang
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
| | - Haijing Xie
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
| | - Yue Fan
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
| | - Mengyu Miao
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
| | - Rui Zhu
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
| | - Ling Yuan
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
| | - Miao Gu
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical College of Nantong University, Nantong, 226019, China
| | - Yiwen You
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.
- Medical College of Nantong University, Nantong, 226019, China.
| | - Bo You
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.
- Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China.
- Medical College of Nantong University, Nantong, 226019, China.
| |
Collapse
|
5
|
He B, Gao R, Lv S, Chen A, Huang J, Wang L, Feng Y, Feng J, Liu B, Lei J, Deng B, He B, Cui B, Peng F, Yan M, Wang Z, Lam EWF, Jin B, Shao Z, Li Y, Jiao J, Wang X, Liu Q. Cancer cell employs a microenvironmental neural signal trans-activating nucleus-mitochondria coordination to acquire stemness. Signal Transduct Target Ther 2023; 8:275. [PMID: 37463926 PMCID: PMC10354099 DOI: 10.1038/s41392-023-01487-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 07/20/2023] Open
Abstract
Cancer cell receives extracellular signal inputs to obtain a stem-like status, yet how tumor microenvironmental (TME) neural signals steer cancer stemness to establish the hierarchical tumor architectures remains elusive. Here, a pan-cancer transcriptomic screening for 10852 samples of 33 TCGA cancer types reveals that cAMP-responsive element (CRE) transcription factors are convergent activators for cancer stemness. Deconvolution of transcriptomic profiles, specification of neural markers and illustration of norepinephrine dynamics uncover a bond between TME neural signals and cancer-cell CRE activity. Specifically, neural signal norepinephrine potentiates the stemness of proximal cancer cells by activating cAMP-CRE axis, where ATF1 serves as a conserved hub. Upon activation by norepinephrine, ATF1 potentiates cancer stemness by coordinated trans-activation of both nuclear pluripotency factors MYC/NANOG and mitochondrial biogenesis regulators NRF1/TFAM, thereby orchestrating nuclear reprograming and mitochondrial rejuvenating. Accordingly, single-cell transcriptomes confirm the coordinated activation of nuclear pluripotency with mitochondrial biogenesis in cancer stem-like cells. These findings elucidate that cancer cell acquires stemness via a norepinephrine-ATF1 driven nucleus-mitochondria collaborated program, suggesting a spatialized stemness acquisition by hijacking microenvironmental neural signals.
Collapse
Affiliation(s)
- Bin He
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Rui Gao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Department of Medical Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 510275, PR China
| | - Shasha Lv
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116023, PR China
| | - Ailin Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Junxiu Huang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Luoxuan Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116023, PR China
| | - Yunxiu Feng
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116023, PR China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, PR China
| | - Bing Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Jie Lei
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Bing Deng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Bin He
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116023, PR China
| | - Bai Cui
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116023, PR China
| | - Fei Peng
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116023, PR China
| | - Min Yan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Zifeng Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Bilian Jin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116023, PR China
| | - Zhiming Shao
- Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, 100871, PR China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Xi Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| | - Quentin Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
- Department of Medical Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 510275, PR China.
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116023, PR China.
| |
Collapse
|
6
|
Lechpammer M, Mahammedi A, Pomeranz Krummel DA, Sengupta S. Lessons learned from evolving frameworks in adult glioblastoma. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:131-140. [PMID: 36796938 DOI: 10.1016/b978-0-323-85538-9.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant adult brain tumor. Significant effort has been directed to achieve a molecular subtyping of GBM to impact treatment. The discovery of new unique molecular alterations has resulted in a more effective classification of tumors and has opened the door to subtype-specific therapeutic targets. Morphologically identical GBM may have different genetic, epigenetic, and transcriptomic alterations and therefore different progression trajectories and response to treatments. With a transition to molecularly guided diagnosis, there is now a potential to personalize and successfully manage this tumor type to improve outcomes. The steps to achieve subtype-specific molecular signatures can be extrapolated to other neuroproliferative as well as neurodegenerative disorders.
Collapse
Affiliation(s)
- Mirna Lechpammer
- Foundation Medicine, Inc., Cambridge, MA, United States; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Abdelkader Mahammedi
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Daniel A Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
7
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
8
|
Hedna R, Kovacic H, Pagano A, Peyrot V, Robin M, Devred F, Breuzard G. Tau Protein as Therapeutic Target for Cancer? Focus on Glioblastoma. Cancers (Basel) 2022; 14:5386. [PMID: 36358803 PMCID: PMC9653627 DOI: 10.3390/cancers14215386] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Despite being extensively studied for several decades, the microtubule-associated protein Tau has not finished revealing its secrets. For long, Tau has been known for its ability to promote microtubule assembly. A less known feature of Tau is its capability to bind to cancer-related protein kinases, suggesting a possible role of Tau in modulating microtubule-independent cellular pathways that are associated with oncogenesis. With the intention of finding new therapeutic targets for cancer, it appears essential to examine the interaction of Tau with these kinases and their consequences. This review aims at collecting the literature data supporting the relationship between Tau and cancer with a particular focus on glioblastoma tumors in which the pathological significance of Tau remains largely unexplored. We will first treat this subject from a mechanistic point of view showing the pivotal role of Tau in oncogenic processes. Then, we will discuss the involvement of Tau in dysregulating critical pathways in glioblastoma. Finally, we will outline promising strategies to target Tau protein for the therapy of glioblastoma.
Collapse
Affiliation(s)
- Rayane Hedna
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Hervé Kovacic
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Alessandra Pagano
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Vincent Peyrot
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Maxime Robin
- Faculté de Pharmacie, Institut Méditerranéen de Biodiversité et Ecologie marine et continentale (IMBE), UMR 7263, CNRS, IRD 237, Aix-Marseille Université, 13005 Marseille, France
| | - François Devred
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Gilles Breuzard
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| |
Collapse
|
9
|
Off the Clock: the Non-canonical Roles of Cyclin-Dependent Kinases in Neural and Glioma Stem Cell Self-Renewal. Mol Neurobiol 2022; 59:6805-6816. [PMID: 36042143 DOI: 10.1007/s12035-022-03009-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
Glioma stem cells (GSCs) are thought to drive growth and therapy resistance in glioblastoma (GBM) by "hijacking" at least a subset of signaling pathways active in normal neural stem cells (NSCs). Though the origins of GSCs still remain elusive, uncovering the mechanisms of self-renewing division and cell differentiation in normal NSCs has shed light on their dysfunction in GSCs. However, the distinction between self-renewing division pathways utilized by NSC and GSC becomes critical when considering options for therapeutically targeting signaling pathways that are specifically active or altered in GSCs. It is well-established that cyclin-dependent kinases (CDKs) regulate the cell cycle, yet more recent studies have shown that CDKs also play important roles in the regulation of neuronal survival, metabolism, differentiation, and self-renewal. The intimate relationship between cell cycle regulation and the cellular programs that determine self-renewing division versus cell differentiation is only beginning to be understood, yet seems to suggest potential differential vulnerabilities in GSCs. In this timely review, we focus on the role of CDKs in regulating the self-renewal properties of normal NSCs and GSCs, highlighting novel opportunities to therapeutically target self-renewing signaling pathways specifically in GBM.
Collapse
|
10
|
Luo M, Liu YQ, Zhang H, Luo CH, Liu Q, Wang WY, He ZC, Chen C, Zhang XN, Mao M, Yang KD, Wang C, Chen XQ, Fu WJ, Niu Q, Bian XW, Shi Y, Ping YF. Overexpression of carnitine palmitoyltransferase 1A promotes mitochondrial fusion and differentiation of glioblastoma stem cells. J Transl Med 2022; 102:722-730. [PMID: 34963686 DOI: 10.1038/s41374-021-00724-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022] Open
Abstract
Glioma stem cells (GSCs) are self-renewing tumor cells with multi-lineage differentiation potential and the capacity of construct glioblastoma (GBM) heterogenicity. Mitochondrial morphology is associated with the metabolic plasticity of GBM cells. Previous studies have revealed distinct mitochondrial morphologies and metabolic phenotypes between GSCs and non-stem tumor cells (NSTCs), whereas the molecules regulating mitochondrial dynamics in GBM cells are largely unknown. Herein, we report that carnitine palmitoyltransferase 1A (CPT1A) is preferentially expressed in NSTCs, and governs mitochondrial dynamics and GSC differentiation. Expressions of CPT1A and GSC marker CD133 were mutually exclusive in human GBMs. Overexpression of CPT1A inhibited GSC self-renewal but promoted mitochondrial fusion. In contrast, disruption of CPT1A in NSTCs promoted mitochondrial fission and reprogrammed NSTCs toward GSC feature. Mechanistically, CPT1A overexpression increased the phosphorylation of dynamin-related protein 1 at Ser-637 to promote mitochondrial fusion. In vivo, CPT1A overexpression decreased the percentage of GSCs, impaired GSC-derived xenograft growth and prolonged tumor-bearing mice survival. Our work identified CPT1A as a critical regulator of mitochondrial dynamics and GSC differentiation, indicating that CPT1A could be developed as a molecular target for GBM cell-differentiation strategy.
Collapse
Affiliation(s)
- Min Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yu-Qi Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Hua Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Chun-Hua Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Qing Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Wen-Ying Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Zhi-Cheng He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Cong Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xiao-Ning Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Min Mao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Kai-Di Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Chao Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xiao-Qing Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Wen-Juan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Qin Niu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| |
Collapse
|
11
|
Targeting protein kinases in cancer stem cells. Essays Biochem 2022; 66:399-412. [PMID: 35607921 DOI: 10.1042/ebc20220002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are subpopulations of cancer cells within the tumor bulk that have emerged as an attractive therapeutic target for cancer therapy. Accumulating evidence has shown the critical involvement of protein kinase signaling pathways in driving tumor development, cancer relapse, metastasis, and therapeutic resistance. Given that protein kinases are druggable targets for cancer therapy, tremendous efforts are being made to target CSCs with kinase inhibitors. In this review, we summarize the current knowledge and overview of the roles of protein kinases in various signaling pathways in CSC regulation and drug resistance. Furthermore, we provide an update on the preclinical and clinical studies for the use of kinase inhibitors alone or in combination with current therapies for effective cancer therapy. Despite great premises for the use of kinase inhibitors against CSCs, further investigations are needed to evaluate their efficiencies without any adverse effects on normal stem cells.
Collapse
|
12
|
Abstract
Cdk5 is a proline-directed serine/threonine protein kinase that governs a variety of cellular processes in neurons, the dysregulation of which compromises normal brain function. The mechanisms underlying the modulation of Cdk5, its modes of action, and its effects on the nervous system have been a great focus in the field for nearly three decades. In this review, we provide an overview of the discovery and regulation of Cdk5, highlighting recent findings revealing its role in neuronal/synaptic functions, circadian clocks, DNA damage, cell cycle reentry, mitochondrial dysfunction, as well as its non-neuronal functions under physiological and pathological conditions. Moreover, we discuss evidence underscoring aberrant Cdk5 activity as a common theme observed in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
13
|
Turdo A, D'Accardo C, Glaviano A, Porcelli G, Colarossi C, Colarossi L, Mare M, Faldetta N, Modica C, Pistone G, Bongiorno MR, Todaro M, Stassi G. Targeting Phosphatases and Kinases: How to Checkmate Cancer. Front Cell Dev Biol 2021; 9:690306. [PMID: 34778245 PMCID: PMC8581442 DOI: 10.3389/fcell.2021.690306] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
Metastatic disease represents the major cause of death in oncologic patients worldwide. Accumulating evidence have highlighted the relevance of a small population of cancer cells, named cancer stem cells (CSCs), in the resistance to therapies, as well as cancer recurrence and metastasis. Standard anti-cancer treatments are not always conclusively curative, posing an urgent need to discover new targets for an effective therapy. Kinases and phosphatases are implicated in many cellular processes, such as proliferation, differentiation and oncogenic transformation. These proteins are crucial regulators of intracellular signaling pathways mediating multiple cellular activities. Therefore, alterations in kinases and phosphatases functionality is a hallmark of cancer. Notwithstanding the role of kinases and phosphatases in cancer has been widely investigated, their aberrant activation in the compartment of CSCs is nowadays being explored as new potential Achille's heel to strike. Here, we provide a comprehensive overview of the major protein kinases and phosphatases pathways by which CSCs can evade normal physiological constraints on survival, growth, and invasion. Moreover, we discuss the potential of inhibitors of these proteins in counteracting CSCs expansion during cancer development and progression.
Collapse
Affiliation(s)
- Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Antonino Glaviano
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Lorenzo Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Marzia Mare
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | | | - Chiara Modica
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Giuseppe Pistone
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Maria Rita Bongiorno
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy.,Azienda Ospedaliera Universitaria Policlinico (AOUP), Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
14
|
Wang X, Zhang L, Song Y, Jiang Y, Zhang D, Wang R, Hu T, Han S. MCM8 is regulated by EGFR signaling and promotes the growth of glioma stem cells through its interaction with DNA-replication-initiating factors. Oncogene 2021; 40:4615-4624. [PMID: 34131285 DOI: 10.1038/s41388-021-01888-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Mini-chromosome maintenance (MCM) proteins are critical components of DNA-replication-licensing factors. MCM8 is an MCM protein that exhibits oncogenic functions in several human malignancies. However, the role of MCM8 in glioblastomas (GBMs) has remained unclear. In the present study, we investigated the biological functions and mechanisms of MCM8 in glioma stem cells (GSCs). The clinical relevance of MCM8 mRNA expression was explored via TCGA and REMBRANDT datasets. The effects of MCM8 on the self-renewal and tumorigenicity of GSCs were examined both in vitro and in vivo. The regulation of MCM8 expression and its interacting proteins were also evaluated. We found that the expression of MCM8 was elevated in high-grade gliomas and classical molecular subtypes and was inversely correlated with patient prognosis. GSCs had a significantly higher expression of MCM8 compared with that in normal glioma cells. Silencing of MCM8 induced G0/G1 arrest and apoptosis, as well as inhibited the proliferation and self-renewal of GSCs. Forced expression of MCM8 enhanced clonogenicity of GSCs both in vitro and in vivo. MCM8 expression was regulated by EGFR signaling, which was mediated by NF-κB (p65). MCM8 interacted with DNA-replication-initiating factors-including EZH2, CDC6, and CDCA2-and influenced these factors to associate with chromatin. In addition, MCM8 knockdown increased the sensitivity of GSCs to radiation and TMZ treatments. Our findings suggest that MCM8, regulated by the EGFR pathway, maintains the clonogenic and tumorigenic potential of GSCs through interaction with DNA-replication-initiating factors; hence, MCM8 may represent a novel therapeutic target in GBMs.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Li Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yang Jiang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
- Department of Neurosurgery, Shanghai First People's Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Zhang
- Department of Pathology, China Medical University, Shenyang, China
| | - Run Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Tianhao Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
15
|
Maksoud S. The Role of the Ubiquitin Proteasome System in Glioma: Analysis Emphasizing the Main Molecular Players and Therapeutic Strategies Identified in Glioblastoma Multiforme. Mol Neurobiol 2021; 58:3252-3269. [PMID: 33665742 PMCID: PMC8260465 DOI: 10.1007/s12035-021-02339-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
Gliomas constitute the most frequent tumors of the brain. High-grade gliomas are characterized by a poor prognosis caused by a set of attributes making treatment difficult, such as heterogeneity and cell infiltration. Additionally, there is a subgroup of glioma cells with properties similar to those of stem cells responsible for tumor recurrence after treatment. Since proteasomal degradation regulates multiple cellular processes, any mutation causing disturbances in the function or expression of its elements can lead to various disorders such as cancer. Several studies have focused on protein degradation modulation as a mechanism of glioma control. The ubiquitin proteasome system is the main mechanism of cellular proteolysis that regulates different events, intervening in pathological processes with exacerbating or suppressive effects on diseases. This review analyzes the role of proteasomal degradation in gliomas, emphasizing the elements of this system that modulate different cellular mechanisms in tumors and discussing the potential of distinct compounds controlling brain tumorigenesis through the proteasomal pathway.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
16
|
Zhou Y, Wang X, Lv P, Yu H, Jiang X. CDK5 Knockdown inhibits proliferation and induces apoptosis and Cell Cycle Arrest in Human Glioblastoma. J Cancer 2021; 12:3958-3966. [PMID: 34093802 PMCID: PMC8176241 DOI: 10.7150/jca.53981] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/22/2021] [Indexed: 01/24/2023] Open
Abstract
Aims: Gliomas are the most common malignant brain neoplasms with high recurrence and lethality rates. Recently, studies have reported that cyclin-dependent kinase 5 (CDK5) is involved in tumorigenesis. Herein, we applied bioinformatics analysis to determine the clinical value of CDK5 in patients with glioma and examined the effects of CDK5 on glioblastoma cell proliferation, apoptosis, and cell cycle in vitro. Methods: Gene expression profiles containing clinical data of low-grade glioma (LGG) and glioblastoma cohorts were obtained from The Cancer Genome Atlas database and analyzed to determine the association between CDK5 expression and glioma clinicopathological characteristics. Kaplan-Meier survival analysis was performed for prognosis analysis. Gene set enrichment analysis (GSEA) was used to identify the biological pathways involved in differential CDK5 expression. In vitro experiments were performed to explore the effects of CDK5 on glioma cell functions. Results: CDK5 expression was substantially higher in glioblastoma than in LGG. GSEA showed that some metabolism-related pathways were associated with the high CDK5 expression phenotype. In vitro experiments showed that CDK5 knockdown impaired cell proliferation and colony formation ability, and induced apoptosis and cell cycle arrest. Conclusion: CDK5 may act as a potential biomarker of glioma progression and a valid target for glioma therapy.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng Lv
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Neurosurgery, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei, 441300, China
| | - Hao Yu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
17
|
Identification of Novel Biomarkers and Candidate Drug in Ovarian Cancer. J Pers Med 2021; 11:jpm11040316. [PMID: 33921660 PMCID: PMC8073701 DOI: 10.3390/jpm11040316] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
This paper investigates the expression of the CREB1 gene in ovarian cancer (OV) by deeply excavating the gene information in the multiple databases and the mechanism thereof. In short, we found that the expression of the CREB1 gene in ovarian cancer tissue was significantly higher than that of normal ovarian tissue. Kaplan–Meier survival analysis showed that the overall survival was significantly shorter in patients with high expression of the CREB1 gene than those in patients with low expression of the CREB1 gene, and the prognosis of patients with low expression of the CREB1 gene was better. The CREB1 gene may play a role in the occurrence and development of ovarian cancer by regulating the process of protein. Based on differentially expressed genes, 20 small-molecule drugs that potentially target CREB1 with abnormal expression in OV were obtained from the CMap database. Among these compounds, we found that naloxone has the greatest therapeutic value for OV. The high expression of the CREB1 gene may be an indicator of poor prognosis in ovarian cancer patients. Targeting CREB1 may be a potential tool for the diagnosis and treatment of OV.
Collapse
|
18
|
Chen B, McCuaig-Walton D, Tan S, Montgomery AP, Day BW, Kassiou M, Munoz L, Recasens A. DYRK1A Negatively Regulates CDK5-SOX2 Pathway and Self-Renewal of Glioblastoma Stem Cells. Int J Mol Sci 2021; 22:4011. [PMID: 33924599 PMCID: PMC8069695 DOI: 10.3390/ijms22084011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma display vast cellular heterogeneity, with glioblastoma stem cells (GSCs) at the apex. The critical role of GSCs in tumour growth and resistance to therapy highlights the need to delineate mechanisms that control stemness and differentiation potential of GSC. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) regulates neural progenitor cell differentiation, but its role in cancer stem cell differentiation is largely unknown. Herein, we demonstrate that DYRK1A kinase is crucial for the differentiation commitment of glioblastoma stem cells. DYRK1A inhibition insulates the self-renewing population of GSCs from potent differentiation-inducing signals. Mechanistically, we show that DYRK1A promotes differentiation and limits stemness acquisition via deactivation of CDK5, an unconventional kinase recently described as an oncogene. DYRK1A-dependent inactivation of CDK5 results in decreased expression of the stemness gene SOX2 and promotes the commitment of GSC to differentiate. Our investigations of the novel DYRK1A-CDK5-SOX2 pathway provide further insights into the mechanisms underlying glioblastoma stem cell maintenance.
Collapse
Affiliation(s)
- Brianna Chen
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.C.); (D.M.-W.); (S.T.)
| | - Dylan McCuaig-Walton
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.C.); (D.M.-W.); (S.T.)
| | - Sean Tan
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.C.); (D.M.-W.); (S.T.)
| | - Andrew P. Montgomery
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; (A.P.M.); (M.K.)
| | - Bryan W. Day
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia;
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; (A.P.M.); (M.K.)
| | - Lenka Munoz
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.C.); (D.M.-W.); (S.T.)
| | - Ariadna Recasens
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.C.); (D.M.-W.); (S.T.)
| |
Collapse
|
19
|
Lopes MB, Martins EP, Vinga S, Costa BM. The Role of Network Science in Glioblastoma. Cancers (Basel) 2021; 13:1045. [PMID: 33801334 PMCID: PMC7958335 DOI: 10.3390/cancers13051045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Network science has long been recognized as a well-established discipline across many biological domains. In the particular case of cancer genomics, network discovery is challenged by the multitude of available high-dimensional heterogeneous views of data. Glioblastoma (GBM) is an example of such a complex and heterogeneous disease that can be tackled by network science. Identifying the architecture of molecular GBM networks is essential to understanding the information flow and better informing drug development and pre-clinical studies. Here, we review network-based strategies that have been used in the study of GBM, along with the available software implementations for reproducibility and further testing on newly coming datasets. Promising results have been obtained from both bulk and single-cell GBM data, placing network discovery at the forefront of developing a molecularly-informed-based personalized medicine.
Collapse
Affiliation(s)
- Marta B. Lopes
- Center for Mathematics and Applications (CMA), FCT, UNL, 2829-516 Caparica, Portugal
- NOVA Laboratory for Computer Science and Informatics (NOVA LINCS), FCT, UNL, 2829-516 Caparica, Portugal
| | - Eduarda P. Martins
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (E.P.M.); (B.M.C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Susana Vinga
- INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, 1000-029 Lisbon, Portugal;
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (E.P.M.); (B.M.C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
20
|
An Unbiased Drug Screen for Seizure Suppressors in Duplication 15q Syndrome Reveals 5-HT 1A and Dopamine Pathway Activation as Potential Therapies. Biol Psychiatry 2020; 88:698-709. [PMID: 32507391 PMCID: PMC7554174 DOI: 10.1016/j.biopsych.2020.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/06/2020] [Accepted: 04/02/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Duplication 15q (Dup15q) syndrome is a rare neurogenetic disorder characterized by autism and pharmacoresistant epilepsy. Most individuals with isodicentric duplications have been on multiple medications to control seizures. We recently developed a model of Dup15q in Drosophila by elevating levels of fly Dube3a in glial cells using repo-GAL4, not neurons. In contrast to other Dup15q models, these flies develop seizures that worsen with age. METHODS We screened repo>Dube3a flies for approved compounds that can suppress seizures. Flies 3 to 5 days old were exposed to compounds in the fly food during development. Flies were tested using a bang sensitivity assay for seizure recovery time. At least 40 animals were tested per experiment, with separate testing for male and female flies. Studies of K+ content in glial cells of the fly brain were also performed using a fluorescent K+ indicator. RESULTS We identified 17 of 1280 compounds in the Prestwick Chemical Library that could suppress seizures. Eight compounds were validated in secondary screening. Four of these compounds regulated either serotonergic or dopaminergic signaling, and subsequent experiments confirmed that seizure suppression occurred primarily through stimulation of serotonin receptor 5-HT1A. Additional studies of K+ levels showed that Dube3a regulation of the Na+/K+ exchanger ATPα (adenosine triphosphatase α) in glia may be modulated by serotonin/dopamine signaling, causing seizure suppression. CONCLUSIONS Based on these pharmacological and genetic studies, we present an argument for the use of 5-HT1A agonists in the treatment of Dup15q epilepsy.
Collapse
|
21
|
Bei Y, Cheng N, Chen T, Shu Y, Yang Y, Yang N, Zhou X, Liu B, Wei J, Liu Q, Zheng W, Zhang W, Su H, Zhu W, Ji J, Shen P. CDK5 Inhibition Abrogates TNBC Stem-Cell Property and Enhances Anti-PD-1 Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001417. [PMID: 33240752 PMCID: PMC7675186 DOI: 10.1002/advs.202001417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, in which the higher frequency of cancer stem cells (CSCs) correlates with the poor clinical outcome. An aberrant activation of CDK5 is found to associate with TNBC progression closely. CDK5 mediates PPARγ phosphorylation at its Ser 273, which induces CD44 isoform switching from CD44s to CD44v, resulting in an increase of stemness of TNBC cells. Blocking CDK5/pho-PPARγ significantly reduces CD44v+ BCSCs population in tumor tissues, thus abrogating metastatic progression in TNBC mouse model. Strikingly, diminishing stemness transformation reverses immunosuppressive microenvironment and enhances anti-PD-1 therapeutic efficacy on TNBC. Mechanistically, CDK5 switches the E3 ubiquitin ligase activity of PPARγ and directly protects ESRP1 from a ubiquitin-dependent proteolysis. This finding firstly indicates that CDK5 blockade can be a potent strategy to diminish stemness transformation and increase the response to PD-1 blockade in TNBC therapy.
Collapse
Affiliation(s)
- Yuncheng Bei
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Nan Cheng
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Ting Chen
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
- Laura and Isaac Perlmutter Cancer CenterNew York University Langone Medical CenterNew YorkNYUSA
| | - Yuxin Shu
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Ye Yang
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023P. R. China
| | - Nanfei Yang
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Xinyu Zhou
- State Key Laboratory of Protein and Plant Gene ResearchCollege of Life SciencesPeking UniversityBeijing100871P. R. China
| | - Baorui Liu
- The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Jia Wei
- The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Qin Liu
- The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Wei Zheng
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Wenlong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Huifang Su
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Wei‐Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human DiseaseShenzhen University Carson Cancer CenterDepartment of Biochemistry and Molecular BiologyShenzhen University School of MedicineShenzhen518060P. R. China
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene ResearchCollege of Life SciencesPeking UniversityBeijing100871P. R. China
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
- Guangdong Key Laboratory of Genome Instability and Human DiseaseShenzhen University Carson Cancer CenterDepartment of Biochemistry and Molecular BiologyShenzhen University School of MedicineShenzhen518060P. R. China
| |
Collapse
|
22
|
Sapio L, Salzillo A, Ragone A, Illiano M, Spina A, Naviglio S. Targeting CREB in Cancer Therapy: A Key Candidate or One of Many? An Update. Cancers (Basel) 2020; 12:3166. [PMID: 33126560 PMCID: PMC7693618 DOI: 10.3390/cancers12113166] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Intratumor heterogeneity (ITH) is considered the major disorienting factor in cancer treatment. As a result of stochastic genetic and epigenetic alterations, the appearance of a branched evolutionary shape confers tumor plasticity, causing relapse and unfavorable clinical prognosis. The growing evidence in cancer discovery presents to us "the great paradox" consisting of countless potential targets constantly discovered and a small number of candidates being effective in human patients. Among these, cyclic-AMP response element-binding protein (CREB) has been proposed as proto-oncogene supporting tumor initiation, progression and metastasis. Overexpression and hyperactivation of CREB are frequently observed in cancer, whereas genetic and pharmacological CREB downregulation affects proliferation and apoptosis. Notably, the present review is designed to investigate the feasibility of targeting CREB in cancer therapy. In particular, starting with the latest CREB evidence in cancer pathophysiology, we evaluate the advancement state of CREB inhibitor design, including the histone lysine demethylases JMJD3/UTX inhibitor GSKJ4 that we newly identified as a promising CREB modulator in leukemia cells. Moreover, an accurate analysis of strengths and weaknesses is also conducted to figure out whether CREB can actually represent a therapeutic candidate or just one of the innumerable preclinical cancer targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Silvio Naviglio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.S.); (A.R.); (M.I.); (A.S.)
| |
Collapse
|
23
|
Zhao Z, Li GZ, Liu YQ, Huang RY, Wang KY, Jiang HY, Li RP, Chai RC, Zhang CB, Wu F. Characterization and prognostic significance of alternative splicing events in lower-grade diffuse gliomas. J Cell Mol Med 2020; 24:13171-13180. [PMID: 33006444 PMCID: PMC7701518 DOI: 10.1111/jcmm.15924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 01/17/2023] Open
Abstract
Alternative splicing (AS) is assumed to play important roles in the progression and prognosis of cancer. Currently, the comprehensive analysis and clinical relevance of AS in lower-grade diffuse gliomas have not been systematically addressed. Here, we gathered alternative splicing data of lower-grade diffuse gliomas from SpliceSeq. Based on the Percent Spliced In (PSI) values of 515 lower-grade diffuse glioma patients from the Cancer Genome Atlas (TCGA), we performed subtype-differential AS analysis and consensus clustering to determine robust clusters of patients. A total of 48 050 AS events in 10 787 genes in lower-grade diffuse gliomas were profiled. Subtype-differential splicing analysis and functional annotation revealed that spliced genes were significantly enriched in numerous cancer-related biological phenotypes and signalling pathways. Consensus clustering using AS events identified three robust clusters of patients with distinguished pathological and prognostic features. Moreover, each cluster was also associated with distinct genomic alterations. Finally, we developed and validated an AS-related signature with Cox proportional hazards model. The signature, significantly associated with clinical and molecular features, could serve as an independent prognostic factor for lower-grade diffuse gliomas. Thus, our results indicated that AS events could discriminate molecular subtypes and have prognostic impact in lower-grade diffuse gliomas.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guan-Zhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu-Qing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruo-Yu Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kuan-Yu Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao-Yu Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ren-Peng Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rui-Chao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuan-Bao Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
TP5, a Peptide Inhibitor of Aberrant and Hyperactive CDK5/p25: A Novel Therapeutic Approach against Glioblastoma. Cancers (Basel) 2020; 12:cancers12071935. [PMID: 32708903 PMCID: PMC7409269 DOI: 10.3390/cancers12071935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022] Open
Abstract
We examined the efficacy of selective inhibition of cyclin-dependent kinase 5 (CDK5) in glioblastoma by TP5. We analyzed its impact in vitro on CDK5 expression and activity, cell survival, apoptosis and cell cycle. DNA damage was analyzed using the expression of γH2A.X and phosphorylated ATM. Its tolerance and efficacy were assessed on in vivo xenograft mouse models. We showed that TP5 decreased the activity but not the expression of CDK5 and p35. TP5 alone impaired cell viability and colony formation of glioblastoma cell lines and induced apoptosis. TP5 increased DNA damage by inhibiting the phosphorylation of ATM, leading to G1 arrest. Whereas CDK5 activity is increased by DNA-damaging agents such as temozolomide and irradiation, TP5 was synergistic with either temozolomide or irradiation due to an accumulation of DNA damage. Concomitant use of TP5 and either temozolomide or irradiation reduced the phosphorylation of ATM, increased DNA damage, and inhibited the G2/M arrest induced by temozolomide or irradiation. TP5 alone suppressed the tumor growth of orthotopic glioblastoma mouse model. The treatment was well tolerated. Finally, alone or in association with irradiation or temozolomide, TP5 prolonged mouse survival. TP5 alone or in association with temozolomide and radiotherapy is a promising therapeutic option for glioblastoma.
Collapse
|
25
|
Bhat A, Ray B, Mahalakshmi AM, Tuladhar S, Nandakumar DN, Srinivasan M, Essa MM, Chidambaram SB, Guillemin GJ, Sakharkar MK. Phosphodiesterase-4 enzyme as a therapeutic target in neurological disorders. Pharmacol Res 2020; 160:105078. [PMID: 32673703 DOI: 10.1016/j.phrs.2020.105078] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
Phosphodiesterases (PDE) are a diverse family of enzymes (11 isoforms so far identified) responsible for the degradation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) which are involved in several cellular and biochemical functions. Phosphodiesterase 4 (PDE4) is the major isoform within this group and is highly expressed in the mammalian brain. An inverse association between PDE4 and cAMP levels is the key mechanism in various pathophysiological conditions like airway inflammatory diseases-chronic obstruction pulmonary disease (COPD), asthma, psoriasis, rheumatoid arthritis, and neurological disorders etc. In 2011, roflumilast, a PDE4 inhibitor (PDE4I) was approved for the treatment of COPD. Subsequently, other PDE4 inhibitors (PDE4Is) like apremilast and crisaborole were approved by the Food and Drug Administration (FDA) for psoriasis, atopic dermatitis etc. Due to the adverse effects like unbearable nausea and vomiting, dose intolerance and diarrhoea, PDE4 inhibitors have very less clinical compliance. Efforts are being made to develop allosteric modulation with high specificity to PDE4 isoforms having better efficacy and lesser adverse effects. Interestingly, repositioning PDE4Is towards neurological disorders including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS) and sleep disorders, is gaining attention. This review is an attempt to summarize the data on the effects of PDE4 overexpression in neurological disorders and the use of PDE4Is and newer allosteric modulators as therapeutic options. We have also compiled a list of on-going clinical trials on PDE4 inhibitors in neurological disorders.
Collapse
Affiliation(s)
- Abid Bhat
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Bipul Ray
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Sunanda Tuladhar
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - D N Nandakumar
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Malathi Srinivasan
- Department of Lipid Science, CSIR - Central Food Technological Research Institute (CFTRI), CFTRI Campus, Mysuru, 570020, India
| | - Musthafa Mohamed Essa
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman; Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman.
| | - Saravana Babu Chidambaram
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India.
| | - Gilles J Guillemin
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK, S7N 5C9, Canada
| |
Collapse
|
26
|
Mao YQ, Han SF, Zhang SL, Zhang ZY, Kong CY, Chen HL, Li ZM, Cai PR, Han B, Wang LS. An approach using Caenorhabditis elegans screening novel targets to suppress tumour cell proliferation. Cell Prolif 2020; 53:e12832. [PMID: 32452127 PMCID: PMC7309951 DOI: 10.1111/cpr.12832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/07/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Tumour cell proliferation requires high metabolism to meet the bioenergetics and biosynthetic needs. Dauer in Caenorhabditis elegans is characterized by lower metabolism, and we established an approach with C elegans to find potential tumour therapy targets. MATERIALS AND METHODS RNAi screening was used to find dauer-related genes, and these genes were further analysed in glp-1(-) mutants for tumour-suppressing testing. The identified tumour-related genes were verified in clinical tumour tissues. RESULTS The lifespan of glp-1(-) mutants was found to be extended by classical dauer formation signalling. Then, 61 of 287 kinase-coding genes in Caenorhabditis elegans were identified as dauer-related genes, of which 27 were found to be homologous to human oncogenes. Furthermore, 12 dauer-related genes were randomly selected for tumour-suppressing test, and six genes significantly extended the lifespan of glp-1(-) mutants. Of these six genes, F47D12.9, W02B12.12 and gcy-21 were newly linked to dauer formation. These three new dauer-related genes significantly suppressed tumour cell proliferation and thus extended the lifespan of glp-1(-) mutants in a longevity- or dauer-independent manner. The mRNA expression profiles indicated that these dauer-related genes trigged similar low metabolism pattern in glp-1(-) mutants. Notably, the expression of homolog gene DCAF4L2/F47D12.9, TSSK6/W02B12.12 and NPR1/gcy-21 was found to be higher in glioma compared with adjacent normal tissue. In addition, the high expression of TSSK6/W02B12.12 and NPR1/gcy-21 correlated with a worse survival in glioma patients. CONCLUSIONS Dauer gene screening in combination with tumour-suppressing test in glp-1(-) mutants provided a useful approach to find potential targets for tumour therapy via suppressing tumour cell proliferation and rewiring tumour cell metabolism.
Collapse
Affiliation(s)
- Yu-Qin Mao
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - San-Feng Han
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Shi-Long Zhang
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Zheng-Yan Zhang
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Chao-Yue Kong
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Hui-Ling Chen
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhan-Ming Li
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Pei-Ran Cai
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Bing Han
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Li-Shun Wang
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Noonan JJ, Jarzabek M, Lincoln FA, Cavanagh BL, Pariag AR, Juric V, Young LS, Ligon KL, Jahns H, Zheleva D, Prehn JHM, Rehm M, Byrne AT, Murphy BM. Implementing Patient-Derived Xenografts to Assess the Effectiveness of Cyclin-Dependent Kinase Inhibitors in Glioblastoma. Cancers (Basel) 2019; 11:cancers11122005. [PMID: 31842413 PMCID: PMC6966586 DOI: 10.3390/cancers11122005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor with no available cure. As previously described, seliciclib, a first-generation cyclin-dependent kinase (CDK) inhibitor, down-regulates the anti-apoptotic protein, Mcl-1, in GBM, thereby sensitizing GBM cells to the apoptosis-inducing effects of the death receptor ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Here, we have assessed the efficacy of seliciclib when delivered in combination with the antibody against human death receptor 5, drozitumab, in clinically relevant patient-derived xenograft (PDX) models of GBM. A reduction in viability and significant levels of apoptosis were observed in vitro in human GBM neurospheres following treatment with seliciclib plus drozitumab. While the co-treatment strategy induced a similar effect in PDX models, the dosing regimen required to observe seliciclib-targeted responses in the brain, resulted in lethal toxicity in 45% of animals. Additional studies showed that the second-generation CDK inhibitor, CYC065, with improved potency in comparison to seliciclib, induced a significant decrease in the size of human GBM neurospheres in vitro and was well tolerated in vivo, upon administration at clinically relevant doses. This study highlights the continued need for robust pre-clinical assessment of promising treatment approaches using clinically relevant models.
Collapse
Affiliation(s)
- Janis J. Noonan
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland; (J.J.N.); (M.J.); (F.A.L.); (A.R.P.); (V.J.); (J.H.M.P.); (A.T.B.)
| | - Monika Jarzabek
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland; (J.J.N.); (M.J.); (F.A.L.); (A.R.P.); (V.J.); (J.H.M.P.); (A.T.B.)
| | - Frank A. Lincoln
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland; (J.J.N.); (M.J.); (F.A.L.); (A.R.P.); (V.J.); (J.H.M.P.); (A.T.B.)
| | - Brenton L. Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland;
| | - Arhona R. Pariag
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland; (J.J.N.); (M.J.); (F.A.L.); (A.R.P.); (V.J.); (J.H.M.P.); (A.T.B.)
| | - Viktorija Juric
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland; (J.J.N.); (M.J.); (F.A.L.); (A.R.P.); (V.J.); (J.H.M.P.); (A.T.B.)
| | - Leonie S. Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland;
| | - Keith L. Ligon
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA;
| | - Hanne Jahns
- Pathobiology Section, School of Veterinary Medicine, University College Dublin, D02 YN77 Dublin 4, Ireland;
| | - Daniella Zheleva
- Cyclacel Ltd., 1 James Lindsay Place, Dundee, Scotland DD1 5JJ, UK;
| | - Jochen H. M. Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland; (J.J.N.); (M.J.); (F.A.L.); (A.R.P.); (V.J.); (J.H.M.P.); (A.T.B.)
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany;
- Stuttgart Research Center Systems Biology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Annette T. Byrne
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland; (J.J.N.); (M.J.); (F.A.L.); (A.R.P.); (V.J.); (J.H.M.P.); (A.T.B.)
| | - Brona M. Murphy
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland; (J.J.N.); (M.J.); (F.A.L.); (A.R.P.); (V.J.); (J.H.M.P.); (A.T.B.)
- Correspondence: ; Tel.: +35-31-402-2119
| |
Collapse
|
28
|
Xue J, Gao HX, Sang W, Cui WL, Liu M, Zhao Y, Wang MB, Wang Q, Zhang W. Identification of core differentially methylated genes in glioma. Oncol Lett 2019; 18:6033-6045. [PMID: 31788078 PMCID: PMC6864971 DOI: 10.3892/ol.2019.10955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Differentially methylated genes (DMGs) serve a crucial role in the pathogenesis of glioma via the regulation of the cell cycle, proliferation, apoptosis, migration, infiltration, DNA repair and signaling pathways. This study aimed to identify aberrant DMGs and pathways by comprehensive bioinformatics analysis. The gene expression profile of GSE28094 was downloaded from the Gene Expression Omnibus (GEO) database, and the GEO2R online tool was used to find DMGs. Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the DMGs were performed by using the Database for Annotation Visualization and Integrated Discovery. A protein-protein interaction (PPI) network was constructed with Search Tool for the Retrieval of Interacting Genes. Analysis of modules in the PPI networks was performed by Molecular Complex Detection in Cytoscape software, and four modules were performed. The hub genes with a high degree of connectivity were verified by The Cancer Genome Atlas database. A total of 349 DMGs, including 167 hypermethylation genes, were enriched in biological processes of negative and positive regulation of cell proliferation and positive regulation of transcription from RNA polymerase II promoter. Pathway analysis enrichment revealed that cancer regulated the pluripotency of stem cells and the PI3K-AKT signaling pathway, whereas 182 hypomethylated genes were enriched in biological processes of immune response, cellular response to lipopolysaccharide and peptidyl-tyrosine phosphorylation. Pathway enrichment analysis revealed cytokine-cytokine receptor interaction, type I diabetes mellitus and TNF signaling pathway. A total of 20 hub genes were identified, of which eight genes were associated with survival, including notch receptor 1 (NOTCH1), SRC proto-oncogene (also known as non-receptor tyrosine kinase, SRC), interleukin 6 (IL6), matrix metallopeptidase 9 (MMP9), interleukin 10 (IL10), caspase 3 (CASP3), erb-b2 receptor tyrosine kinase 2 (ERBB2) and epidermal growth factor (EGF). Therefore, bioinformatics analysis identified a series of core DMGs and pathways in glioma. The results of the present study may facilitate the assessment of the tumorigenicity and progression of glioma. Furthermore, the significant DMGs may provide potential methylation-based biomarkers for the precise diagnosis and targeted treatment of glioma.
Collapse
Affiliation(s)
- Jing Xue
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China.,Department of Pathology, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China.,Department of Pathology, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Hai-Xia Gao
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China.,Department of Pathology, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Wei Sang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Wen-Li Cui
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Ming Liu
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yan Zhao
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Meng-Bo Wang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China.,Department of Pathology, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Qian Wang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
29
|
CDK5-dependent phosphorylation and nuclear translocation of TRIM59 promotes macroH2A1 ubiquitination and tumorigenicity. Nat Commun 2019; 10:4013. [PMID: 31488827 PMCID: PMC6728346 DOI: 10.1038/s41467-019-12001-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 08/13/2019] [Indexed: 12/27/2022] Open
Abstract
Despite the development of adjuvant therapies, glioblastoma (GBM) patients remain incurable, thus justifying the urgent need of new therapies. CDK5 plays a critical role in GBM and is a potential target for GBM. However, the mechanism by which CDK5 promotes GBM tumorigenicity remains largely unknown. Here, we identify TRIM59 as a substrate of CDK5. EGFR-activated CDK5 directly binds to and phosphorylates TRIM59, a ubiquitin ligase at serine 308, which recruits PIN1 for cis–trans isomerization of TRIM59, leading to TRIM59 binding to importin α5 and nuclear translocation. Nuclear TRIM59 induces ubiquitination and degradation of the tumor suppressive histone variant macroH2A1, leading to enhanced STAT3 signaling activation and tumorigenicity. These findings are confirmed by inhibition of CDK5-activated TRIM59 activity that results in suppression of intracranial tumor growth. Correlative expressions of the components of this pathway are clinically prognostic. Our findings suggest targeting CDK5/TRIM59 signaling axis as a putative strategy for treating GBM. CDK5 is known to drive glioblastoma tumorigenicity but the downstream molecular mechanism is unknown. Here, the authors show that CDK5 activates STAT3 signalling via the nuclear import of TRIM59, which leads to the degradation of the tumour suppressor macroH2A1.
Collapse
|
30
|
Oner M, Lin E, Chen MC, Hsu FN, Shazzad Hossain Prince GM, Chiu KY, Teng CLJ, Yang TY, Wang HY, Yue CH, Yu CH, Lai CH, Hsieh JT, Lin H. Future Aspects of CDK5 in Prostate Cancer: From Pathogenesis to Therapeutic Implications. Int J Mol Sci 2019; 20:ijms20163881. [PMID: 31395805 PMCID: PMC6720211 DOI: 10.3390/ijms20163881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/03/2023] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) is a unique member of the cyclin-dependent kinase family. CDK5 is activated by binding with its regulatory proteins, mainly p35, and its activation is essential in the development of the central nervous system (CNS) and neurodegeneration. Recently, it has been reported that CDK5 plays important roles in regulating various biological and pathological processes, including cancer progression. Concerning prostate cancer, the androgen receptor (AR) is majorly involved in tumorigenesis, while CDK5 can phosphorylate AR and promotes the proliferation of prostate cancer cells. Clinical evidence has also shown that the level of CDK5 is associated with the progression of prostate cancer. Interestingly, inhibition of CDK5 prevents prostate cancer cell growth, while drug-triggered CDK5 hyperactivation leads to apoptosis. The blocking of CDK5 activity by its small interfering RNAs (siRNA) or Roscovitine, a pan-CDK inhibitor, reduces the cellular AR protein level and triggers the death of prostate cancer cells. Thus, CDK5 plays a crucial role in the growth of prostate cancer cells, and AR regulation is one of the important pathways. In this review paper, we summarize the significant studies on CDK5-mediated regulation of prostate cancer cells. We propose that the CDK5–p35 complex might be an outstanding candidate as a diagnostic marker and potential target for prostate cancer treatment in the near future.
Collapse
Affiliation(s)
- Muhammet Oner
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Eugene Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Urology, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan
| | - Mei-Chih Chen
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Fu-Ning Hsu
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | | | - Kun-Yuan Chiu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Chieh-Lin Jerry Teng
- Division of Hematology/Medical Oncology, Department of Internal, Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Hsin-Yi Wang
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Chia-Herng Yue
- Department of Surgery, Tung's Taichung Metro Harbor Hospital, Taichung 435, Taiwan
| | - Ching-Han Yu
- Department of Physiology, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Chang Gung Medical University, Taoyuan 33302, Taiwan
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
- Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
31
|
Li Y, Fu Y, Hu X, Sun L, Tang D, Li N, Peng F, Fan XG. The HBx-CTTN interaction promotes cell proliferation and migration of hepatocellular carcinoma via CREB1. Cell Death Dis 2019; 10:405. [PMID: 31138777 PMCID: PMC6538608 DOI: 10.1038/s41419-019-1650-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus-encoded X protein (HBx) acts as a tumor promoter during hepatocellular carcinoma (HCC) development, probably by regulating the expression of host proteins through protein–protein interaction. A proteomics approach was used to identify HBx-interacting proteins involved in HBx-induced hepatocarcinogenesis. We validated the proteomics findings by co-immunoprecipitation and confocal microscopy. We performed cell proliferation, migration assays and cell cycle analyses in HCC cells. Finally, we confirmed the clinical significance of our findings in samples from patients. We found that cortactin (CTTN) is a novel HBx-interacting protein, and HBx regulates the expression of CTTN in the HCC cell lines MHCC-LM3 and HepG2. Mechanistically, by upregulating the expression of cAMP response element-binding protein (CREB1) and its downstream targets, such as cyclin D1 and MMP-9, the effects of the HBx-CTTN interaction on the enhancement of cellular proliferation and migration were maintained by inhibiting cell cycle arrest. In addition, we demonstrated that the levels of CTTN and CREB1 were closely correlated in clinical samples from HBV-infected patients with HCC. Overall, our data suggests that HBx contributes to cell migration and proliferation of HCC cells by interacting with CTTN and regulating the expression of CTTN and CREB1. Therefore, the HBx/CTTN/CREB1 axis is a potential novel therapeutic target in HCC.
Collapse
Affiliation(s)
- Yajun Li
- Department of Infectious Diseases and Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Yongming Fu
- Department of Infectious Diseases and Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Xingwang Hu
- Department of Infectious Diseases and Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Peng
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China.
| | - Xue-Gong Fan
- Department of Infectious Diseases and Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
32
|
Zhang X, Gao C, Liu L, Zhou C, Liu C, Li J, Zhuang J, Sun C. DNA methylation‐based diagnostic and prognostic biomarkers of nonsmoking lung adenocarcinoma patients. J Cell Biochem 2019; 120:13520-13530. [PMID: 30920015 DOI: 10.1002/jcb.28627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaoming Zhang
- College of Traditional Chinese Medicine Shandong University of Traditional Chinese Medicine Jinan Shandong PR China
| | - Chundi Gao
- College of First Clinical Medicine Shandong University of Traditional Chinese Medicine Jinan Shandong PR China
| | - Lijuan Liu
- Department of Traditional Chinese Medicine Oncology Weifang Traditional Chinese Hospital Weifang Shandong PR China
- Department of Oncology Affiliated Hospital of Weifang Medical University Weifang Shandong PR China
| | - Chao Zhou
- Department of Traditional Chinese Medicine Oncology Weifang Traditional Chinese Hospital Weifang Shandong PR China
- Department of Oncology Affiliated Hospital of Weifang Medical University Weifang Shandong PR China
| | - Cun Liu
- College of First Clinical Medicine Shandong University of Traditional Chinese Medicine Jinan Shandong PR China
| | - Jia Li
- School of Clinical Medicine Weifang Medical University Weifang Shandong PR China
| | - Jing Zhuang
- Department of Traditional Chinese Medicine Oncology Weifang Traditional Chinese Hospital Weifang Shandong PR China
- Department of Oncology Affiliated Hospital of Weifang Medical University Weifang Shandong PR China
| | - Changgang Sun
- Department of Oncology Affiliated Hospital of Weifang Medical University Weifang Shandong PR China
| |
Collapse
|
33
|
Chen AS, Read RD. Drosophila melanogaster as a Model System for Human Glioblastomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:207-224. [PMID: 31520357 DOI: 10.1007/978-3-030-23629-8_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant adult brain tumor. Genomic amplifications, activating mutations, and overexpression of receptor tyrosine kinases (RTKs) such as EGFR, and genes in core RTK signaling transduction pathways such as PI3K are common in GBM. However, efforts to target these pathways have been largely unsuccessful in the clinic, and the median survival of GBM patients remains poor at 14-15 months. Therefore, to improve patient outcomes, there must be a concerted effort to elucidate the underlying biology involved in GBM tumorigenesis. Drosophila melanogaster has been a highly effective model for furthering our understanding of GBM tumorigenesis due to a number of experimental advantages it has over traditional mouse models. For example, there exists extensive cellular and genetic homology between humans and Drosophila, and 75% of genes associated with human disease have functional fly orthologs. To take advantage of these traits, we developed a Drosophila GBM model with constitutively active variants of EGFR and PI3K that effectively recapitulated key aspects of GBM disease. Researchers have utilized this model in forward genetic screens and have expanded on its functionality to make a number of important discoveries regarding requirements for key components in GBM tumorigenesis, including genes and pathways involved in extracellular matrix signaling, glycolytic metabolism, invasion/migration, stem cell fate and differentiation, and asymmetric cell division. Drosophila will continue to reveal novel biological pathways and mechanisms involved in gliomagenesis, and this knowledge may contribute to the development of effective treatment strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Alexander S Chen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Renee D Read
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA. .,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA. .,Winship Cancer Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|